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Two- versus three-dimensional connectivity

testing of first-order queries

to semi-algebraic sets

Floris Geerts∗, Lieven Smits, and Jan Van den Bussche†

Abstract

This paper addresses the question whether one can determine the
connectivity of a semi-algebraic set in three dimensions by testing
the connectivity of a finite number of two-dimensional “samples” of
the set, where these samples are defined by first-order queries. The
question is answered negatively for two classes of first-order queries:
cartesian-product-free, and positive one-pass.

1 Introduction

Semi-algebraic sets provide a useful model for spatial datasets [CDB]. First-
order logic over the reals (FO) then provides a basic query language for
expressing queries about such spatial data. The power of FO, however, is too
limited. In particular, testing whether a set in R

n is topologically connected
is not expressible in FO for n > 2 (for n = 1 it is easily expressed).

The obvious reaction to this limitation of FO is to enrich it with an
explicit operator for testing connectivity, as proposed by Giannella and Van
Gucht [GVG] and by Benedikt et al. [BGLS]. This operator can be applied
not just to the dataset itself, but also to any set derived from the original set
by an FO query.
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19144037. Fax: +358 9 191 44441. Email: floris.geerts@cs.helsinki.fi
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The question now arises whether the connectivity of a set in R
n can be

tested by testing the connectivity of a finite number of sets in R
n−1, con-

structed from the original set by FO queries. For n = 2, the answer is clearly
negative, because connectivity in R

1 is expressible in FO, and therefore a
positive answer would imply that also connectivity in R

2 would be express-
ible in FO, which we know is not true. It is intuitive to conjecture that the
answer is negative for all n > 2.

While this conjecture in its generality remains open (and seems very
hard to prove), we have proven it for two fragments of FO. In the first
fragment, cartesian product is disallowed. In the second fragment, negation
is disallowed, and the query must be “one pass” in a sense that can be made
precise. Our treatment of the second fragment is for n = 3 only.

2 Preliminaries

Semi-algebraic sets A semi-algebraic set in R
n is a finite union of sets

definable by conditions of the form f1(~x) = · · · = fk(~x) = 0, g1(~x) > 0, . . . ,
gℓ(~x) > 0, with ~x = (x1, . . . , xn) ∈ R

n, and where f1(~x), . . . , fk(~x), g1(~x),
. . . , gℓ(~x) are multivariate polynomials in the variables x1, . . . , xn with real
coefficients.

Semi-algebraic sets form a very robust class; for example, any set de-
finable by a formula with quantifiers in first-order logic over the reals is
semi-algebraic (i.e., definable also without quantifiers; this is the Tarski–
Seidenberg principle [BCR]).

Relational algebra To express first-order queries about a set S in R
n,

we use not the formalism of first-order logic, but the equivalent formalism
of relational algebra expressions (RAEs). These are inductively defined as
follows. The symbol S is a RAE, of arity n. Any constant semi-algebraic
set in R

k, for any k, is a RAE of arity k. If e1 and e2 are REAs of arities k1

and k2 respectively, then the cartesian product (e1 × e2) is a RAE of arity
k1 + k2, and provided that k1 = k2 = k, the union (e1 ∪ e2), the intersection
(e1 ∩ e2) and the difference (e1 − e2) are RAEs of arity k. Finally, if e is a
RAE of arity k, and i1, . . . , ip ∈ {1, . . . , k}, then the projection πi1,...,ip(e) is
a RAE of arity p.

When applied to a given set A in R
n, a RAE e of arity k evaluates in the

natural way to a set e(A) in R
k. When A is semi-algebraic, e(A) is too, by
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the Tarski–Seidenberg principle.

Notation We will use the following notations.

• The topological closure of a set A ⊆ R
n is denoted by cl(A), its interior

is denoted by int(A) and its boundary cl(A) − int(A) is denoted by
bd(A).

• The n-dimensional closed unit ball centered around the origin is de-
noted by �; the n-dimensional unit sphere centered around the origin
by �; and the union � ∪ {~0} by ⊡.

• The set of affine transformations from R
n to R

n (compositions of a
scaling and a translation) is denoted by A.

3 Cartesian-product-free queries

A RAE is called cartesian-product-free if it does not use cartesian product.
An example of such a RAE is

π1,2((S ∩ Γ1) ∪ (Γ2 − S)) − π1,3(S ∪ Γ3)

where Γ1, Γ2 and Γ3 can be arbitrary semi-algebraic sets in R
3 and S is

ternary (i.e., stands for a set in R
3).

