
Complexity of Decision Problems for Simple
Regular Expressions

Wim Martens1, Frank Neven1, and Thomas Schwentick2

1 Limburgs Universitair Centrum
Universitaire Campus

B-3590 Diepenbeek, Belgium
{wim.martens,frank.neven}@luc.ac.be

2 Philipps Universität Marburg
Fachbereich 12, Mathematik und Informatik

tick@informatik.uni-marburg.de

Abstract. We study the complexity of the inclusion, equivalence, and
intersection problem for simple regular expressions arising in practical
XML schemas. These basically consist of the concatenation of factors
where each factor is a disjunction of strings possibly extended with ‘∗’ or
‘?’. We obtain lower and upper bounds for various fragments of simple
regular expressions. Although we show that inclusion and intersection
are already intractable for very weak expressions, we also identify some
tractable cases. For equivalence, we only prove an initial tractability re-
sult leaving the complexity of more general cases open. The main moti-
vation for this research comes from database theory, or more specifically
XML and semi-structured data. We namely show that all lower and upper
bounds for inclusion and equivalence, carry over to the corresponding de-
cision problems for extended context-free grammars and single-type tree
grammars, which are abstractions of DTDs and XML Schemas, respec-
tively. For intersection, we show that the complexity only carries over for
DTDs.

1 Introduction

XML (eXtensible Markup Language) is becoming the standard data exchange
format for the Web. Within a community, parties usually agree to only produce
XML data conforming to a certain format. The presence of such a schema im-
proves the efficiency of many tasks like, for instance, query processing, query
optimization, and automatic data integration. For typechecking or type infer-
ence [11, 14, 18, 21], schema information is even crucial. As standard decision
problems of schema languages, like inclusion, equivalence, and non-emptiness of
intersection, are among the basic building blocks for many of the algorithms for
those problems, it is critical to establish their exact complexity.

Among the various proposals for XML schema languages, DTD (Document
Type Definition) and XML Schema Definitions (XSDs) [8, 9] are the most widely
spread. Generally these languages are abstracted by extended context-free gram-
mars (ECFGs) and unranked tree automata, respectively [20, 26]. The former are

Table 1. Possible factors in simple regular expressions and how they are denoted
(a ∈ Σ, w ∈ Σ∗).

Factor Abbr.

a a
a∗ a∗

a? a?
(a1 + · · · + an) (+a)

Factor Abbr.

(a1 + · · · + an)∗ (+a)∗

(a1 + · · · + an)? (+a)?
w? w?
w∗ w∗

Factor Abbr.

(a∗
1 + · · · + a∗

n) (+a∗)
(w1 + · · · + wn) (+w)
(w1 + · · · + wn)? (+w)?
(w1 + · · · + wn)∗ (+w)∗

context-free grammars with regular expressions as right-hand sides of rules, while
the latter are a natural extension of classical tree automata to trees where nodes
can have an unbounded number of children [3]. A formalism equivalent to such
tree automata but which is grammar based are specialized DTDs (SDTDs) [21].
The complexity of the three afore mentioned problems is known and is pspace-
complete for DTDs (as it reduces to the corresponding problems of regular ex-
pressions) and exptime-complete for tree automata or specialized DTDs [13,
22–24].

In the present paper, we revisit the complexity of the inclusion, equivalence,
and intersection problem for XML schemas occurring effectively in practice.
For instance, the pspace-hardness of inclusion of DTDs crucially depends on
the presence of involved regular expressions that are quite unlikely to occur in
realistic DTDs. Actually, a study by Bex, Neven, and Van den Bussche [2] reveals
that more than 90 percent of the regular expressions occurring in practical DTDs
and XSDs are of the following simple form: e1 · · · en where every ei is a factor of
the form (w1+· · ·+wn) possibly extended with Kleene-star or question mark, and
each wi is a string (cf. Section 2 for a detailed definition and Table 1 for a list of
allowed factors together with their abbreviated notation). Further, Murata et al.
argued that XML Schemas do not correspond to the full class of tree automata
or SDTDs, but to a strict subset of those, namely, single-type SDTDs [19].

