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Abstract

The linear database model, in which semi-linear sets are the only geometric
objects, has been identified as suitable for spatial database applications from
both modeling expressiveness as query efliciency considerations. For querying
linear databases, the language FO+linear has been proposed. In this paper, we
examine the expressiveness of this language. First, we present a list of general
queries expressible in FO + linear. In particular, we mention the dimension
query, which in turn allows us to express several other interesting linear queries.
Next, we show the non-expressibility of a whole class of linear queries that
are related to sets not definable in FO + linear, a result which demonstrates
the need for more expressive linear query languages. In this paper, we show
how FO + linear can be extended within FO + poly in a safe way. Whether
any of the proposed extensions is complete for the linear queries definable in
FO + poly remains open. We do show, however, that it is undecidable whether
an expression in FO 4 poly induces a linear query.
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A growing number of database applications require the ability to store and manipulate
besides alpha-numerical data (e.g., strings, numbers, and dates) also geometric data.
Typical examples of such applications are geographic information systems (GIS),
geometric modeling systems (CAD), and temporal databases (see, e.g., [12, 36, 34]
for an overview). The traditional relational database model cannot provide a natural
representation of geometric data and an easy way to express geometric computation
in the query language [16, 21, 31]. For that reason, there is an ongoing search for
appropriate database models that can handle both alpha-numerical and geometric
data. These database models are collectively known as spatial database models.

Existing spatial database models can be divided roughly into two categories: data-
type-based models [3, 37, 17, 22, 23, 25, 24, 26] and constraint-based models [29, 27].

Data-type-based models extend the relational database model with a fixed set
of spatial data types, typically points, lines, and polygons. As a consequence, ge-
ometrical figures are not treated as point-sets, but as finite compositions of points,
lines, and polygons. Since the number of spatial data types is fixed, these models
are restricted to geometric data in an Euclidean space of some fixed, generally low,
dimension. Query languages for data-type-based languages are essentially relational
algebra extended with a fixed set of geometrical operators. In the implementations
of these models, the data structures to represent the different data types are selected
in such a way that the various geometrical operators can be computed as efficient as
possible using techniques from computational geometry. While this approach guar-
antees of course very good performance for several applications, the major drawback
of data-type-based models is that there is no single set of data types and geometrical
operators known to serve well all purposes.

The constraint-based approach was first proposed in the seminal work of Kuper,
Kanellakis, and Revesz [29]. Constraint-based models allow users to define relational
databases which may, besides alpha-numerical values, contain constraints formulated
as first-order logic formulae of a certain type (e.g., polynomial constraints, linear
constraints, or dense order constraints). Such formulae are finite representations of
geometrical figures consisting of all points (in an appropriate Euclidean space) satis-
fying the formulae. In contrast to the data-type-based approach, the constraint-based
approach does not necessitate to put an a-priori bound on the dimension of the Eu-
clidean space considered. A natural query language to accompany these database
models is the relational calculus extended with the same class of constraints as used
to represent the spatial data. The validity of this approach follows from the fact that,
for several classes of constraints, first-order logic restricted to these constraints is de-
cidable. This property holds, for instance, for polynomial constraints (whence also for
linear constraints), by the quantifier-elimination theorem of Tarski [38], which states
that a formula can be replaced by an equivalent, effectively computable quantifier-free
formula. In constraint-based models, both the representation and manipulation of the
spatial data is inherently declarative. From a theoretical point of view, constraint-
based models are preferable over data-type-based models, since the former allow to
study spatial databases and their properties in a less ad-hoc and more uniform way
than the latter.



Aalthougn data models immtroduced witnin the Iramework ol polynoinial and linear
constraints are at the moment proposed as good candidates to deal with spatial data,
there are fundamental questions yet unsolved.

Various researchers have studied the expressive power of the query languages based
on linear and polynomial constraints [30, 19, 1, 35, 2, 40, 4, 41], but insufficient insight
has been obtained in the nature of the queries expressible in these languages. Only
recently, results on the non-expressibility of the parity query and the connectivity
query within polynomial and linear constraint query languages have appeared in the
literature . [19, 30, 4] Furthermore, people started to investigate spatial aggregate
functions (e.g., area and volume) and found out that these aggregate functions were
undefinable in constraint query languages and that adding these functions to the
query language created serious closure! problems. [10]

From the implementational point of view, all attention is focused on linear-con-
straint databases, as general polynomial-constraint databases are not considered fea-
sible. For linear-constraint databases, various implementation projects have recently
been started with approaches ranging from restricting the linear constraints which
can be used [7, 6, 8] to working with finite precision arithmetic [18].

For the reasons given above, we focus in this paper on the linear-constraint
databases, and, more in particular, on the expressiveness of the corresponding query
languages. Our contribution is threefold:

1. We identify a collection of general queries expressible in FO + linear, first-order
logic extended with linear constraints. In particular, we show that the dimen-
sion query is expressible in FO + linear, which in turn yields the expressibility
of several other important queries.

2. We present a general theorem stating that the non-expressibility in FO + linear
of certain sets of points can be lifted to the non-expressibility of closely re-
lated linear queries. As a consequence, we can show that several important
linear queries, indispensable in most spatial database applications, cannot be
computed in FO + linear.

3. To remedy the shortcomings of FO + linear, we present a technique to extend
FO+linear with geometrical operators. The new query languages thus obtained
can be seen as a bridge between constraint-based query languages and data-
type-based query languages.

