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Abstract

The extension of the XSL (eXtensible Style sheet Language) by variables and
passing of data values between template rules has generated a powerful XML query
language: XSLT (eXtensible Style sheet Language Transformations). An informal
introduction to XSTL is given, on the bases of which a formal model of a fragment
of XSLT is defined. This formal model is in the spirit of tree transducers, and its
semantics is defined by rewrite relations. It is shown that the expressive power
of the fragment is already beyond that of most other XML query languages. Fi-
nally, important properties such as termination and closure under composition are
considered.

1 Introduction

XSLT [Cla99b] is the W3C [Con] recommendation for an XML style sheet language. The
original primary role of XSLT was to allow users to write transformations of XML to
HTML, thus describing the presentation of XML documents. Nowadays, many people
use XSLT as their basic tool for XML to XML transformations which renders XSLT
into an XML query language.

The definition of XSLT has been quite unstable before it became a recommenda-
tion in November 1999. Before that time, it has been noted by the database com-
munity [DFF+99a, ABS00], that the transformations expressible in earlier versions of
XSLT were rather limited. For instance, XSLT did not have joins or skolem-functions
(and, hence could not do sophisticated grouping of output data). In other words, XSLT
lacked the most basic property any query language should have: it was not relationally
complete. We show in this paper that current XSLT is much more powerful than its
previous versions. Indeed, XSLT not only becomes relationally complete, but it can
do explicit grouping (with or without skolem functions), it can simulate regular path
expressions, and it can simulate most other current XML query languages.

The main source for the definition of XSLT is its specification [Cla99b] which is a
long technical document that is rather difficult to read, especially if one only intends to
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get an impression of how the language works and what it is capable of. To remedy this,
we define an abstract formal model XSLT0 of XSLT incorporating most of its features,
but all of those which are necessary to simulate, say, the core of XML-QL. The purpose
of this model is two-fold:

(i) its clean and formal semantics provides the necessary mathematical model for
studying properties of XSLT;

(ii) the formal model abstracts from the actual syntax of XSLT and emphasizes its
transformational features in such a way that the interested reader can quickly get
a feeling of the language and its capabilities.

We want to emphasize that we do not provide a model for all of XSLT. For instance,
we excluded for-loops, and variables can only be instantiated by data values (not by
result tree fragments or node-sets). The resulting language is not Turing complete as
all data values are seen as atomic entities. 1 The most important observation is that
the defined language is much more expressive than the initial versions of XSLT. 2

We use our model to gain some insight into XSLT. We start by defining a valid
abstraction QL0 of the core of XML-QL and show that it can be simulated in XSLT0.
Next, we consider the k-pebble tree transducers of Milo, Suciu, and Vianu [MSV00].
These were defined, in the context of type checking, to capture the expressiveness
of most current XML query languages including XML-QL [DFF+99a], XQL [Rob99],
Lorel [AQM+97], StruQL [FFK+98], UnQL [BDHD96], and the previous version of
XSLT. Their model does not take value equations into account (needed for joins, for
instance), but can easily be modified to do so. We emphasize that this is just informal
evidence for the expressiveness of XSLT0. Readers not familiar with k-pebble transduc-
ers can safely ignore this comparison.

Next, we obtain that XSLT0 can compute all unary monadic second-order (MSO)
structural patterns. In brief, MSO logic is first-order (FO) logic extended by set quan-
tification. It is an expressive and versatile logic: on trees, for instance, it captures many
robust formalisms, like regular tree languages [Tho97a], query automata [NS99], finite-
valued attribute grammars [NVdB98, Nev99b], etc. By structural patterns we mean
MSO without joins, that is, it cannot be checked whether the values of two attributes
are the same (see Section 4 for details). In fact, Neven and Schwentick [NS00] showed
that, already with respect to structural patterns, MSO logic is more expressive than
FO logic extended by various kinds of regular path expressions. Thus, as most current
XML query languages are based on FO logic extended by regular path expressions, this
already indicates that XSLT cannot be simulated by, say, XML-QL.

On the negative side, we show that the termination problem undecidable is unde-
cidable. In fact, deciding termination for XSLT without data values is complete for
EXPTIME [MN99]. Further, we show that XSLT programs are not closed under com-
position.

The remainder of this paper is structured as follows. In Section 2 we introduce the
important features of XSLT by means of two examples. In Section 3 we define the formal

1If data values were considered as strings and operations like substring or concatenation were allowed,
then the resulting language would be Turing complete.

2In previous work we defined a formal model for the version of XSLT not incorporating data val-
ues [MN99].
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model XSLT0. In Section 4, we study some properties of this model. Finally, we present
some conclusions in Section 5.

The interested reader is referred to [Bex00], were it is shown how the XML-QL
queries of [DFF+99a] can be expressed in actual XSLT.

2 XSLT by Example

A basic XSLT program is a collection of template rules, where each such rule consists of

• a matching pattern,

• a mode (which indicates the (finite) state the computation is in), and

• a template (see, for example, the program in Figure 2).

Input and output documents of an XSLT program P are unranked trees, with the
notational convention that a left bracket is represented by <xxx> (where xxx is a label)
and the corresponding right bracket is represented by </xxx>; thus, <a>b</a> represents
the tree a(b). The computation of P on an input document t starts at the root node
of t in the start mode3 and proceeds roughly as follows. Whenever the computation is
at a node u in a certain mode q, the program tries to find a template rule with mode
q whose matching pattern matches u.4 If it finds such a template rule, the program
executes the corresponding template. The latter usually instructs XSLT to produce
some XML output, and at various positions in this XML output to select lists of nodes
for further processing (we refer to patterns that select nodes for further processing as
selecting patterns). Each of these selected nodes is then processed independently in the
same way as described before. Finally, the documents that are constructed by these
subprocesses are inserted at the positions where the subprocesses were initiated.

<!DOCTYPE organization [
<!ELEMENT organization group+ topmgr>
<!ELEMENT topmgr employee+>
<!ELEMENT group (mgr group+) | employee+>
<!ELEMENT mgr employee>
<!ELEMENT employee EMPTY>
<!ATTLIST employee id ID #REQUIRED>
<!ATTLIST group id ID #REQUIRED>

]>

Figure 1: A DTD describing an organization.

To illustrate the features of XSLT we consider input documents conforming to the
document type definition (DTD) shown in Figure 1. This DTD describes an organization
as a sequence of groups, together with a list of top managers. A group consists of a

3Actually, the use of modes is optional, but for convenience we assume that every template has a
mode, and that there is a start mode.

4Usually, and in all our examples, such a matching pattern only refers to the label of the current
node. In fact, we show in Section 4 that such patterns suffice.
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manager and a list of groups, or it just consists of a list of employees. Each group and
each employee has an ID associated with it. For simplicity, we identify employees by
their ID. The XSLT program in Figure 2 computes pairs (e1, e2) of employees, where e1

is a top manager different from Bill and is a direct or indirect manager of e2. Pairs
are encoded simply by a pair element with attributes topmgrID and employeeID (cf.
Figure 4).

