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ABSTRACT
Typechecking consists of statically verifying whether the

output of an XML transformation is always conform to an

output type for documents satisfying a given input type.

We focus on complete algorithms which always produce the

correct answer. We consider top-down XML transforma-

tions incorporating XPath expressions and abstract docu-

ment types by grammars and tree automata. By restricting

schema languages and transformations, we identify several

practical settings for which typechecking is in polynomial

time. Moreover, the resulting framework provides a rather

complete picture as we show that most scenarios can not

be enlarged without rendering the typechecking problem in-

tractable. So, the present research sheds light on when to

use fast complete algorithms and when to reside to sound

but incomplete ones.

1. INTRODUCTION
In a typical XML data exchange scenario on the web, a
user community creates a common schema and agrees on
producing only XML data conforming to that schema. This
raises the issue of typechecking: verifying at compile time
that every XML document which is the result of a specified
query or document transformation applied to a valid input
document, satisfies the output schema [24, 25].

The main goal of this paper is to determine relevant scenar-
ios for which typechecking becomes tractable. Additionally,
we also want to identify the frontier of tractability for these
scenarios. As typechecking quickly becomes intractable [2,
16, 19], we focus on simple but practical XML transforma-
tions where only little restructuring is needed, like for in-
stance in filtering of documents. Transformations that can
for example be expressed by structural recursion [5] or by
a top-down fragment of XSLT [3]. As is accustomed, we
abstract such transformations by unranked tree transduc-
ers [14, 16]. As types we adopt the usual Document Type
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Definitions (DTDs) and their robust extension: regular tree
languages [19, 13] or, equivalently, specialized DTDs [22, 23].
The latter serve as a formal model for XML Schema [28].

In earlier work, we identified three sources of complexity
for the typechecking problem in the above setting: non-
determinism in the regular expressions in the output DTD,
the ability of the transformation to make arbitrary copies of
subtrees, and the capability to delete (rather than rename
or replace) nodes of the input document [16]. In fact, the
only ptime typechecking instance we obtained, was by disal-
lowing all three parameters. As the latter scenario is overly
restrictive, especially since it excludes every form of dele-
tion, we investigate in this paper larger and more flexible
classes for which the complexity of the typechecking prob-
lem remains in ptime.

We first note that the scenario studied in [16] is very gen-
eral: both the schemas and the transducer were determined
to be part of the input. However, for some exchange scenar-
ios it makes sense to fix the input and/or output schema:
for instance, when considering a common schema within a
community or when translating data from one community
to another. Therefore, we first revisit the various instances
of the typechecking problem considered in [16] and deter-
mine the complexity in the presence of fixed input and/or
output schemas. The obtained results are summarized in
Table 2 and explained in Section 3. In particular, we show
that for non-deleting transducers and fixed input and out-
put schemas, we can allow arbitrary copying and still have
a tractable typechecking algorithm. Unfortunately, we also
show that in all new settings the typechecking problem re-
mains intractable when allowing deletion or using tree au-
tomata.

As illustrated by Example 3, deletion of an arbitrary number
of interior nodes is quite typical for filtering transformations.
Indeed, many simple transformations select specific parts
of the input while deleting the non-interesting ones. We
therefore explore ways to preserve tractability but admit
restricted forms of deletion.

First, we investigate deletion in the setting where DTDs use
DFAs to define right-hand sides of rules and transducers
can only make a bounded number of copies of nodes in the
input tree. By proving a general lemma which quantifies
the combined effect of copying and deletion on the com-



plexity of typechecking, we derive conditions under which
typechecking becomes tractable. In particular, these condi-
tions allow arbitrary deletion when no copying occurs (like
in Example 3), but at the same time permit limited copying
for those rules that only delete in a limited fashion. This
result is relevant in practice as in common filtering trans-
formations arbitrary deletion almost never occurs together
with copying.

We then show that the present setting cannot be enlarged
without increasing the complexity. In particular, we show
that combining arbitrary deletion with the ability of copy-
ing the input only twice, or a slight relaxation of the lim-
ited deletion restriction makes typechecking intractable. Fi-
nally, we briefly examine tree automata to define schemas
and show that in the case of deterministic tree automata, no
copying but arbitrary deletion, we get a ptime algorithm.

