Made available by Hasselt University Library in https://documentserver.uhasselt.be

Constraint databases, queries, and query languages

Peer-reviewed author version

VAN DEN BUSSCHE, Jan (2000) Constraint databases, queries, and query
languages. In: Kuper, G. & Libkin, L. & Paredaens, J. (Ed.) Constraint Databases, p. 21-47..

Handle: http://hdl.handle.net/1942/604

2. Constraint Databases, Queries, and Query
Languages

Jan Van den Bussche

2.1 Introduction

We formally define the constraint database model, the concept of query in this
model, and the basic constraint query languages provided by the relational
calculus, the relational algebra, and DATALOG. We show how a computa-
tionally complete constraint query language can be obtained by augmenting
the constraint relational calculus with basic programming language features.
We look into some basic model-theoretic issues concerning the constraint
relational calculus, in particular the equivalence problem. The notion of o-
minimal structure turns out to be a useful abstraction to discuss these issues
in some generality. We will see that equivalence of relational calculus queries
on constraint databases is typically undecidable, but that it is decidable in
the special case of conjunctive queries on constraint databases.

2.2 Logic

We start by recalling the needed basic concepts from logic.

Definition 2.2.1 (Vocabulary). A vocabulary, or signature, (2, consists of
three sets: a set F of function symbols, a set P of predicate symbols, and a
set C of constant symbols, together with an arity function that associates a
natural number to each element of F and P.

For example, 2 = (+,-,0, 1, <) is a vocabulary with two function symbols
of arity two (+ and -), one predicate symbol of arity two <, and two constant
symbols (0 and 1).

Definition 2.2.2 (Structure). Given a set U and a signature (2, an 2-
structure M on U is defined by assigning to each f € F of arity n a function
MU = U, to each p € P of arity n an n-ary predicate on U, that is, a
set PM C U™, and to each c € C an element M € U.

For example, for 2 = (+,,0, 1, <) and the set R of real numbers, we define
the real field R by making +®, -B <R the usual addition, multiplication,
and the ordering on R, and by interpreting O® and 1® as 0,1 € R. Note that
we shall almost always omit the superscript, since the interpretation of the
signature symbols is typically understood from the context.

22 Jan Van den Bussche

We now recall, for the sake of completeness, the definition of first-order
logic over a signature (2. Assume a countably infinite set of variables V. First,
terms are defined inductively as either a variable from V), or a constant from
C,or f(t1,...,tn), where f € F is of arity n, and ¢y, ..., t, are terms. We
write t(z1,...,2x) to denote that ¢ is a term that mentions only variables
from the list zy, ..., zx (listed in some agreed order).

Given a structure M = (U, (2), a term t(xy,...,x), and elements a;
o+ G € U, the interpretation of ¢ given ay,...,a; in M, denoted by
tMlay, . .., ax], or tM[a] for short, is defined in the obvious way:

— If t is a variable z;, then tM[a] is a;;
— If t is a constant symbol ¢, then tM[a] is cM;
— If t is of the form f(t,...,t,), then tM[a] is fM(EM[a], ..., tMa)]).

An atomic formula is a formula of the form ¢t = ¢’ or P(ty,...,t,) where
t,t',t1, ..., t, are terms, and P € P is an n-ary predicate. General formulas
are then built up from atomic formulas by using the boolean connectives
(A, V, =) and the quantifiers (Va and Jz). The variables occurring free in a
formula are defined in the usual manner. Formally, the free variables of:

— an atomic formula, are simple all the variables occurring in it;

— a negative formula —, are exactly those of ;

— a conjunctive formula (¢ A1), or a disjunctive formula (¢ V ¢), are exactly
those that are free in either ¢ or v;

— a quantified formula Vz ¢ or 3z ¢, are exactly those of p, with the exception
of z itself.

A sentence is a formula without free variables. We write ¢(z1,...,2) to
denote that the free variables of formula ¢ are all from the list zy, ..., =g
(listed in some agreed order).

Given a structure M = (U, (2), a first-order formula ¢(x1,...,zt), and
elements a1, ...,ar € U, the satisfaction of ¢ by (ai,...,ar) in M, denoted
by M [¢lat, ... ,ak], or M [pla] for short, is defined in the usual way:

- M = (t = t')[a] if tM[a] equals t'[a].

-~ M | P(ty,...,ty)a] if #M[a],...,tM[a]) € PM.

- M = (=p)[a] if M |= ¢[a] does not hold.

- M = (¢ AY)[a] if both M |= pla] and M = ¢[a).

— M E (¢ V)[a] if either M | ¢[a] or M E 9lal.

- M E (Vzy)[a] if for every element b € U, we have M [E ¢la,b], i.e.,
formula ¢(x1,...,xk,) is satisfied by (ai,...,ax,b) in M.

— M |= (3z p)[a] if for some element b € U, we have M [y[a, b].

Note that in this definition we are being very formal, using square brackets
pla] to denote interpretations for free variables. However, in the sequel, we
will also use a more intuitive notation with round brackets ¢(a).

The set of all first-order formulas over {2 is denoted by FO(f2). If M is
an {2-structure, we also write FO(M) for FO(£2).

Constraint Databases, Queries, and Query Languages 23
2.2.1 Quantifier elimination

We now introduce a very important concept in the context of constraint
databases:

Definition 2.2.3. Structure M is said to admit quantifier elimination if for
every first-order formula ¢(Z) over (2 there exists a quantifier-free formula
W(Z) such that

Vz(p < 1)

is valid in M. If such a v can be effectively computed, given p, we say that
the quantifier elimination is effective.

As we will see in this chapter, it is exactly in the context of structures
admitting effective quantifier elimination that we will be able, at least in
principle, to implement constraint database systems with first-order logic
query languages. Popular structures with this property include the real field
(R,+,-,0,1,<) and its restrictions that exclude multiplication, or include
only order (for these restrictions it does not matter whether we use real or
rational numbers).

2.3 The Constraint Database Model

The framework of constraint databases with corresponding query languages
can be applied to many different classes of constraints. We first need to define
constraints formally. Since the generalized relations we met in Chapter 1 are
subsets — finite or infinite — of some interpreted domain, such as the real field,
constraints are defined to be certain first-order formulas over the domain. For
example, in the case of the real field, polynomial inequality constraints are
just atomic first-order formulas over the structure (R, +,-,0,1, <).

2.3.1 Constraints

Here is the formal definition of “constraint” as it is used in the context of
constraint databases:

Definition 2.3.1 (Counstraints). Let {2 be a vocabulary. A constraint over
2 is an atomic first-order formula over (2, or the negation of an atomic
formula.

The representational power of constraints is captured by the following
definition.

24 Jan Van den Bussche

Definition 2.3.2 (Definability with Constraints). Given a vocabulary
2 and a structure M = (U, $2), a set X C U™ is called definable on M
with (2-constraints if it can be obtained as a finite boolean combination of
sets of the form

{(at,-..,an) EU" | M |=p(a1,...,an)}

where @ is an 2-constraint. If M is clear from the context, we will simply
say X is definable.

Given M = (U, 2y and M' = (U, '), we say that 2- and ' -constraints
are equivalent over U if exactly the same sets are definable with 2 and (2'-
constraints in M and M'.

Ezample 2.3.1. The following classes of constraints will often be used in this
book.

1. Polynomial inequality constraints are constraints over 2 = (+,-,0, 1, <).
Such constraints correspond to conditions of the form p > 0 or p <
0, where p is a polynomial with integer coefficients. We interpret these
constraints over the structures R = (R, 2), Q = (Q, 2), Z = (Z, 2), and
the like.

2. Linear constraints are constraints over {2 = (+, <, 0,1). Such constraints
correspond to conditions of the form p > 0 or p < 0, where p is a linear
function a1z + - -+ + ajz; + ap with integer coefficients. We interpret
these constraints over the structures Riin = (R, £2), Quin = (Q, 2}, Zyjin =
(Z,2), and the like.

3. Dense order constraints over the rationals are constraints over {2 = (<,
(¢)ce), interpreted over the structure (Q, £2) (that is, rational numbers
with order and constants for every ¢ € Q). Such constraints are conditions
of the form z <y, x > y, x < ¢, or x > ¢, where and y are variables,
and ¢ is a constant. Similarly, one can define dense order constraints over
the reals, or, for that matter, over any set on which a dense order is
available.

4. Equality constraints over an arbitrary infinite domain U are constraints
over the signature ((c¢)ccyr)- Such constraints are conditions of the form
xT =y, T F#Y, x=c orx# c where x and y are variables, and ¢ is a
constant.

One may ask why we did not consider polynomial or linear constraints
with rational coefficients. The reason is that they are not more expressive
than those with integer coefficients. Indeed, let p be a polynomial in which
all coefficients are rational numbers a; /by, ..., am /by, where the a;s and b;s
are integers. Let p' = [[;~, b; - p. Then p' is as a polynomial with integer
coefficients, and p > 0 iff p’ > 0. In Chapter 9, however, linear constraints
with algebraic coefficients will also be discussed, and these are indeed more
expressive than the standard linear constraints defined above.

Constraint Databases, Queries, and Query Languages 25
2.3.2 Constraint databases

We are now ready to define what a constraint database exactly is, and which
information it represents.

