Made available by Hasselt University Library in https://documentserver.uhasselt.be

Efficient on-line topological simplification of network-like data

Non Peer-reviewed author version

GEERTS, Floris; REVESZ, Peter & VAN DEN BUSSCHE, Jan (2000) Efficient
on-line topological simplification of network-like data.

Handle: http://hdl.handle.net/1942/603

Efficient on-line topological simplification of

network-like data

Floris Geerts Peter Revesz* Jan Van den Bussche

Limburgs Universitair Centrum

Abstract

We describe an efficient on-line algorithm to simplify network-like data
with the goal of speeding up path queries on these data. Our algorithm is
on-line in that it reacts to updates on the data, keeping the simplification
up-to-date. The supported updates are insertions of vertices and edges;
hence, our algorithm is semi-dynamic. We provide both analytical and
empirical evaluations of the efficiency of our approach. Specifically, we
prove an O(logm) upper bound on the amortized time complexity of
our maintenance algorithm, with m the number of edges. We also show
that the overhead due to maintenance is negligible using real data, and
illustrate the improved performance on shortest path queries over the

same data.

1 Introduction

Many GIS applications involve data in the form of a network, such as road,

)

railway, or river networks. “Path queries,” such as shortest paths or transitive

closure, are very important in this context. In this paper we will discuss a simpli-

*Work done while on a sabbatical leave from the University of Nebraska-Lincoln. Work

supported in part by USA NSF grants IRI-9625055 and IRI-9632871.

Figure 1: A graph and its simplification (thick edges)

fication method for speeding up these queries on network-like data, represented
as undirected graphs with weights on the edges.

The simplification method consists of eliminating all “regular” vertices. These
are the vertices that simply lie on a line; in graph-theoretic terms, they are the
vertices of degree 2. For example, in Figure 1, a graph together with its simplifi-
cation are given. It is clear that the shortest path from vertex A to vertex B can
be found more quickly in the simplification than in the original graph. Regular
vertices occur often abundantly. For example, in a road network database, each
bend in the road is represented by a vertex, which will be regular. The same
applies more generally to all networks represented on top of a discrete raster [9],
where a curved line is approximated by many straight line segments between
raster points, which then will be regular.

From a purely topological point of view, the simplification of a graph con-
tains in a compact manner the same information as the original graph. Such
“lossless topological representations” (also called “topological invariants”) have
recently been studied by a number of researchers [3, 6, 7]. For example, initial

experiments reported on by Segoufin and Vianu have shown drastic compression

of the size of the data by topological simplification.

Of course, if we want to answer path queries using the simplified graph
instead of the original one, we are faced with the problem of on-line maintenance
of the simplified graph under updates to the original one. Two of us have
recently reported on an initial investigation of this problem [2]. The result was
a maintenance algorithm which was fully-dynamic, i.e., insertions and deletions
of edges and vertices are allowed. This algorithm, however, is (in certain “worst
cases”) not any better than redoing the simplification from scratch after every
update. This is clearly not very practical.

The contribution of the present paper is an algorithm for on-line topologi-
cal simplification which takes, on the average, only logarithmic time per edge
insertion to keep the simplified graph up-to-date. Specifically, suppose that the
graph representing the network consists of n vertices and m edges. We prove
an O(logm) bound on the “amortized” time complexity of our maintenance
algorithm.

Our algorithm does not make any assumptions on the graph, such as pla-
narity and the like. Real-life network data are often not planar (e.g., in a road
or railway network, bridges occur). Our algorithm is only semi-dynamic, in that
it can react efficiently to insertions (of vertices and edges), but not to deletions.
Whether there exists an algorithm for on-line topological simplification that re-
acts to deletions as well, and that has an amortized time complexity better than
O(n), remains under investigation

We have also performed an empirical validation of our results, using two real
life datasets. We maintained the simplification of a railway network of the USA,
and the simplification of a hydrographic map of Nebraska. The experiments
show that the overhead due to the maintenance of the simplified graph is almost
negligible. On both datasets we also conducted a suite of shortest path queries
to illustrate the speedups one obtains by querying the simplification instead of
the original graph.

This paper is further organized as follows. Basic definitions are given in

Section 2. The maintenance algorithm is described in Section 3. Its analytical

performance is described in Section 4, and its empirical performance is described

in Section 5.

2 Basic definitions

Consider an undirected graph with weighted edges G = (V, E, \), where
A:E — R" is the weight function. We will use the following definitions:

1. A vertex is called regular if it is incident on precisely 2 edges.
2. A vertex that is not regular is called singular.

