
The ExtReAM Library: Extensible Real-time
Animations for Multiple Platforms

Pieter Jorissen, Jeroen Dierckx and Wim Lamotte
Hasselt University Interdisciplinary institute for

Expertise Centre for Digital Media BroadBand Technology (IBBT)
and transnationale Universiteit Limburg Expertise Centre for Digital Media

Wetenschapspark 2, BE-3590 Diepenbeek BE-3590 Diepenbeek, Belgium
Email: {pieter.jorissen, jeroen.dierckx, wim.lamotte}@uhasselt.be

Abstract— We introduce a dynamic, platform-independent
framework for computer animation. The ExtReAM library is
constructed around an object-oriented core that can easily be
extended. The core system provides functionality for managing
objects and plugins. The plugins on the other hand are used
to perform more specific tasks such as loading and animating
objects using different animation techniques. Different plugins
can be used for similar tasks on different platforms and they
need to be loaded only when their functionality is required.
Easy integration of our system into applications was also one
of the main design objectives. In this paper we present the main
architecture and motivate the most important design decisions.
Furthermore, we show results of two applications demonstrating
the use of the ExtReAM library. The first application allows
animated worlds to be controlled on desktop platforms while the
second one allows animated scenes to be displayed on a PocketPC
mobile device.

Index Terms— 3D Computer animation, games, multiple plat-
form development, system architectures.

I. INTRODUCTION AND MOTIVATION

3D computer animation has been one of the key research
areas in the movie, gaming and Virtual Reality (VR) com-
munities for several years now. Despite these efforts, there
are still several problem areas and the growing demand for
more realism in animation still exists. As a result, a lot of
research is focusing on improving very specific areas such as
realistic human motion simulation, cloth and hair rendering,
physical simulations and so on. Simultaneously, a lot of new
gaming devices have entered the market over the last decades.
Examples include Xbox, Playstation, Nintendo Game Cube
and so on. These are all equipped with special 3D hardware
and enough memory and processing power to show high res-
olution interactive 3D graphics. Also, due to recent advances
in processing power and memory capacity, small portable or
handheld devices such as PDAs and smart phones are currently
also capable of supporting graphical user interfaces with audio
and video playback. Some of these have already been equipped
with special 3D hardware as well, making them suitable for
more interactive 3D animated applications and games. So it
is clear that the number of platforms capable of displaying
interactive 3D graphics is growing rapidly.

Many games and software components have been, and are
still being developed for specific platforms. Since development
time for games is a critical factor, not much attention or money
is usually spent on portability or extensibility of game engines

or their parts. As a result, many platform specific SDKs,
libraries, game and animation engines have been developed
over the years. Some specific applications or games are being
ported to other platforms such as PDAs or smart phones, but
since little or no consideration for these platforms was given
during the design phase, the porting process is usually difficult
and time-consuming. However, since more and more game
developers are creating games for more than one platform,
there is a trend toward more multiple platform or platform-
independent components. In research and other less commer-
cial areas some open platform-independent animation libraries
and SDKs have been studied and developed. However, these
systems are usually limited to platforms such as MS Windows,
Linux and in some cases MacOS, which we consider to be
desktop platforms. Other platforms are usually considered to
be too specific or non-relevant by the developers. On the other
hand, most libraries or engines for 3D games or animation
are not open source or extensible in any way. Consequently,
application developers can only work with the provided func-
tionality. Some open source projects do exist, but adding new
animation techniques is often hard and unsupported.

The ExtReAM library, presented here, was developed with
the goal of providing application developers with a 3D ani-
mation library that is easy to integrate, work with, and extend
with new animation techniques, without recompiling the core.
By providing a very lightweight core library and moving the
animation techniques to separate plugins, the library can be
used on many platforms and in all kinds of applications.
Applications can even provide different plugins for different
platforms if needed. In this way, application developers can
create many reusable building blocks to construct an applica-
tion with.