Definition 2.3.3 (Constraint Database Model). Fiz a vocabulary (2.

1. A constraint k-tuple, in variables x1, ..., x, over (2, is a finite con-
junction o1 A---Npn, where each @;, for 1 <i < N, is an (2-constraint.
Furthermore, the variables in each @; are all among x4, ..., Tg.

2. A constraint relation of arity k, over (2, is a finite set r = {¢1,...,¥m},
where each v;, for 1 <i < M, is a constraint k-tuple in the same vari-
ables 1, ..., .

3. The formula corresponding to a constraint relation r is the disjunction
Y1V -Npr. We denote this formula by p,.; note that it is quantifier-free.
4. A constraint database is a finite collection of constraint relations.

In database theory, a k-ary relation r is assumed to be a finite set of k-
tuples (or points in a k-dimensional space). We will use the term unrestricted
relation for arbitrary finite or infinite sets of points in a k-dimensional space.
It is possible to develop query languages using such unrestricted relations. In
order to be able to do something useful with them, however, we need a finite
representation that we can manipulate. This is exactly what the constraint
tuples provide.

Definition 2.3.4 (Interpretation of Constraint Relations). Let {2 be
a vocabulary, and M = (U, 2) an 2-structure. Let r be a constraint relation
of arity k over 2, and let p,(x1,...,2k) be the formula corresponding to r.
Then r represents the unrestricted k-ary relation which consists of all points
(a1,...,ax) such that p.(a1,...,a) is true in M. That is, it represents the
set

[[T]]Mn = {(ala"')ak)euk|M|:(10T(a1)"'>ak)}'

Observe that interpretations of constraint relations over M are precisely
the sets we called definable on M with 2-constraints (cf. Definition 2.3.2).
Indeed, constraint relations are just boolean combinations of constraints, pre-
sented in disjunctive normal form. It will be convenient to carry this termi-
nology further as follows:

Definition 2.3.5 (Definable Databases). Any finite collection of unre-
stricted relations is called an unrestricted database. An unrestricted database
is called definable if all its relations are definable in the sense of Defini-
tion 2.8.2. A constraint database D represents a definable database D' if D
consists precisely of one representation for each unrestricted relation in D'.

We will now see three fundamental examples of constraint relations.

26 Jan Van den Bussche

Ezample 2.3.2 (Representing the Relational Model). Let a relation r consist
of the tuples (1,2) and (3,4). These tuples are equivalent to the constraint
2-tuples z = 1Ay = 2 and x = 3 Ay = 4. Therefore, r corresponds to the
set {x =1Ay =22 =3Ay =4} and to the formula ¢, = (z = 1Ay =
2Q)V(x=3Ay=4).

In general, every finite k-ary relation r on a set U with m tuples
(at,... ,afc), i =1, ..., m, can be represented as a constraint relation us-
ing just equality constraints. That is, if ' is the constraint relation given by
the formula

m
oo, o) = (@ =a) A A e = a}))
=1
then
[r'lmn = r,

where M = (U, (¢)ccu)-

Ezxample 2.3.3. Let us now illustrate the framework using linear constraints.
Let the constraint relation 7 consist of the two constraint tuples

(y=2-zA-(r=y)) and (I1<z+y).
Corresponding to this r is the DNF formula
or(zy)=y=2-zA-(z=y)V(I<z+y).

This formula ¢, describes an infinite set of points in 2-dimensional space:
namely the half plane z + y > 1 and the line y = 2 - £ without the point
r=y=0.

Example 2.3.4. Similarly, the constraint relation consisting of the two poly-
nomial inequality constraint tuples

(*+y>=1) and ((z—-124+y>=1A22>1)

describes a circle partly overlapping another circle, as illustrated in Fig-
ure 2.3.1. Of course, 22 is an abbreviation for z - z.

In the case of polynomial inequality or linear constraints over the reals,
constraint relations correspond to concepts well known in real algebraic ge-
ometry.

Definition 2.3.6 (Real Semi-Algebraic and Semi-Linear Sets). A set
X C R" is called semi-algebraic if it is definable with polynomial inequality
constraints over the real field R. A set X C R"™ is called semi-linear if it is
definable with linear constraints over Ryy.

Constraint Databases, Queries, and Query Languages 27

Fig. 2.3.1. Figure in the real plane represented by the real polynomial inequality
constraints relation of Example 2.3.4.

Thus, the constraint relations definable with polynomial inequality con-
straints over the reals are precisely the semi-algebraic sets, and the constraint
relations definable with linear constraints over the reals are precisely the
semi-linear sets. Or, put in yet another way: semi-algebraic sets are Boolean
combinations of sets defined by conditions of the form p(z1,...,z,) > 0,
with p a polynomial in the variables zi, ..., x, with integer coefficients;
semi-linear sets are Boolean combinations of sets defined by conditions of the
form a;z; + -+ - + apx, > b, where ay, ..., ag, and b are integers.

2.3.3 Testing equality of constraint relations

The representation of a definable relation by a constraint relation is, of course,
not unique. To give a simple example using equality constraints, the singleton
{(c,)} is represented by the constraint tuple z = c Ay = x as well as by the
constraint tuple z = cAy = c.

In general, two constraint relations r and r', interpreted over a struc-
ture M, represent the same unrestricted relation iff the formula VZ(p,. (%)
@ (T)) is true of M. Hence:

Proposition 2.3.7. Equivalence of constraint relations is effectively decid-
able if (and only if) the universal theory of M is effectively decidable.

By the universal theory of M, we mean the set of all first-order sentences in
prenex normal form that are true of M, whose quantifier prefix consists of
universal quantifiers only.

All structures mentioned in Example 2.3.1 have a decidable universal
theory. As a matter of fact, for these structures, the complete theory, i.e., the
set of all first-order sentences true in the structure, is effectively decidable.
This follows from the following two properties of these structures:

1. they admit effective quantifier elimination (cf. Definition 2.2.3), so that,
in particular, every sentence can be converted to a boolean combination
of atomic sentences;

28 Jan Van den Bussche

2. the truth of every atomic sentence in the structure is effectively decidable.

The second property (about atomic sentences) is quite obvious, in the sense
that structures without this property would not be practical to work with.
The first property (about effective quantifier elimination) is by no means
obvious. Still, for all structures mentioned in Example 2.3.1, it is satisfied.
We will see in the next section that effective quantifier elimination is crucial
for the whole constraint database approach to go through.

Ezample 2.3.5. For the real field R, the effective decidability of atomic sen-
tences merely says that one can effectively add, multiply, and compare natural
numbers. Indeed, the only constant symbols in R are 0 and 1, so the only
thing an atomic sentence over R does is compare two natural numbers built
from 0 and 1 using addition and multiplication.

That effective quantifier elimination is possible in the real field is es-
sentially Tarski’s famous decision method for the theory of the reals. A well
known illustration of quantifier elimination over the reals is provided by high-
school mathematics: the formula

Jz(a-2> +b-2+c=0)
is equivalent to the quantifier-free formula

¥ —4-a-¢>0.

2.4 Queries on Constraint Databases

In this section, we combine constraints with the fundamental notion of
database query. We formally define queries to constraint databases, and in-
troduce the relational calculus (augmented with constraints) as a basic con-
straint query language. We also discuss the equivalence with the relational
algebra.

2.4.1 Constraint queries

So far we have defined a constraint database simply as a finite collection of
constraint relations. When querying a database, however, it is useful to give
these relations a name. So we define a database schema as a finite nonempty
set SC of relation names, each with a given arity. A constraint database
with schema SC then becomes a mapping, associating to each relation name
R € SC a constraint relation of the arity given for R. An unrestricted database
with schema SC is defined analogously.

We are now ready to discuss the formal definition of a query on con-
straint databases. In standard relational databases, a query is a mapping,
associating to each database an answer relation. In the present constraint
setting, however, there is a complication. Conceptually, constraint databases

Constraint Databases, Queries, and Query Languages 29

are representations of unrestricted databases (cf. Definition 2.3.5). So we can
think of a query in two ways: on the conceptual level, as a mapping on unre-
stricted (but definable) databases; or on the level of the representations, as
a mapping on constraint databases. Clearly, a query on the representation
level makes only sense if it corresponds to a query on the conceptual level,
as in the following commuting diagram:

constraint
query
constraint output
database D » Q(D) constraint relation
represents represents
unrestricted output
database Dy > (Qo(Do) unrestricted relation
unrestricted
query Qo

The above considerations lead to the following definitions. We start with
the notion of query on the conceptual level:

Definition 2.4.1 (Unrestricted Query). Let M be a structure over the
vocabulary 2. Let SC be a schema, and let k be a natural number. A k-
ary unrestricted query with schema SC over M is a function @Q, mapping
unrestricted databases D with schema SC to k-ary relations Q(D) on the
universe U of M. This mapping Q can be partial (i.e., Q(D) may be undefined
for some D’s).

Since we are only interested in unrestricted relations that are definable,
we want the following property:

Definition 2.4.2 (Closure). An unrestricted query Q) as in Definition 2.4.1
is called closed if, for each D on which Q is defined, and which is definable
using M-constraints, the relation Q(D) is also definable using M-constraints.

