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Abstract. It has been argued that the linear database model, in which
semi-linear sets are the only geometric objects, is very suitable for most
spatial database applications. For querying linear databases, the lan-
guage FO + linear has been proposed. We present both negative and
positive results regarding the expressiveness of FO+linear. First, we show
that the dimension query is definable in FO + linear, which allows us to
solve several interesting queries. Next, we show the non-definability of a
whole class of queries that are related to sets not definable in FO +linear.
This result both sharpens and generalizes earlier results independently
found by Afrati et al. and the present authors, and demonstrates the
need for more expressive linear query languages if we want to sustain
the desirability of the linear database model. In this paper, we show how
FO + linear can be strictly extended within FO + poly in a safe way.
Whether any of the proposed extensions is complete for the linear queries
definable in FO + poly remains open. We do show, however, that it is
undecidable whether an expression in FO + poly induces a linear query.

1 Introduction

Following the seminal work by Kuper, Kanellakis, and Revesz [20] on constraint
query languages with polynomial constraints (FO + poly), various researchers
have introduced geometric database models and query languages within this
framework [18, 22]. These researchers have studied the desirability of their mod-
els for database applications involving geometric data objects, as well as the
expressiveness of the proposed geometric query languages.

An important database model that has recently been studied in this context
is the linear spatial database model [2, 3, 26], which we adopt in this paper.
The linear model allows users to define relational databases, which may, be-
sides conventional data, contain linear geometric data objects. Formally, these
objects are so-called semi-linear sets, which can be defined in first-order logic
over the reals with addition. The class of semi-linear sets suffices for the ma-
jority of applications encountered in GIS, geometric modeling, and spatial and



temporal databases [6, 23]. Furthermore, data structures and algorithms have
been developed to efficiently implement a wide variety of operations on these
sets [4, 11, 17, 24].

Associated with the linear model is the concept of linear query, which is a
mapping from linear databases to linear databases. Because the linear database
model is a sub-model of the polynomial database model, it is in principle possible
to use the query language FO+poly to define natural linear queries, and, in fact,
a vast number of important linear queries can indeed be so defined. Of course,
not every query defined by an FO + poly formula induces a linear query, and,
as 18 shown in Section 5, it is even undecidable whether an FO + poly formula
induces a linear query.

Faced with this reality, several researchers [3, 26] have proposed the query
language FO+linear as a natural query language to accompany the linear model.
The FO+linear language is the sub-language of FO+poly wherein the polynomial
constraints are restricted to linear constraints. Many important linear queries
can be defined in FO+linear. Section 3 reviews some known results in this respect
and presents some new ones. The most surprising of those is the definability of
the dimension query which returns the topological dimension of a semi-linear
set. This definability result allows us to solve some important practical queries.
In particular, it follows that the interval-query, i.e., “Is the semi-linear set an
interval?” and the line-query, i.e., “Is the semi-linear set a line?” are definable
in FO + poly .

Unfortunately, FO + linear is tncomplete for the linear queries definable in
FO+poly as was recently shown by Afrati et al. [2]. The counter-example used by
Afrati et al., however, is a technical one, and does not, in our view, adequately
reveal the weaknesses of FO 4 linear as a language to define linear queries
definable in FO + poly. In Section 4, building on the work of Afrati et al. [2]
and on earlier work of the present authors [26], we show that natural FO + poly-
definable linear queries, such as the query that yields the convex hull of a semi-
linear set, are not FO + linear-definable. The conclusion we draw from these
negative results is that, though FO 4 linear provides a good lower bound for the
FO + poly-definable linear queries, FO + linear 1s too limited in expressiveness
to be considered fully adequate to accompany the linear model.

This brings us to the last major topic of this paper. In Section 5, we introduce
query languages that can only express FO+poly-definable linear queries, but that
are strictly more expressive than FO +linear. These languages have some affinity
with some operational languages that have been introduced in spatial database
models, but that do not fall within the framework of Kuper, Kanellakis, and
Revesz [20]. Tt is presently an open problem whether any of the query languages
we propose in Section 5 is complete for the FO + poly-definable linear queries,
though we conjecture this is not the case.