<xsl:template match="organization" mode="start">
<result>

<xsl:apply-templates select="/organization/topmgr/employee"
mode="selecttopmgr"/>

</result>
</xsl:template>

<xsl:template match="employee" mode="selecttopmgr">
<xsl:variable name="varID">

<xsl:value-of select="@id"/>
</xsl:variable>
<xsl:if test="$varID != ’Bill’">

<xsl:apply-templates mode="display"
select="//group[mgr/employee[@id=$varID]]/group//employee">
<xsl:with-param name="varID" select="$varID"/>

</xsl:apply-templates>
</xsl:if>

</xsl:template>

<xsl:template match="employee" mode="display">
<xsl:param name="varID"/>
<pair>

<xsl:attribute name="topmgrID">
<xsl:value-of select="$varID"/>

</xsl:attribute>
<xsl:attribute name="employeeID">

<xsl:value-of select="@id"/>
</xsl:attribute>

</pair>
</xsl:template>

Figure 2: An XSLT program computing the query of Section 2.

Note that patterns in XSLT are XPath expressions [Cla99a] (for a formal semantics
see [Wad99]). In brief, the leading / selects the root of the document. Root here does
not correspond to the top element of the XML document but to an extra (invisible)
node above it. We will abstract from this in our formal model. Successive symbols /
mean ‘child of’, and the symbol // means ‘descendand of’.

On the face of it, the program just makes a join between the list of top managers
and the group managers, that is, the ones occurring in the top manager list and the
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<organization>
<group id="HR">

<mgr><employee id="Bill"/></mgr>
<group id="HR-prod">

<mgr><employee id="Edna"/></mgr>
<group id="HR-prod-empl">

<employee id="Kate"/>
<employee id="Ronald"/>

</group>
</group>
<group id="HR-QA">

<mgr><employee id="John"/></mgr>
<group id="HR-QA-empl">

<employee id="Jane"/>
<employee id="Jake"/>

</group>
</group>

</group>
<topmgr>

<employee id="Bill"/>
<employee id="John"/>

</topmgr>
</organization>

Figure 3: An XML document conforming to the DTD of Figure 1.
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<result>
<pair topmgrID="John" employeeID="Jane"/>
<pair topmgrID="John" employeeID="Jake"/>

</result>

Figure 4: The output of the XSLT program shown in Figure 2 taking as input the
document shown in Figure 3.

ones occurring as a manager of a group. However, it does so in a rather direct and
procedural way. In brief, the XSLT program starts by applying the first template rule
in mode start, at the root of the input tree. 5 If the node is labeled by organization,
then each top manager is selected in mode selecttopmgr. This is done by the pattern
/organization/topmgr/employee which selects all employee children of all topmgr
children of the organization-labeled root node. For each employee selected in mode
selecttopmgr, the second template rule is applied, which stores the employee’s ID, say
e1, in the variable varID and verifies, by using the latter, whether e1 is different from
Bill. If so, it selects all the descendants of the group manager who have an ID e1 (in mode
display). In particular, the selection pattern in the second template rule says ‘select all
employees that are descendants of a group that itself is a child of a group whose manager
has the same ID as the one stored in the variable varID’. The expression between the
brackets ‘[. . . ]’ is a filter on group elements that makes sure that only groups that have
a manager with ID varID. In this selection the ID e1 is passed along as parameter.
Finally, the third template rule is applied to each employee e2 selected by the second
rule and outputs an element pair with attribute values e1 and e2 for the attributes
topmgrID and employeeID, respectively.

The program in Figure 2 is not the most compact way to specify the desired query
in XSLT, but it nicely illustrates three important features of XSLT: modes, variables,
and passing of data values. Let us discuss these briefly:

(i) Modes enable XSLT to act differently upon arrival at the same element types. For
instance, as described above, when our program arrives at an employee element,
its action depends on the actual mode, select or display, in which this element
was selected.

(ii) Variables can be used for two purposes. The most apparent one is the one il-
lustrated by the above query, namely, to perform joins between data values. A
less apparent application is to use them as a ‘look-ahead’. In Figure 5 we give a
fragment of an XSLT program evaluating the truth value of a binary tree which rep-
resents a Boolean circuit. Essentially, the use of variables allows for a bottom-up
computation. In brief, when arriving at an or-labeled node, the program returns
the correct truth value based upon the truth values of the first and second subtree.
The restriction to binary trees is just for expository purposes. In fact, we show
in Section 4 how to simulate arbitrary bottom-up tree automata over unranked
trees.

5Actually, a real XSLT processor does not require an XSLT program to start in a specific mode. We
do require this, as it makes our model more uniform.
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(iii) Passing of data values to other template rules can be crucial for performing joins
if the items to be joined do not occur at the same node. Moreover, when node IDs
are present in the XML document,6 we can use this mechanism to place ‘pebbles’
on the input document which enables us to do complicated grouping operations.

A fourth feature, not illustrated by the example in Figure 2, is that XPath can
also select siblings and ancestors. Exactly these four features render XSLT into a quite
powerful transformation language.

<xsl:template match="or">
<xsl:variable name="arg1">
<xsl:apply-templates select="./*[1]"/>

</xsl:variable>
<xsl:variable name="arg2">
<xsl:apply-templates select="./*[2]"/>

</xsl:variable>
<xsl:choose>
<xsl:when test="($arg1 = ’false’) and ($arg2 = ’false’)">

<xsl:value-of select="’false’"/>
</xsl:when>
<xsl:otherwise>

<xsl:value-of select="’true’"/>
</xsl:otherwise>

</xsl:choose>
</xsl:template>

Figure 5: The fragment for or-nodes of an XSLT program evaluating tree-structured
Boolean circuits.

If we considered XSLT from a language theoretic point of view, then we could say
that XSLT corresponds to tree-walking tree transducers with registers (working over
unranked trees). In fact, the distinction between ranked and unranked trees can be
dropped if the transducer model is capable of realizing the encoding of unranked trees
by ranked ones, and the corresponding decoding. For example, it can be shown (cf. the
proof of Theorem 18 in [MN99]), that the MSO transducer of [Cou94] can realize the
standard encoding of unranked trees (see, e.g., [PQ68]) and the corresponding decoding.
For similar reasons the authors of [MSV00] have drawn their attention to the ranked
case only. Indeed, modes and the possibility to select all neighbours of the current node
allows to explore the whole input tree as a tree-walking automaton; the output facility
renders it into a transducer; and, the variables together with parameter passing can be
seen as registers for data values. This connection will become clearer in Section 4.1.

3 A Formal Model for XSLT

In this section the formal model XSLT0 of XSLT is introduced. In the first subsection,
unranked trees are defined. They form the data model of XSLT0: an XSLT0 program

6If not, XSLT is capable of generating them itself (see Section 4).
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realizes a transformation from unranked trees to unranked trees. More precisely, such
trees are attributed in the sense that nodes may have attributes associated with them,
which take values from some domain. This provides a convenient way to represent XML
documents. Nodes of an attributed tree can be selected by a pattern, which we define
in a most general form; roughly speaking a pattern is a function which, given a tree and
one of its nodes, returns a set of nodes.

The second subsection defines the syntax of XSLT0 programs and shows how the
XSLT program of Figure 2 can be represented as an XSLT0 program. Finally, the third
subsection defines the semantics of XSLT0 programs, based on rewriting. Also, it gives
two examples of XSLT0 programs, which are used in Section 4 to show that XSLT0

programs are not closed under composition.