The first ptime result still relies on a uniform bound on the
number of copies a rule of the transducer can make. Al-
though this number will always be fairly small in practice,
it would still be more elegant to have an algorithm which
is tractable for any transducer. Thereto, we have to re-
strict the schema languages. In fact, we show that only for
very weak DTDs, those where all regular expressions are
concatenations of symbols a and a+, typechecking becomes
tractable, and that obvious extensions of such expressions
make the problem at least conp-hard. So, the price for ar-
bitrary deletion and copying is very high.

As an alternative to deletion, one can skip nodes in the input
tree by by adding XPath expressions to the transformation
language. In the case where DTDs use DFAs, we obtain
a tractable fragment by translating the transformation lan-
guage to transducers without XPath expressions. As XPath
containment in the presence of DTDs [21, 27] can easily
be reduced to the typechecking problem, lower bounds es-
tablishing intractability readily follow for XPath fragments
containing filter and disjunction. We leave one case open.
We only prove an initial result for the case where DTDs use
RE+ expressions.

Finally, we address how to generate counterexamples when
an instance fails to typecheck and consider a slight adapta-
tion of the typechecking problem: almost always typecheck-
ing. The latter problem was first discussed by Engelfriet
and Maneth [12] and asks whether there exist only a finite
number of counterexample trees for a given instance. We
argue that the ptime algorithms in Section 4 can also be
used for almost always typechecking.

Complete vs. Incomplete. Our work studies sound and
complete typechecking algorithms, an approach that should
be contrasted with the work on general purpose XML pro-
gramming languages like XDuce [11] and CDuce [8], for
instance, where the main objective is fast and sound but
sometimes incomplete typechecking. So, sometimes trans-
formations are typesafe but are rejected by the typechecker.
As we only consider very simple and by no means Turing-
complete transformations, it makes sense to ask for complete
algorithms. In fact, the present paper sheds light on pre-
cisely when we can get fast complete algorithms and when
we should start looking for incomplete ones.

Related Work. The research on typechecking XML trans-
formations is initiated by Milo, Suciu, and Vianu [19]. They
obtained the decidability for typechecking of transforma-
tions realized by k-pebble transducers via a reduction to
satisfiability of monadic second-order logic. Unfortunately,
in this general setting, the latter non-elementary algorithm
cannot be improved [19]. Interestingly, typechecking of k-
pebble transducers has recently been related to typechecking
of compositions of macro tree transducers [12]. Alon et al. [1,
2] investigated typechecking in the presence of data values
and show that the problem quickly turns undecidable. A
problem related to typechecking is type inference [18, 22].
This problem consists in constructing a tight output schema,
given an input schema and a transformation. Of course,
solving the type inference problem implies a solution for the
typechecking problem: check containment of the inferred
schema into the given one. However, characterizing output
languages of transformations is quite hard [22]. The trans-
ducers considered in the present paper are restricted versions
of the ones studied by Maneth and Neven [14]. They already
obtained a non-elementary upper bound on the complexity
of typechecking (due to the use of monadic second-order
logic in the definition of the transducers). Tozawa consid-
ered typechecking w.r.t. tree automata for a fragment of
top-down XSLT [26]. His framework is more general but he
only obtains a double exponential time algorithm. It is not
clear whether that upper bound can be improved.

Organization. The remainder of the paper is organized as
follows. In Section 2, we provide the necessary definitions.
In Section 3, we discuss typechecking in the restricted set-
tings of fixed output and/or input schemas. In Section 4,
we consider deleting transducers. In Section 5, we discuss
DTDs with RE+ expressions. In Section 6, we discuss the
addition of XPath. In Section 7, we present some observa-
tions. We conclude in Section 8. Complete proofs can be
found in [15].

2. DEFINITIONS
In this section we provide the necessary background on trees,
automata, and tree transducers. We fix a finite alphabet Σ.