The paper is organized as follows. In Section 2, we review the polynomial and
the linear database model, and define polynomial- and linear-constraint queries. In
Section 3, we propose a list of practical, general-purpose queries which are expressible
in FO + linear. In particular, we demonstrate the expressibility of the dimension
query, which yields the expressibility of several other important linear queries, as is
richly illustrated by examples. In Section 4, we argue that FO + linear is nevertheless
not sufficiently expressive to be regarded as a general-purpose query language for
linear databases. Thereto, we establish a theorem that lifts the non-definability of

LA constraint query language is called closed if a query of this language applied on a constraint
database always results in a constraint database.



certaln point sets to the non-expressibliity ol Closely related lnear queries. vve give
several examples of important linear queries which can be proven to be inexpressible
in FO + linear using the above-mentioned theorem. To overcome these problems, we
provide a method in Section 5 to extend the query language FO + linear with linear
geometric operators in a sound way. In Section 6, finally, we conclude this paper by
stating some problems that remain open.

2 Constraint-based database models

In this section, we provide the necessary background of the polynomial and linear
database models. We explain the notion query in the context of these databases
models. We define two natural query languages, called FO + poly and FO + linear,
for the polynomial and the linear database model, respectively. Since the linear
database model is a sub-model of the polynomial database model, we start with the
latter.

2.1 The polynomial database model

First, we define a real formula as a well-formed first-order logic formula built from
polynomial equations and inequalities, i.e.,

e if p is a polynomial with real coefficients? over the variables z1, ..., z, over the
real numbers, then p(xy,...,2,) 0 0 is a real formula, with § € {=,<, >, <, >

# 1

o if © and v are real formulae, then @ A ¥, ¢ V ¥; and —p are real formulae; and

o if x is a real variable and ¢ is a real formula in which = occurs free, then
(J2)e(x) is a real formula.

Every real formula ¢ with n free variables, xy,..., x,, defines a point set

{(u1,. . un) € R" | p(ug,. .., us)}

in n-dimensional Euclidean space R" in the standard manner. Point sets defined by
real formulae are called semi-algebraic sets.

For convenience, we shall frequently use vector notation in real formulae. Atoms
involving vector notation must be interpreted coordinate-wise. Thus, =(Z = 6) indi-
cates that & is not the origin of the coordinate system, whereas ¥ # 0 denotes that
none of the coordinates of ¥ equals 0. As usual, ¢ = ¥ and ¢ < ¥ will be used as
abbreviations for ¢ V¢ and (@ A ) V (—e A =), respectively.

In the polynomial database model, the only geometric data under consideration
are semi-algebraic sets. By definition semi-algebraic sets are finitely representable by
means of real formulae. It must be noted that several real formulae can represent the
same semi-algebraic set, as illustrated by the following example.

?In order to obtain formulae that are finitely representable, only real coefficients that are finitely
representable (e.g., integers) may be allowed. We shall not elaborate on this issue here, however,
because it is outside the scope of this paper.



LXample z.1 1he [ollowing two real lormulae deline the saime areéa 11 the plane:
o (Ja3)(Fawa)(ai + 25 =100 A (3 — x1)* 4 (24 — 72)? < 1); and
o a7+ a3 > 81 Aat+ a3 < 121. O

By the quantifier elimination theorem of Tarski [38], it is always possible to rep-
resent a semi-algebraic set by a quantifier-free formula. The same theorem also guar-
antees decidability of the equivalence of two real formulae.

In essence, the polynomial database model is an extension of the relational data
model, where a relation, besides columns that store values of some particular non-
spatial data type, can have one extra spatial column of type semi-algebraic set. In
contrast with the traditional data columns, there is a sharp distinction between what
is stored in a spatial column (finitely representable real formulae) and the meaning
of the stored data (possibly infinite point-sets, which may even be unbounded). In
the next two paragraphs, we give the formal definitions.

A polynomial database scheme, S, is a finite set of relation names. We associate
with each relation name, R, a type which is a pair of natural numbers, [m, n], where m
denotes the number of non-spatial columns and n the dimension of the single spatial

column of R. A database scheme has type [my,nq,...,my, ng if the scheme consists
of relation names, Ry,..., Ry, respectively of type [mq,nql, ..., [mg, ng]. A syntactic
relation of type [m,n] is a finite set of tuples of the form (vy,...,vm; (2, ..., 2,)),
with vy, ..., v, non-spatial values of some domain, D, and ¢(x1,. .., x,) areal formula

with n free variables. As argued before, we may assume without loss of generality
that this formula is quantifier-free. A syntactic database instance is a mapping, Z,
assigning to each relation name, R, of a scheme, S, a syntactic relation Z(R) of the
same type.

Given a syntactic relation, r, the semantic relation I(r) is defined as

U{(ton ot} x {(un, ) € R [ Lp(un, . un)}).

ter

This subset of D™ x R™ can be interpreted as a possibly infinite (m 4 n)-ary relation,
called semantic relation, the tuples of which are called semantic tuples. The semantics
of a syntactic database instance, Z, over a database scheme, &, is the mapping, I,
assigning to each relation name, R, in S the semantic relation [(Z(R)).

In non-spatial database theory, a query is usually defined as a mapping from
databases to databases which (¢) is computable and (ii) satisfies some regularity
condition, usually referred to as genericity [9].

In spatial models such as the polynomial database model, the picture is somewhat
more complicated, since queries can be viewed both at the syntactic level and the se-
mantic level. The ramifications of this duality were discussed at length by Paredaens,
Van den Bussche, and Van Gucht [33]. Therefore, we shall only summarize their main
conclusions here:

1. Given an input scheme &, and an output scheme S,u, a query is a mapping
of the polynomial spatial database instances of &i, to the polynomial spatial
database instances of Sy, both at the syntactic and the semantic level.



<. Al the syntactic level, a query must be partlally recursive.
3. At the semantic level, a query must satisfy certain genericity conditions.