3. A path between two singular vertices that passes only through regular
vertices is called a regular path. The size of a regular path is the number

of regular vertices on it.

The simplification of G is the multigraph! G5 = (V;, Es, \s) obtained from G

as follows:
1. Vs is the subset of V' consisting of all singular vertices.

2. E; consists of all pairs {z,y} such that there is a regular path between
xz and y in G. Such a pair {z,y} may occur multiple times, since there
may well be multiple regular paths between x and y in G. If x and y are
singular and adjacent in G, then the edge e = {z,y} is viewed as a regular

path of size 0.
The edges in G5 are called the topological edges of G.

3. As({z,y}) equals the sum of all A(e), where e is an edge on the particular
regular path in G, corresponding to the topological edge {z,y}.

The degree of a vertex x € V is the number of edges in G (or, for a singular
vertex, equivalently in G;) incident with z. Recall that, by definition, the degree

of a regular vertex is two. We denote the degree of x by deg(z).

LA multigraph is a graph where multiple edges between two vertices are allowed.

3 On-line simplification

3.1 General description

Updates on the graph G must be translated into updates on its simplification
Gs.

We only consider insertions of a new isolated vertex and insertions of edges
between existing vertices in the graph G (other more complex insertion opera-
tions can be translated into a sequence of these basic insertion operations). The
insertion of an isolated vertex is handled trivially: we merely have to insert it
in V.

We distinguish among six cases that are explained below and depicted in
Figures 2—7. The left side of each figure shows the situation before the insertion
of the edge {x,y}, which is the dotted line. The right side of each figure shows
the situation after the insertion. As before, the topological edges are drawn in

thick lines.

Case 1. Vertices z and y are both singular and deg(z) # 1 and deg(y) # 1.
Then the edge {z,y} is also inserted in Gj.

Y e

Figure 2: Case 1
Case 2. Vertices z and y are both singular and one of them, say x, has degree
one.
Let {z,z} be the edge in G; incident with z. Extend this edge to the new
edge {z,y} in Gs, putting A\;({z,y}) := As({z,2}) + A({z,y}). Note that

x becomes a regular vertex after the insertion.

Figure 3: Case 2

Case 3. Vertices z and y are both singular and deg(z) = deg(y) = 1.
Let {z1,z} (resp. {z2,y}) be the edge in G5 adjacent with z (resp. y).
Suppose z; # y (and hence zo #). Then merge the edges {z;,z} and
{y, 22} in G into a single, new edge {z1, 22} in G, putting A\s({z1, 22}) :=
As({z1,2}) + As({y, 22}) + A({=z,y}). If 21 = y (and hence 25 = z) then
extend the edge {z,y} to, a new edge {z,z} in G,, putting A;({z,z}) :=
No({z) + A({z,y}).

Figure 4: Case 3
Case 4. One of the vertices x and y is regular, say =, and the other vertex, say
Yy, is singular and has degree one.
Two things must be done. First, the edge {z1,22} of G5 which corre-
sponds to the regular path between z; and z> on which z lies, must
be split into two®> new edges {z1,z} and {z,22} of G5. Here, we put
As({z1,2}) .= > A({u,v}), where the summation is over all edges in G on

the regular path from z; to . We similarly define \;({z,22}). Secondly,

2A special case has to be considered when deg(z1) = deg(z2) = 2. In this case, x lies on
a regular self-loop with begin— and endpoint z; = z2. By splitting this loop, x becomes the

new begin and endpoint of the self-loop. We omit this case for simplicity of exposition.

let {z3,y} be the edge in Gy incident with y. Then we extend this edge
to a new edge {z3, z} in G, putting, A\s({z, z3}) := As({y, 23}) + A ({z, y}).

(e

Figure 5: Case 4
Case 5. One of the vertices, say z is regular and the other one, say y is singular
with degree other than one.
Then we split exactly as in case 4, and now we also insert {z,y} as a new

edge in G,.

ea

®

Figure 6: Case 5

Case 6. Both z and y are regular: Then two splits must be performed

oon cobos

Figure 7: Case 6

As can be seen in the description of cases 1-6, if no regular vertices are
involved, then the update on the graph G translates trivially in exactly the
same update on the simplification G4. It is only in cases 4, 5, and 6, that
the update on the graph G involves vertices which have no counterpart in the
simplification GG5. However, we need to know which edge we need to split and
what the weights are of the topological edges created by the split. Consequently,

the problem of maintaining the simplification G5 of a graph G amounts to two

tasks:

e Maintain a function find topological edge, which takes as input a regular
vertex, and outputs the topological edge whose regular path in G' contains

the input vertex.

e Maintain a function find weights which outputs the weights of the edges

created when a topological edge is split at the input vertex.

