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Abstract. Spatial databases are modeled as closed semi-algebraic sub-
sets of the real plane. First-order logic over the reals (expanded with
a symbol to address the database) provides a natural language for ex-
pressing properties of such databases. Motivated by applications in ge-
ographical information systems, this paper investigates the question of
which topological properties can be thus expressed. We introduce a novel,
two-tiered logic for expressing topological properties, called CL, which is
subsumed by first-order logic over the reals. We put forward the question
whether the two logics are actually equivalent (when restricting attention
to topological properties). We answer this question affirmatively on the
class of “region databases.” We also prove a general result which further
illustrates the power of the logic CL.

1 Introduction and summary

A simple yet powerful way of modeling spatial data is using semi-algebraic sets.
A subset A of n-dimensional Euclidean space R" is called semi-algebraic if it can
be defined by a Boolean system of polynomial inequalities. First-order logic over
the reals, denoted here by FO[R], then becomes a spatial query language, fitting
in the (by now rather well known) framework of constraint query languages
introduced by Kanellakis, Kuper and Revesz [12]. The goal of this paper is to
understand the power of this formalism in expressing topological queries.!

We will work with planar spatial databases, whose content are described
by semi-algebraic sets S in the plane R2. An example of a first-order query in
this context is “is the database bounded?”, which can be expressed in FO[R] as
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(3b > 0)VaVy(S(z,y) = (=b <z < bA—b <y < b)).2 We will consider only sets
that are closed in the ordinary topology on R?2. This assumption is of great help
from a technical point of view, and is harmless from a practical point of view.

Topological properties. A property of spatial databases is called topological if
it is invariant under topological transformations of the plane. More precisely,
whenever the property holds for some A, it must also hold for any other A’ that
is the image of A under a homeomorphism of the plane.? For example, the above-
mentioned property “the database is bounded” is topological, as is the property
“the database consists of (curved) lines only”. In contrast, the property “the
database contains a straight line” is not. Apart from our interest in topological
properties as a natural and mathematically well-motivated class of properties,
they are also practically motivated by geographical information systems [6-8,
14,18].

So far there was not much understanding yet of the class of topological prop-
erties that are first-order (i.e., expressible in FO[R]), except for the feeling that
this class must be rather meager. Indeed, many topological properties are not
first-order; for example, one cannot express in FO[R] that the database is topo-
logically connected.* But exactly which topological properties are first-order?

Cone Logic. What we do understand quite well is when two given sets A and
A" are topologically elementary equivalent. This means that any FO[R]-sentence
that is topological will not distinguish between A and A’. Indeed, Paredaens and
the present authors [15] discovered a characterization of topological elementary
equivalence in terms of the cone types occurring in the two given databases.
Semi-algebraic sets are topologically well-behaved in that locally around each
point they are “conical” [4]. The cone of a point can either be completely filled
(in case of points in the interior of the set), completely empty (in case of iso-
lated points or points not in the set), or consisting of lines and regions arriving
in the point. A database can be partitioned according to the cone types of its
points. The characterization states that two databases are topologically elemen-
tary equivalent if and only if the cardinalities of the equivalence classes of their
partitions match.

In this paper we introduce Cone Logic (CL), in which only topological prop-
erties can be expressed. The logic CL is two-tiered: at the bottom tier, there is a
first-order logic for expressing properties of cones, which can talk about the lines
and regions making up the cone, and their relative order in the cone. At the top
tier, any sentence «y from the bottom tier can be used in an “atomic” formula of

2 The subformula —b < = is, of course, a shorthand for (32)(z +b=0A z < z). Note
that formally, we work in an expansion of first-order logic over the reals with a binary
relation symbol S to address the content of the database. However, we will use the
same notation FO[R] to denote this first-order query language.