We shall not elaborate on the nature of the above-mentioned genericity conditions as
this issue is not within the scope of the present paper.
We associate with every query a type

[y, ny, .. .,mg,ng] — [m,n]

with [mq,nq,...,mg,ng] the type of the input database scheme and [m,n] the type
of the output relation.

The most natural query language accompanying the polynomial data model is
obtained by adding to the language of the real formulae the following:

1. a totally ordered infinite set of variables called non-spatial variables, disjoint
from the set of real variables;

2. atomic formulae of the form v; = vy, with v; and vy non-spatial variables;

3. atomic formulae of the form R(vq,...,v,; 21, ..., @), with R a relation name of
type [n,m], v1,...,v, non-spatial variables, and z1,...,z,, real variables; and

4. universal and existential quantification of non-spatial variables.

In the literature, this query language is commonly known as FO + poly.

Example 2.2 Assume a relation Lives of type [1,2] that contains tuples of persons
with their home coordinates. A (simple) query on this relation is Give the pairs of
all people that live exactly at a distance of 10 from each other. This query can be
expressed as

{(p1,p2) | (Fx1)(F22)(Fv1)(Fy2)(Lives(pr, x1,y1) A Lives(pa, x2,y2) A
() — 51?2)2 + (y1 — y2)2 = 100}.

in FO + poly. O

Due to the existence of quantifier elimination algorithms for real formula, ev-
ery FO + poly-query is effectively computable, and yields a polynomial database as
result. [29]

2.2 The linear database model

We next introduce the linear database model which is a restriction of the polyno-
mial database model in which only linear polynomial constraints are allowed. Real
formulae only containing linear polynomial equations or inequalities, i.e., > | a;x; +
a 0, with 0 € {=,<,>,<,>,#}, x1,...,x, real variables, and ay,...,a,,a real
coefficients® are called linear formulae. Point sets defined by linear formulae are
called semi-linear sets.

38ee footnote 2.



n [ ZU}, bunther mtroduces poynearas chains as a representation scheme 1or ge-
ometric data. A polyhedral chain in a Euclidean space (of arbitrary dimension) is
defined as a finite sum of cells each of which is a finite intersection of half-spaces. As
is well-known, half-spaces can be described in terms of linear inequalities. Further-
more, the Boolean operators occurring in linear formulae can be regarded as the set
operations union, complement and intersection, and existential quantification can be
interpreted as a geometrical projection. Therefore, it is easy to see that semi-linear
sets and polyhedral chains define the same class of geometrical figures. Bounded
semi-linear sets can be characterized as finite unions of open polytopes®. From this
perspective, semi-linear sets cover all popular two- and three-dimensional spatial data
types in existing models.

The linear data model is defined in the same way as the polynomial data model
above using linear formulae instead of real formulae.

Example 2.3 The example in Figure 1 shows a linear database representing geo-
graphical information about Belgium. O

As polynomial queries, linear queries are defined as mappings between linear
databases that are well-defined both at the syntactic and the semantic level. A very
appealing linear query language for the linear spatial data model, called FO + linear,
is obtained by restricting the real formulae in FO 4+ poly to linear formulae.

Example 2.4 An example of a (very simple) linear spatial query on the database
in Example 2.3 is Find all cities to the north of Brussels that lie on a river and give
their names and the names of the rivers they lie on. This query can be expressed as

{(e,r) | (F2)(Fy)(Fb,)(Fb,)(Cities(c, x,y) A Rivers(r,z,y)) A
Cities(Brussels, by, by) N & > b, }.

in FO 4+ linear. O

3 Expressiveness of FO + linear

In this section, we present a list of fundamental queries of topological or geometrical
nature expressible in FO + linear. To simplify our discussions, we assume that, in all
the queries below, the input database consists of one relation name S of an arbitrary
purely spatial type.

We start by observing that set operations such as union, intersection, difference,
complement, and projection can be expressed rather straightforwardly in FO 4 linear.
In general, any fixed affine transformation of semi-linear sets can be expressed in

FO 4+ linear.

1A polytope in a Euclidean space is defined as the convex hull of a non-empty set of points in
that space. An open polytope is the topological interior of a polytope with respect to the smallest
sub-space containing the polytope. In two-dimensional space, for instance, the open polytopes are
points, open line segments, and open convex regions.
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Antwerp
.

Bruges

Flanders

°
Hasselt

Brussels

E Brussels

Walloon Region

°
Charleroi

Regions
Name Geometry
Brussels (y<IHA(x <11 A(y > 12) A (x > 10)
Flanders (y<IT) A bz —y < T8) A (x — 14y < —150) A (z + y > 45)A
(o — 1y > —53) A (=((y < 13) A (2 < 11) A (y > 12) A (x> 10))
Walloon Region | ((z — 14y > —150) A ( < 12)A (192 + Ty < 375) A (z — 2y < 15)A
B +4dy >8NA (x> 13)) V((—2+3y >5)A(x+y>45)A
(z — 14y > —150) A (z > 13))
Rivers
Cities Name Geometry
Name Geometry Meuse | (y <IN AbBer—y <78 A(y>12))V
Antwerp | (z = 10) A (y = 16) (y<1I2)A(x—y=6)A(y>11)) Vv
Bastogne | (z = 19) A (y = 6) (y<1)A(x—2y==5)A(y>9))V
Bruges | (¢ = 5) A (y = 16) (4= 9 A (e = 13) A (y > 6))
Brussels | (z = 10.5) A (y = 12.5) Scheldt | ((y < 1T)A(x+y=26)A(y>16))V
Charleroi | (z = 10) A (y = 8) (y<16)A2e —y=4)A(y>14)) Vv
Hasselt (x =16) A (y = 14) (z<HA(e>T)A(y=14))V
Licge (z=1T)A (y=11) (y<1IHA(=3z+2y=T)A(y>11)) Vv
(y<IHAQRe+y=21)A(y>9))

Figure 1: Example of a (linear) spatial database.