In an earlier, naive approach [2], we only discussed the function find topological
edge. It worked by storing for each regular vertex a pointer to its topological
edge. This made the topological edge accessible in constant time, but the main-
tenance of the pointers under updates can be very inefficient in the worst case.

We next describe our new, efficient approach.

3.2 Finding topological edges

Assigning numbers to the regular vertices We number the regular ver-
tices consecutively that lie on a regular path. The numbers of the regular vertices
on any regular path will always form an interval of the natural numbers. Our

algorithm will maintain two properties:

Interval property: the assignment of consecutive numbers to consecutive reg-

ular points;
Disjointness property: different regular paths have disjoint intervals.

We have then a unique interval associated with each regular path, and hence
with each topological edge of size > 0. Moreover, we choose the minimum of such
an interval as a unique number associated with a topological edge. Specifically,
the minimal number serves as a key in a dictionary. Recall that in general, a
dictionary consists of pairs (key,item), where the item is unique for each key.
Given a number k, the function which returns the item with maximal key smaller
than &k can be implemented in O(log N) time, where N is the number of items

in the dictionary [1].

We use items which contain the following information:
1. An identifier of the topological edge associated with the key.

2. The number of regular vertices on the regular path corresponding to this

topological edge.

3. An identifier of the regular vertex on the regular path corresponding to

this topological edge, which has the key as number.

In Figure 8 we give an example of a dictionary containing three keys, corre-

sponding to the three topological edges in the simplification G of the graph

e dictionary
(key, item)
(10, e 5 wpyip)

(30, f 4 ’Umin>

<50, g 2 wmin>

Figure 8: Dictionary example.

Finding the topological edge Consider that we are in one of the cases 46
described in Section 3.1, where we have to split a topological edge. We look at
the number of z, say k, and find in the dictionary the item associated with the
maximal key smaller than k. This key corresponds to the interval to which &

belongs, or equivalently, to the regular path to which = belongs. In this way we

find the topological edge which has to be split, since this edge is identified in
the returned item.

The numbering thus enables us to find an edge in O(logm’) time, where m/’
is the number of edges in G. Because m' is at most m, the number of edges in

G, we obtain:

Proposition 1 Given a reqular vertex and its number, the dictionary returns
in O(logm) time the topological edge corresponding to the regular path on which

this regular vertez lies.

Maintaining the numbers of the regular vertices We must now show
how to maintain this numbering under updates, such that the interval and
disjointness properties mentioned above remain satisfied.

Actually, only in case 3 we need to do some maintenance work on the num-
bering. Indeed, by merging two topological edges, the numbering of the regular
vertices is no longer necessarily consecutive. We resolve this by renumbering the
vertices on the shortest of the two regular path. Note that the size of a regular
path is stored in the dictionary item for that path.

In order to keep the intervals disjoint, we must assume that the maximal
number of edge insertions to which we need to respond is known in advance.
Concretely, let us assume that we have to react to at most £ update operations.?
A regular path is “born” with at most two regular vertices on it. Every time
a new regular path is created, say the kth time, we assign to one of the two
regular vertices on it the number 2k¢. Hence, newly created topological edges
correspond to numbers which are 2¢ apart from each other. Since a newly
created topological edge can become at most £—1 vertices longer, no interference

is possible.

3This assumption is rather harmless: one can set this maximum limit to a large number.

If it is eventually reached, we simplify once from scratch and are back to zero.

10

3.3 Finding weights

We next show how, when a topological edge is split, we can quickly find the

weights of the two new edges created by the split.

Assigning weights to the regular vertices We assign a weight to each
regular vertex.? Suppose we have a newly created topological edge {z,y}. If
the corresponding regular path has only one regular vertex, we do nothing. If
the regular path has two regular vertices, say uo and up, let ug be the vertex

with minimal number. Then we define:

e The weight of ug equals the weight of the edge {z,uo} or {ug,y} in G,

depending on whether ug is adjacent to x or y.

e The weight of u; equals the weight of ug plus the weight of the edge
{ug,u1} in G.