We next turn to queries on the representation level:

Definition 2.4.3 (Constraint Query). Let {2 be a vocabulary. Let SC be a
schema, and let k be a natural number. A k-ary constraint query with schema
SC over (2 is a function @), mapping constraint databases D with schema SC
over (2, to k-ary constraint relations Q(D) over (2. This mapping @ can be
partial.

We do not want a constraint query to map two different constraint repre-
sentations of a same unrestricted database to constraint relations representing
different unrestricted relations. So we want at least the following property:

Definition 2.4.4 (Consistency). A constraint query @) as defined in Defi-
nition 2.4.3 is called consistent if there exists an unrestricted query Qo such

30 Jan Van den Bussche

that for any constraint database D and any unrestricted database Dg, if D
represents Dy, then Q(D) is defined if and only if Qo(Do) is defined, and in
that case, Q(D) represents Qo(Do). We say in this case that) represents
Qo-

Note that the unrestricted query represented by a consistent constraint
query is uniquely defined, and that it automatically satisfies the closure con-
dition of Definition 2.4.2.

Ezxample 2.4.1. Let us illustrate the above definitions in the concrete context
of polynomial inequality constraints over the real field R. Fix SC to consist
of a single relation name T of arity 3. So a definable database consists of a
single semi-algebraic set in R.

Define the following 2-ary constraint query): given a constraint database
D with D(T) = {41,...,¥nm}, consider the formula

X = E'l‘g(l[]lvv’(/JM) .

Since R admits effective quantifier elimination, we can compute from x a
quantifier-free formula ¢, in the variables z; and z2, equivalent to x over R.
We then transform y into disjunctive normal form:

XENV:--Vy.

Then define Q(D) := {v1,...,7¢}.

This constraint query () is consistent; it represents the 2-ary unrestricted
query mapping each semi-algebraic set in R® to its projection on the z;zs-
plane.

To give an example of a 1-ary unrestricted query that is not closed, con-
sider the one that maps every D to Z. This query is not closed because Z is
not a semi-algebraic set in R.

Finally, to give a (rather contrived) example of a constraint query that
is not consistent, consider the one that maps each D to the singleton set
consisting of that constraint tuple in D(T') that has the largest sum of
all constants appearing in it (if there is no unique such tuple, the con-
straint query is undefined on D). Indeed, consider the constraint databases
Dy and Dy with D1(T) = {0 < 1 Axp < 3, 1 < 1 Ay < 4} and
Dy(T) ={0 < z1 Azy <3, 2 < 1 Axy < 4}. Both represent exactly the
same unrestricted relation, namely the interval (0,4). However, on D; the
output of the query is {1 < z1 Az < 4}, while on D, it is {2 < 21 Azy < 4}.
These two singleton constraint relations represent different unrestricted re-
lations. Hence, our constraint query cannot possibly represent some unre-
stricted query, as the latter, being a mapping, cannot have two different
results on the same input.

2.4.2 The Relational Calculus with Constraints

The relational calculus (first-order logic), with a given a class of constraints,
constitutes a very basic constraint query language, which we next introduce.

Constraint Databases, Queries, and Query Languages 31

For more background on the relational calculus in the setting of standard,
non-constraint databases, we refer to textbooks on database theory, as well
as to the Introduction (Chapter 1).

We fix some schema SC in what follows.

Definition 2.4.5 (Relational Calculus). Let {2 be a vocabulary. A rela-
tional calculus formula over {2 is a first-order logic formula over the expanded
vocabulary (£2,SC) obtained by expanding 2 with the relation names (viewed
as predicate symbols) of the schema SC. This class of formulas is denoted by
FO(£2,SC), or simply FO(£2) if SC is understood from the context.

The cases 2 = (+,-,0,1,<) and 2 = (+, <, 0, 1) occur quite often in work
on constraint query languages, and a specific notation is in use for them:

Definition 2.4.6 (FO + PoLy and FO + LiN). FO + Povy will denote the
class FO(+,-,0,1,<), and FO + LIN the class FO(+, <,0,1).

Example 2.4.2. With R a relation name of arity 2, the following is a formula
in FO 4+ LN

R(l’1,1'2) \ Ei:U('R(mlyy) A R(y,l‘2) A (1‘1 + 22 < y) A (1‘2 -y < 0)))
and the following is a formula in FO + PorLy:
R(@1,x2) V 3y(R(z1,y) A R(y, 22) A (21 - 22 < y) A (22 — y° < 0)) .

These are purely syntactical examples; the semantics of relational calculus
formulas is defined next.

Given an 2-structure M, relational calculus formulas over 2 express total
(i.e., everywhere defined) unrestricted queries over M in the obvious manner:

Definition 2.4.7 (Unrestricted Relational Calculus Queries). Fiz an
2-structure M = (U, 2). A FO(2,5C) formula ¢(x1,...,x) expresses the
k-ary unrestricted query Q@ over M defined as follows. Given an unrestricted
database D with schema SC over M, we can expand M to a structure
(M,D) = (U, 2,D) over the expanded vocabulary (£2,SC) by adding the
interpretation D(T), for each relation name T € SC in D, to M. Then

Q(D) :={(a1,...,ar) €U* | (M, D) = p(ar,...,ar)} .

The above definition raises a most basic question. In which cases do we
know that the unrestricted query expressed by a relational calculus formula
is closed? And if it is, can we find a corresponding constraint query that is
effectively computable? The following proposition answers this question. Al-
though from a purely mathematical point of view it is a perfectly disguised
triviality, it is at the same time the most important proposition of this chap-
ter. Indeed, it encapsulates the fundamental mechanism lying behind the use
of first-order logic as a constraint query language.

32 Jan Van den Bussche

Proposition 2.4.8. If, and only if, M admits effective quantifier elimina-
tion, every relational calculus formula ¢ expresses a consistent, effectively
computable, total constraint query, that represents the unrestricted query ex-
pressed by p.

Proof. Assume M indeed admits effective quantifier elimination. Given ¢,
define the following constraint query). Given a constraint database D,
replace in ¢ every occurrence of an atomic formula of the form R(Z), with
R € SC arelation name of the schema, by the formula corresponding to D(R)
(we might first have to rename some variables used in ¢ to avoid clashes). This
yields a first-order formula x which is purely over the constraint vocabulary
2 alone; no relation names of the schema occur in x. By our assumption, x is
equivalent, in M, to a quantifier-free formula 1, which we may assume to be
in disjunctive normal form ¢ V- --V1,. Then define Q, (D) := {¢n,...,¢¥e}.

Conversely, assume every relation calculus formula expresses a constraint
query as stated in the proposition. Then we can effectively eliminate quanti-
fiers in M as follows. Take a formula of the form Jy,¢(y1,-..,y,) where we
may assume) to be quantifier-free and in disjunctive normal form 1 V- - V).
Consider a schema SC having a relation name R of arity n, and consider a
constraint database D where D(R) = {t1,...,%¢}. Finally, consider the re-
lational calculus query ¢ = Jy1 R(y1, . . .,yn). By assumption, ¢ expresses an
effectively computable, total constraint query @), representing the semantics
of . So, applying @ to D yields a constraint relation r = {v1,...,7p}, such
that r represents the relation {(az,...,a,) | M = Iyiv(y1,as2,...,a,)}. In
other words, the equivalence

Vyz - -Vyn(Fyip & (1 V- V)

holds in M, so that (y1 V ---V ;) is a quantifier-free formula equivalent to
Jy1¢ and effectively computable from it, as had to be shown. O

Example 2.4.3. Let us illustrate the above using FO + PorLy over R. Assume
that the schema consists of one binary relation name R, and consider the sim-
ple FO + PoLy formula ¢(y) = 3zR(z,y). Let D be the constraint database
in which D(R) equals the singleton {y = z?}. To evaluate ¢ on D, we replace
the occurrence of R in ¢ by its defining formula to get

X(y) =3y = 27) .
This formula is equivalent, in R, to the quantifier-free formula
Ply)=y=0Vy>0,

which is already in disjunctive normal form. Hence we can define the result
of the constraint query @, defined by ¢ applied to D as Q,(D) = {y =
0,y > 0}.

Note that this example would fail if we would omit the < predicate,
i.e., if we work in the constraint structure (R, +,-,0,1). In this context the

Constraint Databases, Queries, and Query Languages 33

unrestricted query expressed by ¢ would not be closed. Not surprisingly, the
structure (R, +,-,0,1) does not admit quantifier elimination either.

2.4.3 Computational Feasibility

The proof of Proposition 2.4.8 describes a crude but effective evaluation mech-
anism for constraint relational calculus queries ¢. Ignoring the conversion to
DNF at the end, computing the result of ¢ on a constraint database D is
reduced to simply eliminating the quantifiers from a formula obtained by
“plugging” the contents of D in the appropriate slots in . Denote this for-
mula by plug(D, ¢). We can now make the following two simple but important
observations:

1. The size of plug(D, ¢) is linear in the size of D.

2. Because each constraint relation of D is quantifier-free, the number of
quantifiers occurring in plug(D,) is the same as in ¢, and in particular,
is independent of D.