3.1 Trees, Forests, and Patterns

We start with the necessary definitions regarding trees and forests over an alphabet
(that is, a finite set) Σ (the symbols in Σ correspond to the element names of the XML
document, seen as a tree). To use these trees as adequate abstractions of actual XML
documents, we extend them with attributes that take values from an infinite (recursively
enumerable) domain D = {d1, d2, . . .}.

The set of Σ-trees, denoted by TΣ, is inductively defined as follows:

• every σ ∈ Σ is a Σ-tree

• if σ ∈ Σ and f1, . . . , fn ∈ TΣ, n ≥ 1 then σ(f1 · · · fn) is a Σ-tree.

A Σ-forest is a (possibly empty) sequence f1 · · · fn, n ≥ 0 of Σ-trees. The empty Σ-
forest is denoted by ε. The set of all Σ-forests is denoted by FΣ. Note that there is no
a priori bound on the number of children of a node in a Σ-tree; such trees are therefore
unranked. In the following, whenever we say tree or forest, we always mean Σ-tree or
Σ-forest, respectively.

The reason for considering forests is that, even if XSLT0 is used for tree-to-tree trans-
formations only, we sometimes need to specify template rules which construct forests
(see, e.g., Example 3.11).

For every forest f ∈ FΣ, the set of nodes of f, denoted by Nodes(f), is the subset of
N
∗ inductively defined as follows:

• if f = σ(t1 · · · tn) with σ ∈ Σ, n ≥ 0, and t1, . . . , tn ∈ TΣ, then Nodes(f) =
{ε} ∪ {iu | i ∈ {1, . . . , n}, u ∈ Nodes(ti)}; and

• if f = t1 · · · tn, then Nodes(f) = {iu | i ∈ {1, . . . , n}, u ∈ Nodes(ti)}.

Thus, for a tree the node ε represents its root and ui represents the i-th child of u.
Further, for a forest the node iu represents the node u of the i-th tree in the forest. For
every forest f ∈ FΣ and every node u of f , the label of f at u is denoted by f [u]. The
substitution of the forest f ′ at node u in f is denoted by f [u ← f ′].

Next, we add XML attributes to the above defined forests. To this end, for the rest
of the paper, we fix a finite set of attributes A.

Definition 3.1 Let Σ be an alphabet and S a set. An attributed Σ-forest with domain
S is a pair (f, (λf

a)a∈A), where f ∈ FΣ and for each a ∈ A, λf
a : Nodes(f) �→ S is a

8



(partial) function assigning values in S to nodes of f . The set of all attributed forests
with domain S, is denoted by FS

Σ . �

The notions of label and substitution carry over from Σ-forests to attributed Σ-forests
in the obvious way.

For S we will usually take D. However, to create output in template rules we will use
attributed forests over D∪{x1, . . . , xn} where the variables x1, . . . , xn are those defined
in the variable defining part of the template. Of course, in real XML documents, usually,
not all element types have the same set of attributes. Obviously, this is just a convenience
and not a restriction. In an analogous way one can define the set of attributed trees,
denoted by T S

Σ . For a set B, FS
Σ(B) denotes the set of attributed forests f over Σ ∪ B

such that symbols of B may only appear at the leaves of f . Below, B will be the set of
apply template expressions.

In the next example we elaborate a bit on the connection between actual XML
documents and attributed trees.

Example 3.2 It should be clear that in an XML document, all text elements can be
replaced by appropriate attributes. In terms of the corresponding tree this means that
all nodes (including the leaves) are labeled by bracket labels (such as beer or color
in this example), or by a special label T. Thus, the use of attributes to replace text
elements solves the technicality of how to represent <a>bcd</a> as an unranked tree
(either by the tree a(bcd) with three leaves labeled by b, c, d, respectively, or by a tree
with root node labeled a and a single leaf labeled bcd).

For instance, consider the following XML document.

<beer name="Leffe trippel">
<alc> 8.7 </alc>
<description>

<color> blonde </color>
<taste> bitter </taste>

</description>
</beer>

Figure 6 shows the attributed tree s that corresponds to this document, where text
elements are seen as single nodes, and the expression [name → “Leffe trippel”] means
that λs

name(ε) = ”Leffe trippel” (cf. Example 3.3). Let us now represent text elements
by attributes. The corresponding XML document looks as follows.

<beer name="Leffe trippel", alc="8.7">
<description color="blonde", taste="bitter"/>

</beer>.

The latter can easily be represented by the attributed tree

t := beer(description),

where λt
name(ε) = “Leffe trippel”, λt

alc(ε) = “8.7”, λt
color(1) = “blonde”, and λt

taste(1) =
“bitter”. Here, the domain D is assumed to contain the subset {“Leffe trippel”, “8.7”,
“blonde”, “bitter”}

9



In what follows we use a more convenient notation for attributed trees, similar to
the original XML representation (and, already used in Figure 6). Namely, the label of
a node may be followed by a list [a1 → d1, . . . , an → dn] meaning that attribute ai has
value di at that node. If an attribute is not listed at a node, then it is assumed to be
undefined. So, the attributed tree t can be written as

beer[name → “Leffe trippel”, alc → “8.7”](
description[color → “blonde”, taste → “bitter”]).

As another example, consider the XML document

<p>This is <em>not</em> a problem.</p>

Here, we use the special text label T and the attribute text, to represent the document
by the tree. That is,

<p>
<T text="This is"/>
<em text="not"/>
<T text="a problem."/>

</p>

The latter can be readily represented by an attributed tree. Indeed, consider

t′ = p(T[text → “This is”]em[text → “not”]T[text → “a problem.”]).

Actually, this resembles the second choice of representing <a>bcd</a> mentioned above.
�

Patterns

In our formal model we abstract from a particular selection pattern language. Recall that
XSLT uses the pattern language described in XPath [Cla99a] (see [Wad99], for a formal
semantics). Patterns can be rather involved as illustrated by the second template rule
in Figure 2, where the pattern depends on the value of the variable varID. In addition,
patterns can also be moving instructions of the form parent, left sibling, right sibling,
or first child. Actually, the proof of Theorem 4.2 indicates that such local selections are
already enough in order to simulate many existing XML query languages.

In the following, we assume an infinite set of variables X . We define a pattern over
the variables X ⊆ X as a function of type

(T D
Σ × (X �→ D)) �→ (N∗ �→ 2N

∗
)

and denote the set of all patterns over X by PX
Σ . The idea is as follows. Let p be a

pattern, t a tree, and γ a variable assignment (for the variables in p). Then p(t, γ)(u) is
the set of selected nodes when the pattern is applied at node u.