In this section, we prove that the connectivity of a semi-algebraic set
in R

3 cannot be determined by sampling it using a finite number of binary
cartesian-product-free RAEs.

Theorem 1. Let S range over sets in R
3. For any finite collection e1, . . . , eℓ

of binary cartesian-product-free RAEs over S, there exist two semi-algebraic

sets A and B in R
3 such that

1. A is connected;

2. B is disconnected;

3. ei(A) = ei(B) for i = 1, . . . , ℓ.

Toward the proof, we start with the following observation.
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Lemma 1. Let Λ0, Λ1, . . . , Λk be nonempty semi-algebraic sets in R
3, where

Λ0 is open. Then there exists a partition {I, J} of {1, . . . , k} and an open

semi-algebraic set V ⊆ Λ0 such that

• V ⊆ Λi for i ∈ I, and

• V ∩ Λj = ∅ for j ∈ J .

Proof. By induction on k. If k = 0, set I = {0}, J = ∅, and V = Λ0.
If k > 0, consider the set {Λ0, Λ1, . . . , Λk−1}. Then by the induction

hypothesis, there is a partition {I ′, J ′} of {1, . . . , k−1} and an open set V ′ ⊆
Λ0 satisfying the condition as stated in the lemma for k−1. Since V ′ = (V ′ \
Λk)∪(V ′∩Λk), since dim V ′ = 3, and since dim(A∪B) = max{dim A, dim B}
for semi-algebraic sets A and B, at least one of the following two cases occurs:

1. dim(V ′ \Λk) = 3, in which case we choose V an open subset of V ′ \Λk,
and set I = I ′ and J = J ′ ∪ {k}.

2. dim(V ′∩Λk) = 3, in which case we choose V an open subset of V ′∩Λk,
and set I = I ′ ∪ {k} and J = J ′.

The following lemma is the crucial element in our proof of the theorem.

Lemma 2. For a given open semi-algebraic set U ⊆ R
3, and any ternary

cartesian-product-free RAE e, there exists an open set V ⊆ U such that e is

equivalent to an expression of one of the four possible forms

Γ, S, S ∪ Γ, Γ − S

on all sets S ⊆ V , where Γ denotes a constant set in R
3. Moreover, in the

last form, V is included in the interior of Γ.

Proof. Since both the input S to e and the output of e are ternary, and
e is cartesian-product-free, e must be projection-free as well. By rewriting
(e1 ∩ e2) as (e1 − (e2 − e1)) we can ignore the intersection operator. We now
proceed by induction on the structure of e. The base cases where e is S or e
is constant are already in the right form.

For the cases e = (e1 ∪ e2) and e = (e1 − e2), by induction we can find
an open set V1 ⊆ U such that e1 has one of the four possible forms within
V1, and we can further find an open set V2 ⊆ V1 such that e2 has one of the
four possible forms within V2. This means that we have to consider 2× 4× 4
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Table 1: Proof of Lemma 2, possibilities for e1 ∪ e2.

∪ S Γ2

S S S ∪ Γ2

Γ1 S ∪ Γ1 Γ1 ∪ Γ2

S ∪ Γ1 S ∪ Γ1 S ∪ (Γ1 ∪ Γ2)
Γ1 − S Γ1 {Γ1 ∪ Γ2, (Γ1 ∪ Γ2) − S}

∪ S ∪ Γ2 Γ2 − S
S S ∪ Γ2 Γ2

Γ1 S ∪ (Γ1 ∪ Γ2) {Γ1 ∪ Γ2, (Γ1 ∪ Γ2) − S}
S ∪ Γ1 S ∪ (Γ1 ∪ Γ2) S ∪ (Γ1 ∪ Γ2)
Γ1 − S S ∪ (Γ1 ∪ Γ2) (Γ1 ∪ Γ2) − S

Table 2: Proof of Lemma 2, possibilities for e1 − e2.