Clearly, complexity lower bounds for the inclusion, equivalence, or the inter-
section problem for a class of regular expressions R imply lower bounds for the
corresponding decision problems for DTDs and (single-type) SDTDs with right-
hand sides in R. Interestingly, we show that for inclusion and equivalence, also
upper bounds for the string case carry over to DTDs and single-type SDTDs.
For intersection, the latter still holds for DTDs but not for single-type SDTDs.
So, it suffices to restrict attention to the complexity of simple regular expressions
to derive complexity bounds for XML schema languages.

Our results on the complexity of simple regular expressions are summarized
in Table 2. We denote by RE(S), the set of all simple regular expressions. Recall
that the three decision problems are pspace-complete for the class of all regular
expressions [13, 24]. We briefly discuss our results.

– We show that inclusion is already conp-complete for very innocent expres-
sions: where every factor is of the form a or a∗, or of the form a or a?
with a an arbitrary alphabet symbol. Even worse, when factors of the form

Table 2. Summary of Results. Theorem numbers are given in brackets.

RE-fragment Inclusion Equivalence Intersection

a, a+ in ptime (DFA!) in ptime in ptime (9)
a, a∗ conp-complete (4) in ptime (6) np-complete (7)
a, a? conp-complete (4) in ptime (6) np-complete (7)

S − {(+a)∗, (+w)∗} conp-complete (4) in conp np-complete (7)
a, (+a)∗ pspace-complete (4) in pspace np-complete (7)

S − {(+w)∗} pspace-complete (4) in pspace np-complete (7)
S pspace-complete (4) in pspace in pspace

RE≤k (k ≥ 3) ptime (5) ptime pspace-complete (8)
one-unambiguous in ptime in ptime pspace-complete (8)

(a1 + · · · + an)∗ are added we already obtain the maximum complexity:
pspace. When such factors are disallowed the complexity remains conp. If
the number of occurrences of the same symbol in expressions is bounded by
some k (RE≤k), inclusion is in ptime. As the running time is nk, k should
of course be small to be feasible.

– The precise complexity of the equivalence problem largely remains open. Of
course, it is never harder than inclusion but we conjecture that it is tractable
for a large fragment of RE(S). We only prove a ptime upper bound for
expressions where each factor is a or a∗, or a or a?. Even for these restricted
fragments the proof is non-trivial. Basically, we show that two expressions are
equivalent iff they have the same sequence normal form modulo one rewrite
rule. Interestingly, the sequence normal form specifies factors much in the
same way as XML Schema does. For every symbol an explicit upper and
lower bound is specified. For instance, aa∗bbc?c? becomes a[1, ∗]b[2, 2]c[0, 2].

– Intersection is also conp-hard when each factor is either of the form a or
a∗, or of the form a or a?. However, the complexity is not always the same
as for inclusion. In fact, there are cases where inclusion is harder and others
where intersection is harder. Indeed, intersection remains in conp even if we
allow all kinds of factors except (w1 + · · · + wn)∗. On the other hand, the
intersection problem is pspace-hard for RE≤3. The only tractable fragment
we obtain is when each factor is restricted to a or a+.

The complexities of equivalence, inclusion and intersection for general reg-
ular expressions and several fragments were studied in [12, 13, 24]. From these,
the most related result is the conp-completeness of equivalence and inclusion of
bounded languages [12]. A language L is bounded if there are strings v1, . . . , vn

such that L ⊆ v∗
1 · · · v∗

n. It should be noted that the latter is much more gen-
eral than, e.g., our RE(w∗). More recently, two fragments of simple regular
expressions have been shown to be tractable: inclusion for RE(a?, (+a)∗) [1],
and RE(a,Σ,Σ∗) [17]. This last result should be contrasted with the pspace-
completeness of inclusion for RE(a, (+a), (+a)∗).