Lxamplie o.1 1 ne 'y -+ linear-expression

(F91)(By2) (S (1) A S(2) AT = P+ 51— 12)
computes the line through a point p' parallel to the line assumed to be stored in 5. O
Example 3.2 The FO + linear expression
(V) (FNE# A S(T) = ~GPNSEG A ~(F=T)AF—E<F< T+2))
decides whether 5 is discrete. O

Since discrete semi-algebraic sets are necessarily finite [5], the same property holds
a fortiori for semi-linear sets. Conversely, a finite semi-linear set is necessarily discrete.
Hence the expression in Example 3.2 can also be used to decide whether S is finite.

It is however possible to decide finiteness of semi-linear sets without having to
rely on the above property of semi-algebraic sets. An arbitrary set in a Euclidean
space is finite if it is both discrete and and bounded.

Example 3.3 The FO + linear expression
(FVOVNS(@E) A S(Y) = €<y —T <&
decides whether S is bounded. a

The expressive power of FO + linear unfolds completely, however, when topolog-
ical properties of geometrical objects are considered. The definitions of topological
interior, boundary, and closure can indeed be translated almost straightforwardly into
linear calculus expressions, as shown in the following example.

Example 3.4 The FO + linear expression
(FVEATNVPET -E<F<T+E= 5(7))

computes the topological interior of S. Similarly, the FO + linear expression
(VOE#T= FNSHAT-E<G<F+2)

computes the topological closure of S. The topological boundary of S can be com-
puted as the difference of the topological closure and the topological interior. a

We note that Egenhofer et al. showed in a series of papers [13, 14, 15] that a whole
class of topological relationships in the two-dimensional plane, such as disjoint, in,
contained, overlap, touch, equal, and covered, can be defined in terms of intersections
between the boundary, interior, and complement of the geometrical objects. Further-
more, the regularization of a semi-linear set, defined as the closure of its interior®,
can be computed in FO + linear, which is of importance, since the regularized set

operators turn out to be indispensable in most spatial database applications [28, 21].

SIntuitively, a regular set has no dangling or isolated boundary points.



1hne remainder ol tils sectlon 1s concerned with another property ol geometrical
objects often used in spatial database applications, namely dimension. For instance,
n [11], the dimension is used to further refine the class of topological relationships
defined by Egenhofer et al. We now show that it can be decided in FO + linear
whether a given semi-linear set has a given number as its dimension. Since there are
only finitely many values to consider for the dimension of a semi-linear set, it follows
that the dimension can actually be computed in FO + linear.

Definition 3.5 The dimension of a semi-linear set S of R" is the maximum value
of d for which there exists an d-dimensional open cube fully contained in S. The
dimension of the empty set is defined as —1.

Theorem 3.6 The predicate dim, (S, d), in which S is a semi-linear set of R" and
d is a number, and which evaluates to true if the dimension of S equals d, can be

defined in FO + linear.

The correctness of Theorem 3.6 follows from five lemmas we present next. We use
the notation m;(.5), with S a semi linear set of R", to denote the semi-linear set

{(x1ye oy @ict, Tig1y e oy @n) | (Fa)S(@r, oo @i, Ty Tty e e oy ) )

of R"™'. Thus, m;(S) is the orthogonal projection of S onto the i-th coordinate
hyperplane of R".
Obviously, the following is true:

Lemma 3.7 The dimension of m;(S), with S a d-dimensional semi-linear set of R",
is at most d, for 1 <1 <n. O

We now show that if d < n, at least one projection of S’ preserves the dimension.

Lemma 3.8 If S is a d-dimensional semi-linear set of R", and d < n, then there
exists 1, 1 <1 < n, such that the dimension of m;(S) equals d.

Proof. Since S has dimension d, there exists a d-dimensional open cube C' fully
contained in S. Let p,7,...,7 be points in (' such that the vectors® pri, ..., pro
are independent. Since d < n, there exists ¢, 1 < ¢ < n, such that € is not a
linear combination of pri,...,pry. Consider mi(S). Clearly, m(C) is convex and
open within R™ — 1, because C' is convex and open in R". Let ¢,3,...,8; be the
orthogonal projections on the ith coordinate hyperplane of p. 771, ..., 7y, respectively.
We next show that q?i, . ,q?zl are linearly independent. Thereto, let Ay,..., Ay
be real numbers and assume that Alq—si + -4 )\dq—szl — 0. Let @ be the unique
point of R™ for which pd = M\pri + --- + M\gprg. By the linearity of projection,
7T2(p_u>) — 0, whence pi is a multiple of €, By choice of 7, this multiple cannot be non-

zero. Hence pi = 0. From the linear independence of pri,. .., pry, it then follows
that Ay = --- = Ay = 0. Thus q—si,...,q—szl are linearly independent. Clearly, an

6For @ and b in R™, ﬁ is defined as b — @.

10



open convex set ol v contamming a¢ +— L points ¢, s1,...,S5q suchh that ¢gsy,...,gsq are
linearly independent contains a d-dimensional open cube. Since 7;(.5) cannot contain
an open cube of a strictly larger dimension, we have effectively shown that m;(.5) is
d-dimensional. O

Lemma 3.9 The predicate empty(S), with S is a semi-linear set of R", and which
evaluates to true if S is the empty relation, is definable in FO + linear.

Proof. The FO + linear formula —(37).5(%) defines the predicate empty(.9). O

Lemma 3.10 The predicate maxdim(S), with S is a semi-linear set of R", and which
evaluates to true if the dimension of S equals n, is definable in FO + linear.