− S Γ2

S ∅ {∅, S}
Γ1 Γ1 − S Γ1 − Γ2

S ∪ Γ1 {Γ1, Γ1 − S} {Γ1 − Γ2, (Γ1 − Γ2) ∪ S}
Γ1 − S Γ1 − S {Γ1 − Γ2, (Γ1 − Γ2) − S}

− S ∪ Γ2 Γ2 − S
S ∅ S
Γ1 {Γ1 − Γ2, (Γ1 − Γ2) − S} {Γ1 − Γ2, (Γ1 − Γ2) ∪ S}

S ∪ Γ1 {Γ1 − Γ2, (Γ1 − Γ2) − S} S ∪ (Γ1 − Γ2)
Γ1 − S {Γ1 − Γ2, (Γ1 − Γ2) − S} {Γ1 − Γ2, (Γ1 − Γ2) − S}
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possibilities (actually less, as there are symmetries), shown in Tables 1 and
2.

Take, for example, e = (Γ1 − S) ∪ Γ2. By applying Lemma 1 to Λ0 = V2

and Λ1 = Γ1, we get a V ⊆ V2 such that either V ⊆ Γ1 or V ∩ Γ1 = ∅. In
the latter case, e is equivalent to Γ1 ∪ Γ2 within V . In the former case, e is
equivalent to (Γ1 ∪ Γ2) − S within V , and we can always shrink V a bit so
that it is included in the interior of Γ1∪Γ2, in accordance with the statement
of the lemma. In both cases e is in a desired form. We summarize this in
the corresponding entry in Table 1. All other entries in the tables are proven
similarly, or are trivial.

We are now ready for the

Proof of Theorem 1. A binary cartesian-product-free RAE e over ternary S
can be viewed as an expression built up, using the operators ∪ and −, from
binary constant sets and binary projections of ternary cartesian-product-free
RAEs. If πi,j(c) is such a projection occurring in e, we call c a component of
e.

By a series of applications of Lemma 2, we can get all components of
all the given binary expressions e1, . . . , eℓ in one of the four normal forms
mentioned in the lemma. The first application starts with U = R

3, and
every next application takes as U the V produced by the previous application.
Within the V produced by the final application, all components are in normal
form.

Choose τ ∈ A such that τ(�) ⊂ V , and consider the sets A = τ(�)
(which is connected) and B = τ(⊡) (which is disconnected). Now any binary
projection πi,j of a component c in normal form yields the same result whether
applied to A or to B. Indeed, if c is of the form Γ, S, or S ∪ Γ this is clear;
if c is of the form Γ − S then we recall that Lemma 2 guarantees that V is
fully included in the interior of Γ, so πi,j(Γ − S) = πi,j(Γ).

We can thus conclude that ei(A) = ei(B) for i = 1, . . . , ℓ as desired.

For simplicity of exposition, in this section, we have stated and proved
Theorem 1 in three dimensions only. However, the argument readily gener-
alizes to prove for any n > 2 that the connectivity of a semi-algebraic set in
R

n cannot be determined by sampling it using a finite number of n − 1-ary
cartesian-product-free RAEs.
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Theorem. Let n > 2, and let S range over sets in R
n. For any finite

collection e1, . . . , eℓ of n − 1-ary cartesian-product-free RAEs over S, there

exist two semi-algebraic sets A and B in R
n such that

1. A is connected;

2. B is disconnected;

3. ei(A) = ei(B) for i = 1, . . . , ℓ.

4 Positive one-pass queries

A RAE is called positive one-pass if it does not use the difference operator,
and mentions S only once. An example is

π3,5

(

Λ1 ∪ (Λ2 ∩ (S × R
2))

)

where S is ternary, and Λ1 and Λ2 are arbitrary semi-algebraic sets in R
5. As

a matter of fact, this example is very representative, in view of the following:

Lemma 3. Every binary positive one-pass RAE can be written in the form

πi1,i2

(

Λ1 ∪ (Λ2 ∩ (S × R
k))

)

.

More generally, it can be verified by induction that every p-ary positive
one-pass RAE can be written in the form of the above lemma, with πi1,i2

replaced by πi1,...,ip.
In this section, we prove that the connectivity of a semi-algebraic set

in R
3 cannot be determined by sampling it using a finite number of binary

positive one-pass RAEs.

Theorem 2. Let S range over sets in R
3. For any finite collection e1, . . . ,

eℓ of binary positive one-pass RAEs over S, there exist two semi-algebraic

sets A and B in R
3 such that

1. A is connected;

2. B is disconnected;

3. ei(A) = ei(B) for i = 1, . . . , ℓ.
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The following lemma essentially proves the theorem.