We conclude by a remark on one-unambiguous or deterministic regular ex-
pressions. Basically, these are regular expressions which have a deterministic

Glushkov automaton [4]. The XML specification requires DTD content models
to be deterministic because of compatibility with SGML (Section 3.2.1 of [8]).
Of course, for such expressions, inclusion and equivalence are in ptime. Never-
theless, intersection remains pspace-hard (cf. Theorem 8). Unfortunately, the
notion of deterministic content models is not a transparent one for the aver-
age user, as is witnessed by practical studies [7, 2] which found a number of
non-deterministic content models in actual DTDs. Actually, for this very reason
Clarke and Murata abandoned the notion in their Relax NG specification [25].
Hence, from a scientific viewpoint, we believe it makes sense to study the broader
class of possibly non-deterministic but simple and practical regular expressions.
Another consequence of our results, independent of the one-unambiguous issue,
is that optimization problems for navigational queries as expressed by cater-
pillar expressions [5], XCPath

reg and Xreg [16], or regular path queries [6] quickly
turn intractable. Due to space limitations many proofs are omitted. We refer the
interested reader to [15].

2 Definitions

Regular expressions. For the rest of the paper let Σ denote a finite alphabet.
A Σ-string (or simply string) is a finite sequence w = a1 · · · an of Σ-symbols.
We denote the length of w by |w|. The empty string is denoted by ε. The set
of all strings is denoted by Σ∗. The syntax and semantics of regular expressions
is defined in the usual way. By L(r) we denote the language defined by regu-
lar expression r. By r? and r+, we abbreviate the expressions r + ε and rr∗.
Sometimes, we denote w ∈ L(r) simply by w ∈ r.

We consider simple regular expressions occurring in practice in DTDs and
XML Schemas [7]. The vast majority of these can be defined as follows.

Definition 1. A base symbol is a regular expression s, s?, or s∗ where s is a
non-empty string; a factor is of the form e, e∗, or e? where e is a disjunction of
base symbols. A simple regular expression is ε, ∅, or a sequence of factors.

An example of a simple regular expression is ((abc)∗ + b∗)(a + b)?(ab)∗(ac + b)∗.
We introduce a uniform syntax to denote subclasses of simple regular expressions
by specifying the allowed factors. We distinguish whether the string s of a base
symbol consists of a single symbol (a) or a string (w) and whether it is extended
by ? or ∗. Further, we distinguish between factors with one disjunct or with
arbitrarily many disjuncts, the latter is denoted by (+ · · ·). Finally, factors can
again be extended by ∗ or ?. A list of possible factors is displayed in Table 1.
This table only shows types that are different. E.g., we write RE((+a)∗, w?) for
the set of regular expressions e1 · · · en where every ei is (a1 + · · ·+an)∗ for some
a1, . . . , an ∈ Σ and n ≥ 1, or w? for some w ∈ Σ∗.

If A = {a1, . . . , an} is a set of symbols, we often denote (a1 + . . .+an) simply
by A. We denote the class of all simple regular expressions by RE(S).

Decision problems. Two regular expressions r, r′ are included, denoted r ⊆ r′ iff
L(r) ⊆ L(r′). They are equivalent, denoted r ≡ r′, if L(r) = L(r′). The following
three problems are fundamental to this paper.

Definition 2. Let R be a class of regular expressions.

– The inclusion problem for R, is to test for two given expressions r, r′ ∈ R,
whether r ⊆ r′.

– The equivalence problem for R, is to test for two expressions r, r′ ∈ R,
whether r ≡ r′.

– The intersection problem for R, is to determine for an arbitrary number of
expressions r1, . . . , rn ∈ R, whether

⋂n
i=1 L(ri) �= ∅.

In the sequel, we abuse notation and denote
⋂n

i=1 L(ri) �= ∅ simply by
⋂n

i=1 ri �=
∅. For arbitrary regular expressions these problems are pspace-complete [13, 24].

3 Decision Problems for DTDs and XML Schemas

As explained in the introduction, our main motivation for this study comes
from reasoning about XML schemas. In this section, we describe how the basic
decision problems for such schemas, namely whether two schemas describe the
same set of documents or whether one describes a subset of the other, basically
reduce to the equivalence and inclusion problem for regular expressions. We also
address the problem whether a set of schemas define a common XML document.
W.r.t. DTDs the latter problem again reduces to the corresponding problem for
regular expressions; for XML Schemas it does not. The reader not interested in
XML can safely skip this section.