Proof. The FO + linear formula
BHENEAOA(V(E - <§ <@+ = S(H)

expresses that S contains an open cube of maximal dimension. a
Lemma 3.11 The predicate max(d, d,...,d,), n > 2, which evaluates to true if d
is the maximum value of dy,...,d,, is definable in FO + linear.

Proof. The FO + linear-formula

(d=dy V.. Vd=d,)Nd>di N...Nd > d,
defines the predicate max(d, d,...,d,). O

We are now ready to give the proof of Theorem 3.6.

Proof of Theorem 3.6. The FO+linear formulae defining the predicates dim, (5, d)
are obtained inductively. By Lemmas 3.7, 3.9 and 3.10, the FO + linear formula

(d =—1ANempty(5)) V(d=1Amaxdim(5)) V (d = 0 A mempty(S) A =maxdim(S))

clearly defines dim; (9, d) in R. Assume now that, in R*, dimy(S, d) has been defined
in FO + linear for k < n. Then, by the induction hypotheses and Lemmas 3.7, 3.8,
3.9, 3.10, and 3.11, the FO + linear formula

(d = n A maxdim(9)) V (—maxdim(S) A
dimy,—1(m1(S),di) Ao Adimy—1(7,(5), d,) A max(d,dy, ..., d,))

defines dim,,(5,d) in R". O

Many interesting queries can be expressed in a natural way using the dimension
predicate, and are therefore also expressible in FO + linear, as is illustrated by the
following list of sample queries.

11



¢ l1he Boolean query wiich decides whetner a seimni-linear set o 1s a line or a line
segment, is expressible in FO + linear by the expression

dimy, (5, 1) A (VZ)(Vg)(S(Z) A S(9) = S((F + 9)/2)).

e The Boolean query which decides whether a semi-linear set S consists only of
lines and non-degenerated line segments is expressible in FO + linear by the
expression

dim(S, 1) A ~(3T)(3D)(S(T) A (V) (~(F = F) AT — E< J < T+ &= =5(7))).

o The query which yields the k-dimensional component” of a semi-linear figure S
is expressible in FO + linear in a straightforward manner.

e The Boolean query which decides whether the semi-linear set S represents a
k-dimensional, convex figure is expressible in FO + linear by the expression

dim(S, k) A (VZ)(VH)(S(Z) A S(7) = (3)(S(Z) A 27 = Z+ 7).

We are still far away from a precise insight into the nature of the queries expressible
in FO + linear, however.

4 Limitations of FO + linear

Section 3 may have convinced the reader that FO + linear is a rich query language,
suitable to accompany the linear database model. In this Section, we intend to
moderate this positive perception of the query language FO + linear.

First, we must point out that Afrati et al. [1] have shown that FO + linear is not
complete for the linear queries definable in FO + poly. More concretely, Afrati et al.
proved the following result:

Proposition 4.1 [1] The Boolean query on semi-linear sets S of R which decides
whether there exist u and v in S with u? + v? = 1, is not definable in FO + linear.

Even though the query in Proposition 4.1 involves a non-linear computation in
order to evaluate it, it is a linear query because it is a Boolean query, and therefore
Proposition 4.1 suffices to establish the incompleteness of FO + linear for the linear
queries definable in FO + poly. We shall denote the class of linear queries definable
in FO + poly by FO + poly™™.

Nevertheless, Proposition 4.1, by the somewhat artificial character of the query
exhibited, does not provide us insight in the adequacy of FO + linear as linear query
language.

Here, we develop a tool to show the non-expressibility in FO + linear of a whole
range of linear queries in FO 4 poly™, by linking their non-expressibility in FO +
linear to the non-definability by linear formula of certain related semi-algebraic sets.
Definition 4.2 makes this link precise.

"The k-dimensional component of a semi-linear set S is the set of all points § of S for which
there exists a neighborhood V' in R" such that, for each neighborhood W C V of §'in R", SNW
has dimension k.
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pelinition 4.2 Let [~ be a seinl-algebralC subsct Ol (Iﬁ), m,n ~ L. L€l K DeE
such that 0 < & < m. Furthermore assume that P and k are such that, for each

sequence Uy, ..., U in R", and for all sequences iy, ..., such that {ud; ,...,4; } =
{d1, ..., Uy}, the following permutation invariance property holds for all @Wgyq, ..., @y,
in R™:

(Wiyn ooy Wy Ubgdy ey Um) € P& (Ui, Uiy Ukgty ooy Um) € P.

The query Qpy of signature [0,n] — [0,n(m — k)] is now defined as follows. If
consists of at most k points of R", say S = {uy,...,uxr} (t,..., U not necessarily
all distinct), then

QP,k(S) = {(ﬁ]ﬂ_l, ce ,ﬁm) | (ﬁl, ce 7ﬁk7ﬁk+17 e ,ﬁm) - P},
otherwise Qp(9) is empty.

Observe that the invariance property assumed for P and k guarantees that Qpy
is a well-defined query expressible in FO + poly.

Example 4.3 We give some examples of sets P and corresponding queries () p, which
will be used further on in this section.

1. Let P, be the set

—

{(t1y...,Un) € (RM)™ | Uy,..., U, are colinear},

for appropriately chosen values of n and m. The set P; is obviously semi-
algebraic; e.g., for m = 3, it is expressed by the real formula

52 - J_/’)g vV (EI)\l)(EI)\Q)()\l —|— )\2 - 1 A fl - )\152 —|— )\21_/')3).

Moreover, it satisfies Definition 4.2 for £ = m. The associated query Q) p, ., can
be interpreted as the Boolean query which decides whether a semi-linear set .5
consists of at most m colinear points.