3 A homeomorphism of the plane is a bijection f : R? — R? such that both f and
f~! are continuous.

* This follows from the combined results of Benedikt, Dong, Libkin and Wong [2] and
Grumbach and Su [10].



the form [v](p), where p is a point variable; this formula expresses that the cone
of p satisfies property . The only other atomic predicate at the top tier is the
symbol S to address the database; the top tier is then closed under the standard
first-order operations. An example of a sentence in CL is

Vp[3zR(z) — Az L(z)](p),

which expresses that at every point bordering a region (R), there can be at most
one line (L) entering that region. Another example is

Ip[3e3y323u(R(x) A L(y) A R(2) A L(u) A B(z,y,2) A B(z,u,2))](p),

which expresses that there is a point where two regions meet, and through which
a line runs between the two regions. (The predicate B(z,y, z) denotes that cone
element y lies between cone elements z and z.)

Note that while FO[R] talks about points in terms of their coordinates,
CL can only talk about points directly and does not even have access to their
coordinates. Every property expressible in CL is also expressible in FO[R]. We
investigate the question of the converse: is CL first-order complete? That is, is
every first-order topological property expressible in CL?

Circular languages. As a first illustration of the power of CL, we show that any
property of cones expressible in FO[R] can also be expressed in CL. Since a
non-trivial cone can be represented as a circular list of L’s and R’s, an arbitrary
property of cones can be represented as a set of such circular lists; we call such
a set a circular language. We prove for any circular language T that if “the cone
of point (z,y) satisfies T” is expressible in FO[R], then “the cone of point p
satisfies T” is expressible in CL.

Region databases. A database is called a region database if, intuitively, it only
contains “filled” figures. More precisely, the cone of every point in the database
must either be completely full or consist exclusively of R’s (regions). Region
databases appear often in geographical information systems.

With each region database we can associate an abstract directed graph of a
very simple form. For each singular point p in the database there is a “parent”
node in the graph with outgoing edges to n “child” nodes, where n is the num-
ber of R’s in the cone of p. The sets of child nodes for different parent nodes
are disjoint. Importantly, by the above-mentioned characterization of topologi-
cal elementary equivalence, any two topologically elementary equivalent region
databases have the same associated abstract graph.

Our second main result is then that a topological property of region databases
is expressible in FO[R] if and only if it is expressible in standard first-order logic
when looking at the abstract graph of a database instead of at the database
itself.> Using a quantifier elimination procedure, we obtain as a corollary the
first-order completeness of CL on the class of region databases.

® With “standard” first-order logic of graphs we mean first-order logic over one binary
relation E, used to address the edges of the graph.



The general question of first-order completeness of CL the class of all planar
spatial databases remains open. Other open questions are to extend our results
to databases consisting of multiple semi-algebraic sets (rather than just one), or
to non-planar (e.g., 3D) databases.

Lifting collapse theorems. In the proofs of our completeness results we make
heavy use of a powerful tool: a “collapse theorem” by Benedikt, Dong, Libkin
and Wong [2]. This theorem says that any FO[R]-definable property of finite
databases that is invariant under monotone bijections from R to R, is already
expressible by a sentence that uses no arithmetic, except for the order predicate.
So, this sentence mentions only the predicate < and the relation symbol S for
the database content.

Now CL is subsumed by first-order logic over (<,S). Hence, our first-order
completeness result for CL “lifts” collapse to the level of infinite, semi-algebraic,
sets, which are much more relevant in the spatial context than finite databases.

Acknowledgment. We thank Jan Paredaens for a number of inspiring discussions
we had with him in the initial stage of this work.

2 Preliminaries

Spatial databases. We denote the real numbers by R, so R? denotes the real
plane. A semi-algebraic set in R? is a set of points that can be defined as

{(z,y) € R* | p(z,y)},

where p(z,y) is a formula built using the Boolean connectives A, V, and = from
atoms of the form P(xz,y) > 0, where P(z,y) is a polynomial in the variables
z and y with integer coefficients. Observe that P = 0 is equivalent to =(P >
0) A =(—P > 0), so equations can be used as well as inequalities.