2 Preliminaries

In this paper we focus on the linear spatial database model as proposed in [26].
To put this paper into better perspective we briefly review some of the material
in [26].

The linear model is extracted from the polynomial model, which is based
on real formulae, i.e, formulae in first order logic over (R, <,+,#,0,1). Due to
the work of Tarski [21], it is well known that this first order logic over the reals
with inequality, addition and multiplication is a decidable theory. Every real for-
mula g(z1, ..., 2,) with free real variables 21, ..., , defines a geometrical figure
{(x1,. .. 2n) | (x1,...,2n) € R" Ap(21,...,2,)} in n-dimensional Euclidean
space R". Point sets defined in this way are called semi-algebraic sets.

A spatial database scheme, S, is a finite set of relation names. Each relation
name, R, has a type which is a pair of natural numbers, [m, n], where m denotes
the number of non-spatial columns and n the dimension of the single spatial col-
umn of R. A database scheme has type [m1,n1, ..., mg, ng] if the scheme consists
of relation names, say Ry, ..., Ry, respectively of type [m1,n1], ..., [mg, ng]. A
syntactic database instance is a mapping, Z, assigning to each relation name, R,
of a scheme, S, a syntactic relation Z(R) of the same type. A syntactic relation
of type [m,n] is a finite set of tuples of the form (v1,...,vm; (21, ..., 20)),
with v1,..., v, non-spatial values of some domain, U, and ¢(z1,...,2,) a real
formula with n free variables.

The semantics of a syntactic database instance, 7, over a database scheme, §,
is the mapping, I, assigning to each relation name, R, in § the semantic relation
I(Z(R)). Given a syntactic relation, r, the semantic relation I(r) is defined as
Uier 101, tum) b x {(21, ..., 20) [ t(®1, ..., ®0) }. This subset of U™ x R™
can be interpreted as a possibly infinite (m + n)-ary relation, called semantic
relation, the tuples of which are called semantic tuples.

FEzample 1. The example in Figure 1 shows a spatial database representing geo-
graphical information about Belgium.

We consider a query of signature [mq, ny, ..., mg, ng] — [m,n] to be a mapping
from database instances of a spatial database scheme of type [my,ny, ..., mg, ng]
to database instances of a spatial database scheme of type [m,n] that can be
regarded in a consistent way both at the syntactic and semantic level, and is
computable at the syntactic level.

In this context, we define the query language FO + poly as the language
obtained by adding to the language of real formulae the following: (i) a totally
ordered infinite set of variables called non-spatial variables, digjoint from the set
of real variables, (i) atomic formulae of the form vy = va, with v; and vz non-
spatial variables, (¢7f) atomic formulae of the form R(vy, ..., vm; 21, ..., 2y), with
v1, ..., Uy non-spatial variables, zq, ..., z, real variables, and R a relation name
of type [m,n], and finally (4v) universal and existential quantification of non-
spatial variables. A query of signature [my,ny, ..., mg, ng] — [m, n] is definable
in FO 4+ poly if there exists an FO + poly formula ¢ with m free value variables
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Fig.1. Example of a (linear) spatial database.



and n free real variables such that, for every input database instance of sig-

nature [my,ny, ..., mp,ngl, {(v1, o Om, 21, 20) (01, U, B ) )
evaluates to the corresponding output database, which is of type [m, n].

Fzample 2. Assuming that S is a relation of type [0, 2], i.e., a semi-algebraic set
in the plane, the FO + poly-formula

(F21)(Fy1 ) (Fw2)(3y2) (Fw3)(3ys ) (FN)Fp) Fv)(S(21, y1) A S22, y2) A S(x3,y3) A
A>0Au>0Ar > 0N A+ pu+v =1 Az =Azy+pzs+rvesAy = Ay + pys +vys.

defines the convez-hull® query of signature [0,2] — [0, 2] which associates with
S its convex hull.

Real formulae not containing non-linear polynomials are called linear formulae.
Point sets defined by linear formulae are called semi-linear sets.