Why is this important? For most structures, quantifier elimination is usu-
ally computationally expensive. Typically used algorithms require exponen-
tial, or even double exponential, time in the worst case. However, a finer
analysis often reveals that this exponential behavior can be confined to an
exponentiality in the number of quantifiers to be eliminated only. More pre-
cisely, quantifier elimination procedures can often be made to run, on an
input formula x of size n, in time p(n) - e(q), where p is a polynomial in n,
and e is an exponential, or even double exponential, function in ¢, where q is
the number of quantifiers occurring in .

Let us now apply this to the situation where x is plug(D, ¢). From the
previous two observations, we get that n is proportional to the size of D, and
that ¢, and hence also e(g), is a constant independent of D. In other words,
evaluation of a constraint query ¢ can be done in polynomial time.

The above considerations actually apply to all the structures mentioned
in Example 2.3.1. So, we have the following definition and proposition:

Definition 2.4.9 (Data Complexity). Let Q) be a total constraint query,

and let f be a function on the natural numbers. Then we say that the data

complexity of @ is O(f) in time if there is an algorithm that computes, given

as input a constraint database D of size n, the output Q(D) in O(f(n)) time.
We can similarly define data complezity in space.

Proposition 2.4.10. Quer any structure mentioned in Example 2.3.1, every
constraint relational calculus query has polynomial-time data complexity. 0O

We point out that sharper complexity bounds can be derived for various
specific structures; these will be discussed in Chapters 4 and 7.

34 Jan Van den Bussche
2.4.4 The Relational Algebra with Constraints

The classical equivalence between the relational calculus and the relational
algebra in standard relational databases, carries over very easily to constraint
databases. In this section, we show how. Our presentation will be rather brief,
because, by and large, the connection between algebra and calculus in the
constraint model does not involve any other fundamental insights beyond
those already involved in the connection between algebra and calculus in
standard relational databases.

As always, we fix a vocabulary 2, a structure M over (2, and a database
schema SC. The relational algebra expressions (RAEs), and their arities, are
inductively defined as follows. Let I/ denote the domain of M.

— U is a RAE of arity 1.

— Each relation name R € SC is a RAE. Its arity is given by SC.

— If e; and ey are RAEs of arities k; and ko respectively, then the cartesian
product (e1 X e3) is a RAE of arity k; + ko, and, provided that k; = ko, the
union (e Uey) and the difference (ex — ea) are RAEs of arity k.

— If e is a RAE of arity &, and 41, ..., i, € {1,...,k}, then the projection
Tiy,...ip (€) is a RAE of arity p.

— Finally, if e is a RAE of arity k, and 6 is a quantifier-free formula over (2
on the variables z1, ..., =k, then the selection og(e) is a RAE of arity k.

A RAE e of arity k defines a k-ary unrestricted query Q. and a total com-
putable k-ary constraint query), in the following straightforward manner.
To be able to deal effectively with projection, we have to assume (as in the
relational calculus, cf. Proposition 2.4.8) that M admits effective quantifier
elimination. Let D be an unrestricted database with schema SC, and let D’
be a constraint database with schema SC.

— Ifeis U, then Q.(D) :=U, and Q. (D') := {z1 = =1 }.

—Ifeis R € SC, then Q.(D) := D(R), and Q.(D') := D'(R).
—Ifeis (e1 X e3), then Q. (D) := Qe, (D) X Qc, (D). Rename the variables

Ty, ..., Tg, used in Q) (D) to Tg, 41, ..., Tky+ky, respectively. Then
Qu(D") :={dAx|¥€Q, (D), x €Q.,(D")}
— Ifeis (e1Uesa), then Qc(D) := Qe, (D)UQe, (D), and Q,(D') := Q¢ (D")U
! (DI).
€2

— If eis (e; —e2), then Qc(D) := Qe¢, (D) — Qe, (D). Consider the formula
y=C V 9a- V).

YeQL, (D) YEQL, (D)
Put v in DNF 1 V -+ -V .. Then QL(D') := {v1,...,ve}-

Constraint Databases, Queries, and Query Languages 35

~If eis m,.,(e), with €' of arity k, then Q.(D) := {(ai,,...,a;,) |
(a1,...,a;) € Qe (D)}. Suppose the formula corresponding to @7, (D'),
after renaming the variables z1, ..., zr to y1, ..., Yk, respectively, is
¥(y1,-.-,yr). Consider the formula

P
X(@1, ..., xp) =3y1 -+ Typ A /\ T =y
j=1
Compute a quantifier-free formula ~, equivalent to x, in DNF v, V- -V v,.
Then QL(D') :={m,..., 7}
— Finally, if e is og(e), then Q.(D) := {a | @ € Q. (D) and M [6(a)}.
Suppose the formula corresponding to QL (D') is ¢. Put ¢ A 6 in DNF,
yielding v1 V - -+ V4¢. Then QL(D") :=={m,.-.,v¢}-

Now the following property is straightforwardly verified:

Proposition 2.4.11. For every RAFE e, the constraint query Q', represents
the unrestricted query Q.. In particular, Q' is consistent and Q. is closed.
O

A relational calculus formula ¢ and a RAE e are called equivalent if
they define the same unrestricted query. The reader familiar with the clas-
sical equivalence of relational algebra and calculus in standard relational
databases, will encounter no problems in verifying the analogue for constraint
databases:

Theorem 2.4.12. Let (2 be a vocabulary and SC a database schema. Fvery
relational calculus formula over (£2,SC) can be effectively converted into an
equivalent RAFE over (£2,SC), and vice versa. O

At this point it must be stressed that the evaluation mechanism we de-
scribed for constraint relational algebra queries only served to show that, in
principle, the relational algebra serves as an effective constraint query lan-
guage. In concrete implementations, which will typically depend on the par-
ticulars of the constraint structure M, other, more efficient strategies will be
used for evaluating relational algebra constraint queries. We refer to Parts IIT
and IV for concrete discussions of such evaluation strategies.

2.5 Computationally Complete Constraint Query
Languages

In this section we show that by extending the relational calculus with the
standard programming features of assignment statements, sequential compo-
sition, and while loops, we obtain a constraint query language that is com-
putationally complete in the context of all constraint structures that “embed
the natural numbers.”

36 Jan Van den Bussche

Programs in the language FO(£2, SC) + WHILE (or simply FO + WHILE if
the constraint vocabulary (2 and the database schema SC are understood) are
sequences of assignment statements and while-loops. We assume a sufficient
supply of relation variables, each with an appropriate arity, which can be
thought of as new relation names not present in the given schema SC.

An assignment statement is an expression of the form

X =17 @)},

where X is a relation variable of arity equal to the length of the vector Z
of variables, and ¢ is an FO(§2, SC") formula, where SC' is the expansion of
SC with the relation variables introduced in previously occurring assignment
statements.

A while-loop is an expression of the form

WHILE ¢ DO P 0D

where ¢ is as above, but without free variables, and P is in turn an FO +
WHILE program (called the body of the loop).

The semantics of a program applied to an input constraint database D
is the obvious one of operational, step by step execution. So, the effect of
an assignment statement is to evaluate the relational calculus query on the
right-hand side on the constraint database consisting of D augmented with
the values of the previously assigned-to relation variables, and to assign the
result of this evaluation to the relation variable on the left-hand side; the
effect of a while-loop is to execute the body as long as ¢ evaluates to true.

Assume that we work over a constraint structure admitting effective quan-
tifier elimination. Since every step in the execution of a program consists of a
relational calculus query, which is always consistent, total, and computable,
each program expresses a consistent, computable constraint query, which
however may be only partially defined because of possibly non-terminating
loops.

Ezxample 2.5.1. Let us illustrate this language in the context of real polyno-
mial inequality constraints (so we will work with FO + PoLy + WHILE over
R). Assume the schema contains a binary relation name S. So for any con-
straint database D, D(S) represents a semi-algebraic set in the plane RZ. Con-
sider the following program, in which we use the abbreviation (z1,y1)(x2,y2)
for the closed line segment between the two points (z1,y1) and (z2,y=2) (this
is easily expressible in FO + PoLy).

X = {(w1,y1,22,y2) | S(@1,y1) A S(x2,y2) A (21,91)(22,92) C S};
Y =0
WHILE YV # X DO
Y = X;
X = X U{(®1,y1,%2,y2) | Jr3Tys (X (x1,y1,23,y3) A X (23,y3,72,92)) }
oD.

Constraint Databases, Queries, and Query Languages 37

In the first statement, the program initializes relation variable X to the set
of pairs of points in S for which the closed line segment between them also
lies entirely in S. Then, in the while-loop, X is transitively closed. If the
while-loop terminates, then the final value of X will hold all pairs of points
in S that are connected by a piecewise linear curve lying entirely in S. For
example, on constraint databases D where the semi-algebraic set represented
by D(S) is actually semi-linear (cf. Definition 2.3.6), the while-loop will al-
ways terminate. An example of a database D on which the while-loop will not
terminate is given by D(S) := {2 < y Ay < 2% + 1}; this constraint relation
represents the (unbounded) region between the standard parabola and its
translation by one unit up the y-axis. An illustration is given in Figure 2.5.1.

Fig. 2.5.1. Region represented by the constraint relation {z? < y Ay < 2 + 1}.
The program of Example 2.5.1 will not terminate given this constraint relation as
input.