Lemma 4. For a given open semi-algebraic set U ⊆ R
3, any semi-algebraic

sets Λ1 and Λ2 in R
3+k, and any i1, i2 ∈ {1, 2, 3, . . . , k + 3}, we can always

find an open set V ⊆ U such that for any τ ∈ A with τ(�) ⊂ V ,

πi1,i2

(

Λ1 ∪ (Λ2 ∩ (τ(�) × R
k))

)

= πi1,i2

(

Λ1 ∪ (Λ2 ∩ (τ(�) × R
k))

)

.

Assuming this lemma, we can give the

Proof of Theorem 2. By a series of applications of Lemma 4, we obtain a V
such that for any τ ∈ A for which τ(�) ⊂ V , we have ei(τ(�)) = ei(τ(�)) for
i = 1, . . . , ℓ. Since every ei is positive (does not use the difference operator),
every ei is monotone with respect to the subset order. Hence, ei(τ(�)) ⊆
ei(τ(⊡)) ⊆ ei(τ(�)) and thus ei(τ(�)) = ei(τ(⊡)). Taking A = τ(�) and
B = τ(⊡) thus proves the theorem.

To prove Lemma 4 we will use the regular cell decomposition of semi-
algebraic sets, whose definition we recall next. A function f : C → R,
where C ⊆ R

n, is called regular if it is continuous and for each i ∈ {1, . . . , n}
either strictly increasing, strictly decreasing, or constant in the ith coordinate.
(Which of these three cases holds may depend on i.) Also, we call f semi-
algebraic if its graph is semi-algebraic.

We define a regular cell by induction on the number of dimensions. Regu-
lar cells in R are singletons {a}, or open intervals (a, b), (−∞, a), or (a, +∞).
Now assume that C ⊆ R

n is a regular cell, and f, g : C → R are regular
semi-algebraic functions on C, with f(~x) < g(~x) for all ~x ∈ C. Then the sets
{(~x, f(~x)) | ~x ∈ C} and {(~x, r) | ~x ∈ C, f(~x) < r < g(~x)} are regular cells in
R

n+1. In the latter case, f can be −∞, and g can be ∞.
A regular cell decomposition of R

n is a special kind of partition of R
n

into a finite number of regular cells. This is also defined by induction on
n. A regular decomposition of R is just any finite partition of R in regular
cells. For n > 1, a regular cell decomposition of R

n is a finite partition {S1,
. . . ,Sk} of R

n in regular cells such that {π(S1), . . . , π(Sk)} is a regular cell
decomposition of R

n−1. Here, π : (x1, . . . , xn) 7→ (x1, . . . , xn−1) is the natural
projection of R

n onto R
n−1.

Let A be a semi-algebraic set in R
n. A regular cell decomposition of R

n

is said to be compatible with A if A is a union of regular cells from this
decomposition.
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Fact ([VDD]). For every semi-algebraic set A in R
n there exists a regular

cell decomposition of R
n compatible with A.

Toward the proof of Lemma 4, we start with the following observation.

Lemma 5. Let A ⊆ R
3 be a compact semi-algebraic set and let f : A → R

be a regular function. Then minA f = minbd(A) f and maxA f = maxbd(A) f .

If moreover bd(A) is connected, then f(bd(A)) equals the interval [minA f,
maxA f ].

Proof. Since A is closed, bd(A) ⊆ A and thus minA f > minbd(A) f . To show
the reverse inequality, we need to find for any point in A−bd(A) another point
in bd(A) with the same or lower f -value. Take a point (x, y, z) ∈ A−bd(A),
and shoot a straight ray out of that point in any direction. Since A is
bounded, the ray will intersect bd(A). Let us focus on the two rays orthogonal
to the xy plane. If f is strictly decreasing in z, shoot the ray in increasing
z direction to obtain an intersection point with bd(A) with lower f -value
as desired. If f is strictly increasing, follow the converse direction, and if
f is constant, any direction will do to find a point in bd(A) with the same
f -value. The equality maxA f = maxbd(A) f is proven in the same way.

Now assume bd(A) is connected. Choose ~xmax ∈ bd(A) with maximal
f -value, and choose ~xmin ∈ bd(A) with minimal f -value. Since for semi-
algebraic sets, connectivity coincides with path connectivity [BCR], there is
a continuous path γ : [0, 1] → bd(A) such that γ(0) = ~xmin and γ(1) = ~xmax.
Since f is continuous, so is the composition f ◦ γ. Since [0, 1] is closed and
connected, f ◦ γ([0, 1]) must be a closed and connected set in R, and must
therefore equal the interval [minA f, maxA f ].