2.1 Trees, Hedges, DTDs, and Tree Automata
The set of unranked Σ-trees, denoted by TΣ, is the smallest
set of strings over Σ and the parenthesis symbols ‘)’ and ‘(’
such that for σ ∈ Σ and w ∈ T ∗

Σ , σ(w) is in TΣ. So, a tree
is either ε (empty) or is of the form σ(t1 · · · tn) where each
ti is a tree. The latter denotes the tree where the subtrees
t1, . . . , tn are attached to the root labeled σ. We write σ
rather than σ(). Note that there is no a priori bound on
the number of children of a node in a Σ-tree; such trees are
therefore unranked. In the following, whenever we say tree,
we always mean Σ-tree. A tree language is a set of trees.

Later, in the right-hand side of transducer rules we will allow
hedges: a hedge is a finite sequence of trees. The set of
hedges, denoted by HΣ, is defined as T ∗

Σ .

For every hedge h ∈ HΣ, the set of nodes of h, denoted
by Dom(h), is the subset of N∗ defined as follows: (i) if
h = ε, then Dom(h) = ∅; (ii) if h = t1 · · · tn where each
ti ∈ TΣ, then Dom(h) =

� n
i=1{iu | u ∈ Dom(ti)}; and, (iii)



if h = σ(w), then Dom(h) = {ε}∪Dom(w). In the sequel we
adopt the following convention: we use t, t1, t2, . . . to denote
trees and h, h1, h2, . . . to denote hedges. Hence, when we
write h = t1 · · · tn we tacitly assume that all ti’s are trees.
For every u ∈ Dom(h), we denote by labh(u) the label of u
in h. For a hedge h = t1 · · · tn, top(h), is the string obtained
by concatenating the root symbol of every ti.

We use extended context-free grammars and tree automata
to abstract from DTDs and the various proposals for XML
schemas. Further, we parameterize the definition of DTDs
by a class of representations M of regular string languages
like, e.g., the class of DFAs or NFAs. For M ∈ M, we denote
by L(M) the set of strings accepted by M .

Definition 1. Let M be a class of representations of regu-
lar string languages over Σ. A DTD is a tuple (d, sd) where
d is a function that maps Σ-symbols to elements of M and
sd ∈ Σ is the start symbol. For simplicity, we usually denote
(d, sd) by d.

A tree t satisfies d if labt(ε) = sd and for every u ∈ Dom(t)
with n children labt(u1) · · · labt(un) ∈ L(d(labt(u))). By
L(d) we denote the tree language accepted by d. 2

We denote by DTD(M) the class of DTDs where the regular
string languages are represented by elements of M. The size
of a DTD is the sum of the sizes of the elements of M used
to represent the function d.

We recall the definition of non-deterministic tree automata
from [4]. We refer the unfamiliar reader to [20] for a gentle
introduction.

Definition 2. A nondeterministic tree automaton (NTA)
is a tuple B = (Q,Σ, δ, F ), where Q is a finite set of states,
F ⊆ Q is the set of final states, and δ is a function δ :
Q × Σ → 2Q∗

such that δ(q, a) is a regular string language
over Q for every a ∈ Σ and q ∈ Q. 2

A run of B on a tree t is a labeling λ : Dom(t) → Q such
that for every v ∈ Dom(t) with n children, λ(v1) · · ·λ(vn) ∈
δ(λ(v), labt(v)). Note that when v has no children, then the
criterion reduces to ε ∈ δ(λ(v), labt(v)). A run is accepting
iff the root is labeled with an accepting state, that is, λ(ε) ∈
F . A tree is accepted if there is an accepting run. The set of
all accepted trees is denoted by L(B) and is called a regular
tree language.

A tree automaton is bottom-up deterministic if for all q, q′ ∈
Q with q 6= q′ and a ∈ Σ, δ(q, a) ∩ δ(q′, a) = ∅. We denote
the set of bottom-up deterministic NTAs by DTA.

Like for DTDs, we parameterize NTAs by the formalism
used to represent the regular languages in the transition
functions δ(q, a). So, for a class of representations of regular
languages M, we denote by NTA(M) the class of NTAs
where all transition functions are represented by elements
of M. The size of an automaton B is then |Q| + |Σ| +�

q∈Q,a∈Σ |δ(q, a)|. Here, by |δ(q, a)| we denote the size of

the automaton accepting δ(q, a). Unless explicitly specified
otherwise, δ(q, a) is always represented by an NFA.