3.1 XML Schema Languages

It is common to view XML documents as finite trees with labels from a finite
alphabet Σ. There is no limit on the number of children of a node. Of course,
elements in XML documents can also contain references to nodes. But as XML
schema languages usually do not constrain these nor the data values at leaves, it
is safe to view schemas as simply defining tree languages over a finite alphabet.
In the rest of this section, we introduce the necessary background concerning
XML schema languages. For a formal definition of Σ-trees see, e.g., [20].

Definition 3. A DTD is a pair (d, sd) where d is a function that maps Σ-
symbols to regular expressions and sd ∈ Σ is the start symbol. We usually
simply denote (d, sd) by d. A tree t satisfies d if its root is labeled by sd and,
for every node u with label a, the sequence a1 · · · an of labels of its children is in
L(d(a)). By L(d) we denote the set of trees defined by d.

A simple example of a DTD defining the inventory of a store is the following:
store → dvd dvd∗, dvd → title price.

For clarity, in examples we write w → r rather than d(w) = r. We recall the
definition of a specialized DTD from [21].

Definition 4. A specialized DTD (SDTD) is a 4-tuple d = (Σ,Σ′, d, µ), where
Σ′ is an alphabet of types, d is a DTD over Σ′ and µ is a mapping from Σ′ to Σ.
Note that µ can be extended to define a homomorphism on trees. A tree t then
satisfies a specialized DTD if t = µ(t′) for some t′ ∈ L(d). Again, we denote by
L(d) the set of trees defined by d.

The class of tree languages defined by SDTDs corresponds precisely to the
regular (unranked) tree languages [3]. For ease of exposition, we always take
Σ′ = {ai | 1 ≤ i ≤ ka, a ∈ Σ, i ∈ N} for some natural numbers ka and set
µ(ai) = a. If a node is labeled by some ai we call ai the type of the node. A
simple example of an SDTD is the following:

store1 → (dvd1 + dvd2)∗dvd2(dvd1 + dvd2)∗dvd2(dvd1 + dvd2)∗

dvd1 → title1 price1 dvd2 → title1 price1 discount1

Here, dvd1 defines ordinary DVDs while dvd2 defines DVDs on sale. The rule
for store specifies that there should be at least two DVDs on discount. The
following restriction on SDTDs corresponds to the expressiveness of XML schema
languages [19].

Definition 5. A single-type SDTD (SDTDst) is an SDTD (Σ,Σ′, d, µ) with the
property that in each regular expression d(a) no two types bi and bj with i �= j
occur.

The above defined SDTD is not single type as both dvd1 and dvd2 occur in the
rule for store. The classes of tree languages defined by the grammars introduced
above are included as follows: DTD � SDTDst� SDTD [3, 19].

Remark 1. There is a very simple deterministic algorithm to check validity of a
tree t with respect to a SDTDst d. It proceeds top-down and assigns to every
node with some symbol a a type ai. To the root the start symbol of d is assigned;
then, for every interior node u with type ai, it is checked whether the children
of u match µ(d(ai)); if not the tree is rejected, otherwise, as d is single-type, to
each child a unique type can be assigned. The tree is accepted, if this process
terminates at the leaves without any rejection. �

The inclusion problem, equivalence problem and intersection problem for
DTDs, SDTDs and SDTDsts is defined analogously to the corresponding prob-
lems for regular expressions.

3.2 Inclusion and Equivalence of XML Schema Languages

As already mentioned, testing equivalence and inclusion of XML schema lan-
guages is related to testing equivalence and inclusion of regular expressions. It
is immediate that complexity lower bounds for regular expressions imply lower
bounds for XML schema languages. A consequence is that testing equivalence
and inclusion of XML schemas is pspace-hard, which suggests looking for sim-
pler regular expressions.

Interestingly, in the case of the practically important DTDs and single-type
SDTDs, it turns out that the complexities of the equivalence and inclusion prob-
lem on strings also imply upper bounds for the corresponding problems on XML
trees.

For R a class of regular expressions, we denote by DTD(R), SDTD(R), and
SDTDst(R), the class of DTDs, SDTDs and SDTDsts with regular expressions
in R.

We call a complexity class C closed under positive reductions if the following
holds for every L ∈ C: Let L′ be accepted by a deterministic polynomial-time
Turing machine M with oracle O (denoted L′ = L(MO)). Let M further have
the property that L(MA) ⊆ L(MB) whenever A ⊆ B. Then L′ is also in C.