Let M be a structure with domain ¢/. We say that M embeds the natural
numbers if the following conditions are satisfied:

— U contains the set N of natural numbers as a subset;

— some binary relation is definable in M (in the sense of Definition 2.3.2)
which is a function, and which is a superset of the binary relation {(n,n +
1) | n € N}.

— the singleton unary relation {(0)} is also definable in M.

Obvious examples of such structures include the real field, the reals or ratio-
nals with addition, and the integers with addition.

Naturally, two constraint queries are called equivalent if they represent
the same unrestricted query. We are going to show:

Theorem 2.5.1. Assume the constraint structure M admits effective quan-
tifier elimination and embeds the natural numbers. Then for every partial
computable constraint query @ there is an equivalent FO + WHILE program.

38 Jan Van den Bussche

Proof. We begin by observing that, since M embeds the natural numbers, we
can simulate arbitrary counter programs in FO + WHILE. Indeed, a counter
variable ¢ with value n can be simulated by a unary relation variable holding
the singleton {(n)}. Simulation of incrementing a counter is possible since the
successor relation is definable in FO, and resetting a counter or testing it for
zero is possible since the singleton {(0)} is definable. As a consequence, since
counter machines have full computational power on the natural numbers,
FO + WHILE has as well.

To simplify the argument, let us assume that the database schema consists
of a single, binary relation name S. So, constraint databases are defined by
quantifier-free formulas in two variables x and y. Now it is possible to encode
such formulas, and the terms occurring in them, by natural numbers, in such
a way that the encoding of a term or formula comes before the encoding of
any other term or formula in which it occurs as a subterm or subformula.
(One simple way of doing this is by encoding a term or formula, being a
string over some finite alphabet X', by the corresponding natural number the
string represents when viewed as a number written in base | X|.)

We can then write a program Encode that computes the smallest natural
number encoding a formula equivalent to the formula corresponding to the
input constraint database. Once we have this number, we can, as observed,
perform any desired computation on it. So we perform the computation cor-
responding to the given constraint query we want to express. Finally, using
a program Decode, we derive, from the natural number resulting from this
computation, the constraint relation it encodes. We thus have computed the
result of the constraint query on the given input constraint database.

The program FEncode runs through the natural numbers n =0, 1, 2, ...
(stored in a counter variable Counter) one by one, maintaining two relation
variables Term and Formula. If n encodes a term ¢, then all tuples (n,a,b, c)
are added to Term for which ¢ evaluates to ¢ when variable z is interpreted
by a and y by b. If n encodes a formula v, then all tuples (n, a, b) are added to
Formula for which (a,b) is true. If n neither encodes a term nor a formula,
we simply skip to n + 1. This process is repeated until we encounter the first
n such that VaVy(Formula(n,z,y) <> S(x,y)) holds. This n is the desired
result of Encode. The program Decode is entirely similar, except that here
we stop the loop when we have reached n equal to the natural number given
as input to Decode. The desired result of Decode is then given by {(z,y) |
Formula(n,z,y)}.

It remains to show how these relations Term and Formula can be main-
tained. We do a simple case analysis.

— If n encodes a constant symbol ¢, then perform
Term := Term U {(n,z,y,c) | Counter(n)}.

— If n encodes a term of the form f(¢y,...,t,), then, supposing the encodings
of the subterms ¢, ..., t, are stored in counter variables Countery, ...,

Constraint Databases, Queries, and Query Languages 39

Counter, respectively, perform

Term := Term U {(n, z,y, 2) | Counter(n) A

r
Ing - Hnr(/\ Counter;(n;) A
i=1

EEREE Elzr(/\ Term(n;,x,y,z;) Nz = f(z1,...,2:)))} -

i=1
— If n encodes an atomic formula of the form ¢; = ¢5, then perform

Formula := Formula U {(n,z,y) | Counter(n) A
2 2

3”13”2(/\ Counter;(n;) A Elz(/\ Term(ni, x,y,2)))} .

i=1 i=1
— If n encodes an atomic formula of the form p(t1, ..., %), then perform

Formula := Formula

,
U{(n,z,y) | Counter(n) A3ny --- Elnr(/\ Counter;(n;)
i=1
Adzy - Ezr(/\ Term(ni, x,y,2;) Ap(z1,-.-,2)))} -
i=1
— If n encodes a formula of the form 1 V 5, then, supposing the encodings

of subformulas ¢, and), are stored in counter variables Counter; and
Counters respectively, perform

Formula := Formula U {(n,z,y) | Counter(n) A
2 2

3”13”2(/\ Counter;(n;) A (\/ Formula(ni,x,y)))} .

i=1 =1
— Finally, if n encodes a formula of the form —, then perform
Formula := Formula U {(n,z,y) | Counter(n) A 3ni(Counteri(ni) A

—Formula(ny,z,y))} .

This concludes the proof of the theorem. O

2.6 Equivalence and satisfiability in the relational
calculus with constraints

A basic problem for any query language is the equivalence of formulas: given
two formulas, do they express the same query? For query languages with
sufficient expressive power, more often than not, this problem is undecidable.

40 Jan Van den Bussche

It is undecidable, for example, for the standard relational calculus on finite
relational databases. What about the constraint setting?
Let us begin with a precise definition. For any fixed structure M:

Definition 2.6.1. Two relational calculus formulas over M are called equiv-
alent over M if they express the same unrestricted query over M.

As far as effective decidability is concerned, the equivalence problem is equiv-
alent (sic) to the satisfiability problem, defined as follows:

Definition 2.6.2. A relational calculus sentence over M is called constraint-
satisfiable if it is satisfied on at least one definable database over M.

The focus on definable as opposed to arbitrary unrestricted databases, in
the above definition, is important, as illustrated by the following example.

Example 2.6.1. Consider FO + PoLy over R and a schema with a unary
relation name S. The formula

Vz(S(z) = = > 0) A S(0) AVz > 0(S(z) < S(z — 1))

is true of a unrestricted database D over R if and only if D(S) equals the
set of natural numbers. But this is not a definable (semi-algebraic) subset of
R, so although formula « is satisfiable by an unrestricted database, it is not
constraint-satisfiable.

We next present a rather general undecidability result for constraint-
satisfiability. The argument is based on the following property of structures:

Definition 2.6.3. For any infinite structure M, we say that the relational
calculus over M can express finiteness if there exists a relational calculus
sentence over M and the singleton schema {S} (with S a unary relation
name) which is true of any definable database D over M if and only if D(S)
is finite.

Note that it is not at all obvious that one should be able to express finiteness
in the relational calculus. For instance, the classical compactness theorem
from first-order model theory implies that any first-order sentence having
arbitrary large finite models also has an infinite model, so finiteness of ar-
bitrary unrestricted relations is certainly not expressible in first-order logic.
Still, as we will see shortly, if one focuses (as we do in constraint databases)
only on relations that are definable using constraints, finiteness can become
expressible in the relational calculus over certain constraint structures M.
Definition 2.6.3 is relevant to satisfiability because it is linked to satisfi-
ability in the finite. A first-order sentence is called satisfiable in the finite if
it has a finite model. Satisfiability in the finite is especially relevant in the
context of standard, finite relational databases. The problem is well known
to be undecidable for any vocabulary having at least one predicate symbol
of arity > 2. Now under the assumption of Definition 2.6.3, we can easily
reduce constraint-satisfiability to satisfiability in the finite, thus obtaining:

Constraint Databases, Queries, and Query Languages 41

Proposition 2.6.4. If the relational calculus over M can express finiteness,
then constraint-satisfiability (and equivalence) of relational calculus formulas
over M is undecidable for any schema containing at least one relation name
of arity > 2.

Proof. Let ¢ be the sentence expressing finiteness. Let R be a binary relation
name. Let 1 be ¢ applied not to S, but to the first projection of R; formally,
1 is obtained from ¢ by replacing subformulas of the form S(z) by JyR(zx, y).
Similarly, let 2 be ¢ applied to the second projection of R. We need ¢; and
(2 because a binary relation is finite if and only if its two projections are.
We now reduce satisfiability in the finite to constraint-satisfiability over M
as follows. A first-order sentence 1) over {R} is satisfiable in the finite if and
only if the FO(M, {R}) sentence

w1 N2 N

is constraint-satisfiable. a

A detail which we have swept under the carpet in the above proof is that,
in order for the proof to work, it must be possible to define an isomorphic
copy of any finite binary relation using M-constraints. We say in this case
that M accommodates finite relations. This is usually no problem: if it is
not realistic to provide constants for all elements of M, there are usually at
least some constants and functions by which we can generate infinitely many
elements of M. For example, in R, we can generate all natural numbers using
0, 1, and +.

When is Proposition 2.6.4 applicable to a structure? For ordered struc-
tures, one well-studied property of structures that guarantees expressibility of
finiteness is that of o-minimality. A structure is ordered if one of its predicates
is a total order <. Many structures occurring in practice are ordered.

Definition 2.6.5. An ordered structure is said to be o-minimal if every de-
finable subset V' of the domain U of the structure can be written as the union
of a finite number of singletons and open intervals. By an open interval we
mean a set of the form {z |z < b}, {x | a < x < b}, or {z | a < x}, for some
a,belU.