Example 3.3 Let p be the XPath pattern

beer[name[@val=x]]//color,

10



beer

alc description

8.7 color taste

blonde bitter

[name→“Leffe trippel”]

Figure 6: The attribute tree s.

where x is a variable. Let γ map x to “Leffe trippel” and let s be the attributed tree
shown in Figure 6, i.e., the tree beer(alc(8.7),description(color(blonde),taste(bitter)))
over the alphabet {8.7, alc, beer, bitter, blonde, color, description} with λs

name(ε) =“Leffe
trippel” and λs

name(v) undefined for all nodes v of s not being the root node ε. Recall
that s is a possible representation of the XML document shown in Example 3.2. Then
p(s, γ)(ε) = {21}, because the node 21 is the only node of s that is a color-labeled
descendant of a beer-labeled node which has “Leffe trippel” as value of the attribute
name. �

3.2 Syntax of XSLT0

In this subsection an abstract formal syntax for (a fragment of) XSLT is defined, called
XSLT0. First, we restrict matching patterns to test only the label of the current node
(as is already the case in Figure 2). This is not a harmful restriction, as Theorem 4.3
shows that we can test many properties of the current node in the body of a template
rule. Second, we divide a template rule into two parts: the variable definition part and
the constructing part. Variables can only be assigned by data values. As before, we
assume an infinite (recursively enumerable) domain D and the only allowed operation
on elements of D is the equality test. Further, a variable can only be defined as the
value of some attribute of the current node or by an XSLT apply-templates statement
which will return exactly one data value. We will refer to such special templates as
selecting template rules. In the constructing part of the template rule, the actual output
is defined relative to some conditions on the values of the variables, the parameters, the
attribute values of the current node, and possibly on the fact whether the current node
is the root, a leaf, or the first or last child of its parent; this output is a forest, which
may contain at its leaves expressions which determine in which mode, at which nodes,
and with which parameters the computation process should continue. This is done by
an apply-templates-expression (for short, at-expression).

The distinction between a template rule that generates output (which will be referred
to as a constructing template rule) and one that is selecting, will be realized in an XSLT0

program by the modes: a mode q is either constructing or selecting. Accordingly, at-
expressions are either constructing or selecting depending on the type of the mode that
they select. Moreover, selecting at-expressions may only select single nodes; this is
guaranteed by restricting the patters that select nodes to moving instructions (recall
the definition of patterns given in the discussion following Example 3.2).

• A constructing at-expression is of the form

q(p, z̄),

11



where q is a constructing mode, p is a pattern and z̄ is a possibly empty sequence
of variables in X and domain elements in D.

• A selecting at-expression is of the form

q(m, z̄),

where q is a selecting mode, m is a moving instruction, and z̄ as before. We
assume m can be at least of the form to-self, to-first-child, to-last-child,
to-left-sibling, or to-right-sibling. These instructions have the obvious
meaning.

We denote the set of constructing (selecting) at-expression by AT c (AT s).
For instance, the apply-templates-expression in the second template of Figure 2 is a

constructing one and corresponds in our model to the expression

display(p, varID),

with p the pattern

//group[mgr/employee[@id=varID]]/group//employee.

Note that application of this pattern eventually leads to the generation of a pair element.
So the expression is constructing in the sense that it eventually produces output.

For an attribute a we call a(.) an attribute expression. For a set X ⊂ X of variables,
a test (over X) is a Boolean combination of expressions

• x = y where x and y are attribute expressions, variables in X, or domain elements,
and

• root, leaf, first-child, or last-child.

During a computation the expression a(.) will evaluate to the value of the attribute a of
the current node. Further, root, leaf, first-child, and last-child evaluate to true whenever
the current node is the root, a leaf, the first, or the last child of its parent, respectively.

Definition 3.4 An XSLT0 program is a tuple P = (Σ, ∆, M, start, R), where

• Σ is an alphabet of input symbols;

• ∆ is an alphabet of output symbols;

• M is a finite set of modes which is disjoint with Σ∪∆, and is partitioned into the
sets M c and M s of constructing and selecting modes, respectively;

• start ∈ M c is the start mode; and

• R is a finite set of rules, partitioned into the sets Rc and Rs of constructing and
selecting template rules, respectively, which are defined as follows. For q ∈ M and
σ ∈ Σ, a (q, σ)-template rule r is of the form

12



template q(σ, x1, . . . , xn)
vardef

y1 := r1; . . . ; ym := rm

return
if c1 then z1; . . . ; if ck then zk

end

where n, m ≥ 0 and k ≥ 1. The x’s and y’s are variables. Each ri is ei-
ther an attribute expression or a selecting at-expression using variables among
x1, . . . , xn, y1, . . . , yi−1. Each ci is a test over X = {x1, . . . , xn, y1, . . . , ym}. In
order to define what the zi’s are, we distinguish whether the rule is constructing
or selecting.

– If q is a constructing mode, then r is a constructing apply template rule
and each ri is an attributed ∆-forest with domain D ∪ X and leaves possi-
bly labeled by at-expressions (using only variables in X), i.e., each ri is in
FD∪X

∆ (AT c).

– If q is a selecting mode, then r is a selecting apply template rule and each zi

is a domain element, a variable in X, or a selecting at-expression (using only
variables in X).

�

Intuitively, a rule of an XSLT0program is evaluated as follows. First, the values of
the variables y1,. . . ,yn, are defined. Such a value can be an attribute value of the current
node or can be defined by invoking an at-rule that will compute the desired data value.
The return value then is determined by zi where ci is the first test that evaluates to
true.

Remark 3.5 To keep the model total and deterministic we require the existence of
exactly one (q, σ)-template rule for every mode q and every input symbol σ. Moreover,
by default the empty forest will be output whenever none of the tests c1, . . . , ck evaluates
to true (cf. Definition 3.8); i.e., we assume the presence of a return instruction

if ck+1 then zk+1,

where ck+1 equals true and zk+1 = ε.
To ensure that the output of an XSLT0 program is a tree (rather than a forest), we

require that, for every input symbol σ, each zi in the (start, σ)-constructing template
rule is a tree (rather than a forest). �

Remark 3.6 For convenience we use the keyword self if we want to copy the current
node together with the values of all its attributes. The use of self can be simulated
by first defining the variables xa := a(.) for all attributes a ∈ A, and then writing
σ[(a → xa)a∈A], where σ is the label of the current node. �

Example 3.7 We illustrate the the definition of XSLT0programs by translating the
program in Figure 2 into our syntax. The patterns p1 and p2 refer to the patterns
in the first and second template rules of the XSLT program in Figure 2, respectively.
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In the second template rule display(p2,varID) is the tree consisting of one node la-
beled with display(p2,varID); recall that ε denotes the empty forest. In the last rule,
pair[topmgr→varID; employeeID→myID] denotes the tree t consisting of one node
where λt

topmgrID(ε) := varID and λt
employeeID(ε) := myID. For readability, we omitted

the test ‘if true then’. All modes are constructing. For clarity, we use a box to indicate
at-expressions.

template start(organization)
return

result( selecttopmgr(p1) )
end;

template selecttopmgr(employee)
vardef

varID := id(.)
return

if varID 
= Bill then display(p2,varID) ;
if varID = Bill then ε

end;

template display(employee,varID)
vardef

myID := id(.)
return

pair[topmgrID→varID; employeeID→myID]
end;

Note that the rule “if varID = Bill then ε” is not needed, according to Remark 3.5. �

3.3 Semantics of XSLT0 Programs

In this section we define the semantics of an XSLT0 program P on an input tree t.
This is done by defining two rewrite relations, one for the selecting and one for the
constructing process. A local configuration is an element of

LC(t) := Nodes(t) × (M c ∪ M s) × D∗.