We are now ready to embark on the

Proof of Lemma 4. First note that πi1,i2

(

Λ1 ∪ (Λ2 ∩ (S × R
k))

)

is equivalent
to πi1,i2(Λ1) ∪ πi1,i2(Λ2 ∩ (S × R

k)). So we may focus on expressions of the
form

πi1,i2(Λ ∩ (S × R
k)). (1)

We only need to prove the inclusion

πi1,i2(Λ ∩ (τ(�) × R
k)) ⊆ πi1,i2(Λ ∩ (τ(�) × R

k)), (2)

the other direction being trivial. The proof consists of several cases depending
on the indices i1, i2.
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Case 1: i1, i2 ∈ {1, 2, 3}

Expression (1) is equivalent to πi1,i2(E), where E is π1,2,3(Λ ∩ (S × R
k)).

Applying Lemma 1 to Λ0 = R
3 and Λ1 = π1,2,3(Λ), we get an open set V

such that we are in one of the following two cases.

1. V ∩ Λ1 = ∅.

Within V , expression E, and hence also (1), reduces to the empty set,
so the inclusion (2) to be proven trivially holds within V .

2. V ⊂ Λ1.

Within V , expression E now reduces to S, so expression (1) reduces
to πi1,i2(S). In particular this holds for both S = τ(�) and S = τ(�),
where τ ∈ A such that τ(�) ⊂ V . Since πi1,i2τ(�) = πi1,i2τ(�), the
inclusion (2) holds within V .

Case 2: i1 ∈ {1, 2, 3}, i2 /∈ {1, 2, 3}

Expression (1) is now equivalent to πi1,4(E), where E now is π1,2,3,i2(Λ∩ (S×
R

k)). Applying Lemma 1 to Λ0 = R
3 and Λ1 = π1,2,3(Λ), we get an open set

V (0) such that we are in one of the following cases.

1. V (0) ∩ Λ1 = ∅.

Within V (0), expression E, and hence also (1), reduces to the empty
set, so the inclusion (2) holds within V (0).

2. V (0) ⊂ Λ1.

Within V (0), expression E now reduces to A ∩ (S × R), with A =
π1,2,3,i2(Λ). Consider a regular cell decomposition of R

4 compatible
with A, and write the projection of this decomposition onto R

3 as
{C1, . . . , Cℓ}. Applying Lemma 1 to Λ

(1)
0 = V (0), and Λ

(1)
i = Ci ∩ V (0)

for i = 1, . . . , ℓ, we get an open set V (1) ⊂ V (0) contained in a unique
cell Cj. Due to our regular cell decomposition, in particular the parts
based on Cj , within V (1) the expression E = A ∩ (S × R) can now be
written as a union of sets of the form

E1 = {(x, y, z, v) | (x, y, z) ∈ S ∧ v = f(x, y, z)}

10



or

E2 = {(x, y, z, v) | (x, y, z) ∈ S ∧ f(x, y, z) < v < g(x, y, z)},

where f and g are regular functions.

Assume that i1 = 3, so that the inclusion (2) to be proven becomes
π3,4(E(τ(�))) ⊆ π3,4(E(τ(�))). The cases i1 = 1 and i1 = 2 are anal-
ogous. Since the projection of a union is the union of the projections,
we can restrict attention to the cases E = E1 and E = E2.

(a) E = E1.

Let τ ∈ A such that τ(�) ⊂ V (1). Take an arbitrary element
(z0, f(x0, y0, z0)) ∈ π3,4(E(τ(�))). Since {(x, y, z) ∈ τ(�) | z =
z0} is compact with connected boundary, we can apply Lemma 5
to obtain (x1, y1, z0) ∈ τ(�) with f(x1, y1, z0) = f(x0, y0, z0).
Hence, (z0, f(x0, y0, z0)) ∈ π3,4(E(τ(�))) as desired.

(b) E = E2.