Here, “definable subset” can be taken to refer to our usual notion of defin-
ability using M-constraints (which corresponds to definability by a quantifier-
free formula over M) on condition that M admits quantifier elimination (as
we must assume anyway for the relational calculus to be usable as a constraint
query language).

We observe:

! For general structures not necessarily admitting quantifier elimination, the con-
cept of o-minimality is still defined in the same way, but then “definable sub-
set” refers to definability by an arbitrary (not necessarily quantifier-free) first-
order formula over M, which moreover can use arbitrary domain elements as
constants.

42 Jan Van den Bussche

Lemma 2.6.6. If M is o-minimal and densely ordered, then the relational
calculus over M can express finiteness.

Proof. Consider a constraint database D over M with schema {S}. Since M
is o-minimal and D(S) is definable, we know that D(S) is a finite union of
singletons and open intervals. Since M is densely ordered, any proper open
interval is infinite. Hence, D(S) is finite if and only if it does not contain any
such intervals. This is easy first-order expressible as

-Jzdy(x <yAVz(x <z <y — S(2))) .

Lemma 2.6.6 and Proposition 2.6.4 immediately imply:

Corollary 2.6.7. If M is o-minimal, densely ordered, and accommodates
finite relations, then constraint-satisfiability (and equivalence) of relational
calculus formulas over M is undecidable.

All the ordered structures mentioned in Example 2.3.1 are clearly densely
ordered, and they are also o-minimal. Take for example R (real polynomial
constraints). We already noted that R admits quantifier elimination, so every
definable set is definable by a disjunction of conjunctions of constraints of
the form p > 0 or p < 0, where p is a polynomial in one real variable. Such
a polynomial defines a continuous function with only finitely many zeros.
Hence, a constraint p > 0 of p < 0 indeed defines a finite union of singletons
and open intervals, as required for o-minimality.

The reader new to constraint databases should not be lulled into believing
that every structure admitting quantifier elimination is also o-minimal, as
illustrated by the following example:

Ezample 2.6.2. Consider the expansion of the ordered reals (R, <) with a
predicate Q for the rationals. The resulting structure admits quantifier elim-
ination, but is not o-minimal (the set Q providing a counterexample).

A more practical example is given by the integers with addition, expanded
with all congruences modulo k for k > 2: (Z,0,1,+,<,=2,=3,...). This
structure admits quantifier elimination, but is not o-minimal (the set of even
numbers, defined by Jy(z = y + y), or equivalently, z =5 0, providing a
counterexample).

We conclude this section by returning to the compactness theorem from
classical first-order model theory, already mentioned after Definition 2.6.3.
As suggested there, Lemma 2.6.6 indicates a failure of compactness in the
constraint database setting.

Let us be more precise. Fix a schema SC. Generalizing Definition 2.6.2,
we say that a set X of FO(M, SC) sentences is constraint-satisfiable if there
is a definable database over M with schema SC' in which every sentence o of
X is satisfied. We say that compactness holds over constraint databases over

Constraint Databases, Queries, and Query Languages 43

M with schema SC if for any infinite set X' of FO(M, SC) sentences, we have
the following: if every finite subset of X is constraint-satisfiable, then X' itself
is constraint-satisfiable.

We now observe:

Proposition 2.6.8. If M is o-minimal, densely ordered, and accommodates
finite relations, compactness does not hold over constraint databases over M
with any non-empty schema.

Proof. Let S be a relation name in the schema (without loss of generality, S
is assumed to be unary). Lemma 2.6.6 gives us a relational calculus sentence
w over M expressing finiteness of D(S) on any definable database D over
M. Furthermore, for any natural number k, we can write a calculus sentence
T, expressing on any unrestricted database D that D(S) contains exactly
k different elements. Since we have assumed that M accommodates finite
relations, every Ty is constraint-satisfiable. Now consider the set X' consisting
of all sentences 7; plus the sentence w. Every finite subset of X' is constraint-
satisfiable, but X itself is not. Hence compactness does not hold. O

The failure of theorems such as compactness serves to indicate that con-
straint databases and query languages, like standard relational databases and
query languages, define an area of computer science which on the one hand
relies heavily on logic, but which on the other hand has its own subtle points
which need specific attention and which prevent the “blind” application of
known facts from logic. This will be illustrated extensively in the chapters
dealing with the expressive power of constraint query languages.

2.7 Conjunctive queries with constraints

If equivalence of formulas for some query language is undecidable, one may
look for interesting sublanguages for which equivalence becomes decidable.
In standard relational database theory, for example, the conjunctive queries
form a useful decidable sublanguage of the standard relational calculus. In the
concrete setting of real polynomial constraints, we will now see that the same
can be done for conjunctive queries with constraints, namely, containment
and equivalence are effectively decidable.

Fix a schema SC. As always M denotes the structure that interprets the
constraints.

Definition 2.7.1. A conjunctive query (with M-constraints) is a relational
calculus formula of the special form

V(@) =3 (BAy),

where

44 Jan Van den Bussche

— B is a conjunction of atomic formulas over SC, using only variables in T
or iy, and
— ¢ is a quantifier-free formula over M on variables in T or j.

We call B the body of v. As defined above, B is a conjunction By A --- A By,
but it should not cause confusion that we also use B as if it were a set
{Bji,..., By}, whenever convenient. The formula ¢ is called the constraints
of v (note the plural: ¢ is an arbitrary quantifier-free formula and thus cor-
responds to a boolean combination of constraints). Clearly, without these
constraints (i.e., with only the trivial constraints true), we are back to the
standard conjunctive queries on standard relational databases.

Ezample 2.7.1. If SC contains a binary relation name R, the following are
two examples of conjunctive queries with real polynomial constraints:

v(z,z) = R(z,z) ANR(z,z)AN(z<0Vz>0)
y(r,z) = FyIw(R(z,y) ARy, z) Az > w?)

The notions of interest for this section are the following:

Definition 2.7.2. For two conjunctive queries 1 and 7 of the same arity,
we say that v, is contained in vy if for every definable database D over M,
we have y1(D) C v2(D). If the stronger condition, v1(D) C ~2(D) holds
for every arbitrary unrestricted database D, we say that 7y, is unrestricted
contained in ys.

Of course we are not really interested in unrestricted containment, since
we are not interested in arbitrary unrestricted databases, but only in the
definable ones. However, we shall still analyze unrestricted containment first,
as this turns out to be very easy. Then, in the setting of real polynomial
constraints (so M is the real field R), we will show that unrestricted con-
tainment of conjunctive queries actually coincides with containment on defin-
able databases only! Recall from Example 2.6.1 that they do not coincide for
general relational calculus formulas; indeed, the negation of the sentence of
that example is contained in the constant empty (“false”) query on definable
databases, but not on unrestricted databases.

Ezample 2.7.2. Consider -, and - from Example 2.7.1. A moment’s reflec-
tion reveals that 7; is unrestricted contained in .

We begin our analysis by defining some helpful terminology. For simplicity
of exposition, from now on we assume that the schema SC consists of a single
binary relation name R. The extension to general schemas is straightforward.

Definition 2.7.3. Let v(Z) be a conjunctive query in the general form given
in Definition 2.7.1, and let D be an unrestricted database over M. A valua-
tion of v in D is a mapping from all variables in v (quantified or free) to M
such that

Constraint Databases, Queries, and Query Languages 45

1. v is true of M under f; and
2. f(B) C D(R), where by f(B) we mean the set {(f(u), f(v)) | R(u,v) €
B}.

For any f satisfying the first condition but not necessarily the second, we call
f(B) a p-instantiation of B. Note that p-instantiations of B can be viewed
as finite unrestricted databases.

The following lemma is trivial but quite helpful:
Lemma 2.7.4. For any conjunctive query y(Z) and unrestricted database D :
¥(D) ={f(Z) | f a valuation of v in D} .
a
We are now ready to show that unrestricted containment of conjunc-
tive queries with constraints is effectively decidable. The proof actually is
as straightforward as in the well-known case of conjunctive queries without

constraints on standard relational databases. We first have the following easy
lemma:

Lemma 2.7.5. For any two conjunctive queries v, (%) and v2(Z), 71 is un-
restricted contained in 7o if and only if v1 is contained in 2 on all p;-
instantiations of By, where By is the body of v1 and 1 are the constraints
Of Y1 -

Proof. The only-if implication is trivial. For the if-implication, let D be an
arbitrary unrestricted database, and let f be a valuation of v; in D. We have
to show that f(Z) € 72(D). Note that f(Z) trivially is in v, (f(B1)). Since
f(By) is a p;-instantiation of By, it follows that f(Z) is also in v2(f(B1)) C
Y2(D) (since f(B1) € D). u

We now observe:

Lemma 2.7.6. For any two conjunctive queries v (T) and v2(T), there exists
a sentence ¥ over M such that M = ¢ if and only if v1 is unrestricted
contained in ~ys.

Proof. Write ;(Z), for i = 1,2, in the general form
By Lemma 2.7.5, it suffices to give a sentence 1) expressing that ; is contained

in 7, on all p;-instantiations of By. Let B} be the formula obtained from B,
by replacing each atom R(u,v) by the disjunction

\/ (u=uAv="1").
R(u',v')€EB,
Then the desired sentence v is

Vavyi (1 — 3ya2(p2 A B3)) .