2. Let P, be the set
{(ty,...,Uy) € (R")" | 1, is on the convex hull® of {y,... , @u_1}},

for appropriately chosen values of n and m. The set P, is semi-algebraic. To
see this, first note that the real formula

m—1 m—1
A ) (N =TAMN Z0A ANy Z0A T, = Y i)
=1

=1

8The convex closure of a subset S of R” is the smallest convex subset of R™ containing S. The
convex hull of ' is the boundary of the convex closure of .S with respect to the topology of its affine
support. The affine support of a subset S of R” is defined as the smallest affine subspace of R”
containing S.

13



Can be used to compute the convex cosure ol m — 1 polnts. 1L he convex null,
now, is the boundary of the convex closure with respect to the topology of
its affine support. The boundary of a convex closed semi-algebraic set S with
respect to the topology of its affine support can be computed using the following
FO + linear expression:

S(AANVEE£D = FNSHAT—F < f < F+EN(ID)(Z = 28— FA-S(D)))).

Moreover, the set P, satisfies Definition 4.2 for & = m — 1. The associated
query Qp, m—1 of type [0,n] — [0,n] can be interpreted as the linear query that
associates with each semi-linear set S consisting of at most m — 1 points the
convex hull of S (which is also semi-linear), and with every other semi-linear
set S the empty set.

3. Let P; be the set
{(ty,...,Uy) € (R")™ |, is on the affine support? of {uy,... , Uu_1}},

for appropriately chosen values of n and m. The set P; is semi-algebraic, because
it is expressed by the real formula

m—1 m—1
@A) B (X N =1 AT, =3 NF).
=1 =1

Moreover, it satisfies Definition 4.2 for £ = m—1. The associated query Qp, ;-1
of type [0,n] — [0, n] can be interpreted as the linear query that associates with
each semi-linear set S consisting of at most m — 1 points the affine hull of 5
(which is also semi-linear), and with every other semi-linear set S the empty
set.

4. Let P, be the set

{(t1y...,Un) € (R")™ | Uy, is in the (open) Voronoi cell of w,,_4
with respect to @y, ..., Wy_2}-

The point @, belongs to the (open) Voronoi cell of ,_; with respect to
Uy, ..., Uy,_o if the condition

m—2
/\ (Ut — Um—1)* F oo Uy — Um—1,,)° < (Umny — i) A oo (Ui — Uin)?
=1

is satisfied. Hence, P is semi-algebraic. Moreover, it satisfies Definition 4.2
for k = m — 2. The associated query Qp, -2 of type [0,n] — [0,2n] can
be interpreted as the linear query that associates with each semi-linear set S
consisting of at most m — 2 points pairs of points such that the latter belongs
to the Voronoi cell of the former with respect to the points of S (this set of
pairs is semi-linear), and with every other semi-linear set S the empty set.

9See footnote 8.
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vve now establishh that the query G/ p g 1S oL exXpressible 1n 'Y = linear as soon as
the set P is not definable by linear formulae.

Theorem 4.4 Let P be a semi-algebraic subset of (R")™, m,n > 1, let k be such
that 0 < k < m, and let P and k satisfy the conditions of Definition 4.2. If P is not
definable by linear formulae, then the following holds:

1. The query Qpy is not expressible in FO + linear.

2. If Q is a linear query of type [0,n] — [0,n(m — k)] such that, for every semi-
linear set S of R", Q(5) = Qpi(S) if Qpi(S) is not empty, then Q) is not

expressible in FO + linear.

Proof.

1. Assume, to the contrary, that the query @pj is expressible in FO + linear.
Then there exists an FO + linear formula ¢p(R; @441, ..., Tm), with R an ap-
propriate predicate name, such that, for each semi-linear set S of R", Qp(5) =
{(Urgt1s-esUm) | ©Pk(S;Uks1s .-, Un)}. Wenow argue that the predicate name
R must effectively occur in ¢py. If this were not the case, then the query as-
sociated with ¢p; would be independent of the input, i.e., a constant function.
This constant function must return the empty set, since ()pj by definition re-
turns the empty set on all inputs containing more than k points. However, Qp
cannot return the empty set on every input unless P is the empty set, which is
obviously definable by a linear formula, contrary the hypothesis of the theorem.
Thus R must occur in @py.

Given the formula ¢pj, we construct a new formula ¢py, as follows. Let
Z1,...,T be variables that do not occur in ¢pi. Now replace every literal
of the form
R(%)
in ppy by the formula
7=, V---VZI=17.

Observe that the formula ¢p is a linear formula with free variables 7y, ..., Z,,.
Our claim is that the formula @pj defines the set P, a contradiction with the

hypothesis of the theorem. To substantiate our claim, we consider an m-tuple
(U1, ..., Un) € (R")". From the definition of Qpy and ¢py, we have

(ﬁl, e ,ﬁm) e P& (ﬁ]ﬂ_l, e ,ﬁm) - QP,k({ﬁla e ,ﬁk}),
whence
(ﬁlv s 7ﬁm) SN @P,k({ﬁlv ) ﬁk}a Jk-l—lv s 7um)-
It follows from the construction of ¢py from @py, that

— —

(ul, .. ,Jm) - P = ¢p7k(ﬁ1, Ce ,um).
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<. Assume that / 15 expressible 1n 'Y 4 linear. 1nen tnere exists a lormula

0o (R Trg1y vy @)

that defines (), where R stands for the input predicate. Given ¢g, we can
construct the formula @g:

So(R; Thg1y oy @m) & (|R| S EN@o(R; Zhgt, ..o @) V (|R| > kA false).

It is obvious that this expression for ¢ can be translated into proper FO+linear
syntax. It now follows from the properties of () that the FO+linear-formula ¢
expresses the query () py, which is impossible by the first part of the theorem. O

To allow ourselves to apply Theorem 4.4, we first establish that the semi-algebraic
sets in Example 4.3 are not definable by linear formulae for most values of m and n.