Note that here we will use a comma-separated list d1, . . . , dn to denote an element in D∗.
Intuitively, θ := (u, q, d1, . . . , dn) ∈ LC(t) means that the program has selected node u in
mode q with d1, . . . , dn as the values of the parameters x1, . . . , xn, respectively. A local
configuration is selecting (constructing) if its associated state is selecting (constructing).
Define LCs(t) and LCc(t) as the set of selecting and constructing local configurations,
respectively. In the selection process, a selecting local configuration is rewritten, until a
domain element is reached (which is the value of a variable or an attribute at the current
node, or it is a constant generated by a return rule).

Let w̄ consist of a sequence of variables of X and domain elements. For a function
γ : X �→ D, we denote by w̄[γ] the sequence of domain elements obtained from w̄ by
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replacing each occurrence of the variable x in w̄ by γ(x). By x1\d1, . . . , xn\dn, or x̄\d̄
for short, we denote the function that maps each xi to di. For a binary relation R, we
denote by R∗ its transitive closure.

Definition 3.8 The selecting rewrite relation induced by P on t, denoted by →P,t, is
the binary relation on LCs(t)∪D defined as follows. For θ = (u, q, d1, . . . , dn) ∈ LCs(t)
and α ∈ LCs(t) ∪ D,

θ →P,t α

if

• the (q, σ)-selecting template rule has n local variables for t[u] = σ; further, let the
(q, σ)-template rule be of the form as specified in Definition 3.4, where each ri is
qi(pi, x̄

′
i) or the attribute expression ai(.);

• there are e1, . . . , em ∈ D such that for every 1 ≤ i ≤ m,

– if ri is an at-expression, then (vi, qi, x̄
′
i[γi]) →∗

P,t ei, where γi maps each xj

to dj , for j = 1, . . . , n, and yj to ej for j = 1, . . . , i − 1, and vi is the node
selected by pi, that is, pi(t, γi)(u) = {vi}; or

– if ri is an attribute expression, then ei := λt
ai

(u);

• ci is the first condition that evaluates to true by interpreting each yj by ej , xj by
dj , a(.) by λt

a(u), and root, leaf, first-child, last-child by true if and only if u is the
root, a leaf, the first or the last child of its parent, respectively;

– if zi is a constant, a variable, or an attribute expression then α ∈ D and it
equals the corresponding value;

– if zi is a selecting at-expression q′(p, w̄), then α ∈ LCs(t) and α = (v, q′, w̄[
x̄\d̄, ȳ\ē]) where v is the node selected by p, that is, p(t, [x̄\d̄, ȳ\ē])(u) := {v}.

�

In the constructing process, constructing local configurations are replaced by output
forests, which possibly contain constructing local configurations at their leaves, until
only output symbols are present. A rewrite step, viz. the application of a constructing
template rule, may involve the replacement of a pattern by the nodes of the input tree
which match the pattern. We choose to order these nodes in pre-order (of the input
tree), which is the document order (of the input document).

Definition 3.9 The constructing rewrite relation induced by P on t, denoted by ⇒P,t,
is the binary relation on F∆(LCc(t)) (recall that these are the ∆-forests where leaves
may be labeled with constructing local configurations) defined as follows. For ξ, ξ′ ∈
F∆(LCc(t)),

ξ ⇒ ξ′,

if there is a leaf node v ∈ Nodes(ξ) with ξ[v] = (u, q, d1, . . . , dn) ∈ LCc(t) such that

• the (q, σ)-constructing template rule has n local variables for t[u] = σ; further, let
the (q, σ)-template rule be of the form as specified in Definition 3.4; recall that
there each zj is a forest in FD∪X

∆ (AT c), that is, a forest where attributes take
values in D∪X and where leaves may be labeled with constructing at-expressions;
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• there are e1, . . . , em ∈ D and a ci that fulfill the same conditions as in Defini-
tion 3.8;

• ξ′ = ξ[v ← f ], where f is the forest obtained from zi by replacing

– every occurrence of a yj and a xj as the value of some attribute by the data
values ej and dj , respectively;

– every occurrence q′(p′, w̄) of an at-expression at a leave of zi by the forest

(u1, q
′, w̄[x̄\d̄, ȳ\ē]) · · · (u�, q

′, w̄[x̄\d̄, ȳ\ē]),

where p′(t, [x̄\d̄, ȳ\ē])(u) = {u1, . . . , u�} and u1 ≺ . . . ≺ u� (here ≺ denotes
pre-order).

�

The initial local configuration of t is defined as θstart(t) := (ε, start, ε), i.e., it is the
tree consisting of the single (root) node labeled (ε, start, ε).

Definition 3.10 The transformation realized by P , is the (partial) function τP : T D
Σ →

T D
∆ with τP (t) = s if t ∈ T D

Σ and there is an s ∈ T D
∆ such that θstart(t) ⇒∗

P,t s. �

Note that the above is well-defined. By Remark 3.5 and the definition of → and ⇒,
the transformation is deterministic and generates trees only.

We illustrate the above definitions by an example. In the above we did not instantiate
a concrete pattern language. In the examples we assume that it at least contains the
functionality of XPath, the pattern language of XSLT. As explained before, we will
assume that the following selection patterns are available: to-self, to-first-child,
to-last-child, to-left-sibling, and to-right-sibling with the obvious meanings.

Example 3.11 Let P1 = (Σ1, ∆1, M
c
1 , start, R1) be the XSLT0 program where Σ1 =

{a}, ∆1 = {b, c}, M c
1 = {start, double}, and R1 consists of the two rules

template start(a)
return

b( double(to-self) double(to-self) )
end;

and

template double(a)
return

if leaf then c;
if ¬leaf then double(to-first-child) double(to-first-child)

end;
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Note that in this example we made use of constructing a forest in a rule, namely the
forest double(to-first-child) double(to-first-child), even though the translation
will be a tree-to-tree translation. This program transforms a monadic tree consisting of
n a’s (that is a tree where every node has rank at most one) into the tree b(c · · · c) with
2n c’s. A part of the derivation is illustrated in Figure 7. Essentially, every a is doubled
at each transition. Only when reaching a leaf, a c is being output.

Let P2 = (Σ2, ∆2, M
c
2 , start, R2) be the XSLT0 program where Σ2 = {b, c}, ∆2 = {a},

M c
2 = {start, copy}, and R2 consists of the two rules

template start(b)
return

copy(to-first-child)
end;

template copy(c)
return

if ¬last-child then a( copy(to-right-sibling) );
if last-child then a

end;

This program transforms a tree b(c · · · c) with m ≥ 1 c’s into a monadic tree of height
m consisting only of a’s. In brief, the program jumps to the first c without generating
any output. Then it visits every sibling from left to right, each time generating an a as
output.