In order to define the weight of regular vertices on regular paths longer than
two, let us define the kth vertex of a regular path as the vertex with number s,
such that s — spmin = k, where sy, is the minimal number of the vertices on the
regular path. Hence the vertex with the minimal number has position 0. We

now define:

e The weight of the kth regular vertex uy is the sum of the weight of vertex

at position k — 1, call it ug_1, plus the weight of edge {ug,ur—1} in G.

Maintaining these weights The maintenance of these weights of regular
vertices, under edge insertions, is easy. It requires only constant time when a
topological edge is extended, and no time at all when a topological edge is split.
However, when two topological edges are merged, we need to adjust the weights
of the regular vertices on the shortest of the two regular paths, as shown in
Figure 9. This adjustment of the weights can clearly be done simultaneously
with the renumbering of the vertices, as explained in Section 3.2 on finding

topological edges.

4The weight of a singular vertex is zero.

11

Figure 9: Assigning new numbers and weights of regular vertices simultaneously
when two topological edges are merged. The numbers of regular vertices are in

bold, the weights are inside the vertices.

Finding the weights The weights of regular vertices, now enable us to find
the weights of the two edges created by a split of a topological edge in logarithmic
time. Indeed, given the number of the regular vertex where the split occurs, we
lookup in the dictionary which topological edge needs to be split; call it {z1,22}.
In the returned item we find the vertex which has the minimal number of the
vertices on the regular path corresponding to {z1, 22}. Denote this vertex with
u; it is adjacent to either z; or zo. Now the weights of the two new topological

edges {z1,z} and {z, 22} can be computed easily:

e The weight of {z1,z} is the weight of vertex z if w is adjacent to z1; or

the weight of {z1, 2o} minus the weight of vertex z if u is adjacent to zo.
e The weight of {z, 22} equals the weight of {z;, 2o} minus the weight {27, z}.

If only one regular vertex remains on a regular path after a split, or a regular
vertex becomes singular, then the weight of this vertex is set to 0. This all
takes constant time plus the time for one lookup in the dictionary, which takes

logarithmic time. Hence, with m the number of edges of G, we obtain:

Proposition 2 The weights of the two new edges created by a split can be com-

puted in O(logm) time.

12

4 Complexity analysis

By the amortized complezity of an on-line algorithm [5, 8], we mean the total
computational complexity of supporting ¢ updates (starting from the empty
graph), as a function of ¢, divided by ¢ to get the average time spent on sup-
porting one single update. We only count edge insertions because the insertion
of an isolated vertex is trivial. We will prove here that our algorithm has an

O(log ¢) amortized time complexity.

Theorem 1 The total time spent on £ updates by our maintenance algorithm

is O(Llog?).

Proof. If we look at the general description of the algorithm in the previous
section, we see that in each case only a constant number of steps are performed
either elementary operations on the graph, or dictionary lookups. There is how-
ever one important exception to this. In cases where we need to merge two
topological edges, renumbering of regular vertices (and simultaneously adjust-
ment of their weights) is involved. Since every elementary operation on the
graph takes only constant time, and every dictionary lookup takes only O(log¢)
time, all we have to prove is that the total number of renumberings is O(£log /).
A key concept in our proof is the notion of a super edge (see Figure 10).
Super edges are sets of topological edges which can be defined inductively:
Initially each topological edge (with one or two regular vertices on it) is a
member of a separate super edge. If a member a of a super edge A is merged
with a member b of another super edge B, then the two super edges are unioned
together to get a new super edge C and a and b are merged into a new member
c of the new super edge C. If a member d of a super edge is split into e and f,
then both e and f will belong to the same super edge as d did. The important
property of super edges is that the total number of vertices can only grow.
We call this number the size of a super edge. Each split operation does not

affect the size of super edges, while each merge operation can only increase it.

13

Figure 10: An example of some super edges (dotted lines). Details can be found

in the text.

We now prove by induction on ¢ that the total number of renumberings done in
a super edge of size m is O(mlogm).

The statement is trivial for £ = 0, so we take £ > 0. We may assume
that the fth update involves a merge of two topological edges, since this is
the only update for which we have to do renumbering. Suppose that the sizes
of the two super edges being unioned together are m; and my. Without loss
of generality assume that m; < ms. So, according to our algorithm which
renumbers the shortest of the two, we have to do m; renumbering steps: m;
to assign new numbers, and m; to assign new weights. The size of the new
super edge will be m = mj; + mo. By the induction hypothesis, the total
numbers of renumberings already done while building the two given super edges
are my logm; and msologms. Therefore, the total number of renumberings is

bounded by

mq logmy + mologms +m; = my(1l+logmy) + mologms
= mylog(2my) + m2logma
< mylog(mi + ma) + msolog(my + ms)
= mlogm.