For a more precise definition of this notion we refer the reader to [10]. For
our purposes it is sufficient that all important complexity classes like ptime, np,
conp, and pspace have this property and that every such class contains ptime.

Theorem 1. Let R be a class of regular expressions and C be a complexity class
which is closed under positive reductions. Then the following are equivalent.

(a) The inclusion problem for R expressions is in C.
(b) The inclusion problem for DTD(R) is in C.
(c) The inclusion problem for SDTDst(R) is in C.

The corresponding statement holds for the equivalence problem.

3.3 Intersection of DTDs and XML Schemas

We show in this section that the complexity of the intersection problem for
regular expressions is an upper bound for the corresponding problem on XML
trees. The latter is not the case for single-type DTDs.

Theorem 2. Let R be a class of regular expressions and let C be a complexity
class which is closed under positive reductions. Then the following are equivalent.

(a) The intersection problem for R expressions is in C.
(b) The intersection problem for DTD(R) is in C.

The following theorem shows that single-type SDTDs probably cannot be in-
cluded in Theorem 2 as by Theorem 7, intersection of RE((+a), w?, (+a)?, (+a)∗)
is in np. The reduction is similar to the proof that intersection of deterministic
top-down tree automata is exptime-complete [23]. However, single-type DTDs
and the latter automata are incomparable. Indeed, the tree language consisting
of the trees {a(bc), a(cb)} is not definable by a top-down deterministic tree au-
tomaton, while it is by the DTD consisting of the rules a → bc + cb, b → ε,
c → ε. Conversely, the tree language {a(b(c)b(d))} is not definable by a single-
type SDTD, but is definable by a top-down deterministic tree automaton.

Theorem 3. The intersection problem for SDTDst((+a), w?, (+a)?, (+a)∗) is
exptime-hard.

4 Inclusion of Regular Expressions

We start our investigation with the inclusion problem for simple regular expres-
sions. As mentioned before, it is pspace-complete for general regular expres-
sions. Some tractable cases have been identified in previous work: (i) in [1] it is
shown that inclusion for RE(a?, (+a)∗) can be solved in linear time. Whether
p ⊆ p1+· · ·+pk for p, p1, . . . , pk from RE(a?, (+a)∗) can be checked in quadratic
time; and (ii) in [17] it is stated that inclusion for RE(a,Σ,Σ∗) is in ptime.

Some of the fragments we defined look so innocent that one might expect
their inclusion problem to be tractable. It therefore came as a surprise to find
out that even for RE(a, a?) and RE(a, a∗) it is already conp-complete. Even
worse, for RE(a, (+a)∗) we already obtain the maximum complexity, pspace-
completeness. The latter should be contrasted with the ptime inclusion for
RE(a,Σ,Σ∗) obtained in [17], where disjunctions can only be over the complete
alphabet. Our results, together with corresponding upper bounds are summa-
rized in the following theorem. Let RE(S−{(+a)∗, (+w)∗}) denote the fragment
of RE(S) where no factor of the form (+a)∗ or (+w)∗ is allowed.

Theorem 4. The inclusion problem

(a) is conp-hard for RE(a, a∗) and RE(a, a?);
(b) is pspace-hard for RE(a, (+a)∗);
(c) is in conp for RE(S − {(+a)∗, (+w)∗}); and,
(d) is in pspace for RE(S).

This result does not leave much room for tractable cases. Of course, inclusion
is in ptime for any class of regular expressions for which expressions can be
transformed into DFAs in polynomial time. An easy example of such a class is
RE(a, a+). The following example has probably more importance in practice.
Often, the same symbol occurs only a few times in a regular expression of a
DTD. As a matter of fact, if we impose a fixed bound k on the number of such
occurences, then the inclusion problem becomes tractable. For every k, let RE≤k

denote the class of all regular expressions where every symbol can occur at most
k times.

Theorem 5. Inclusion for RE≤k is in ptime.

It should be noted though that the upper bound for the running time is of the
form nk, therefore k should be very small to be really useful.

In the rest of this section, we prove Theorem 4(a). The proofs of parts (b)
and (c) can be found in the full version of this paper [15].