The remainder of this paper is structured as follows: section
II presents the related work in the areas of 3D computer ani-
mation techniques and mentions the most important animation
systems that exist today. In section III the main architecture
of the ExtReAM library is explained. Special attention is
given to the plugin and object management systems since
these are the most important parts of the core library. Section
IV describes several plugins that were created to test the
system and provide basic animation functionality. Section V
then shows some of the results that were achieved with our
system. Two applications were developed and tested using the
ExtReAM library, one for controlling animated scenes on a



desktop computer and another one for showing animations on
a PocketPC device. The paper ends with some conclusions and
an overview of the future work.

II. RELATED WORK

Many techniques exist for animating 3D objects. The most
well known are kinematics and dynamics. Kinematic tech-
niques are concerned with explicitly transforming the different
parts of the animated objects. Important kinematic techniques
include keyframe animation and inverse kinematics [1], [2].
Motion capture data can also easily be used to control an
animated figure using kinematics. Motion graphs [3] use a
database of kinematic motions to automatically calculate tran-
sitions between keyframes. Dynamic, in contrast to kinematic,
animation techniques use physical forces and laws to simulate
the object movements. Since creating physical controllers for
complex articulated 3D characters is not a trivial task [4],
dynamic animation techniques in games are usually limited
to ragdoll physics [5]. For example, when in a first-person
shooter somebody is shot, the user looses control over his
character, and the physics engine takes over, creating a realistic
body response. Hybrid techniques have also been investigated
in the past [6], [7], and are still being studied now. The main
goal usually includes achieving more control over dynamically
animated characters. However, attempts to adjust kinematic
motions with dynamic effects to improve realism and variation
have also been explored.

Over the years, many systems have been developed for cre-
ating animations using these techniques. The best known are
the commercial modeling packages that are mainly concerned
with kinematic techniques. The most important ones include
3D Studio Max [8], Maya [9] and Blender [10], an open
source project. These systems can be used to create animated
characters and movies, using their own built-in techniques.
However, the main focus here is on the modeling task. The
generated models can be integrated into applications and the
predefined animation data can be used to animate the objects,
but animations can not be changed unless the application has
its own animation control. Endorphin [11] is another commer-
cial package. It uses dynamic motion synthesis and adaptive
behaviors to create very realistic animated 3D characters.
Dance (Dynamic Animation and Control Environment) [12],
on the other hand, is an open and extensible framework for
computer animation focused on the development of physically
based controllers for articulated figures. These systems provide
the tools to create physically simulated animations but are not
suited to be integrated into other applications.

Animation libraries, on the other hand, are specifically
designed to be easily incorporated into other software. Cal3d
[13], for example, is a skeleton based 3D character animation
library written in C++ in a platform- and graphics API-
independent way. It can easily be integrated into different
applications and provides basic skeleton animation techniques
such as forward kinematics, keyframed animations and anima-
tion blending. However, Cal3D is limited to these animation
techniques since it was specifically designed for skeleton
animation and provides little means to extend its functionality.

Granny 3D [14] is another commercial animation system that
can easily be integrated into applications. It has powerful
support for all kinds of skeleton animations and is available for
several platforms. Extensibility is however hardly provided.

In contrast to these previously mentioned systems, the
ExtReAM library was developed to be an animation library
that can easily be extended with new animation techniques
and is easy to integrate in all kinds of applications, on all
kinds of platforms. We realized this by implementing a very
lightweight, platform-independent core system. Animation and
simulation techniques are added through plugins that can
be used by the system. Plugins can easily be created by
developers due to the object oriented design.

III. SYSTEM OVERVIEW

The ExtReAM library contains a very lightweight core that
is primarily responsible for object management and registering
plugins and their components. Furthermore, it has a built-in
event and command system that can be used by the plugins.
The more platform-independent and resource consuming tasks
such as file loading, object creation, command handling and
the animation techniques are left to be implemented in the
plugins. This results in a very flexible system that can be used
in all kinds of applications and on many different platforms.

Fig. 1 shows how the ExtReAM library is used in an
application. The application chooses which plugins and objects
to load. A Plugin can be loaded into memory for just as
long as its functionality is required. As a result, it will only
consume resources when necessary. Because the ExtReAM
system is an animation library only, rendering is not included.
All the necessary data for rendering can however easily be
retrieved from the system. The application has to step the
library every time frame and can execute commands through
the command handler. Interaction with the actual plugins is
completely transparent.