46 Jan Van den Bussche

Example 2.7.3. For v; and - of Example 2.7.1, the sentence v constructed
in the above proof is

Vavz((z < 0V z > 0) = FyFw(z > w’
ANz=zAy=z)V(x=2AYy=2)
ANly=zAz=2)V(y=2A2z=2)))).

The last two lines of this sentence are equivalent to y = z, so the sentence
simplifies to

Va(z > 0 = Jw(z > w?))

which is indeed a true sentence of R (take w = 0), thus confirming that ~;
is unrestricted contained in 7.

Lemma 2.7.6 immediately implies:

Corollary 2.7.7. If the theory of M is decidable, then unrestricted contain-
ment of conjunctive queries with M-constraints is decidable. O

Now we want to move from unrestricted containment to containment on
definable databases only. Thereto, note that since ;-instantiations of Bj
are finite, Lemma 2.7.5 implies that unrestricted containment coincides with
containment on finite unrestricted databases only. Hence, if the structure M
is such that every finite unrestricted database over M is in fact definable over
M, unrestricted containment clearly coincides with containment on definable
databases only. The structure M trivially has this property, for example, if
there is an explicit constant for each element of M, as is the case with
the structure (Q, <, (¢)cc) (the rationals with order and constants for each
rational number).

However, it is not always realistic to assume that we have constants for
every element of the structure. A case in point is the real field R, as there
are uncountably many real numbers. Nevertheless, we can still show:

Proposition 2.7.8. For conjunctive queries with real polynomial constraints,
the notion of unrestricted containment coincides with that of containment on
semi-algebraic databases only.

(Recall from Definition 2.3.6 that “semi-algebraic” is a synonym for “de-
finable with real polynomial constraints.”)

Proof. Assume +; is contained in 7, on all semi-algebraic databases. Now
suppose, for the sake of arriving at a contradiction, that 7 is not unrestricted
contained in 2. By Lemma 2.7.5, this implies that 7, is not contained in 7,
on some ¢i-instantiation of B;. Referring to the proof of Lemma 2.7.6, this
means that

{@,51) | o1 A—Fg2(@2 AB3)} £0 .

Constraint Databases, Queries, and Query Languages 47

Observe that the above set is semi-algebraic. Now a known property of non-
empty semi-algebraic sets is that they always contain a point of which all the
coordinates are algebraic numbers. Such a point represents a ;-instantiation
of By containing algebraic numbers only. Now, any finite database over R con-
taining algebraic numbers only is semi-algebraic: any single algebraic number
can (by definition) be defined using real polynomial constraints, and any fi-
nite database built using numbers can be defined by building conjunctions
and disjunctions. Hence, we have found a semi-algebraic ¢;-instantiation of
By on which v is not contained in ». But this is in contradiction with the
given that 7, is contained in v, on all semi-algebraic databases. O

Since testing for equivalence can be done by testing for containment in the
two directions, and since the theory of the reals is decidable, Proposition 2.7.8
and Corollary 2.7.7 immediately imply the result announced at the beginning
of this section:

Corollary 2.7.9. Containment and equivalence of conjunctive queries with
real polynomial constraints are effectively decidable.

To conclude, we offer an example showing that Proposition 2.7.8 cannot
be generalized arbitrarily.

Ezxample 2.7.4. The simplest example of a structure that satisfies the usual
assumptions (quantifier elimination, decidable theory, o-minimal), but over
which unrestricted containment does not coincide with containment on defin-
able databases only, is given by the rationals (Q, <) with order but without
constants. Take R unary; the only subset of Q definable with < only is Q
itself, or (). Hence, the conjunctive query

1(z,y) = R(z) Nw <y
is contained in
Y(z,y) = R(z) AR(y) Az <y.

However, v; is clearly not unrestricted contained in 72; any D where D(R)
is a singleton is a counterexample.

2.8 DATALOG with constraints

Apart from the relational algebra and calculus, DATALOG is another well-
studied query language in standard relational database theory. Just as we
did with the relational algebra and calculus, it is natural to adapt DATALOG
for use as a constraint query language. (In fact the original inspiration for
the development of constraint databases came from constraint logic program-
ming.)

48 Jan Van den Bussche

In this chapter, we give only the basic definitions concerning DATALOG as
a constraint query language. More detailed analyses of the possibilities and
limitations of using DATALOG for various constraint structures are given in
other Chapters (4 and 7).

We fix some constraint vocabulary (2 and some schema SC in what fol-
lows.

Definition 2.8.1 (DATALOG with constraints). Let SC' be a schema dis-
joint from SC. A DATALOG program over {2 with intentional schema SC' is
a set of rules of the form

a :_ﬂla"'aﬂf

where

— «, called the head, is an atomic formula of the form H(---), with H a
relation name in SC'; and
— every f3; is an atomic formula over the combined vocabulary (12,SC,SC") .

Given an f(2-structure M interpreting the constraints, we also call a
DATALOG program over {2 a DATALOG program over M. We will next define
the unrestricted query and the constraint query expressed by a DATALOG
program over M (recall Definitions 2.4.1 and 2.4.3). Unlike the situation in
the relational calculus, effective quantifier elimination in M will no longer be
sufficient to guarantee that the unrestricted query expressed by a DATALOG
program is closed. Moreover, the constraint query expressed by a DATALOG
program will no longer be guaranteed to be total. DATALOG is therefore not
as easily usable as a constraint query language as the relational calculus and
algebra are.

Let us begin by defining the unrestricted query Qp expressed by a
DATALOG program P. Thereto, we first define:

Definition 2.8.2. Let P be a DATALOG program over M with intentional
schema SC', and let D be an unrestricted database over M with schema SC.
Then P and D determine an operator on unrestricted databases over M with
schema SC', denoted by TE, as follows. Let D' be such a database. Let H be
a relation name in SC', of arity k. Then TE(D')(H) consists of all tuples
(a1,...,ar) over M such that there exists a rule

pi H(ti,.oty) = Brye.oy B

in P, and a valuation v of p in D', such that

(ah"')ak) = (U(t1)>"'7v(tk)) '

Here, a valuation v of p in D' is a mapping from the variables occurring in
p to elements of M such that for eachi=1, ..., £, B; is true in (M, D, D')
under v.

Constraint Databases, Queries, and Query Languages 49

Note that this operator TS is monotone: if D' C D", then TE(D') C
TE (D"), where for two databases D; and D with schema SC' we write D; C
D5 to mean that Dy (H) C D2(H) for each H in SC’. Since the unrestricted
databases over M with schema SC' form a complete lattice under C, the

Tarski fixpoint theorem tells us that T}? has a least fixpoint, which we denote
by LFP(TE). We now define:

Definition 2.8.3. Designate from among the relation names in SC' an an-
swer relation A, of arity k. Then P expresses the k-ary unrestricted query
over M that maps each unrestricted database D over M to L¥P(TE)(A).

Even when M admits quantifier elimination, the unrestricted query ex-
pressed by a DATALOG program need not be closed, as illustrated by the
following example.

Example 2.8.1. Consider the following DATALOG program P, expressing the
transitive closure of binary relation R:

A(may) :_R(may)
A(z,y) :- R(z,2), A(z,y) .

Counsider the semi-algebraic database D where D(R) is defined by the real
polynomial constraint y = 2-z. In the least fixpoint of T, relation A equals
the unrestricted relation {(z,y) | 3 € N : y = 2 - z}. This relation is not
semi-algebraic, although D is. Hence, the unrestricted query expressed by P
is not closed over real polynomial constraints.

The situation is not always as bad as in the above example. For exam-
ple, we will see shortly that for dense order constraints over the rationals,
DATALOG programs do express unrestricted queries that are closed.

Let us next define the constraint query expressed by a DATALOG program.
Thereto, we first observe that DATALOG rules can be thought of as conjunctive
queries. Consider a rule

p: a:_ﬂla"'aﬂfa

where without loss of generality we may assume that « is of the form H(Z),
where T is a tuple of variables (rather than terms in general). We can think
of this rule as being the conjunctive query

p(z) =Ty (Br A== ABe)

where gy are the variables occurring in the rule that do not occur in Z. Note
that this is a conjunctive query over the combined schema (SC,SC’). The
constraint query expressed by a rule is simply the constraint query expressed
by the rule when we think of it as a conjunctive query.

Now given a DATALOG program P with intentional schema SC’, and a con-
straint database D, we define a sequence of constraint databases with schema
SC’, called the stages of P on D. Stage 0, denoted by P°(D), is given by

50 Jan Van den Bussche

PY(D)(H) = 0 for each H in SC'. For i > 0, and H in SC', P{(D)(H) is de-

fined as the union of the results of the constraint queries expressed by all rules

having H in their head, applied to the constraint database (D, P*~1(D)).
We now define:

Definition 2.8.4. Again designate an answer relation A in SC', of ar-
ity k. Then P expresses the k-ary constraint query over M that maps
each constraint database D over M to P™(D)(A), where n is such that
P"(D) = P**Y(D). If such an n does not exist, we say that P does not
terminate on D, and in this case the constraint query is not defined on D.