We show that for both cases there is a ptime reduction from validity of
propositional 3DNF formulas. Let Φ = C1 ∨ · · · ∨Ck be a propositional formula
in 3DNF using variables {x1, . . . , xn}. In both cases, we are going to construct
regular expressions R1, R2 such that L(R1) ⊆ L(R2) if and only if Φ is valid,
i.e., if Φ is true under all truth assignments. More specifically, we encode truth
assignments for Φ by strings. The basic idea is to construct R1 and R2 such

that L(R1) contains all such strings and R2 captures a string w if and only if it
represents an assignment which makes Φ true.

Let U = #aa · · · $a# (n occurrences of a), be a regular expression describ-
ing exactly one string u. We will construct a regular expression W such that
the strings of L(W) can be interpreted as truth assignments. More precisely,
for each truth assignment A there is a string wA ∈ L(W) and for each string
w ∈ L(W) there is a truth assignment Aw. Then we set R1 = Uk−1WUk−1

and R2 = Nk−1F1 · · ·FkNk−1, where for N and the Fi the following conditions
should hold:

(i) {ε, u} ⊆ L(N).
(ii) If N � captures a string u�z or zu�, for some �, then z ∈ L(#∗).
(iii) If Aw makes Ci true then w ∈ L(Fi). If wA ∈ L(Fi) then A makes Ci true.
(iv) u ∈ L(Fi).
(v) Each string in L(Fi) begins and ends with # and has no other occurences

of #.
(vi) Each string in L(W) starts and ends with a # and has no other occurences

of #. Further, ## �∈ L(W).

Assume the existence of such expressions W , N and Fi. We claim that
L(R1) ⊆ L(R2) if and only if Φ is valid. To prove this claim let first L(R1) ⊆
L(R2). Let A be an arbitrary truth assignment for Φ and let v = uk−1wAuk−1.
By assumption, as v ∈ L(R1) we get v ∈ L(R2). By (ii) and (vi), and the form
of R2, wA can not be captured by a part of the leading or trailing Nk−1. By (v)
and (vi), it follows that wA must be covered by some Fi. Hence, Ci is made true
by A.

For the other direction, suppose now that Φ is valid. Take an arbitrary v =
uk−1wuk−1 ∈ L(R1) and let A be the truth assigment Aw corresponding to w.
Let Ci be a clause of Φ that becomes true under Aw. Due to (iii), we have that
w ∈ L(Fi). Further, as u is captured by each Fi and by N and as L(N) also
contains the empty string uk−1wuk−1 ∈ L(R2). This completes the proof of the
claim.

It remains to construct regular expressions W , N and Fi with the required
properties. First of all, for both fragments it is easy to define N . For the first
fragment, we can take N = #∗a∗$∗a∗$∗ · · · $∗a∗#∗ (n occurrences of a), for the
second, we take ‘?’ in place of ‘∗’.

The construction of the other expressions differs slightly for both cases. Let
the expressions r0, r1, r01 be defined as follows:

(1) r0 = b∗a∗, r1 = aa∗b∗a∗ and r01 = a∗b∗a∗, in the case of RE(a, a∗), and as
(2) r0 = a?, r1 = aa? and r01 = a?a? for RE(a, a?).

In both cases, these expressions have the properties (INC1)-(INC4) below.

a ∈ L(r0) ∩ L(r1) (INC1)
L(r01) ⊆ L(r0) ∪ L(r1) (INC2)
L(r01) − L(r0) �= ∅ (INC3)
L(r01) − L(r1) �= ∅ (INC4)

Now we define W = #r01$ · · · $r01# (n occurrences of r01). With w =
#w1$ · · · $wn# ∈ L(W) we associate a truth assignment Aw as follows: Aw(xj) :=
true, if wj ∈ L(r1); and false otherwise.

Let z0 ∈ L(r01) − L(r1) and z1 ∈ L(r01) − L(r0). They exist by (INC3) and
(INC4). For a truth assignment A, let wA be the string #y1$ · · · $yn#, where
yj = z1 if A(xj) = true and yj = z0, otherwise.

For each i, we set Fi = #e1$ · · · $en#, where for each j = 1, . . . , n, ej = r0,
ej = r1 or ej = r01 if xj occurs negated, unnegated or not at all in Ci. It is
easy to show that condition (iii) holds. That the other conditions hold is obvious
from the construction.