A. Plugin System

Plugins are used extensively in the ExtReAM library. A
plugin is a “building block” on top of the core system. Plugins
can perform common tasks like loading mesh files or specific
tasks like animating a skeleton-based character. As plugins
are one of the main components of the system, we assured
that creating a new plugin is as simple as possible. As a
result of the object-oriented design, in order to create a new
plugin, the developer must only derive from a couple of classes
and implement a few methods. More specifically, it involves
deriving from the Plugin class and implementing a start
and stop method.

The core system internally uses a plugin manager to start
and stop plugins and to get information from certain plugins.
It also ensures that plugin dependencies (other plugins that a
certain plugin relies on) are started first and that plugins are
not loaded more than once.

B. Plugin components

To extend the core animation system, using the principles
of object-oriented design, the ExtReAM library provides some



Fig. 1. This figure gives an overview of how the ExtReAM library can be used in an application.

abstract base classes that can be used in plugins in a standard
object-oriented way. Here we give an overview of the different
base classes and explain how to use them.

To provide a new object type in the ExtReAM system, three
classes have to be implemented. How the actual objects are
managed in the system is explained in section III-C.

• ObjectCore: an object core is generated from the data
that gets read from file. From this core data, one or
more object instances can be created. The instances can
share the core data if desired, so redundant data can be
minimized.

• Objectinstance: an object instance is an actual en-
tity in the virtual world. It is created from an object core
and can use that core’s data.

• ObjectCreator: an object creator can register itself
in the object factory (a part of the core) with certain file
types, and is used to create object cores from file and
object instances from these cores.

The rest of the plugin base classes are used to alter the
behavior of the animation system:

• Actor: actors are used to alter the scene every timestep.
The elapsed time is provided every frame when the step
method is called. We have used actors, for example,
to advance the physics system and blend skeleton-based
animations (see sections IV-A and IV-B).

• EventHandler: this class has to be implemented if a
plugin needs to react on certain events in the system,
like objects being added or removed. An example is our
rigid body simulation plugin (see section IV-A), where a
physical shape is automatically created when an object
instance is added, and deleted when the object instance
is removed from the system.

• CommandHandler: through this class, a plugin can
register the commands it can handle. By using commands,
the coupling with plugins and the actual application can
be very loose (the application does not have to know
anything about the plugins). The core system has built-in
commands to start or stop plugins, add or remove objects

and alter their position or orientation. Examples of regis-
tered commands can be found in the KeyFrameController
plugin (see section IV-B.1), where we register commands
to start, stop and pause keyframed animations.

C. Object management

The ExtReAM system is designed to easily manage object
creation and removal in the scene, as efficiently as possible.
The library keeps track of object cores and object instances.
The object core contains all necessary data to create one or
more object instances. Rigid objects are a good example to use
this structure: the core contains the geometry to be rendered
and the bounding geometry to be used with collision detection.
Everything that the actual instances need are a position and
an orientation in the virtual world.

Creation of object cores and instances in the system is han-
dled by the object factory. The factory automatically chooses
the right creator if the user asks to create an object. It makes
sure a file is not read twice if that is unnecessary. Plugins
provide the actual creators from which the factory can choose
from.

IV. PLUGIN EXAMPLES

A. Rigid Objects, Bodies and Physical Simulation

As a proof of concept, one of the first plugins that we
implemented was one for rigid body simulation. To result in
the most flexible solution, we actually created several plugins
that can be used separately.

First of all, we implemented the RigidObject plugin, which
holds a very simple object type: “RigidObject”. The core has
a geometry and a bounding box, and the instances have a
position and an orientation. We also made several plugins to
load different file formats such as ply, 3ds, Ogre [15], etc.
These file loaders form different object creators. Then, we
created a Physics plugin, that encapsulates the Ageia PhysX
[16] engine. The plugin has an actor that advances the physical
scene every timestep, and some physics specific functions,



Fig. 2. In this figure an overview of the skeleton animation plugin is shown.

such as creating physical bodies from triangle meshes. Be-
cause the Ageia PhysX engine is only available for desktop
computers, no physics plugin is implemented for PocketPC at
the moment. This is a perfect example of plugins that would be
different on several platforms: a simple physics plugin could
be created for PocketPC, that could handle collision detection
and other simulation aspects in a much simpler and memory-
efficient way.