2.2 Transducers
We adhere to transducers as a formal model for simple trans-
formations corresponding to structural recursion [5] and a
fragment of top-down XSLT. Like in [19], the abstraction
focuses on structure rather than on content. We next de-
fine the tree transducers used in this paper. To simplify
notation, we restrict to one alphabet. That is, we consider
transductions mapping Σ-trees to Σ-trees. Of course one
can define transductions where the input alphabet differs
from the output alphabet.

For a set Q, denote by HΣ(Q) (resp. TΣ(Q)) the set of Σ-
hedges (resp. trees) where leaf nodes can be labeled with
elements from Q.

Definition 3. A tree transducer is a tuple (Q,Σ, q0, R),
where Q is a finite set of states, Σ is the input and output
alphabet, q0 ∈ Q is the initial state, and R is a finite set
of rules of the form (q, a) → h, where a ∈ Σ, q ∈ Q, and
h ∈ HΣ(Q). When q = q0, h is restricted to TΣ(Q) \Q. 2

The restriction on rules with the initial state ensures that
the output is always a tree rather than a hedge. Transducers
are required to be deterministic: for every pair (q, a) there
is at most one rule in R.

Example 1. Let T = (Q,Σ, p, R) where Q = {p, q}, Σ =
{a, b}, and R contains the rules

(p, a) → d(e) (p, b) → d(q)
(q, a) → c p (q, b) → c(p q)

The XSLT program equivalent to the above transducer is
given in Figure 1 (we assume the program is started in mode
p). Note that the right-hand side of (q, a) → c p is a hedge,
while the other right-hand sides are trees. 2

The translation defined by T = (Q,Σ, q0, R) on a tree t in
state q, denoted by T q(t), is inductively defined as follows:
if t = ε then T q(t) := ε; if t = a(t1 · · · tn) and there is
a rule (q, a) → h ∈ R then T q(t) is obtained from h by
replacing every node u in h labeled with state p by the hedge
T p(t1) · · ·T

p(tn). Note that such nodes u can only occur at
leaves. So, h is only extended downwards. If there is no
rule (q, a) → h ∈ R then T q(t) := ε. Finally, define the

transformation of t by T , denoted by T (t), as T q0

(t).

For a ∈ Σ, q ∈ Q and (q, a) → h ∈ R, we denote h by
rhs(q, a). If q and a are not important, we say that h is a
rhs. The size of T is |Q|+ |Σ|+

�
q∈Q,a∈Σ |rhs(q, a)|. In the

sequel, we always use p, p1, p2, . . . and q, q1, q2, . . . to denote
states.

Example 2. In Figure 2 we give the translation of the tree
t defined as

b

b b

a b

a

b



<xsl:template match="a" mode ="p">
<d>

<e/>
</d>

</xsl:template>

<xsl:template match="b" mode ="p">
<d>

<xsl:apply-templates mode="q"/>
</d>

</xsl:template>

<xsl:template match="a" mode ="q">
<c/>
<xsl:apply-templates mode="p"/>

</xsl:template>

<xsl:template match="b" mode ="q">
<c>

<xsl:apply-templates mode="p"/>
<xsl:apply-templates mode="q"/>

</c>
</xsl:template>

Figure 1: The XSLT program equivalent to the
transducer of Example 1.

by the transducer of Example 1. In order to save space, we
did not list T q(ε) and T p(ε). 2

2.3 Copying and Deletion
We discuss two important features: copying and deletion.
In Example 1, the rule (q, b) → c(p q) copies the children of
the current node in the input tree two times: one copy is
processed in state p and the other in state q. The symbol
c is the parent node of the two copies. So the current node
in the input tree corresponds to the latter node. The rule
(q, a) → c p copies the children of the current node only
once. However, no parent node is given for this copy. So,
there is no corresponding node for the current node in the
input tree. We therefore say that it is deleted. For instance,
T q(a(b)) = c d where d corresponds to b and not to a.

We illustrate the functionality of copying and deleting by
means of a typical filtering example.