In this paper, a database is defined as a semi-algebraic set in R? that is
closed in the ordinary topological sense. It is known [4] that these are precisely
the finite unions of sets of points that can be defined as

{(z,y) € R* | Pi(2,5) > OA...A Py (z,y) >0}

In other words, we disallow the essential use of strict inequalities in the definition
of a database.

First-order logic over the vocabulary (0,1,+, x, <, S), with S a binary rela-
tion symbol, is denoted by FO[R]. An FO[R]-formula ¢ can be evaluated on a
database A by letting variables range over R, interpreting the arithmetic sym-
bols in the obvious way, and interpreting S(z,y) to mean that the point (z,y)
is in A.

To formalize what it means for two databases A and B to be topologically
the same, we use the notion of isotopy. An isotopy is a continuous deformation



of the plane;® A and B are called isotopic if there is an isotopy h such that
h(A) = B.7

An FO[R]-sentence ¢ is called topological if whenever databases A and B
are isotopic, then A |= ¢ if and only if B [ ¢. Finally, two databases A and B
are called topologically elementary equivalent if for each topological sentence ¢,
A E ¢ if and only if B | ¢.

Cones. A known topological property of semi-algebraic sets [4] is that locally
around each point they are conical. This is illustrated in Figure 1. For every
point p of a semi-algebraic set A there exists an € > 0 such that D(p,e) N A is
isotopic to the planar cone with top p and base C'(p,e) N A.® We thus refer to
the cone of p in A.

Fig. 1. A database and the cone of one of its points.

A database is also conical around the point at infinity.” More precisely, there
exists an e > 0 such that {(z,y) | 2% + y*> > 2} N A is isotopic to {\ - (z,y) |
(z,y) € C((0,0),e) N AA X >1}. We can indeed view the latter set as the cone
with top oo and base C'((0,0),e) N A, and call it the cone of co in A.

We use the following finite representation for cones. The cone having a full
circle as its base (which appears around interior points) is represent by the letter
F. Any other cone can be represented by a circular list of L’s and R’s (for “line”

6 Formally, an isotopy is a homeomorphism of the plane that is isotopic to the identity.
Two homeomorphisms f and g are isotopic if there is a continuous function F :
R?x[0,1] — R? such that for each ¢ € [0, 1], the function F; : R* — R? : p s F(p,t)
is a homeomorphism and Fp is f and F3 is g.
A more relaxed notion of “being topologically the same” is to simply require that B
is the image of A under a homeomorphism rather than an isotopy. The only difference
between the two notions is that the latter considers mirror images to be the same,
while the former does not. Indeed, every homeomorphism either is an isotopy itself,
or is isotopic to a reflection [13]. All the results we will present under isotopies have
close analogues under homeomorphisms.
8 D(p,€) is the closed disk with center p and radius &; C(p, €) is its bordering circle.
% If we project R? stereographically onto a sphere, the point at infinity corresponds
to the missing point on the sphere.



and “region”) which describes the cone in a complete clockwise turn around the
top. For example, the cone of Figure 1 is represented by (LLRLR). The cone
with empty base (which appears around isolated points) is represented by the
empty list (). The set of all cones, represented in the way just explained, will be
denoted by C.

Let A be a database. The point structure of A is the function IT(A) from
AU {oo} to C that maps each point to its cone in A. It can be shown that
IT(A)~! is empty on all but a finite number of cones. Moreover, there are only
three cones where IT(A)~! can be infinite: F', (LL) (the cone around points on
curves), and (R) (the cone around points on the smooth border of a region). It
can indeed be shown that in each database, the points with a cone different from
these three are finite in number. The points are called the singular points of the
database.

Let A and B be databases. We say that IT(A) is isomorphic to II(B), denoted
by II(A) = II(B), if there is a bijection f from A U {oo} to B U {oo} with
f(00) = o0, such that IT(A) = II(B) o f. Paredaens and the present authors
gave the following characterization [15]:

Theorem 1. Two databases A and B are topologically elementary equivalent if
and only if I1(A) = II(B).