By continuity of f and g, and because f < g, there exists an open
set V (2) ⊂ V (1) within which f < C < g for some constant C.
Within V (2), we can then break up E2 into three sets

B1 = {(x, y, z, v) | (x, y, z) ∈ S ∧ f(x, y, z) < v < C}

B2 = {(x, y, z, v) | (x, y, z) ∈ S ∧ C < v < g(x, y, z)}

B3 = {(x, y, z, v) | (x, y, z) ∈ S ∧ v = C}

The set B3 is an instance of case (2a). We now show that the
set B1 (and, analogously, B2) can be reduced to that case as well.
Indeed, within V (2),

B1 =
⋃

t∈(0,1)

{(x, y, z, v) | (x, y, z) ∈ S ∧ v = tf(x, y, z) + (1 − t)C}.

We now observe that for any t ∈ (0, 1), the function tf + (1− t)C
is regular, so case (2a) applies to each t individually.

Case 3: i1, i2 /∈ {1, 2, 3}

Expression (1) is now equivalent to π4,5(E), where E now is π1,2,3,i1,i2(Λ ∩
(S ×R

k)). Applying, as always, Lemma 1 to Λ0 = R
3 and Λ1 = π1,2,3(Λ), we

get an open set V (0) such that either V (0) ∩ Λ1 = ∅ or V (0) ⊂ Λ1.
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If V (0) ∩ Λ1 = ∅, within V (0), expression E, and hence also (1), reduces
to the empty set, so the inclusion (2) holds within V (0).

So we can assume that V (0) ⊂ Λ1. Within V (0), expression E now reduces
to A∩(S×R

2), with A = π1,2,3,i1,i2(Λ). Consider a regular cell decomposition
of R

5 compatible with A, and write the projection of this decomposition onto
R

3 as {C1, . . . , Cℓ}. Applying Lemma 1 to Λ
(1)
0 = V (0), and Λ

(1)
i = Ci ∩ V (0)

for i = 1, . . . , ℓ, we get an open set V (1) ⊂ V (0) contained in a unique cell Cj .
Due to our regular cell decomposition, in particular the parts based on Cj ,
within V (1) the expression E = A ∩ (S × R

2) can now be written as a union
of sets of the form

E1 = {(x, y, z, u, v) | (x, y, z) ∈ S ∧ u = f(x, y, z) ∧ v = g(x, y, z, u)},
E2 = {(x, y, z, u, v) | (x, y, z) ∈ S ∧ u = f(x, y, z)

∧ g1(x, y, z, u) < v < g2(x, y, z, u)},
E3 = {(x, y, z, u, v) | (x, y, z) ∈ S ∧ f1(x, y, z) < u < f2(x, y, z)

∧ v = g(x, y, z, u)}, or
E4 = {(x, y, z, u, v) | (x, y, z) ∈ S ∧ f1(x, y, z) < u < f2(x, y, z)

∧ g1(x, y, z, u) < v < g2(x, y, z, u)},

where f , f1, f2, g, g1, and g2 are regular functions.
We need to prove π4,5(E(τ(�))) ⊆ π4,5(E(τ(�))). Since the projection

of an union is the union of the projections, we can restrict attention to the
cases E = E1, E = E2, E = E3, and E = E4.

1. E = E1.

(a) If f is constant, with value u0, π4,5(E1) reduces to

{(u0, g(x, y, z, u0)) | (x, y, z) ∈ S}

which can be handled by the same reasoning as in Case 2, (2a).

(b) Now assume f is not constant in x; the cases y and z are analogous.
Look at the projection π2,3,4,5(E1):

{(y, z, u, v) | ∃x((x, y, z) ∈ S ∧ u = f(x, y, z) ∧ v = g(x, y, z, u))}.

This set can be written as

E ′

1 = {(y, z, u, v) | (y, z, u) ∈ h(S) ∧ v = k(y, z, u)}, (3)
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where h : (x, y, z) 7→ (y, z, f(x, y, z)), and

k : (y, z, u) 7→ g(h−1
x (y, z, u), y, z, u),

where h−1
x is the function defined by h(h−1

x (y, z, u), y, z) = (y, z, u).
This inverse function exists; in fact, because f is regular and non-
constant in x, h is a homeomorphism within V (1).

Within W (0) = h(V (1)), we can find an open set W (1) ⊂ W (0)

such that k is regular. Since h is a homeomorphism, we also
can find an open set V (2) ⊂ V (1) such that h(V (2)) ⊂ W (1). Since
π4,5(E1) reduces to π3,4(E

′

1), we can, within V (2), now again reason
analogously as in Case 2, (2a).