Example 3. The following DTD(DFA) defines a schema
for books:

book → title, author+, chapter+

chapter → title, introduction, section+

section → title, paragraph+, section∗

Here, comma denotes concatenation. Figure 3 depicts a
document conforming to the given schema. The following
transducer generates a table of contents: that is, for every
chapter of the book a list of its section titles.

(q, book) → book(q)
(q, chapter) → chapter q
(q, title) → title

(q, section) → q

The document in Figure 3 is transformed into the tree

book

title chapter title title title title chapter title title

The example illustrates the usefulness of deleting states: all
intermediate sections are skipped. Further, the rule

(q, chapter) → chapter q

allows to list all section titles next to the chapter element
rather than below.

Next, we illustrate copying. The following transducer ex-
tends the previous one by adding a summary of the book
to the table of contents. The summary is given by listing
the title and introduction of each chapter. By using the two
states p and p′, we make sure that the title of the book is
not printed in the summary.

(q, book) → book(q p)
(q, chapter) → chapter q
(q, title) → title

(q, section) → q
(p, chapter) → chapter(p′)
(p′, title) → title

(p′, introduction) → introduction

The output of the transformation, applied to the document
in Figure 3 is the following tree. Here, we replaced the
part of the output that is also generated by the previous
transformation with dots.

book

· · · chapter

title introduction

chapter

title introduction

2

We define some relevant classes of transducers. A transducer
is non-deleting if no states occur at the top-level of a rhs.
We denote by Tnd the class of non-deleting transducers and
by Td the class of transducers where we allow deletion. Fur-
ther, a transducer T has copying width k if there are at most
k occurrences of states in every sequence of siblings in the
right-hand sides of rules of T . For instance, the transducer
in Example 1 has copying width two. By Tbc we denote the
class of transducers for which there is a natural number k
such that all transducers have copying width k. We leave
k implicit. We denote the intersections of these classes by
combining the indexes. For instance, Tnd,bc is the class of
non-deleting transducers with bounded copying. To empha-
size that we allow unbounded copying, we also write Tnd,c

rather than Tnd.

2.4 The Typechecking Problem
A tree transducer T typechecks w.r.t. to an input tree lan-
guage Sin and an output tree language Sout, if T (t) ∈ Sout

for every t ∈ Sin.



T p(t) ⇒
d

T q(b) T q(b(ab)) T q(a(b))

⇓
d

c c

d

e

d c c

c d
⇐

d

c c

T p(a) T p(b) T q(a) T q(b)

c T p(b)

Figure 2: The translation of t = b(b b(a b)a(b)) by the transducer T of Example 1.

book

title author chapter

title introduction section

title paragraph section

title paragraph

section

title paragraph

chapter

title introduction section

title paragraph

Figure 3: A document conforming to the schema of Example 3.

Example 4. The second transducer of Example 3 type-
checks w.r.t. the input schema and the following DTD:

book → title, (chapter, title∗)∗, chapter∗
chapter → title, introduction | ε

2

We define the problem central to this paper.

Definition 4. Given Sin, Sout, and T , the typechecking
problem consists in verifying whether T typechecks w.r.t.
Sin and Sout. 2

The size of the input is the sum of the sizes of Sin, Sout,
and T . We parameterize the typechecking problem by the
kind of tree transducers and tree languages we allow. Let
T be a class of transducers and S be a class of tree lan-
guages. Then TC[T ,S] denotes the typechecking problem
where T ∈ T and Sin, Sout ∈ S. Examples of classes of tree
languages, are those defined by tree automata or DTDs.
Classes of transducers are discussed in the previous section.
The complexity of the problem is measured in terms of the
sum of the sizes of the input and output schemas and the
transducer.

Table 1 summarizes the results obtained in [16]. All prob-
lems are complete for the mentioned complexity classes. In
the setting of [16], typechecking is only tractable when re-
stricting to non-deleting and bounded copying transducers
in the presence of DTDs with DFAs. In the remainder of
the paper, we obtain more general classes for which type-
checking is in ptime.

3. FIXING SCHEMA LANGUAGES
As argued in the introduction, for some scenarios it makes
sense to consider the input and/or output schema not as

part of the input. From a complexity theory point of view,
it is important to note here that the input and/or output
alphabet then also becomes fixed. In this section, we revisit
the results of [16] in that respect. Surprisingly, the new
settings do not result in a spectacular improvement of the
complexity.