We can now finish the proof as follows. After £ updates, a number of super edges

have been formed, say k, of sizes myq, ..., mg. We have just proved that for each

14

of these, we performed m; log m; renumberings in total. Hence, the total number
of renumberings performed is), m;logm; < (3, m;)log (3, m;) < Llogl. O

To conclude this section, we recall from the previous section that the maxi-
mal number assigned to a regular vertex is 2¢2. So, all numbers involved in the

algorithm take only O(log¢) bits in memory.?

5 Experimental results

Maintenance of the simplification In order to verify the theoretical run-
ning time of our algorithm, we performed some modest experiments with an
implementation written in C++ on top of LEDA [4], run on a 266 MHz Pentium
IT machine with 64 MB RAM.

We present the results on two data sets.

Hydrography graph: The data set represents the hydrography of Nebraska
and contains 101 336 edges on 157972 vertices, of which 96 636 are regular.

Railroad graph: The data set represents a network database of all railway
mainlines, railroad yards, and major sidings in the continental U.S. com-
piled at a scale of 1 : 100000. It contains 164 380 edges on 133 752 ver-
tices, of which only 14 261 are regular. It is available at the U.S. Bureau
of Transportation Statistics (BTS, http://www.bts.gov/gis.)

We performed the test as follows. We gradually “grow” the graph, starting
from a random vertex, by adding vertices and edges that are adjacent to vertices
that we already have. Whenever a connected component is completed, we jump
to a new random vertex from another component and continue. At the same
time, we maintain the topological simplification.

Figures 11 and 12 show, for one particular run of the experiment, the time
elapsed between blocks of 5000 inserted edges for the hydrography graph, and
10000 for the railroad graph. Tables 1 and 2 show more details of the run.

5Technically, Theorem 1 assumes the standard RAM computation model with unit costs.

If logarithmic costs are desired, the complexity is O(£log? £).

15

There, m, is the number of edges in the original graph; mg is the number of
edges in the simplification; ¢ is the elapsed time expressed in seconds; n, is
the number of vertices in the original graph; and n, is the number of regular
vertices. Hence, the number of vertices in the simplified graph is n, — n,.
These results show an apparently linear, and thus optimal, behavior, thus
confirming our theoretical O(¢log¢) time bound. In particular, the logarithmic

factor clearly behaves in our experiments as if it were a constant.

Shortest path queries on the simplified graph vs. the original graph
We performed on both data sets the following shortest path query: Select at
random pairs of vertices and compute a shortest path between them. The
shortest path query is posed on both the original graph and it simplification. We
use a bidirectional Dijkstra algorithm (which is part of LEDA). This algorithm
runs in O(m + nlogn) time. If the shortest path between regular vertices needs
to be computed, we lookup the topological edges on which these vertices lie, and
split these edges temporarily until the shortest path is computed. After that,
we restore the simplification in its original form.

We selected a large connected connected component in both datasets and
did 1000 path queries. The results of this experiment are shown in Figures 13
and 14. Quite expectedly, the speedup achieved by working with the simplifica-
tion is clearly visible. For the railroad data set, the number of regular vertices

is much lower and thus the speedup is smaller.

6 Concluding remarks

Especially when a large number of path queries have to be performed, it is
advantageous to use the simplification. Indeed, let ¢5 be the extra time needed
to maintain the simplification. Let p, be the average time for a path query
on the original graph, and let ps; be the average time for a path query on the
simplification. Then maintaining the simplification becomes worthwhile as soon

as we ask at least

16

path queries.

For the hydrography data set, this number N is around 40, when the number

of edges of the graph G is 10000. For the railroad data set the number N is
around 1000, when the number of edges of the graph G is 100 000.

Acknowledgment We would like to thank Bart Goethals for programming

help, and Bill Waltman for providing us with the hydrography data set.

References

1]

2]

T.H. Cormen, C.E. Leierson, and R.L. Rivest. Introduction to Algorithms.
MIT Press, 1990.

F. Geerts, B. Kuijpers, and J. Van den Bussche. Topological canonization
of planar spatial data and its incremental maintenance. In T. Polle and
T. Ripke, editors, Fundamentals of Information Systems, volume 496 of The
Kluwer International Series in Engineering and Computer Science, pages

55-67. Kluwer, 1999.