3 Cone logic

In this section we introduce the logic CL (cone logic). This is a two-tiered logic.
At the bottom tier we have a first-order logic for expressing properties of cones.
At the top tier we can use sentences from the bottom tier to talk about points
in the database and their cones.

Logical properties of cones. Consider the vocabulary C consisting of the propo-
sitional symbols F' and E, the unary relation symbols L and R, and the ternary
relation symbol B. First-order logic sentences over C will be called C-sentences.

An arbitrary cone can be viewed as a finite C-structure as follows. The full
cone F is viewed as the empty structure where proposition F' is true (and propo-
sition E is false); the empty cone () is viewed as the empty structure where E
is true (and F false). A cone of the form (co...c,—1), where each ¢; is L or R,
is viewed as the structure with domain {0,...,n — 1} in which propositions F'
and E are false; relation L equals {i | ¢; = L}; relation R equals {i | ¢; = R};
and relation B equals {(i,7,k) | 0 < (j —4) mod n < (k — i) mod n}. Relation
B stands for “betweenness”: B(i, j, k) holds if when we walk around the cone
in clockwise order starting from element nr. 7, we meet element nr. j before we
meet element nr. k.

Under the above view we can evaluate C-sentences on cones. For example,
the cone (RLLRL) satisfies the C-sentence

JzdyTzFu(R(x) A L(y) A R(2) A L(u) A B(x,y, z) A B(z,u,x)).



The logic CL. Cone logic is first-order logic over the infinite vocabulary consisting
of the constant symbol oo, the unary relation symbol S, and all unary relation
symbols of the form [v], with v a C-sentence.

A CL-formula can be evaluated on a database A in the following way: oo is
interpreted by the point at infinity; S(p) means that p is a point belonging to
A; and [y](p) means that the cone of p in A satisfies . Variables and quantifiers
range over the points in the plane.

Since the cone structure of a database is left invariant by isotopies, we have:

Proposition 1. Fvery property expressed by a CL-sentence is topological.
We also note: (proof delayed to the next section)
Proposition 2. For every CL-formula there is an equivalent FO[R]-formula.

The natural question now arises: is every topological property expressible in
FO[R] also expressible in CL? We investigate this problem, which we call the
first-order completeness of CL, in the following sections.

4 Circular languages

Let us call a circular language any cone property (i.e., a set of cones) that does
not contain the two special cases of the full cone and the empty cone (these can
be treated separately). So a circular language is a set of non-empty circular lists
of L’s and R’s.

A circular language T is called FO[R]-definable if there is an FO[R]-formula
(z,y) such that for each database A and each point (zo,yo) € A, A = [z, yo)
iff the cone of (zo,yo) in A belongs to T'. We are going to show:

Theorem 2. Every FO[R]-definable circular language T is definable by a C-
sentence.

Before we sketch the proof, we remark that it is easy to characterize the C-
definable circular languages. Let T be an arbitrary set of words over the alphabet
{L, R}. We can turn T into a circular language T by circularizing every word
in T. It is well known [19] how words over the alphabet {L, R} can be viewed
as finite structures over the vocabulary consisting of the unary relation symbols
L and R, and the order predicate <. The first-order definable sets of words are
then precisely the star-free regular languages. Using this fact, the following is
not difficult to see:

Proposition 3. The circular languages definable by C-sentences are precisely
those of the form T, with T a star-free reqular language over {L, R}.

Using this fact, we can prove Proposition 2 using induction on the star-free
regular expressions. We omit the details.
We now present:



Fig. 2. Construction of A(A).

Proof of Theorem 2. (Sketch) Let ¢ be the FO[R]-formula defining T'. Let
Tvord be the set of all words over {L, R} that belong to 7" when viewed as
circular lists.