The results are summarized in Table 2. We explain the no-
tation used in the table. The second column specifies the
kind of tree transducer: d stands for deleting, c for copy-
ing, nd for non-deleting, and bc for bounded copying. The
leftmost column lists which schema languages are fixed. In
the case of deleting transformations, the different possibili-
ties are grouped as all complexities coincide. The remaining
columns show the allowed schema languages. As some re-
sults already follow from proofs in [16], we printed the new
results in bold. The entries where the complexity was low-
ered are underlined.

We discuss the obtained results: for non-deleting transfor-
mations, we get two new tractable cases: (1) fixed output
schema, bounded copying and DTD(NFA)s; and, (2) fixed
input and output, unbounded copying and all DTDs. It is
striking, however, that in the presence of deletion or tree
automata (even deterministic ones) typechecking remains
exptime-hard for all scenarios. So, the relaxed setting still
disallows to combine tractability with the desirable ability
to delete. We therefore focus on deletion in the next section.

Mostly, we only needed to strengthen the lower bound proofs
of [16]. A particularly interesting non-trivial case, is the
pspace lower bound of TCo[Tnd,c,DTD(DFA)]. The rest of
the proofs can be found in [15].

Proposition 3.1. TCo[Tnd,c, DTD(DFA)] is pspace-hard.

Proof. We use a reduction from the corridor tiling prob-



TT NTA DTA DTD(NFA) DTD(DFA)

d,c exptime exptime exptime exptime

nd,c exptime exptime pspace pspace

nd,bc exptime exptime pspace ptime

Table 1: Results of [16] (upper and lower bounds).

fixed TT NTA DTA DTD(NFA) DTD(DFA)

in, out, d,c EXP EXP EXP EXP

in+out d,bc EXP EXP EXP EXP

in nd,c EXP EXP PSPACE PSPACE

nd,bc EXP EXP PSPACE PTIME

out nd,c EXP EXP PSPACE PSPACE

nd,bc EXP EXP PTIME ptime

in+out nd,c EXP EXP NL NL

nd,bc EXP EXP NL NL

Table 2: Complexities of the typechecking problem in the new setting (upper and lower bounds).

lem [7]. Let (D, V,H, t̄, b̄) be a tiling system, where D =
{t1, . . . , tk} is the set of tiles, V ⊆ D2 and H ⊆ D2 are the
sets of vertical and horizontal constraints respectively, and
t̄ and b̄ are the top and bottom row, respectively. Let n be
the width of t̄ and b̄. The tiling system has a solution if
there is an m ∈ N, such that the space m× n (m rows and
n columns) can be correctly tiled (w.r.t. H and V ) with the
additional requirement that the bottom and top row are b̄
and t̄, respectively.

We define the input DTD din over the alphabet Σ := {(i, tj) |
j ∈ {1, . . . , k}, i ∈ {1, . . . , n}} ∪ {r}; r is the start symbol.
Define din(r) = #t̄# � Σ1 ·Σ2 · · ·Σn# � ∗

b̄#, where we denote
by Σi the set {(i, tj) | j ∈ {1, . . . , k}}. Here, # functions
as a row separator. For all other alphabet symbols a ∈ Σ,
din(a) = ε. So, din encodes all possible tilings that start and
end with the bottom row b̄ and the top row t̄, respectively.

We now construct a tree transducer T = (QT ,Σ, q
0
T , RT )

and an output DTD dout such that the tiling system has no
correct corridor tiling if and only if T typechecks w.r.t. din

and dout. Intuitively, the transducer and the output DTD
have to work together to determine errors in input tilings.
There can only be two types of error: two tiles do not match
horizontally or two tiles do not match vertically. The main
difficulty is that the output DTD is fixed and can, there-
fore, not depend on the tiling system. The transducer is
constructed in such a way that it prepares in parallel the
verification for all horizontal and vertical constraints by the
output schema. In particular, the transducer outputs spe-
cific symbols from a fixed set independent of the tiling sys-
tem allowing the fixed output schema to determine whether
an error occurred.