2. E = E2.

By continuity of f , g1 and g2, and because g1 < g2, we can find an open
set V (2) ⊆ V (1) within which

g1(x, y, z, f(x, y, z)) < C < g2(x, y, z, f(x, y, z))

for some constant C. Now reason repeatedly as in case (1) on the
following sets:

B1 = {(x, y, z, u, v) | (x, y, z) ∈ S ∧ u = f(x, y, z) ∧ v = g1(x, y, z, u)}
B2 = {(x, y, z, u, v) | (x, y, z) ∈ S ∧ u = f(x, y, z) ∧ v = g2(x, y, z, u)}
B3 = {(x, y, z, u, v) | (x, y, z) ∈ S ∧ u = f(x, y, z) ∧ v = C)

We thus obtain V (3) ⊆ V (2) within which π4,5(Bi(τ(�))) ⊆ π4,5(Bi(τ(�)))
for i = 1, 2, 3. We then break up E2 in B3 ∪ B4 ∪ B5, where

B4 = {(x, y, z, u, v) | (x, y, z) ∈ S ∧ u = f(x, y, z) ∧ g1(x, y, z, u) < v < C}
B5 = {(x, y, z, u, v) | (x, y, z) ∈ S ∧ u = f(x, y, z) ∧ C < v < g2(x, y, z, u)}

It remains to treat B4 and B5, and we do this as follows, similarly to
what we did in Case 2, (2b). Reasoning as in case (1), we have written
π4,5(B1) as π3,4({(y, z, u, v) | (y, z, u) ∈ h(S) ∧ u = k(y, z, u)}). We
then can write π4,5(B4) as

⋃

t∈(0,1)

π3,4({(y, z, u, v) | (y, z, u) ∈ h(S) ∧ v = tk(y, z, u) + (1 − t)C}).

13



We now observe that for any t ∈ (0, 1), the function tk + (1 − t)C
is regular, so we can reason analogously as in Case 2, (2a) for each
t ∈ (0, 1) individually. We treat B5 in the same way, now using the h
and k from B2.

3. E = E3.

We begin again by determining an open set V (2) ⊂ V (1) within which
f1 < C < f2 for some constant C, and break up E3 in the following
sets:

B1 = {(x, y, z, u, v) | (x, y, z) ∈ S ∧ f1(x, y, z) < u < C ∧ v = g(x, y, z, u)}
B2 = {(x, y, z, u, v) | (x, y, z) ∈ S ∧ C < u < f2(x, y, z) ∧ v = g(x, y, z, u)}
B3 = {(x, y, z, u, v) | (x, y, z) ∈ S ∧ u = C ∧ v = g(x, y, z, u)}

On B3 we can reason as in case (1) and obtain an open set V (3) ⊂ V (2)

within which π4,5(B3(τ(�))) ⊆ π4,5(B3(τ(�))).

We show how to treat B1; the treatment of B2 is analogous. Within a
certain open set V to be determined, we are going to break up B1 in a
special way in two overlapping parts of the following form:

B1,1 =
⋃

t∈(0,δ)

{(x, y, z, u, v) | (x, y, z) ∈ S ∧ u = f(x, y, z) + t

∧ v = g(x, y, z, u)}

B1,2 =
⋃

t∈(cV ,C)

{(x, y, z, u, v) | (x, y, z) ∈ S ∧ u = t ∧ v = g(x, y, z, u)}

for certain δ and cV , which we are now going to define.

If f is constant, then δ := 0, and cV is the constant value of f .

So, suppose that f is not constant in x; the cases y and z are analogous.
Then ht : (x, y, z) 7→ (y, z, f(x, y, z) + t) is a homeomorphism for every
t. Let

k : (y, z, u, t) 7→ g((ht)
−1
x (y, z, u), y, z, u),

where (ht)
−1
x is the function defined by ht((ht)

−1
x (y, z, u), y, z) = u.

We now want to find a δ such that kt : (y, z, u) 7→ k(y, z, u, t) is regular
for every t ∈ (0, δ). Thereto, consider the (semi-algebraic) set

D = {(y, z, u, t) | (y, z, u) ∈ h0(V
(3)) ∧ 0 < t < 1 ∧

∂k

∂y
(y, z, u, t) = 0}

14



Using a cell decomposition of R
4 compatible with D, we can find an

open set W (0) ⊆ h0(V
(3)) and a δ(0) > 0 such that on W (0) × (0, δ(0))

either ∂k
∂y

= 0, i.e., k is constant in y, or ∂k
∂y

6= 0, i.e., k is strictly

monotone in y. Proceeding similarly, we can find W (2) ⊆ W (1) ⊆ W (0)

and 0 < δ(2) < δ(1) < δ(0) such that k is either constant or strictly
monotone in z on W (1) × (0, δ(1)), and k is either constant or strictly
monotone in u on W (2) × (0, δ(2)). Hence, within W (2), kt is regular for
every t ∈ (0, δ(2)).