Remark 2. The conp lower bounds even hold, if in RE(a, a∗), subexpressions
of the form aa∗ are forbidden. Indeed, with r1 = ac∗a∗b∗a∗ in case (1), the
reduction still holds. Further, in the case of RE(a, a?) two letters suffice: take b
and bb in place of $ and #, respectively.

5 Equivalence of Regular Expressions

In the present section, we merely initiate the research on the equivalence of
simple regular expressions. Of course, upper bounds for inclusion induce upper
bounds for equivalence, but testing equivalence can be simpler. We show that
the problem is in ptime for RE(a, a?) and RE(a, a∗) by showing that such
expressions are equivalent if and only if they have the same normal form (defined
below). We conjecture that equivalence remains tractable for larger fragments
or even the full fragment of simple regular expressions.

Theorem 6. The equivalence problem is in ptime for RE(a, a?), and RE(a, a∗).

Proof (Sketch). We start by introducing a normal form for RE(a, a?, a∗) expres-
sions. It is often useful to cumulate successive factors of a regular expression that
have the same base symbol (or disjunction of base symbols). For such a sequence
we only need to know the minimal and maximal number of occurences of the
basic expression. By e[i, j] we denote a sequence with at least i and at most j
occurences of e. Here, j = ∗ stands for an unlimited number of repetitions. To
this end, we write e[1, 1] for e, e[0, 1] for e?, and e[0, ∗] for e∗. By combining
successive factors e[i1, j1] and e[i2, j2] into e[i1 + i2, j2 + j2] whenever possible,
we arrive at the sequence normal form of a simple regular expression. E.g., the
sequence normal form of aa?aa?b∗bb?b∗ is a[2, 4]b[1, ∗].

For the sake of the proof, this normal form is not sufficient, as e.g., the reg-
ular expressions
r1(a, b) = a[i, ∗]b[0, ∗]a[0, ∗]b[1, ∗]a[l, ∗] and r2(a, b) = a[i, ∗]b[1, ∗]a[0, ∗]b[0, ∗]a[l, ∗]
are equivalent but have different normal forms. Whenever an expression of the
form r1(a, b) occurs it can be replaced by r2(a, b). The strong sequence normal
form of an expression r is the expression r′ obtained by applying this rule as
often as possible. It is easy to see, that r′ is unique. For both fragments, it can
be shown that two expressions are equivalent if and only if they have the same
strong sequence normal form. �

6 Intersection of Regular Expressions

For arbitrary regular expressions, the intersection problem is pspace-complete.
We show that the problem is np-hard for the same two innocent fragments
RE(a, a∗) and RE(a, a?) already studied in Section 4. By RE(S − {(+w)∗}),
we denote the fragment of RE(S) where no factor can be of the form (+w)∗;
so, factors of the form (+a)∗ are allowed. For the latter fragment, we obtain a
matching np-upper bound. The complexity of the full fragment RE(S) remains
open. Our results are summarized in the following theorem:

Theorem 7. The intersection problem is (a) np-hard for RE(a, a∗) and RE(a, a?);
and (b) in np for RE(S − (+w)∗).

Note that Theorem 7(a) makes the difference between the inclusion and inter-
section problem apparent. Indeed, inclusion of RE(S − {(+w)∗}) is pspace-
complete, while it is np-complete for intersection. The latter, however, does not
imply that inclusion is always harder than intersection. Indeed, we obtained that
for any fixed k inclusion of RE≤k is in ptime. The next theorem shows that for
k = 3, intersection is pspace-hard.

Content models of DTDs are restricted to one-unambiguous regular expres-
sions. For a concrete definition, we refer to [4]. Although inclusion for such
expressions is in ptime, we obtain that the intersection problem is as hard as
for arbitrary regular expressions.

Theorem 8. The intersection problem is pspace-hard for (a) one-unambiguous
regular expressions; and for (b) RE≤3.

A tractable fragment is the following:

Theorem 9. The intersection problem is in ptime for RE(a, a+).