The linear spatial data model is defined in the same way as the general
spatial data model above using linear formulae instead of real formulae. Simi-
larly, linear queries can be defined. Notice that a general query induces a linear
query if the query restricted to linear database instances is linear. Observe that
the convex-hull query (Example 2) induces a linear query. Queries of signature
[my,ny,...,mg,n;] — [0,0] are called Boolean queries, because the sets {()} and
{} can be seen as encoding the truth values true and false, respectively. Since
both these sets are semi-linear, every Boolean query induces a linear query.

A very appealing linear query language for the linear spatial data model,
called FO + linear, is obtained from FO + poly by only allowing linear formulae
rather than real formulae.

Frample 3. The following FO + linear formula defines a Boolean (and hence
linear) query of signature [0, 2] — [0, 0] deciding whether S is convez:

(V1) (Vy) (Ve2) (Vy2 ) (Vas) (Yys ) (S(z1, y1) A S(@2, y2) A
2e3 = 1 + 22 A2ys = y1 +y2 = S(xs,y3).

We prove in Section 4, however, that not every linear query definable in FO+4poly
is definable in FO+linear. (In particular, we will show that the convex hull query
introduced in Example 2 is not definable in FO + linear.) Therefore, it makes
sense to define FO4poly"” as the set of FO + poly-definable queries inducing
linear queries. Thus, the set of queries definable in FO+4poly"” is a strict subset
of the set of queries definable in FO + poly.

Throughout the paper, we use vector notation to denote points. In this nota-
tion, formulae should be interpreted coordinate-wise. Hence, =(x = 0) indicates
that x is not the origin of the coordinate system, whereas x # 0 denotes that
none of the coordinates of x equals 0.

? Let A C R™. The convex hull of A is the smallest convex set of R™ containing A. In
particular, the convex hull of a semi-linear set is a semi-linear set.



3 Expressiveness of FO + linear

In this section, we discuss the expressiveness of the query language FO + linear.
To simplify the discussion, we focus on purely spatial queries, i.e., queries acting
on linear databases consisting of relations of a type of the form [0, n].

First, we briefly review some known results involving linear queries com-
putable in FO + linear.

The following operations on semi-linear sets can be defined rather trivially in
FO + linear: union, intersection, difference, complement, and projection. In gen-
eral, any affine transformation of semi-linear sets can be defined in FO + linear.
In [26], FO+linear expressions are given for the Boolean queries checking bound-
edness, convexity, and discreteness of semi-linear sets. The expressive power of
FO + linear unfolds completely, however, when topological properties of geo-
metrical objects are considered. The definitions of topological interior, boundary,
and closure can indeed be translated almost straightforwardly into linear calculus
expressions. Hence, for example, the regularization of a semi-linear set, defined
as the closure of its interior, can be computed in FO + linear, which is of im-
portance, since the regularized set operators union, intersection, and difference,
turn out to be indispensable in most spatial database applications [10, 19, 12].
More generally, Egenhofer et al. showed in a series of papers [7, 8, 9] that a
whole class of topological relationships such as disjoint, in, contained, overlap,
touch, equal, and covered can be defined in terms of intersections between the
boundary, interior, and complement of the geometrical objects.

Another property of geometrical objects often used in spatial database appli-
cations, is dimension. For instance, in [5], the dimension is used to further refine
the class of topological relationships defined by Egenhofer et al. We now show
that it can be decided in FO + linear whether a given semi-linear set has a given
number as its dimension, which is the contribution of this section. Since there
are only finitely many known possibilities for the dimension of a semi-linear set,
it follows that the dimension can actually be computed in FO + linear.

Definition1. The dimension of a semi-linear set S of R” is the maximum value
of d for which there exists an open d-dimensional cube fully contained in S. The
dimension of the empty set is defined as —1.

Theorem 2. The predicate dim(S, d), in which S is a semi-linear set of R™ and
d is a number, and which evaluates to true if the dimension of S equals d, can

be defined in FO 4+ linear.

The correctness of this theorem follows from two lemmas we present next. We
will use the notation 7;(S), with S a semi linear set of R"| to denote the semi-

linear set {(@1,. .., &i—1, Tig1, .., &n) | Bws)S(21, .oy @mic1, &4, @iq1, ..., &)} of
R"~'. Hence, m;(9) is the projection of S onto the i-th coordinate hyper-plane
of R".