Consider finite (L, R)-structures A over the reals, with L and R unary re-
lation symbols. We first show that “A € TW°r?” (meaning that the elements
of L? and R?, when scanned from right to left, spell out a word in 7"°") is
expressible by a first-order sentence over the vocabulary (L, R, <), where < is
the real ordering. Indeed, we can find an FO[R]-formula (over the vocabulary
(0,1,4+, x, <, L, R)) that defines, on any A, a database A(A) that is conical with
top (0,1) and that contains through each element of L4 or R4 (embedded on
the z-axis of R?) a line or triangular strip. This is illustrated in Figure 2 for
LA =1{0,2,3} and R? = {1}.

Then “A € TVrd” is equivalent to A(A) = ¢[0, 1]. The latter sentence is also
invariant under monotone bijections from R to R. Hence, by a collapse theorem
by Benedikt, Dong, Libkin and Wong [2], the sentence is equivalent to a sentence
¢ over (L, R, <). Moreover, we may assume without loss of generality that the
quantifiers in 1 range only over the active domain of the given structure [16, 3].

Consider now the C-sentence v = df1)’, where ¢’ is obtained from 1) by
replacing all occurrences of x < y by B(f,z,y). Then v defines the circular
language T O

5 Region databases

In this section we focus on region databases, defined as databases in which the
cone of every point is either F' or consists exclusively of R’s. Intuitively, such
databases contain only “filled” figures. We are going to show:

Theorem 3. CL is first-order complete on the class of region databases.

We will prove Theorem 3 by establishing a connection between topological prop-
erties and logical properties of abstract graphs.
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Fig. 3. At the top, a database A; at the bottom, graph(A).

Let A be a (fully two-dimensional) database, and let p be a singular singular
point in A. The number of R’s in the cone of p in A is called the degree of p in
A and denoted by degp. We can now associate an abstract directed graph to A,
denoted by graph(A), as follows (an illustration is given in Figure 3). The set of
nodes of graph(A) equals the union of the set of singular points in A with the
set {(p,4) | p a singular point in A and 1 < i < degp}.!? The nodes in the first
set are called parent modes; the nodes in the second set are called child nodes.
There is an edge from each node p to each node (p, 7).

The graphs that equal graph(A) for some A are called the depth-one forests.
Also note that, by Theorem 1, if graph(A) and graph(B) are isomorphic then A
and B are topologically elementary equivalent.

We view directed graphs in the usual manner as structures over the vocabu-
lary consisting of a single binary relation symbol E; the domain equals the set
of nodes, and relation E equals the set of edges. We refer to first-order logic over
this vocabulary {E} as FO of graphs. To prove Theorem 3, we will also need to
talk about ordered graphs. These are graphs with an additional order predicate
<, which is an arbitrary linear order on all nodes. First-order logic over (E, <)
will be referred to as FO of ordered graphs.

Let G be some class of graphs. An FO sentence ¢ of ordered graphs is called
order-invariant over G if it does not distinguish between different orderings of
the same graph in G. It is well known (e.g., [1, Exercise 17.27], [5, Proposi-
tion 2.5.6]) that in general, order-invariant FO sentences of ordered graphs are

10 For simplicity of presentation in this section, we ignore the point at infinity. It can
be accommodated for by adding a few technicalities.



more powerful than standard FO sentences of graphs. However, for G the class
of depth-one forests, we can prove:

Proposition 4. Fvery FO sentence of ordered graphs that is order-invariant
over depth-one forests is equivalent (on depth-one forests) to a standard FO
sentence of graphs.

Proof. (Sketch) We rewrite FO formulas working on depth-one forests in a
“many-sorted normal form” where variables range either only over parent nodes
or only over child nodes. An ordering of a depth-one forest is called “canonical”
if all parent nodes come first in the order, ordered by increasing number of
children, followed by the child nodes ordered according to their parents.