7 Conclusion

We revisited the inclusion, equivalence and intersection problem for regular ex-
pressions that are common in practical DTDs. Moreover, we showed that for
all these problems, the complexities carry over to the corresponding problems
for DTDs. For inclusion and equivalence, the complexity bounds for regular
expressions also carry over to single-type SDTDs. We left the following com-
plexities open: (i) equivalence for RE(S) or any fragment extending RE(a, a∗)
or RE(a, a?); and, (ii) intersection for RE(S).

References

1. P. A. Abdulla, A. Bouajjani, and B. Jonsson. On-the-fly analysis of systems with
unbounded, lossy FIFO channels. In Proc. of CAV 1998, pages 305–318, 1998.

2. G. J. Bex, F. Neven, and J. Van den Bussche. DTDs versus XML Schema: A
practical study. To be presented at WebDB 2004.

3. A. Brüggemann-Klein, M. Murata, and D. Wood. Regular tree and regular hedge
languages over unranked alphabets. Technical Report HKUST-TCSC-2001-0, The
Hongkong University of Science and Technology, 2001.

4. A. Brüggemann-Klein and D. Wood. One-unambiguous regular languages. Infor-
mation and Computation, 142(2):182–206, 1998.

5. A. Brüggemann-Klein and D. Wood. Caterpillars: A context specification tech-
nique. Markup Languages, 2(1):81–106, 2000.

6. D. Calvanese, De G. Giacomo, M. Lenzerini, and M. Y. Vardi. Reasoning on regular
path queries. SIGMOD Record, 32(4):83–92, 2003.

7. B. Choi. What are real DTDs like? In WebDB 2002, pages 43–48, 2002.
8. World Wide Web Consortium. Extensible Markup Language (XML).

http://www.w3.org/XML.
9. World Wide Web Consortium. XML Schema. http://www.w3.org/XML/Schema.

10. L. Hemaspaandra and M. Ogihara. The Complexity Theory Companion. Springer,
2002.

11. H. Hosoya and B. C. Pierce. XDuce: A statically typed XML processing language.
ACM Transactions on Internet Technology (TOIT), 3(2):117–148, 2003.

12. Harry B. Hunt III, Daniel J. Rosenkrantz, and Thomas G. Szymanski. On the
equivalence, containment, and covering problems for the regular and context-free
languages. Journal of Computer and System Sciences, 12(2):222–268, 1976.

13. D. Kozen. Lower bounds for natural proof systems. In Proc. FOCS 1977, pages
254–266. IEEE, 1977.

14. W. Martens and F. Neven. Typechecking top-down uniform unranked tree trans-
ducers. In Proc. ICDT 2003, pages 64–78, 2003.

15. W. Martens, F. Neven, and T. Schwentick. Complexity of de-
cision problems for simple regular expressions: Full version.
http://alpha.luc.ac.be/ lucp1436/pubs.html.

16. M. Marx. XPath with conditional axis relations. In Proc. EDBT 2004, pages
477–494, 2004.

17. T. Milo and D. Suciu. Index structures for path expressions. In Proc. ICDT 1999,
pages 277–295. 1999.

18. T. Milo, D. Suciu, and V. Vianu. Typechecking for XML transformers. Journal of
Computer and System Sciences, 66(1):66–97, 2003.

19. M. Murata, D. Lee, and M. Mani. Taxonomy of XML schema languages using
formal language theory. In Extreme Markup Languages, Montreal, Canada, 2001.

20. F. Neven. Automata, logic, and XML. In Proc. CSL 2002, pages 2–26. 2002.
21. Y. Papakonstantinou and V. Vianu. DTD inference for views of XML data. In

Proc. PODS 2000, pages 35–46. ACM Press, 2000.
22. H. Seidl. Deciding equivalence of finite tree automata. SIAM Journal on Comput-

ing, 19(3):424–437, 1990.
23. H. Seidl. Haskell overloading is DEXPTIME-complete. Information Processing

Letters, 52(2):57–60, 1994.
24. L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time:

Preliminary report. In Proc. STOC 1973, pages 1–9, 1973.
25. E. van der Vlist. Relax NG. O’Reilly, 2003.
26. V. Vianu. A web odyssey: From Codd to XML. In Proc. PODS 2001, pages 1–15,

2001.