Lemma 3. The dimension of m;(S), with S a d-dimensional semi-linear set of
R", is at most d for 1 <i < n.

?



Lemmad4. If S is a d-dimensional semi-linear set of R", with d < n, then there
exists i, 1 < i < n, such that the dimension of m;(S) equals d.

The rather technical proof of Lemma 4 is omitted due to space limitations.

Now define empty(S) as the FO + linear formula —(3x)S5(x), maxdim(S)
as the FO + linear formula (Ix)(Je)(e # OA(Vy)(x—e < y < x4+ € =
S(y))), and, max(d, dy, ..., d,) as the FO + linear formula (expression omitted)
which evaluates to true if d is the maximumof dy, ..., d,. Then the FO + linear
formula (d = —1 A empty(S)) V (d = 1 Amaxdim(S)) V (d = 0 A mempty(S) A
—maxdim(5)) clearly defines dim(S, d) in R. In general, the FO + linear formula
(d = n Amaxdim(5)) V (-maxdim(S) A dim(w1(S),d1) A ... Adim(7,(S), dn) A
max(d, dy,...,dy)), inductively defined, by Lemma 3 and 4 defines dim(S, d) in
R".

Many interesting queries can be defined in a natural way using the dimension
predicate, and are therefore also definable in FO + linear, as is illustrated by the
following example.

FEzample 4. The Boolean query which decides whether a semi-linear set S is a
line or a line segment, is definable in FO + linear, using the following expression:

dim(S, ) A (Vx)(Vy )(S(x ) A S(y ) = S((x +¥)/2)).

It should be noted that Afrati et al.[1] independently showed that the line query
is definable FO + linear. Their solution does not use the dimension predicate.

A precise characterization of the expressive power of FO + linear is still open,
however.

4 Limitations of FO 4 linear

Recently, Afrati et al. [2] established that FO+linear can not define all FO+poly
definable linear queries:

Proposition5. The Boolean query on semi-linear sets S of R which evaluates
to true if there exist u and v of S with u>4+v? = 1, is not definable in FO+linear.

Even though the query in Proposition 5 involves a non-linear computation in
order to evaluate it, it 1s nevertheless a linear query because it is boolean, and
therefore suffices to establish the incompleteness of FO+linear for the FO+poly-
definable linear queries. The query, however, is unsatisfactory because 1t provides
little insight into whether more natural, non-boolean FO + poly-definable linear
queries are FO + linear-definable. Two such queries are (1) the linear query
from semi-linear sets of R" to semi-linear sets of R" computing the convex hull
(discussed in Example 2 for n = 2); and (2) the Boolean query on semi-linear
sets of R™ which evaluates to true if all points in the input are colinear. In
this section, we show that the above queries are not definable in FO + linear if
n > 2. To demonstrate this claim, we build on the following results established
by Afrati et al. [2] and the present authors [26]:



Proposition6. Letn > 2 and m > 3. Then the following sets are not definable
m FO + linear:

1. {(uy,...,uy) € (R™)™ | uy, € convex-hull({uy,...,up_1})}; and
2. {(uy,...,uy) € (R™)” |uy,...,u, are colinear}.

Even though the undefinability in FO+linear of the sets defined in Proposition 6
may suggest that the related queries (1) and (2) mentioned earlier are also non-
definable in FO + linear, this deduction is not obvious. To see the caveat, it
suffices to notice that the sets defined in Proposition 6 are not even semi-linear,
whereas the related queries are obviously linear. This technical gap appears to
have been overlooked in both the work of Afrati et al. [2] and previous work of
the present authors [26]. In what follows, however, we show that there exists a
general technique to link results about the non-definability in FO +linear of sets
to the non-definability of certain related linear queries.