The state set QT is partitioned into two sets: (1) one for
the horizontal constraints: for every i ∈ {1, . . . , n − 1} and
t ∈ D, qi,t ∈ QT transforms the rows in the tiling such
that it is possible to check that when position i carries a
t, position i + 1 carries a t′ such that (t, t′) ∈ H; and, (2)
one for the vertical constraints: for every i ∈ {1, . . . , n} and
t ∈ D, pi,t ∈ QT transforms the rows in the tiling such that

it is possible to check that when position i carries a t, the
next row carries a t′ on position i such that (t, t′) ∈ V .

The tree transducer T always starts its transformation with
the rule (q0T , r) → r(w), where w is the concatenation of all
of the above states, separated by the delimiter $. The other
rules are of the following form:

• Horizontal constraints: for all (j, t) ∈ Σ add the rule
(qi,t, (j, t

′)) → α where

α =

����� ����
a if j = i and t = t′

e if j = i and t 6= t′

a if j = i + 1 and (t, t′) ∈ H
b if j = i + 1 and (t, t′) 6∈ H
e if j 6= i and j 6= i+ 1

Finally, (qi,t,#) → hor. The intuition is as follows:
if the i-th position in a row is labeled with t, then
this position is transformed into a. Position i + 1 is
transformed to a when it carries a tile that matches
t horizontally. Otherwise it is transformed to b. All
other symbols are transformed into an e. So, a row,
delimited by two hor-symbols, is wrong iff there is an
a immediately followed by a b. When there is no a,
then position i was not labeled with t. So, the label a
acts as a trigger for the output automaton.

• Vertical constraints: for all (j, t) ∈ Σ, add the rule
(qi,t, (j, t

′)) → α where

α =

����� ����
a if (j, t′) = (i, t) and (t, t) ∈ V
b if (j, t′) = (i, t) and (t, t) 6∈ V
c if j = i, t 6= t′, and (t, t′) ∈ V
d if j = i, t 6= t′, and (t, t′) 6∈ V
e if j 6= i

Finally, (qi,t,#) → ver. The intuition is as follows:
if the i-th position in a row is labeled with t, then
this position is transformed into a when (t, t) ∈ V
and to b when (t, t) 6∈ V . Here, both a and b act as
a trigger for the output automaton: they mean that



position i was labeled with t. But no a and b can
occur in the same transformed row. When position i
is labeled with t′ 6= t, then we transform this position
into c when (t, t′) ∈ V , and in d when (t, t′) 6∈ V . All
other positions are transformed into e. The output
DFA works as follows. If a position is labeled a then it
accepts if there is a d occurring after the next ver. If
a position is labeled b, then it accepts if there is a b or
a d occurring after the next ver. Otherwise, it rejects
that row.

By making use of the delimiters ver and hor, both above
described automata can be combined into one taking care
of the vertical and the horizontal constraints. Note that
the output automaton is defined over the fixed alphabet
{a, b, c, d, e, hor, ver, $}.

In the remainder of the paper, we denote by TCi[T ,S],

TCo[T ,S] and TCi/o[T ,S] the typechecking problem where
the input schema, output schema and both input and out-
put schema are fixed respectively. So, the size of the input
of the typechecking problem is the sum of the sizes of the
input and output schema and the tree transducer, minus the
size of the fixed parameter(s).

4. DELETION, BOUNDED COPYING, AND
DFAS

Although deletion has an enormous impact on the complex-
ity of typechecking, as is exemplified by the first two rows
of Table 2, more often than not, the ability to skip nodes
in the input tree is critical. Indeed, many simple transfor-
mations like the ones in Example 3 select specific parts of
the input while deleting the non interesting ones. Moreover,
such deletion can be unbounded. That is, the number of
deleted nodes on a path depends only on the input tree and
not on the schema.

In this section, we focus on DTD(DFA)s and on bounded
copying transducers. We prove a general lemma which quan-
tifies the combined effect of copying and deletion on the
complexity of typechecking. From this lemma we then de-
rive conditions under which typechecking becomes tractable.
Interestingly, these conditions allow arbitrary deletion when
no copying occurs, but at the same time permit bounded
copying for those rules that only delete in a bounded fash-
ion. We further show that these conditions cannot be re-
laxed without increasing the complexity. Finally, we discuss
typechecking in the context of schemas represented by de-
terministic tree automata.