The above programs will be used in the proof of Theorem 4.5 to show that XSLT0

is not closed under composition. �

Θstart(a(a)) = (ε, start, ε)
(ε, start, ε) ⇒P1,a(a) b((ε, double, ε)(ε, double, ε))

⇒∗
P1,a(a) b((1, double, ε)(1, double, ε)(1, double, ε)(1, double, ε))

⇒∗
P1,a(a) b(cccc)

Figure 7: Derivation of the program P1 on input a(a)

Example 3.12 Let P = (Σ, Σ, M c, output subtree, R) be the XSLT0 program where
M c = {output subtree}, Σ is an arbitrary alphabet, and R contains for every σ ∈ Σ the
rule

template output subtree(σ)
return

if leaf then self
if last-child then self ( output subtree(to-first-child) )
if ¬last-child then
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self ( output subtree(to-first-child) ) output subtree(to-right-sibling)
end;

Recall from Remark 3.6 that the keyword self copies the current node together with the
values of all its attributes. We invite the reader to verify that P simply copies the input
tree. �

We conclude this section with some remarks. We note that XSLT does not make the
explicit distinction between constructing and selecting template rules, or even, between
the variable definition part and the constructing part of a template rule. However, we
feel that by making this explicit, programming becomes more structured. On the other
hand, we did not incorporate everything XSLT has to offer. For instance, we refrained
from including for-loops. Nevertheless, we indicate in the next section that we have
captured a powerful fragment capable of simulating most existing XML query languages
and even more. With the aid of the example in Section 2, we invite the reader to check
that any program in our abstract syntax can be readily translated into actual XSLT.

4 Properties

In this section we show that XSLT0, and hence XSLT, is quite expressive in the sense that
it can simulate most other current XML query languages, and that it can express all join-
free MSO patterns. The latter even implies that XSLT is strictly more expressive than
other XML query languages. On the negative side we obtain that deciding termination
is undecidable and that XSLT0 is not closed under composition.

4.1 An abstract declarative query language for XML

Although there is no generally accepted transformation language for structured docu-
ments, several ones have emerged during the last years, including XML-QL [DFF+99a],
XSLT [Cla99b], and XQL [Rob99], which are specifically for XML, and Lorel [AQM+97],
StruQL [FFK+98], and UnQL [BDHD96], for the semi-structured data model. As ar-
gued by Fernandez, Siméon, and Wadler [FSW99], XML queries roughly consists of a
pattern clause and a constructor clause.7 The purpose of the pattern language is to
identify the different parts of the document that have to be combined to obtain the
output document. The constructing part, on the other hand, indicates how the selected
parts should be assembled.

Such queries can, for instance, be written as

WHERE ϕ(x1, . . . , xn), CONSTRUCT result(s), (*)

where ϕ is a pattern selecting nodes and s is a tree in T D∪{x̄}
Σ containing at leaves special

constructs like lab(xi) and subtree(xi) indicating that at this position the label or the
subtree rooted at the matched node for xi should be plugged in.

More precisely, let ū1 ≺ . . . ≺ ū� be the tuples of nodes of t selected by ϕ (again, ≺
denotes pre-order, extended to tuples of nodes in the obvious way). Then the output of
the above query on t is

result(s[ū1] · · · s[ū�]),
7We want to point out that the recent XQuery proposal differs substantially from this

paradigm. [Cha01, CFS01]
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where s[ūj ], ūj = uj
1, . . . , u

j
n, denotes the tree obtained from s by replacing each lab(xi)

by t[uj
i ], each subtree(xi) by t/uj

i , and each xi occurring in an attribute definition of a

by λt
a(u

j
i ). If we denote the query in (∗) by Q then we denote the result of Q on t by

Q(t).
As a pattern language, most of these XML query languages, combine the query

primitives that are used in relational databases, hence SQL, with constructs that allow
to navigate along paths, often by means of regular expressions. Clearly, they are all
contained in first-order logic (FO) extended by vertical and horizontal regular path
expressions as defined next.

First we say how we view attributed trees as logical structures (in the sense of
mathematical logic [EF95]) over the binary relation symbols E and <, and the unary
relation symbols (Oσ)σ∈Σ and (λt

a)a∈A. We denote this vocabulary by τΣ. The domain
of t, viewed as a structure, equals the set of nodes of t, i.e., Nodes(t). E is the edge
relation and equals the set of pairs (v, vi) for every v, vi ∈ Nodes(t). The relation <
specifies the ordering of the children of a node, and equals the set of pairs (vi, vj), where
i < j and vi, vj ∈ Nodes(t). For each σ, Oσ is the set of nodes that are labeled with a
σ.

We next define the logic FOREG. An atomic FOREG formula is an atomic formula
over τΣ or is of the form

1. a(x) = b(y),

2. a(x) = d,

3. [r]→(x, y), or

4. [r]↓(x, y),

where x and y are variables, a and b are attributes, d ∈ D, and r is a regular expression
over Σ. These formulas hold for nodes u and v in t, if

1. λt
a(u) = λt

b(v),

2. λt
a(u) = d,

3. u is a left sibling of v and the labels on the path from u to v (both included) match
r, or

4. u is an ancestor of v and the labels on the path from u to v (both included) match
r.

A FOREG formula ϕ is the usual closure of FOREG atomic formulas under con-
junction, negation, and first-order quantification over nodes. Note that there is no
quantification over elements from D. If ϕ holds for a tree t, then this is denoted by
t |= ϕ.

We define QL0 as queries of the form (*) where ϕ is a FOREG formula. As explained
above, QL0 forms an abstraction of current XML query languages. However, we point
out that we did not include skolem functions (as present in XML-QL for instance), but
we did include vertical horizontal expressions.

The next theorem shows that XSLT0 can express all queries definable in QL0. In fact,
this only holds under the assumption that each node has a unique id, that is, an attribute
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with a unique value throughout the document. Strictly speaking, this assumption is not
necessary as XSLT is equipped with the function generate-id(.) which generates a
unique id for the current node. Furthermore, this id only depends on the current node,
that is, when invoked for the same node several times it will return the same value.
However, as we feel that the function generate-id(.) is quite unnatural we exclude it
from our model XSLT0 and state the unique-id requirement explicitly.

Theorem 4.1 Under the assumption that each node has a unique id, for every QL0

query Q there is an XSLT0 program P such that Q(t) = τP (t) for every input tree t.

Proof. Consider a QL0 query Q of the form (*). Essentially, on a tree t, we have to (1)
enumerate all tuples ū1 ≺ . . . ≺ ū� in pre-order, (2) for each i check whether t |= ϕ(ūi),
and (3) if so, output s[ūi].

1. We first explain how to enumerate all tuples ū1 ≺ . . . ≺ ū� in pre-order. That
is, how to enumerate assignments for the variables x1, . . . , xn in the pattern ϕ.
Therefore, we use the same n variables x1, . . . , xn in the XSLT0 program. The
variables are then passed between template rules. The unique-id assumption allows
us to remember positions in the input tree. Indeed, we simply assign node id’s to
the variables. Initially we assign the root node ε to each variable. Next, suppose
the variables are assigned id’s. Let u be the id of the last node in pre-order.
Assume not all xi = u. To compute the next tuple in pre-order, let j ∈ {1, . . . , n}
be the largest number such that for each i ≤ j, xi = u. Then assign ε to each xi

for i ≤ j and assign to xj+1 the id of the node following xj+1 in pre-order.

2. Suppose the variables are assigned the nodes u1, . . . , un. We show how to test
whether t |= ϕ(u1, . . . , un) by induction on the structure of FOREG formulas.
We can assume that ϕ is in prenex normal form with the quantifier-free part in
disjunctive normal form.