B. Kuijpers, J. Paredaens, and J. Van den Bussche. Lossless representation
of topological spatial data. In M.J. Egenhofer and J.R. Herring, editors,
Advances in Spatial Databases, volume 951 of Lecture Notes in Computer

Science, pages 1-13. Springer, 1995.

Library of Efficient Data Types and Algorithms. A research version is freely
avialable at

http://www.mpi-sb.mpg.de/LEDA/download/research.html.

K. Mehlhorn. Data Structures and Algorithms 1: Sorting and Searching.
EACTS Monographs on Theoretical Computer Science. Springer-Verlag,
1984.

17

[6] C.H. Papadimitriou, D. Suciu, and V. Vianu. Topological queries in spatial
databases. In Proceedings of the 15th ACM Symposium on Principles of
Database Systems, pages 81-92. ACM Press, 1996.

[7] Luc Segoufin and Victor Vianu. Querying spatial databases via topological
invariants. In Proceedings of the 17th ACM Symposium on Principles of
Database Systems, pages 89-98. ACM Press, 1998.

[8] R.E. Tarjan. Data structures and network algorithms. In CBMS-NSF' Re-
gional Conference Series in Applied Mathematics, volume 44. STAM, 1983.

[9] M.F. Worboys. GIS: A Computing Perspective. Taylor and Francis, 1995.

| |
Hydrography graph ——

7_

sec 4 +

0 | | | | | |
0 10000 20000 30000 40000 50000 60000 70000
number of edges in G

Figure 11: Times to maintain simplification of hydrography graph.

18

20 T T
Railroad graph ——

18 - -

14 +~ -
12 -

sec 10 + —

0 | | | | | | |
0 20000 40000 60000 80000 100000 120000 140000 160000
number of edges in G

Figure 12: Times to maintain simplification of railroad graph.

19

m, t My N, n,

5000 | 0.28 128 | 4998 | 4872
10000 | 0.78 914 | 9763 | 9086
15000 | 1.28 | 1691 | 14522 | 13309
20000 | 1.72 | 1771 | 19522 | 18229
25000 | 2.32 | 1877 | 24514 | 23123
30000 | 2.84 | 2994 | 29154 | 27006
35000 | 3.34 | 3367 | 34065 | 31633
40000 | 3.96 | 3478 | 39058 | 36522
45000 | 4.55 | 3567 | 44057 | 41433
50000 | 5.11 | 3661 | 49063 | 46 339
55000 | 5.63 | 3921 | 54007 | 51079
60000 | 6.09 | 4168 | 58969 | 55832
65000 | 6.63 | 4249 | 63972 | 60751
70000 | 7.15 | 4348 | 68997 | 65652

Table 1: Maintenance results for the hydrography graph.

20

m, t My N, n,

10000 | 0.89 7068 8720 | 2932
20000 22| 14376 | 17443 | 5624
30000 | 3.54 | 22402 | 25979 | 7598
40000 | 4.64 | 30791 | 34280 | 9209
50000 | 5.92 | 39345 | 42464 | 10655
60000 | 7.37 | 47796 | 50683 | 12204
70000 | 8.67 | 55949 | 59015 | 14051
80000 | 10.24 | 63994 | 67533 | 16006
90000 | 11.42 | 72170 | 75857 | 17830
100000 | 12.48 | 80117 | 84310 | 19883
110000 | 13.67 | 87881 | 92962 | 22119
120000 | 14.9 | 95713 | 101552 | 24287
130000 | 16.32 | 103938 | 110204 | 26 062
140000 | 17.45 | 112021 | 118816 | 27979
145000 | 18.26 | 115724 | 123189 | 29276

Table 2: Maintenance results for the railroad graph.

21

IPaths Ion G o

45k Pathson G, - - - |
T i

35 |

i i

sec 2.5 - |

.I. | B | | |
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
number of edges in G

Figure 13: Shortest path queries on the largest connected component of the

hydrography graph, and on its simplification.

22

60 T T
Pathson G ——

Paths on G5 - -)
50 // -
"
40 .
sec 30

N\

AL M |

e
| 4 e .
A
O . | | | | |
0 20000 40000 60000 80000 100000 120000

number of edges in G

Figure 14: Shortest path queries on the largest connected component of the

railroad graph, and on its simplification.

23