Definition7. Let P be a semi-algebraic subset of (R™)™, m,n > 1. Let k
be such that 0 < & < m. Furthermore assume that P and %k are such that,

for each I, 1 < I < k, for each sequence uy,...,u; in R", and for all se-
quences i1,...,%; and j1,...,J5 such that 1 < 4y,... i, 71,...,J < [ and
{wiy,...,u,} = {uw,,...,u,} = {w,...,w}, the following permutation in-
variance property holds for all ug41,...,u,, in R™:

(Wip, oo, Wiy, W1, .-, W) € P& (W4, ..., 0, , Wy, ..., U ) € P

The query @Qpy of signature [0,n] — [0,n(m — k)] is now defined as follows.
If S consists of at most k points of R"”, say S = {uy,...,u;} (uy,...,u; not
necessarily all distinct), then

Qri(S) = {(Wrg1, ., um) | (W, W, Wy, . uy) € P
otherwise Qp(5) is empty.

Observe that the invariance property assumed for P and k guarantees that Qp
1s well-defined.

Ezample 5. 1. Let P be the set
{(ug,...,uy) € (R™M)™ | uy, € convex-hull({uy,...,un_1})},

withn > 2 and m > 3. Let k = m — 1. Then Qpy s the linear query that
assoctates with each set S consisting of m — 1 points, the convex hull of S,
and with every other set S the empty set. Notice that, by Property 6, the set
P is not FO + linear-definable.

2. Let P be the set

{(ug,...,up) € (R")" |uy,...,u,, are colinear},

withn > 2 and m > 3. Let k = m. Then Qpy can be interpreted as the
Boolean query which evaluates a semi linear set S to true if and only if S
consists of m colinear points. Notice that, by Property 6, the set P s not
FO + linear-definable.



We must emphasize that the linear queries in Example 5 are closely related, but
not identical, to the linear queries (1) and (2) in the beginning of this section.
One can think of the queries in Example b as restrictions of the linear queries
(1) and (2) to certain finite sets.

We now prove the following theorem:

Theorem 8. Let P be a semi-algebraic subset of (R™)™ m, n > 1, and let P
and k satisfy the conditions of Definition 7. If P 1s undefinable in FO 4+ linear,
then the following holds:

1. The query Qp 1 ts undefinable in FO + linear.

2. If Q is a linear query from semi-linear sets of R" to semi-linear sets of
(R™")™=% such that, for every semi-linear set S of R”, Q(S) = Qp(S) if
Qpr(S) is not empty, then Q is undefinable in FO + linear.

Proof. 1. Assume, to the contrary, that the query Qp 1 is FO + linear-definable.
Then there exists an FO + linear formula ¢p 1 (R; Xp41, ..., Xm), with R an ap-
propriate predicate name, such that, for each semi-linear set S of R", Qp x(5) =
{(Wpg1, .., um) | @pr(S;upy1,. .., un)}. We now argue that the predicate
name R must effectively occur in ¢p ;. If this were not the case, then the query
associated with ¢p; would be a constant function. This constant function can-
not yield the empty set, for, otherwise, by the definition of @p, P would also
be the empty set, which is obviously FO + linear-definable, contrary the hypoth-
esis of the theorem. The constant function cannot yield a non-empty set, either,
however, since again by the definition of Qp 1, there is an infinite number of
inputs for which Qp returns the empty set. Thus R must occur in ¢p .

Given the formula ¢p, we can construct the formula ¢p; as follows. Let
X1,..., X} be variables that do not occur in ¢p . Now replace every literal of
the form R(z) in ¢py by the formulaz = x; V.-V z = x3. Observe that the
formula ¢p 1, is a linear formula with free variables x1, ..., x,,. Our claim is that
the formula ¢p 1, defines the set P, a contradiction with the hypothesis of the the-
orem. Consider an m-tuple (uy,...,u,) € (R")™. ;From the definition of Qp
and ¢pj, we have (uy,...,uy) € P < (Wpg1,...,un) € Qprir({ur, ..., up}),
whence (u1,...,u,) € P & epr({ur, ..., up};Upy1, ..., Uy). It follows from
the construction of ¢pj from ppy that (ui,...,uy) € P ¢pi(ur, ..., upy).
2. Assume that @ is FO + linear-definable. Then there exists a formula

SDQ(R; XE41y -+ Xm)
that defines @). Given ¢g, we can construct the formula ¢g:
GQ(R;Xpg1, -, Xm) & (|R| < kA @g(R;Xpt1, .- -, Xm)) V(| R| > k A false).