The rigid body plugin automatically couples physical shapes
to rigid objects added to the scene to be used for collision
detection and rigid body dynamics. After every time step,
the actual positions and orientations are set according to the
physical shapes that are simulated.

B. Skeleton Based Animation

Since skeleton animation is one of the most popular charac-
ter animation techniques, we also created a skeleton animation
plugin for the ExtReAM library. The “SkeletonObject” type has
a core that contains a geometry and a core skeleton structure.
It also contains a link between the skeleton and the geometry
to do vertex blending [17]. The instances contain not only a
position and an orientation in the virtual world, but also their
own deformed skeleton and, if desired, a deformed geometry.
Fig. 2 shows how the skeleton plugin is composed.

The bone structure we use is the standard tree structure used
for skeleton-based animation: the skeleton has one root bone
and every other bone has a parent and a list of children. Every
bone has a position and an orientation relative to its parent.
Different skeleton controllers (which can be implemented as
different plugins) can animate the skeleton. Every controller
can animate a skeleton pose, and a skeleton blender combines
the poses of all the controllers into the final skeleton instance.
This blender uses interpolation between the final skeleton
poses of the different active controllers. The skeleton blender
can also apply weights to the different controllers so that one
controller can have more influence on the entire or a specific
part of the skeleton. An example of when this might be used is
when we manipulate an avatar’s hand for grasping something
using IK while it is performing a keyframed walk animation.

To deform the geometry, an object deformer was imple-
mented. This deformer uses the final skeleton pose generated
by the skeleton blender to generate a deformed skin. It uses
the standard weighted vertex blending technique [17]. If the
deformed geometry is not needed in software, a graphics
hardware method could be used to speed up the deformation.
Our current system only provides a software implementation
of vertex blending, so the same technique can be used on all
platforms. Separate plugins could be created for the different
platforms, wherein more platform-specific techniques could be
used. On desktop platforms for example, the vertex blending
could be implemented using GPU hardware.

Several skeleton controllers were already implemented for
the ExtReAM library and we will discuss them here briefly.

1) The KeyFrame Controller: to be able to use standard
keyframed skeleton animations, the first skeleton controller we
implemented was the keyframe controller. For each skeleton-
object core, we hold a list of available animations. An anima-
tion consists of a list of keyframes (positions and orientations
at a specific time) for certain bones of the skeleton. In this way,
animations can be defined on a specific part of the skeleton.
When an animation is started for a certain skeleton-object
instance, a new animation state is created that holds the current
time and the weight of the animation. The controller calculates
a pose for the bones by interpolating between the keyframes
of the running animations. A command handler is created, that
can be used to start and stop animations and to apply weights.

2) The Ragdoll Controller: using the physics plugin (see
section IV-A), we implemented a simple ragdoll controller.
When an object instance is added to the system, the ragdoll
event handler builds an articulated rigid body structure for
the physics engine. After every timestep, the skeleton pose is
calculated from the movement of the physical objects.

3) The IK Controller: this controller uses the Cyclic Co-
ordinate Descent (CCD [1]) technique to control a part of, or
the entire skeleton of an animated character. A goal position
can be specified along with the joints that form the IK chain.
The joints in that chain will then be positioned and oriented
so that the end of the IK chain approaches the goal position



Fig. 3. This shows a screenshot of the desktop test application, using QT and OpenGL. The skeleton object properties widget (bottom left) allows the user
to activate animations and set weight factors.

as close as possible. Also, joints can have some orientation
constraints specified.

The skeleton animation actor, implemented in the plugin,
uses the skeleton blender to animate the skeleton instances
every timestep and deforms the geometry afterwards. The
resulting deformed object instance can then be rendered and/or
used for further simulation.