Atomic formulas of the form E(ui, uj), ui < uj , a(ui) = b(uj), a(ui) = d are
tested in a straightforward manner. Indeed, to test E(ui, uj), for instance, the
XSLT0 program finds ui by traversing the tree in a depth-first manner. Then it
checks whether uj is a child of ui. Slightly more difficult are atomic formulas of
the form [r]↓(ui, uj) and [r]→(ui, uj). To test the former, for instance, an XSLT0

program acts as follows. First it locates uj by doing a depth-first search of the
tree. Then it walks towards the root simulating the deterministic automaton for
the reverse of the language defined by r. If the program arrives at ui in a final
state it accepts, otherwise when a non-final state is reached or when ui is not an
ancestor it rejects. Finally, to test a disjunction of conjunctions of atomic formulas
it suffices to find a disjunct for which all atomic formulas hold. This concludes the
case of quantifier-free formulas.

Next we treat the quantifiers. Suppose we have an XSLT0 program to test a for-
mula ψ(v, ū) which is in prenex normal form. Then ∃xψ(x, ū) can be tested by
subsequently assigning every node to v and testing whether ψ(v, ū) holds. The
program then accepts when at least one such v exists. Testing ∀xψ(x, ū) is analo-
gous.
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3. It remains to show how to output s[ū] when t |= ϕ(ū) where ū := u1 · · ·un. We
explain the latter by means of an example. Suppose that s is a tree of the form

lab(xi)

a

subtree(xj)
Then the template rule for ϕ should have as output the forest

a
(

find xi output label(to-self)

find xj output subtree(to-self)
)

next tuple(to-self) .

Here, an a is output. Further, the following three subprocesses are started. The
at-expressions find xi output label(to-self) starts a subcomputation that finds
ui, that is, the node assigned to xi and outputs its label. The at-expressions
find xj output subtree(to-self) starts a subcomputation that finds uj , that is,
the node assigned to xj and outputs the subtree rooted at uj . The latter can be
achieved as in Example 3.12. Finally, next tuple(to-self) starts a computation
taking care of the next tuple in pre-order. �

k-pebble transducers. We conclude this section by providing some indirect evidence
for the expressiveness of XSLT0 by comparing XSLT0 with k-pebble tree transducers.
Readers not familiar with the latter can safely skip this section.

To study decidability of type checking, Milo, Suciu, and Vianu [MSV00] defined the
k-pebble tree transducer as a formalism capturing the expressiveness of most existing
XML query languages. Such transducers transform binary trees into other binary trees.8

Next, we informally describe such deterministic transducers with equality tests on data
values.

The k-pebble deterministic tree transducer uses up to k pebbles to mark certain
nodes in the tree. Transitions are determined in a unique way by the current node
symbol, the current state (or mode), the presence/absence of the various pebbles on the
current node, and equality tests on the attribute values of the nodes the pebbles are
located on. Pebbles are ordered and numbered from 1 to k. The machine can place
pebbles on the root, move them around, and remove them (actually, the use of the
pebbles is restricted by a stack discipline which ensures that the model does not become
too powerful, that is, accepts non-tree-regular languages). There are move transitions
and output transitions. Move transitions are of the following kind: to-parent, to-first-
child, to-last-child, to-left-sibling, to-right-sibling, remain-and-change-state, place-new-
pebble, and pick-current-pebble. There are two kinds of output transitions. A binary
output symbol σ, possibly with attributes defined by an attribute value of a pebbled
node, and spawns two computation branches that compute, independently of each other,
the left and the right subtree of σ. Both branches inherit the positions of all pebbles
on the input and do not communicate with each other, that is, each branch moves the

8When proving properties of XML transformations, restricting to binary trees is usually sufficient as
unranked trees can be coded by ranked ones (which in turn can be coded by binary trees; cf. the remark
at the end of Section 2.
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pebbles independently of the other. A nullary output α generates an α-labeled leaf and
the computation halts.

It should be clear that, apart from the pebbles, the above described model is ex-
tremely close to XSLT0: XSLT0 is equipped with modes (states), can do local movements
and the simple output transitions. Under the assumption that each node has a unique
id, XSLT0 can also simulate pebbles. Indeed, we just use k variables x1 up to xk, where
at each time instance xi contains the id of the node on which the i-th pebble is located.

The above discussion immediately leads to the next theorem.

Theorem 4.2 XSLT0 can simulate k-pebble deterministic tree transducers with equality
tests on data values.

We point out that also non-deterministic tree transducers can be simulated, by giving
a non-deterministic semantics to XSLT0 in the straightforward way.

4.2 Join-free MSO

We next consider monadic second-order logic (MSO) as a pattern language. MSO is first-
order logic (FO) extended by quantification over set variables. We refer the unfamiliar
reader to, e.g., the books by Ebbinghaus and Flum [EF95], Immerman [Imm98], or the
chapter by Thomas [Tho97a]. Join-free MSO is then defined as MSO over the above
vocabulary extended by atomic formulas of the form a(x) = d that are interpreted as
explained above. Note that we do not allow atomic formulas of the form a(x) = b(y). In
other words, we do not allow joins. Again no quantification over D is allowed, neither
first-order nor second-order.

Clearly, join-free MSO can define all structural XPath matching patterns. That is,
the ones without number and string functions. The next theorem says that XSLT0, and
hence XSLT, is capable of expressing all unary join-free MSO patterns. In particular,
this means that one does not need matching patterns in templates. That is, XSLT0

actually allows to specify rules like

<xsl:template match="p" mode="q">

where p is a matching pattern rather than just a label. It means that a rule can only
be applied on nodes that satisfy p. Theorem 4.3 implies that one can test for p in the
body of the template rule and, hence, does not need matching patterns. Let true be an
element of D.

Theorem 4.3 Let ϕ(x) be a join-free MSO formula. There exists an XSLT0 program
P and a mode qϕ such that (u, qϕ) →∗

P,t true if and only if t |= ϕ(u).

Proof. Essentially, a join-free MSO formula ϕ using the constants d1, . . . , dn can be
translated into an ordinary MSO formula ϕ̃ over an extended (but finite) vocabulary
containing, say, the sets {Oa

d1
, . . . , Oa

dn
| a ∈ A}. Here, for a node u and a tree t,

t |= Oa
di

(u) if and only if λt
a(u) = di. Hence, it suffices to proof the theorem for MSO

rather than join-free MSO.
There is a well-known connection between sets of trees defined by MSO formulas

and (unranked) regular tree languages. Before we state this, we recall the definition of
tree automata over unranked trees.
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A deterministic bottom-up tree automaton (DBTA) is a tuple B = (Q, Σ, F, δ), where
Q is a finite set of states, F ⊆ Q is the set of final states, and δ is a function Q×Σ → 2Q∗

such that δ(q, a) is a regular language for every a ∈ Σ and q ∈ Q. To ensure determinism,
we require that δ(q, σ) ∩ δ(q′, σ) = ∅ for all q 
= q′ ∈ Q and σ ∈ Σ. The semantics of B
on a tree t, denoted by δ∗(t), is defined inductively as follows:

• if t consists of only one node labeled with σ then δ∗(t) = q with q such that
ε ∈ δ(q, σ);

• if t is of the form σ(t1, . . . , tn), then δ∗(t) = {q | δ∗(t1) = q1, . . . , δ
∗(tn) =

qn and q1 · · · qn ∈ δ(q, σ)}.