It is obvious that this expression for ¢ can be translated into proper FO+linear
syntax. It now follows from the properties of @} that the formula ¢ defines the
query Qpx. Hence, it would follow that Qp 1 is FO 4+ linear-definable, which is
impossible by the first part of the theorem.



Theorem 8 has the following corollary:

Corollary 9. The convexr hull query (1) and the colinearity query (2) are not
definable in FO 4+ linear.

5 Extensions of FO -+ linear

Although, in Section 3, it is shown that a wide range of useful, complex linear
queries can be defined in FO + linear, the language lacks the expressive power
to define some important FO4poly"” queries, as is clearly demonstrated in Sec-
tion 4. Hence the search for languages that capture such queries is important.
Without such languages, we would indeed be hard-pressed to substantiate the
claim that the linear model 1s to be adopted as the fundamental model for ap-
plications involving linear geometric objects.

The obvious way to obtain a query language which is complete for the
FO+4poly"™ queries is to discover an algorithm that can decide which FO + poly
formulae induce linear queries. Unfortunately, such an algorithm does not exist:

Theorem 10. [t is undecidable whether an arbitrary FO+poly formula induces
a linear query.

Proof. (Sketch.) The proof is a variation of a proof by Paredaens et al.[22]
concerning undecidability of genericity in FO + poly (Theorem 1, pp. 285). The
V*-fragment of number theory is undecidable since Hilbert’s 10th problem can be
reduced to it. Encode a natural number n by the one-dimensional semi-algebraic
set enc(n) := {0,...,n}, and encode a vector of natural numbers (ny,...,n;)
by enc(ni)U (enc(na) +n1+2)U...U(enc(ng) +n1+24+---+nr_1+2). The
corresponding decoding is first-order. We then reduce a V*-sentence (Vx)p(x) of
number theory to the following query of signature [0, 1] — [0, 0]:

if R encodes a vector x then if ¢(x) then 0 else {(u,v) | u? +v? = 1} else 0.

This query is definable in FO + poly and induces a linear query if and only if
the V*-sentence is valid.

Theorem 10 shows that a top-down approach to discover a useful linear sub-query
language is difficult. Observe that Theorem 10 still allows the isolation of a subset
of the FO + poly formulae that define FO+poly" ™ queries, in the same way that
the undecidability of safeness in the relational calculus is not in contradiction
with the existence of a sub-language of the relational calculus which has precisely
the expressive power of the safe relational calculus queries. [25]

In this section, we therefore take a bottom-up approach to discover restric-
tions of FO+4poly'™” that are strictly more expressive than FO + linear. The
basic idea is to extend FO + linear with certain linear operators, such as the
colinearity or the convex-hull query. It is important to observe in this respect
how careful we have to be to avoid creating languages that are no longer linear.



A too liberal syntax can indeed lead to the definability of non-semi-linear sets
associated to these operators, such as the sets exhibited in Proposition 6. This
in turn can have as a consequence that the language obtains the full expressive
power of FO + poly, as is shown by the following example [26].

Frample 6. Extending FO + linear with the convex-hull predicate (or with the
colinearity predicate which can be derived from the former) as defined in [26]
leads to a language with the expressive power of FO+poly. [26], the reason being
that the predicate product(z,y, z) defined by z = zy is can be expressed as?

—(FMa)((colinear(x, e2,u) A colinear(y, z, u))),
where x = (2,0), y = (0,y), 2= (2,0), u = (u1, u2), and es = (0, 1).

We now proceed with showing how FO + linear can be extended with operators
in a safe way. The subtle point of our definition consists in disallowing free real
variables in set terms. So, even though a set-term might have free value variables,
it 1s disallowed to have free real variables.

An operator is defined to be an FO+poly
erator is the signature of that query.

Let O be a set of operator names O typed with a signature, each of which
represents an operator op(O) of the same signature.