Proposition 4.5 The sels Py, Py, P3, Py are not definable by linear formulae if
n>2 and m > 3.

Proof.

1. We first show that P, is not definable by a linear formula. Assume to the
contrary that P; is definable by a linear formula for some n > 2 and some
m > 3. Then, clear, P; is also definable by a linear formula for n = 2 and
m = 3. Let colinear(xy,x2,y1,Y2, 21, z2) denote this formula. We now show
that there exists a linear formula product(x,y,z), with x,y,z real variables,
equivalent to the real formula z = xy, an obvious contradiction. From the
geometric construction of the product shown in Figure 2, it follows that

(2=0A2z=0)V(y=0Az=0)V(y=1Az=2za)V
=(Jv)(Jw)(ecolinear(x,0,0,1,v,w) A colinear(z,0,0,y,v,w))

is the desired linear formula.

2. The semi-algebraic set P, is not definable by a linear formula since P; is not:
indeed, 3 points are colinear if and only one of them is on the convex hull of
the other two.

3. The semi-algebraic set Pj is not definable by a linear formula since P; is not:
indeed, 3 points are colinear if and only one of them is on the affine support of
the other two.

4. The semi-algebraic set P is not definable by a linear formula since P; is not:
indeed, 3 points are colinear if and only if the complement of the union of the
(open) Voronoi cells of each of the points with respect to the other two consists
of two parallel hyperplanes. a
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Figure 2: Geometric construction of the product z = zy.

Theorem 4.4 and Proposition 4.5 yield the following corollary, the proof of which
is immediate from the former:

Theorem 4.6 1. The Boolean query of type [0,n] — [0,0] deciding whether a
semi-linear subset of R" is contained in a line is not expressible in FO 4 linear.

2. The linear query of type [0,n] — [0,n] computing the convex hull of a semi-
linear subset of R" is not expressible in FO + linear.

3. The linear query of type [0,n] — [0,n] computing the affine support of a semi-
linear subset of R" is not expressible in FO + linear.

4. The linear query of type [0,n] — [0,2n] computing all pairs of points of R"
such that that the latter is in the Voronoi cell of the former with respect to a
semi-linear subset of R" is not expressible in FO + linear.

Obviously, Theorem 4.4 can be used to show the non-expressibility of many more
linear queries. For instance, it can be used to prove Proposition 4.1 as well as the non-
expressibility in FO + linear of several other Boolean queries. Just as Boolean queries
restricted to semi-linear sets are necessarily linear, (real-valued) aggregate queries,
such as volume or surface, restricted to semi-linear sets are necessarily linear.!® We
conclude this section by exhibiting an aggregate query not expressible in FO + linear.

Example 4.7 Let S be a semi-linear subset of R". We define the diameter of S
denoted ©)(5), as the maximal (Euclidean) distance between two points of S. Ob-
viously, the diameter of a semi-linear set can be seen as a aggregate query of type

[0,n] — [0,1]. Let
Ps = {(t,t2,(d,0,...,0)) | O({us, uz}) = d}.

n—1

10This statement must be moderated to the extent that the real number returned by the aggregate
query must be finitely representable for it to fully hold. In the light of earlier remarks, we shall not
be concerned with this restriction in this paper.
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It 1s easlly seen that 75 15 a seilll-algebralC set thal satislies the conditions ol b)el-
inition 4.2 for £ = 2. Obviously, Ps is not definable by a linear formula, because
an appropriate intersection of Ps; with affine spaces yields a circle. Thus Q)p3 is not
expressible in FO + linear, whence the linear query of type [0,n] — [0, n] computing
the singleton

n—1

upon a semi-linear subset S of R" as input. From this result, it is easily seen that
the diameter query of type [0,n] — [0, 1] is not expressible either. O

5 Extending FO + linear

Although a wide range of useful, complex linear queries is expressible in FO + linear,
as shown in Section 3, there are several other, practically relevant linear queries not
expressible in FO + linear, as shown in Section 4. Therefore, it is important to search
for linear query languages that capture these queries. Without such languages, we
would indeed be hard-pressed to substantiate the claim that the linear model is to be
adopted as the fundamental model for applications involving linear geometric objects.

A first approach towards the problem raised above is searching for a language that
is sound and complete for the FO 4 poly"” queries, i.e., that can express precisely the
linear queries expressible in FO 4 poly. The most straightforward way to obtain such
a query language is to discover an algorithm to decide whether a FO 4+ poly formula
induces a linear query. Unfortunately, such an algorithm does not exist, as shown by
the following theorem.

Theorem 5.1 [t is undecidable whether a FO + poly formula induces a linear query.

Proof. The proof of Theorem 5.1 is a variation of a proof by Paredaens et al.
concerning undecidability of genericity in FO + poly (Theorem 1, pp. 285 of [33]).
The V*-fragment of number theory is undecidable since Hilbert’s 10th problem can be
reduced to it. Now, encode a natural number n by the one-dimensional semi-algebraic
set enc(n) := {0,...,n}, and encode a vector of natural numbers (ny,...,ng) by
enc(ny)U(enc(ng)+ni+2)U.. . U(enc(ng)+ni+2+---+ng_1+2). The corresponding
decoding is first-order expressible. We then reduce a ¥V*-sentence (VZ)@(Z) of number
theory to the following query of signature [0, 1] — [0, 2]:

if R encodes a vector ¥ then if »(7) then 0 else {(u,v) | u® + v? = 1} else 0.