V. TEST RESULTS

A. Desktop application

To demonstrate the ExtReAM system, a test application was
developed for desktop platforms and was tested under MS
Windows and Linux. The application provides functionality to
load scenes described in a simple XML-based scene format
that contains the necessary plugins and object positioning.
Furthermore, the user can load extra plugins and add, remove
and reposition objects at runtime. The interface was developed
with the QT 4.0 library [18] and shows a tree structure of
the objects and object specific properties. These properties
are specific for every object type. The system also supports
command handling, so users can send commands to the system
for example to invoke core or plugin functionality. OpenGL
is used to render the scene.

The application was used to test rigid body simulation,
keyframed skeleton animation and ragdoll physics using the
plugins described in the previous sections. Using these plugins
in the application was straightforward using our library and
the plugin system did not introduce any noticeable slowdown.
Fig. 3 shows a screenshot of the test application containing
a scene with one skeleton-based object and two rigid object
models. The user is controlling the keyframed animations of
the skeleton object using the properties widget for skeleton
objects. We did not optimize the rendering, since this was not
part of our research. However, our test application is able to

animate, simulate and render several hundreds of objects with
interactive framerates.

B. PocketPC application

To test the ExtReAM library on PocketPC, we developed
a native C++ application using OpenGL ES as the render-
ing backend. We used the Dell Axim X50v PDA, that has
hardware-accelerated 3D graphics, so we could test advanced
animation techniques without the delays caused by software
rendering. The PocketPC application can load the same scenes
as the desktop application, but can’t load the desktop-specific
plugins such as the rigid body simulation.

The plugin-based system is an efficient solution for use on
devices with limited memory resources such as the PocketPC,
because plugins (along with their linked libraries and memory
usage) can be unloaded when their functionality is no longer
required. The object creator plugins for example, that are used
to generate object cores and instances from file, are loaded
only when necessary, and are immediately unloaded after the
objects have been created.

Fig. 4 shows a scene consisting of 18 rigid objects (each
about 1800 polygons) and one animated skeleton object (with
400 polygons and 18 animated skeleton joints). The scene is
rendered in real-time (approximately 20 frames per second).
The plugins used are the same as in the desktop application.
Vertex blending causes the most noticeable delays, since the
algorithm is completely running in software and therefore not
optimized for the device.

VI. CONCLUSIONS AND FUTURE WORK

In this work we presented the main architecture and design
considerations of the ExtReAM library. The system is built
around an object-oriented, platform-independent core that can
easily be extended by plugins. While the core system provides
functionality for managing plugins and objects, the plugins are



Fig. 4. This figure shows the embedded test application running on a Dell
PocketPC device. The robot is an animated skeleton object performing the
“Walk” animation. The other objects in the scene are all rigid objects.

responsible for more specific tasks such as object loading and
various animation techniques. Different plugins can be used
for different platforms when necessary and plugins need to be
loaded only when their functionality is required. This work
also presents how easy it is to incorporate the library into
applications and create new plugins for the system. Several
developed plugins were described and the results of two ap-
plications using them, one for desktop and one for PocketPC,
were presented. The overhead generated by the plugin system
does not result in a noticeable slowdown, moreover it is very
memory efficient, which is especially interesting use on mobile
devices.

In the future, we will use the ExtReAM library as a base
for researching physically based character animation. Further-
more, we have several ideas for using a new, more intuitive
and memory efficient bone structure, as well as an optimized
vertex blending algorithm for PocketPC. The system will also
be used in an existing networked virtual environment setting.
Using the system in several big projects will reveal more of
its advantages and weaknesses. Naturally, we will continue to
improve the main system. Finally, we will also use ExtReAM to
investigate interaction in VR environments. Controlling virtual
characters in a physically simulated world will be the main
subject. Providing realistic force feedback to the user will also
be looked at.

ACKNOWLEDGMENT

Part of the research at Expertise Centre for Digital Media
(EDM) is funded by the ERDF (European Regional De-
velopment Fund), the Flemish Government and the Flemish
Interdisciplinary institute for BroadBand Technology (IBBT).
We would also like to thank the CVE group of the EDM for
their help and support.

REFERENCES

[1] C. Welman, “Inverse kinematics and geometric constraints for articulated
figure manipulation,” Ph.D. dissertation, School of Computer Science,
Simon Fraser University, 1989.