A tree t over Σ is accepted by the automaton B if δ∗(t) ∈ F . A set of trees is regular if
it is accepted by a DBTA.

Let ϕ(x) be an MSO formula. It is known that the set {(t, u) | t |= ϕ[u]} is a regular
tree language [NS99, Nev99a, Tho97a]. Here, (t, u) is the tree where a distinguishing ∗
is attached to the label of u (for instance, if t[u] = σ, then the label of u in (t, u) is σ∗).

Let B = (Q, Σ, F, δ) be the DBTA accepting the tree language {(t, u) | t |= ϕ(u)}.
We next construct an XSLT0 program that when started at u to determine whether
t |= ϕ, stores the id of u in a special variable. Subsequently, the program walks to the
root and simulates the tree automaton in a depth-first fashion. Whenever it encounters
a node v labeled σ it checks whether the id of v equals the id of u. If so, the program
acts as if it reads label σ∗; otherwise, it acts as if it reads σ.

We explain this in a bit more detail. Let for each q, σ, M q,σ = (Qq,σ, Q, δq,σ, qq,σ
0 , F q,σ)

be the (deterministic) finite state automaton accepting δ(q, σ). Note that M q,σ accepts
strings over Q. To simulate B we start the following procedure at the root of t. We use
as states pairs (σ, g) where σ ∈ Σ and g is a function from Q to

⋃
q∈Q Qq,σ. The idea is

as follows. If a node vi 
= ε is called in state (σ, g) then t[v] = σ and for each q ∈ Q,
δq,σ∗(δ∗(tv1) · · · δ∗(tv(i−1))) = g(q). That is, the parent of vi is labeled with σ and when
M q,σ processes the states assumed by B at the left siblings of vi, it arrives at ui in state
g(q). Define gσ

0 as g0(q) = qq,σ
0 for all q ∈ Q.

The XSLT0 program P starts at the root where it defines a variable

y := (t[ε], g0)(to-first-child) .

That is, it selects the first child of the root in state (t[ε], g0) (we tacitly assume that t
consists of more than one node).

Recall that for a node v, t[v] is the label of v in t. As the unique id of u is stored in
some variable, we have the means to check whether the label of a node should actually
be σ∗ rather than σ. We, therefore, abuse notation and assume that t[u] = σ∗.

Suppose P selects vi in state (σ, g).

• First, P computes δ∗(tvi), the state B assumes at vi. More precisely, if vi is a
leaf δ∗(tvi) := q̃ for which ε ∈ δ(q̃, t[vi]). Otherwise, P defines a variable y :=
(t[vi], g0)(to-first-child) that selects the first child of vi. Denote the value of
this variable by q̃.

• If vi is the right most child of v then P returns the unique q for which g(q) ∈ F q,σ.
This means that, M q,σ accepts δq,σ∗(δ∗(tv1) · · · δ∗(tvi))). Otherwise, P selects its
right sibling in state (σ, g′) where g′(q) = δq,σ(g(q), q̃), for each q ∈ Q.
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Finally, when the variable y gets assigned a final state, P knows that t |= ϕ(u) and can
return the value true. �

4.3 Termination

An XSLT0 program P is said to be terminating when τP is defined everywhere. We
next show that deciding termination is undecidable. Of course, one can easily write an
interpreter that makes sure that the execution of any XSLT0 program always terminates.
However, it is justified to say that a non-terminating program is ill-defined.

Theorem 4.4 It is undecidable whether or not an XSLT0 program is terminating.

Proof. It is well known that the halting problem of multi-head automata on strings is
undecidable [FS73]. In brief, a multi-head automaton is a two-way deterministic finite
automaton over strings with multiple heads. Movements depend on the current state
and the symbols below the respective heads. Clearly, a multi-head automaton can be
simulated by a one-head automaton with pebbles. Each pebble corresponds to a head.
One step of a multi-head automaton can be simulated by several steps of a one-head
automaton with registers. Indeed, when the automaton needs to know the symbol under
a specific head it just makes a sweep of the string looking for the correct position.

�

4.4 Composition

Let P1 be an XSLT0 program with input alphabet Σ and output alphabet Γ, and let
P2 be an XSLT0 program with input alphabet Γ and output alphabet ∆. Then, the
composition of P1 with P2 is the (partial) function

{(t, s) ∈ TΣ × T∆ | there are t′ ∈ TΓ, s ∈ T∆ : τP1(t) = t′ and τP2(t
′) = s}.

In order to avoid the construction of intermediate trees (viz. the tree t′ above), it is, for
a class of translations, a desirable property to be closed under composition. Examples
of such classes of translations are the deterministic top-down tree transducers [Rou70],
the MSO (graph) transducers [Cou94], or the restriction of the MSO transducers to
trees [EM99]. Unfortunately, XSLT0 programs do not posses this property, as stated in
the following theorem.

Theorem 4.5 XSLT0 programs are not closed under composition.

Proof. We have to show that there are XSLT0 programs P1 and P2 such that the
composition of P1 with P2 cannot be realized by an XSLT0 program.

Let us first show that the height of an output tree generated by a terminating
XSLT0 program is at most polynomial in the height of the input tree. Indeed, let
P = (Σ, ∆, M, start, R) be an XSLT0 program and let t be a Σ-tree. Further, let D
be the number of different attribute values occurring in t and issued as constants in
P . Let h be the maximum height of a forest in a constructing template rule. Let n be
the maximum number of parameters occurring in the head of a template rule. As the
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number of local configurations is N := |Nodes(t)|× |Q|×Dn, this means that the height
of the output tree is bounded by h × N , which is polynomial in the size of t.

Consider the programs P1 and P2 of Example 3.11. The composition P1 with P2

transforms an input tree of height n into a tree of height 2n. By the previous argument,
no single XSLT0 program can express this transformation. �

5 Conclusions

We presented a formal model for an expressive fragment of XSLT. The purpose of
this paper was to show that XSLT is much more powerful than initially credited by
the database community. Although the present paper shows that XSLT is a powerful
transformation language, we are, however, rather hesitant to promote or support XSLT
as the standard XML query language. Our main objection is that XSLT is much too
procedural for a query language and therefore might be too difficult for the average user.
On the other hand, as indicated by its widespread use, XSLT is highly adequate for the
simple transformations it was intended for (recall that XSL was originally intended just
for XML to HTML transformations). These simple XSLT programs are typical one
pass transformations from the root to the leaves of the document. Performing joins
and doing complicated grouping operations seems to require XSLT programs to traverse
the input document many times in several directions, and therefore are more difficult
to write, especially for users with little programming experience. As a final note we
mention the following. It is common practice in the database community to restrict
the power of a query language, in order to enhance the ability to optimize queries. In
particular, the language XML-QL reflects this tradeoff (techniques to optimize queries in
the traditional way are available) while the language XSLT does not (its implementations
do not perform traditional query optimization, and there has been no proposal so far
on how to perform such optimization for XSLT).
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