We can show that on canonically ordered depth-one forests,!' every FO for-
mula is equivalent to a quantifier-free one over the expansion of the vocabulary
(E, <) with the following constants, functions and predicates. For each n, we
have constants for the minimal parent having at least n children and the max-
imal parent having at most n children, as well as constants for the globally
minimal and maximal parent. For each n, we have the binary predicate among
parent nodes that the number of nodes between them in the order is at least
n. We have functions giving the minimal and maximal child of a parent node.
We have the sibling relation among child nodes. We have functions giving the
minimal and maximal sibling of a child node. Finally, for each n, we have the
binary predicate among child nodes that the number of nodes between them in
the order is at least n.

The quantifier elimination procedure proceeds inductively as usual, distin-
guishing between parent variables and child variables in eliminating quantifiers,
and adding the necessary extra predicates where needed to preserve equivalence.
A quantifier-free sentence in this expanded logic can only talk about bounds on
cardinalities of sets of parents defined by bounds on their number of children.
Such properties are already expressible in standard FO of graphs. O

Having Proposition 4 at our disposal, we can now establish the following
upper bound on the topological properties expressible in FO[R]:

Lemma 1. For every topological FO[R]-sentence ¢ there exists an FO sentence
Y of graphs such that for each database A, A |= ¢ iff graph(A) = .

Proof. (Sketch) Given a depth-one forest G embedded in the reals, we can con-
struct a database A(G) topologically elementary equivalent to any database A
for which graph(A) and G are isomorphic. This construction is illustrated in
Figure 4. Actually, we can even find an FO[R]-formula # (mentioning the re-
lation symbol E) that performs this construction (i.e., that defines A(G) given
any G). Hence, the sentence ¢ being the composition of 8 with ¢ is the wanted
sentence, if it were not for the fact that ¢ is not in FO of graphs but rather

1 Considering order-invariant sentences, it is sufficient to restrict attention to depth-
one forests that are canonically ordered.



in the much richer logic FO[R]. However, ¢ is order-generic, so by the collapse
theorem already used in the proof of Theorem 2, we may assume it to be over
the vocabulary (E, <) only. Again, we may even assume that quantifiers in
range over the active domain only; hence 9 is an FO sentence of ordered graphs.
Finally, since v is order-invariant, applying Proposition 4 yields the desired FO
sentence of graphs. O

Fig. 4. The database A(G) for some real embedding G of the graph of Figure 3. The
parent nodes are placed on the real axis at the positions of their corresponding real
numbers. The children are then drawn around the parents as regions, in the directions
obtained from their corresponding real numbers (after a scaling from R to R*). Note
that A(G) is topologically elementary equivalent to the database of Figure 3; this is a
crucial property of the construction.

Theorem 3 now follows immediately from Lemma 1 and the following coun-
terpart to it:

Lemma 2. For every FO sentence i of graphs there exists a CL-sentence
such that for each database A, graph(A) = iff A E .

Proof. (Sketch) From the proof of Proposition 4 (which dealt with order-invariant
FO sentences of ordered graphs and thus certainly applies to standard FO sen-
tences of graphs), we may assume ¢ to be quantifier-free, provided extra pred-
icates are provided for talking about bounds on cardinalities of sets of parents
defined by bounds on the number of their children. Translated from graph(A) to
A this represents bounds on the cardinalities of sets of singular points defined
by bounds on their degree. But such properties are expressible in CL. a

6 Discussion

The most obvious direction for further research is to extend our completeness
result for CL from the class of region databases to the general class of all (closed)
databases. The point where our proof fails for the general case is the construction
illustrated in Figure 4, where we construct, in FO[R], from any real embedding of
graph(A), for any region database A, a database topologically elementary equiv-
alent to A. If A is not a region database, we cannot simply draw the children as
regions emanating from their parents, as done in the figure; now some children



have to be drawn as lines. The endpoints of these lines must be pairwise con-
nected; they are unwanted extra singular points and cannot be left “dangling.”
The problem, however, is that this seems impossible to do in FO[R].
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