Next, choose an open set V (4) ⊂ V (3) and 0 < δ(3) < δ(2) such that
ht(V

(4)) ⊂ W (2) for every t ∈ (0, δ(3)). We then restrict V (4) even
further to an open set V (5), and simultaneously choose δ(4) such that
the following conditions are satisfied:

C − sup
V (5)

f > δ(4) > 0

sup
V (5)

f − inf
V (5)

f < min{δ(3), δ(4)}

It is now clear that, within V := V (5), we have B1 = B1,1 ∪ B1,2 where
we put cV := supV (5) f and δ := min{δ(3), δ(4)}.

It remains to deal with B1,1 and B1,2, but this poses no longer any
problems:

B1,1: By construction, k(y, z, u, t) is regular for every t ∈ (0, δ). This
implies that we can work with the sets

{(y, z, u, v) | (y, z, u) ∈ ht(S) ∧ v = k(y, z, u, t)}

as in case (1).

B1,2: Here, for every t, we are back in Case 2, (2a).

4. E = E4. We begin again by determining an open set V (2) ⊂ V (1)

within which f1 < C < f2 for some constant C, and break up E4 in the
following sets:

B1 = {(x, y, z, u, v) | (x, y, z) ∈ S ∧ f1(x, y, z) < u < C
∧ g1(x, y, z, u) < v < g2(x, y, z, u)}

B2 = {(x, y, z, u, v) | (x, y, z) ∈ S ∧ C < u < f2(x, y, z)
∧ g1(x, y, z, u) < v < g2(x, y, z, u)}
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B3 = {(x, y, z, u, v) | (x, y, z) ∈ S ∧ u = C
∧ g1(x, y, z, u) < v < g2(x, y, z, u)}

On B3 we can reason as in case (2) and obtain an open set V (3) ⊂ V (2)

within which π4,5(B3(τ(�))) ⊆ π4,5(B3(τ(�))).

We show how to treat B1; the treatment of B2 is analogous. By the
same procedure as in case (3), but now working with two functions k1

and k2 (one for g1 and one for g2), we break up B1 within a certain
open set V :

B1,1 =
⋃

t∈(0,δ)

{(x, y, z, u, v) | (x, y, z) ∈ S ∧ u = f(x, y, z) + t

∧ g1(x, y, z, u) < v < g2(x, y, z, u)}

B1,2 =
⋃

t∈(cV ,C)

{(x, y, z, u, v) | (x, y, z) ∈ S ∧ u = t

∧ g1(x, y, z, u) < v < g2(x, y, z, u)}

We finally deal with B1,1 and B1,2 as follows:

B1,1: By construction, (k1)t and (k2)t are regular for every t ∈ (0, δ).
Writing π4,5(B1,1) as

⋃

t∈(0,δ)

π3,4({(y, z, u, v) | (y, z, u) ∈ ht(S)

∧ k1(y, z, u, t) < v < k2(y, z, u, t)})

we can therefore reason analogously as in Case 2, (2b) for every t
individually.

B1,2: Here, for every t individually, we are straight back in Case 2, (2b).

The proof of Lemma 4 is complete.

5 Concluding remarks

We have treated the positive-one pass queries for three-dimensional datasets
only. Our proof uses only fairly elementary mathematics. By using more
heavy machinery, one can probably prove our Theorem 2 in general for n-
dimensional datasets and n − 1-ary queries. Conceivably this generalisation
can also be performed starting from our own proof, but that will be exceed-
ingly laborious.
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Extending our proof technique to larger classes of RAEs is not obvious to
us. For instance, when relaxing the one-pass restriction, it is not clear how
to find a good τ ∈ A such that τ(�)×τ(�) is nicely located. When negation
is allowed, the normal form of Lemma 3 becomes much more complex, with
consequences for the case analysis.

Ultimately, one can even go further than the problem posed in the Intro-
duction, and throw in connectivity testing of parameterized queries, which
can then even be nested [BGLS, GVG].
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