This query is definable in FO + poly and induces a linear query if and only if the
V*-sentence is valid. O

Theorem 5.1 shows that a top-down approach to discover a useful linear sub-
query language is difficult. Observe that Theorem 5.1 does not rule out that one can
isolate a subset of the FO 4 poly formulae which expresses precisely the FO + poly””
queries, in the same way that the undecidability of domain independence in the

relational calculus is not in contradiction with the existence of a sub-language of
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the relational calculus whicll precisely expresses tiie dolnaln-independent refational
calculus queries. [39]

In this section, we therefore take a bottom-up approach to discover restrictions
of FO 4 poly"™ that are strictly more expressive than FO + linear. The basic idea
is to extend FO + linear with certain linear operators, such as the colinearity or the
convex-hull query, or any of the other linear queries listed in Theorem 4.6.

However, we cannot achieve our goal by adding the corresponding predicates to
FO + linear. Indeed, from the proof of Proposition 4.5, it follows that, e.g., adding
a predicate colinear(Z,y,Z), which evaluates to true if its arguments are colinear
points, would yield a language equivalent to FO+poly, as the product of real numbers
would become definable. Obviously, we need a less liberal syntax to ensure that the
extensions of FO + linear envisaged remain sound with respect to the FO 4 poly””
queries.

We now proceed with showing how FO + linear can effectively be extended with
linear operators in a sound way. The subtle point in the definition of our extensions
is that we disallow free real variables in set terms.

An operator is defined to be an FO + poly"” query. The signature of an operator
is the signature of that query.

Let O be a set of operator names O typed with a signature, each of which repre-
sents an operator op(Q) of the same signature.!!

The query language FO 4+ linear 4 O is then defined as an extension of FO + linear,
as follows. First, we extend the terms of FO + linear with set terms:

o If ¢ is an FO + linear + O formula with n free real variables xy,...,z, and m
free value variables vy, ..., v,,, and if &£ < m, then
{(v1y ey Uk 1,y T0) | (V1,0 Oy @1y oo, ) }
is a set term of type [k,n]. Observe that of the value variables, vgy1,..., v,
occur free, while all real variables, x,...,,, occur bounded in the set term.'?
o If O is an operator name in O of type [my,ny,...,mg,ni] — [m,n], and
S1,..., Sk are set terms of types [my,nq], ..., [myg, ngl, respectively, then
O(S1, .., Sk)

is a set term of type [m,n] with as free variables those in the union of all free
variables in S7 through Si (which are all value variables).

Finally, we extend the atomic formulae of FO + linear:

e Let S be aset term of type [m, n]. Then S(vy,...,0m, 21,...,2,), Wwithvg,..., v,
value variables and x1,...,x, real variables, is an atomic formula with as free
variables vy,...,Up, 1,...,&,, and the free (value) variables of S.

1To be practically relevant, the set @ must be finitely representable.
120bserve that this definition allows us to interpret a predicate name R of type [k,n] as a set
term of type [k, n].
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Demantically, wheln actual values are substituted Ior the Iree variables, a set term
of type [m, n] represents a subset of D™ x R". Now consider an atomic formula of the
form S(vy,...,0m, 21,...,2,). When actual values are substituted for the free vari-
ables, this atomic formula evaluates to true if the evaluation of (v1, ..., v, 21, ..., 2,)
belongs to the set represented by the set term S. The full semantics of FO+linear4 O
is now straightforward to define.

The following soundness property is now easily shown by structural induction:
Theorem 5.2 The query language FO + linear + O only expresses FO + poly™”-
definable queries.

The syntactic restriction that set terms do not contain free real variables is essen-
tial for Theorem 5.2 to hold.

Without going into details, we mention that it is possible to define an algebraic
query language equivalent to FO + linear + O by extending the linear algebra [40]
with the operators represented by . This equivalence result forms a theoretical
justification for the approach Guting has taken with the development of the ROSE-
algebra [22, 23, 25, 24, 26], which is extending the relational algebra with a class of
spatial operators.

We conclude this section by giving an example of an FO + linear + O query
language in which we can express the colinearity and conver hull queries described
in Theorem 4.6. Thereto, let O be an infinite set of operator names segment, of
signature [0,n] — [0,n], n > 0, and associate with each operator name segment,, the
operator op(segment,,) defined by

op(segment, )(5) = {7 € R" | (37)(32)(S(7) A S() A 7 € [7.21})

for each semi-linear set S of R". Now let R be a predicate representing a semi-linear

set of R". The FO 4+ linear + O formula

segment,, (segment,, (. ..segment, (R)---))(¥)

n times

computes the the convex closure of the set represented by R. The convex hull is then
easily obtained as the boundary of the convex closure with respect to the topology
of its affine support. Using the convex-closure query as a macro, we can express the
colinearity query by the following FO + linear + O formula:

(3d)(dim({Z | convex-closure(S)(Z)},d) A d < 1).

6 Conclusions

In this paper we studied languages that define FO 4 poly"™™ queries. Amongst these
languages, the most natural one is FO 4 linear. For this language, we showed that,
on the one hand, several useful complex linear queries, such as the dimension query,
can be expressed in it, but, on the other hand, that equally important linear queries,
such as deciding colinearity or computing the convex hull, are not expressible. These
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latter results led us to the imtroduction ol extensions ol 'y - linear with rv —-+—poly -
definable operators. The crucial part of this construction was requiring that operators
can only be applied to set terms without free real variables. From our exposition, it
follows that lifting this restriction can destroy the soundness of the query language.

We conclude by mentioning the two most prominent open problems raised by this

paper:

L. Does there exist a syntactic restriction on FO + poly formulae that yields a
sublanguage of FO + poly which is sound and complete for the FO + poly™-
definable queries?

2. Does there exist an extension of FO + linear (or other sublanguages of FO +
poly) with operators that yields soundness and completeness with respect to
the FO + poly""-definable queries?
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