The query language FO + linear + O is then defined as an extension of FO +
linear, as follows. First, we extend the terms of FO + linear with set terms:

finquery. The signature of an op-

— If ¢ 1s an FO + linear 4+ O formula with n free real variables z1, ..., z, and
m free value variables vy, ..., vy, and if & < m, then
{(v1, . vy, ) (V1 oo om, T, .o 20) )
is a set term of type [k, n]. Observe that of the value variables, vg41, ..., v,
occur free, while all real variables, z1, ..., z,, occur bounded in the set term.®
— If O is an operator name in @ of type [my,ny,...,mg, ng] — [m,n], and
Sy, ..., S are set terms of types [mq,n1], ..., [mg, ng], respectively, then
O(S1,...,5)

is a set term of type [m,n] with as free variables those in the union of all
free variables in Sy through S; (which are all value variables).

Finally, we extend the atomic formulae of FO + linear:

— Let S be a set term of type [m,n] . Then S(vi,...,0m,21,...,%,), with

v1, ..., Uy, value variables and x1, ..., x, real variables, is an atomic formula
with free variables vy, ..., vm, ®1,..., 2, union the free (value) variables of
S.

* The quantifier “31” should be read as “there exists exactly one” and can be expressed
in FO in a straightforward manner.

® Observe that this definition allows us to interpret a predicate name R of type [k, n]
as a set term of type [k, n].



When actual values are substituted for the free variables, a set term of type [m, n]
represents a subset of U™ x R". Consider then an atomic formula of the form
S(v1, ..oy Um, &1, ..., %y), this atomic formula evaluates to true if the evaluation
of (v1,...,0m, &1,...,2,) belongs to the set represented by the set term S. The
full semantics of FO + linear + O is now straightforward to define.

If we constrain the operator in O to be FO + linear-definable, we can prove
the following safety property by induction on the structure of FO + linear 4+ O-
formulae:

Theorem 11. The query language FO 4 linear+ O only expresses FO —|—polylm-
definable queries.

The syntactic restriction that set terms contain only free value variables is
essential for Theorem 11 to hold; otherwise, e.g., the formula in Example 6 could
be expressed in FO + linear+colinear, whence FO + linear+-colinear would have
the full expressive power of FO + poly.

Without going into details, we mention that it is possible to define an al-
gebraic query language equivalent to FO + linear + O by extending the linear
algebra [26] with the operators represented by . This equivalence result forms a
theoretical justification for the approach Guting has taken with the development
of the ROSE-algebra. [13, 14, 15, 16], which is extending the relational algebra
with a class of spatial operators.

Finally, we give an example of an FO +linear4+ O query language in which we
can express the queries (1) and (2) in the beginning of Section 4. Thereto, define
an infinite set of operator names seg® of signature [0, k] — [0, k] and associate
with each operator name seg® the operator op(seg”) defined by op(seg)*(S) =
{x € R¥ | (Fy)(32)(S(y) A S(z) Ax € [y, z]}) for each semi-linear set S of RF.
Let S be the set of all seg®, & > 0. Now let R be a predicate representing a
semi-linear set of R¥. The FO + linear + S formula

segh(segh(. . . seg"(R)))(x).

k times

computes the convex hull of the set represented by R. Using the convex-hull
query as a macro, we can express co-linearity by the following FO + linear + &
formula:

(Fd)(dim({x | convex-hull(S)(x)},d) A d < 1).

6 Conclusion

In this paper we studied languages that define FO+poly"” queries. Amongst
these languages, the most natural one is FO + linear. For this language, we
showed that non-trivial FO+4poly'™” queries, such as the dimension query, can
be defined in it, but we also demonstrated that important FO+poly"” queries,
such as the convex hull, cannot be defined. These latter results led us to the
introduction of extensions of FO + linear with FO+poly""-definable operators.



The crucial part of this construction was requiring that operators can only be
applied to set terms without free real variables. As we showed with a counter-
example, our construction can lead to unsafe query languages if that restriction
1s lifted.

We conclude by mentioning the two most prominent open problems raised
by this paper: (7) does there exist a syntactic restriction on FO 4 poly formulae
that yields a sublanguage of FO 4+ poly which 1s sound and complete for the
FO+poly'i”-definable queries; and (i) does there exist an extension of FO +
linear (or other sublanguages of FO +poly) with operators that yields soundness
and completeness?
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