The following example illustrates non-termination:

Ezample 2.8.2. The transitive closure program P from Example 2.8.1 does
not terminate on the constraint database D given by D(R) = {y = 2 - z}.
Indeed, for every i, relation A in stage P?(D) contains the constraint tuples
y=2 .zgforj=1,...,1.

Termination is in fact the one and only problem one faces when trying to
use DATALOG as a constraint query language. More specifically, we have:

Proposition 2.8.5. Suppose P terminates on every constraint database,
i.e., the constraint query Qp expressed by P is total. Then the unrestricted
query expressed by P is closed, and is represented by Qp.

Proof. Assume P"(D) = P""(D), and let Dy be the unrestricted database
defined by D. It suffices to observe that P*(D) actually defines LFp(T5").
a

We conclude this section with a positive result for the case of the rationals
with order:

Theorem 2.8.6. Let M be dense order constraints over the rationals, as
defined in Example 2.3.1. Then every DATALOG program terminates on every
constraint database.

Proof. Let P be a program and D a constraint database with dense order
constraints over the rationals. Every constraint relation in every stage of P
on D consists of constraint tuples that involve only constants occurring in D
itself. Indeed, when eliminating quantifiers over the rationals with order, we
never need to introduce new constants. Now the crucial point is that for any
fixed arity k and any fixed set C' of rationals, there are only a finite number
of possible constraint k-tuples using only constants in C. Indeed, such a
constraint tuple can only express a conjunction of comparisons among k fixed
variables x1, ..., xj, and of comparisons of these variables with constants in
C. Clearly there are only a finite number of possible such “configurations.”
(This is discussed in more detail in Section 7.4.) a

Constraint Databases, Queries, and Query Languages 51

As a matter of fact, one can design an evaluation mechanism for DATALOG
programs P over the rationals with order that computes a representation of
the fixpoint of P on a constraint database D in time polynomial in the size
of D.

2.8.1 Adding negation

DATALOG does not have negation. Indeed, we defined the constraint query
expressed by a DATALOG program as an iteration of conjunctive queries, and
conjunctive queries are a negationless fragment of the relational calculus. In
this brief addendum we indicate how some form of negation can be added
to DATALOG. The techniques we will mention here are not at all peculiar to
constraint query languages, but are merely borrowed from the literature on
deductive databases in the context of the standard relational data model.

Semipositive DATALOG. Recall Definition 2.8.1 of the syntax of DATALOG
(with constraints). Let us change it slightly by allowing each 3; in the body
to be also a negated atomic formula, of the form —R(---), on condition that
R is a relation name of the input schema SC. This extension of DATALOG is
called semipositive DATALOG.

Definition 2.8.2, of the operator T, can still be used literally in the case
P is semipositive. Because the relation names used in the heads of rules in
P must be from the intentional schema SC', while negation in the bodies of
rules is only allowed before relation names from the input schema SC, which is
disjoint from SC’, the operator T is still monotone. Hence, Definition 2.8.3
can still be used literally as well to define the unrestricted query expressed
by a semipositive DATALOG program.

Ezample 2.8.3. The following variation of the program from Example 2.8.1
is a semipositive DATALOG program expressing the transitive closure of the
complement of binary relation R:

A(xvy) Eh —IR(HZ,y)
A(z,y) :- R(x, 2), A(z,y) .

To define the constraint query expressed by a DATALOG program, in Def-
inition 2.8.4, we iterated conjunctive queries obtained from the rules. We can
do something similar for semipositive programs. All we have to do is view
the negated atomic formulas —R(---) in the bodies of the rules as referring
to “negated relations” R™¢. Formally, we expand the input schema SC with
relation names R™¢ for each R € SC. Given an input constraint database D,
we expand it correspondingly by letting D(R™) to be a constraint relation
defining the complement of the unrestricted relation defined by the original
constraint relation D(R). If we now replace each negated atomic formula
—R(---) in the program by R"(---), we are back to the case of DATALOG

52 Jan Van den Bussche

without negation. In particular, we can now define the stages of a semipos-
itive program P on constraint database D, and define the constraint query
expressed by P as in Definition 2.8.4 whenever the stages converge on D.

The property formulated for DATALOG programs in Proposition 2.8.5, to
the effect that the termination of the constraint query corresponds to closure
of the unrestricted query expressed by a program, carries over to semipositive
programs effortlessly. We thus see that semipositive DATALOG is only a very
mild extension of DATALOG.

Stratified negation. An easy way to get even more out of semipositive
DATALOG is to use a sequence P, ...,P; of semipositive programs, such
that for each 7 < 7, the input schema as well as the intentional schema of P;
are part of the input schema for P;. This guarantees that we can compose:
we can apply P» to the result relations of P;, then P; to those of P, and so
on. Such a sequence of semipositive programs is called a DATALOG program
with stratified negation. Program P; is called the ¢th stratum.

Example 2.8.4. The following DATALOG program with stratified negation has
two strata, and expresses the transitive closure of the complement of the
transitive closure of the complement of relation R:

A(z,y) := ~R(z,y)

A(xvy) - —IR(HZ,Z),A(Z,y)
B(may) - _'A(xvy)
B(may) - —IA(.T,Z),B(Z,y) .

Inflationary negation. A much more drastic way to add negation to DATALOG
is to allow negation of any atomic formula in the body — so, in particular,
to allow negation of intentional relations also (formally, atomic formulas of
the form R(---) with R a relation name in SC' rather than SC). The T}
operator as defined by Definition 2.8.2 is then no longer monotone, however,
and its least fixpoint is no longer guaranteed to exist.

A rather crude way out of this semantic problem is to use an inflationary
semantics. In Definition 2.8.2, we no longer define T'5 (D')(H) to consist of
all tuples obtained from a valuation of some rule in P in D', but rather,
we define TF (D')(H) as the union of these tuples together with the original
relation D'(H). This inflationary operator is thus forced to be monotone.

In order to compute the constraint query expressed by a DATALOG pro-
gram with arbitrary negation, corresponding with the inflationary semantics,
we must make two changes to how the stages P?(D) are computed, compared
to what we said for the case of semipositive programs:

1. In the case of semipositive programs, all we had to do was to expand the
input constraint database D with its “negated version” only once, prior
to the computation of the stages. Because now also intentional relations
are allowed to be negated, we must now do the same after every stage
also with the result P*~1(D) of the previous stage.

Constraint Databases, Queries, and Query Languages 53

2. In accordance with the inflationary semantics, we no longer define the
value of an intentional constraint relation H, at a stage P(D), simply
as the results of all rules having H in their head, applied to the pre-
vious stage P~1(D). Instead, we take the union of these results with
Pi=Y(D)(H), i.e., with what we already had for H from the previous
stage.

Termination of this computation by stages now again corresponds to closure
of the least fixpoint of the inflationary operator 75 .

Although DATALOG programs with unrestricted, inflationary negation, as
a constraint query language, is in general not very practical to work with,
some nice positive theoretical results have been obtained for this language.
They are reported in Chapters 4 and 7.

2.9 Bibliographic Notes

The seminal paper, introducing the idea of constraint databases, and showing
that constraint query languages can be computationally feasible for various
constraint structures, is by Kanellakis, Kuper, and Revesz [KKR90, KKR95].

There are many good expositions on logic; Enderton [End72] and Ebbing-
haus, Flum, and Thomas [EFT94] are two of them. The expositions by Chang
and Keisler [CK90] and Hodges [Hod93] on first-order model theory include
discussions on quantifier elimination. Extensive background on relational
database theory and deductive databases, including DATALOG and negation,
is provided by Abiteboul, Hull, and Vianu [AHV95].

Tarski’s famous decision procedure for the reals [Tar51] and its ramifica-
tions are nicely exposed by van den Dries [van88]. A relatively recent state of
the art in algorithms for the theory of the reals is in Renegar’s article [Ren92],
as well as in the collection by Caviness and Johnson [CJ98]. The best algo-
rithms at the time of this writing are those of Basu [Bas96].

For the reals with addition only (linear constraints), there is a partic-
ularly simple (though generally inefficient) algorithm to eliminate quanti-
fiers [HU79], and the (generally intractable) complexity of the associated de-
cision problem has been pinpointed exactly [Ber80]. In the case of dense order
(or even simpler, just equality constraints), generally efficient algorithms are
known [FG77, KKR95].

The expositions by Bochnak, Coste, and Roy [BCR98] and Benedetti and
Risler [BR90] on real algebraic geometry provide extensive discussions of the
properties of real semi-algebraic sets. The recent authorative book of van den
Dries [vdD98] provides an excellent exposition of the properties of o-minimal
structures.

As for credits to some of the more specific results described in this chapter:
Theorem 2.5.1 is by Gyssens, Van den Bussche, and Van Gucht [GVdBVG99].
Corollary 2.6.7 and Proposition 2.6.8 are by Grumbach and Su [GS97a].

54 Jan Van den Bussche

Corollary 2.7.7 is by Ibarra and Su [IS97], who actually give credit for it
to M. Vardi. (The subtle point discussed right after the Corollary was not
addressed by Ibarra and Su.)