[2] T. Giang, R. Mooney, C. Peters, and C. O’Sullivan, “Real-time character
animation techniques,” Image Synthesis Group Trinity College Dublin,
Tech. Rep. TCD-CS-2000-06, Feb. 2000.

[3] L. Kovar, M. Gleicher, and F. Pighin, “Motion graphs,” in In Proceedings
of ACM SIGGRAPH 02, 2002, pp. 473–482.

[4] P. Faloutsos, M. van de Panne, and D. Terzopoulos, “Composable
controllers for physics-based character animation,” in SIGGRAPH ’01:
Proceedings of the 28th annual conference on Computer graphics and
interactive techniques. New York, NY, USA: ACM Press, 2001, pp.
251–260.

[5] K. Pallister, Game Programming Gems 5. Charles River Media, Inc.,
2005.

[6] A. Shapiro, F. Pighin, and P. Faloutsos, “Hybrid control for interactive
character animation,” in PG ’03: Proceedings of the 11th Pacific
Conference on Computer Graphics and Applications. Washington, DC,
USA: IEEE Computer Society, 2003, p. 455.

[7] V. B. Zordan and J. K. Hodgins, “Motion capture-driven simulations
that hit and react,” in SCA ’02: Proceedings of the 2002 ACM SIG-
GRAPH/Eurographics symposium on Computer animation. New York,
NY, USA: ACM Press, 2002, pp. 89–96.

[8] (2005) Discreet website. [Online]. Available: http://www.discreet.com/
[9] (2005) Alias website. [Online]. Available: http://www.alias.com/

[10] (2005) Blender website. [Online]. Available: http://www.blender.org/
[11] (2005) Natural motion website. [Online]. Available: http://www.

naturalmotion.com/
[12] P. Faloutsos, M. van de Panne, and D. Terzopoulos, “Composable

controllers for physics-based character animation,” in SIGGRAPH ’01:
Proceedings of the 28th annual conference on Computer graphics and
interactive techniques. New York, NY, USA: ACM Press, 2001, pp.
251–260.

[13] (2005) The Cal3D project website. [Online]. Available: http://cal3d.
sourceforge.net/

[14] (2005) The granny 3d website. [Online]. Available: http://www.
radgametools.com/gramain.htm

[15] (2005) Ogre 3d website. [Online]. Available: http://www.ogre3d.org/
[16] (2005) Ageia physx. [Online]. Available: http://www.ageia.com/

novodex.html
[17] J. Lander, “Skin them bones: Game programming for the web genera-

tion,” in Game Developer Magazine, May 1998, pp. 11–16.
[18] Qt. [Online]. Available: http://www.trolltech.com/products/qt/

Pieter Jorissen is a PhD candidate in the Depart-
ment of Computer Science at the Hasselt University,
Belgium. He received his BS and MS degree in
computer science from the Limburgs Universitair
Centrum in 1999 and 2001 respectively. He is now
working as a research assistant at the Expertise Cen-
tre for Digital Media (EDM), a research institute of
the Hasselt University. His current research interests
are in the fields of virtual interaction, collaborative
virtual environments, animation and physical simu-
lation.

Jeroen Dierckx graduated in computer science in
2004 at the Limburgs Universitair Centrum, Bel-
gium. He is currently working as a researcher at
the Expertise Centre for Digital Media (EDM), a
research institute of the Hasselt University. His main
research interest is computer animation, with specific
interest in real-time autonomous character animation
and physically based modeling.

Wim Lamotte received his MS degree in 1988
at the Free University of Brussels and his PhD
degree in 1994 at the Limburgs Universitair Cen-
trum. He is currently an assistant professor at the
Hasselt University where he teaches computer net-
works, telecommunications, and multimedia tech-
nology courses. His research interests include net-
worked virtual environments, networked multime-
dia and photo-realistic image synthesis. In these
fields, he lead and participated in numerous research
projects, both in local and European contexts. Wim

Lamotte is member of the ACM (SIGCOMM) and IEEE (Computer Society
and Communications Society).