4.1 A Tractable Case
We start by introducing some terminology. Let T = (Q,Σ, q0,
R) be a transducer. A deletion path is a sequence of states
q1, . . . , qn such that qi occurs in top(rhs(qi−1, ai−1)) for ev-
ery i = 2, . . . , n, where a1, . . . , an−1 ∈ Σ. A state q is re-
cursively deleting if it occurs twice in some deletion path;
otherwise, q is said to be non-recursively deleting. The dele-
tion width of q is the maximum number of occurrences of
states in top(rhs(q, a)) for all a ∈ Σ. For instance, if R
contains the rules (q, a) → aq1bq2q3 and (q, b) → q1a, then
the deletion width of q is three. The deletion width of a

deletion path q1, . . . , qn is the product of the deletion widths
of q1, . . . , qn−1 (qn is not counted). A deleting state q has
deletion depth k if all deletion paths starting with q contain
at most k + 1 states. If there exists no such k, we say that
q has infinite deletion depth. In particular, all recursively
deleting states have infinite deletion depth.

Example 5. Suppose that T is a tree transducer with states
q1, . . . , q8 and the following rewrite rules:

(q1, a) → q2 a q2 a (q5, a) → q6 aa q6
(q2, a) → a q3 q3 a q3 (q6, a) → q7 q7 q7
(q3, a) → q4 (q7, a) → a q8 a
(q4, a) → a (q8, a) → aa q7

The deletion depths and widths are given as follows:

state q1 q2 q3 q4 q5 q6 q7 q8
deletion depth 3 2 1 0 ∞ ∞ ∞ ∞
deletion width 2 3 1 0 2 3 1 1

The sequences q1, q2, q3, q4 and q5, q6, q7, q8, q7 are examples
of deletion paths in T . Both paths have deletion width six.
Note that the deletion path q5, q6, q7, q8, q7, q8, q7, q8 also has
deletion width six. The reason is that the deletion widths
of q7 and q8 themselves are one. Would there be a rule
(q7, b) → q8q8 then paths of arbitrary large deletion width
could be constructed. 2

We are now ready to define the class of transducers that is
of interest to us.

Definition 5. By T C,K
trac , we denote the class of transducers

that (i) have copying bound C, and (ii) for which every
deletion path has deletion width at most K. 2

When C and K are not important, we simply write Ttrac

instead of T C,K
trac .

Note that the class T C,K
trac allows recursive deleting, but only

for those states that do not copy at the same time. Oth-
erwise the width of deletion paths cannot be bounded. So,
if a state of a T C,K

trac transducer is recursively deleting then
every right-hand side is of the form hqg where q is a state
and h and g are hedges containing no states on their top
level and whose copying width is at most C. When a state
is non-recursively deleting, then simultaneous copying and
deleting is allowed but only in a bounded fashion. That is,
every deletion path containing that state is of deletion width
at most K and rhs(q, a) has copying width at most C.

Example 6. The first transducer in Example 3 belongs to
T 1,1

trac while the second is in T 2,1
trac. The transducer of Exam-

ple 5 is in T 3,6
trac. 2

The next lemma provides a detailed analysis of the com-
plexity of typechecking in terms of copying and deletion



power. Its proof is a non-trivial generalization from non-
deleting to deleting transducers of the reduction in [16] from
TC[Tnd,c, DTD(DFA)] to emptiness of unranked tree au-
tomata, followed by an analysis of the size of the obtained
automaton.

Lemma 4.1. The complexity of TC[T C,K
trac

, DTD(DFA)]
is O � (|din||T |

CK |dout|
CK)α � , where |din| and |dout| are the

sizes of the input and output schema, respectively; |T | is the
size of the tree transducer T ; and α is a constant.

Proof sketch. For a transducer T = (QT ,Σ, q
0
T , RT ) ∈

T C,K
trac , and input and output schemas din and dout, we con-

struct a nondeterministic unranked tree automaton A ac-
cepting all counterexample trees. That is, L(A) = {t ∈
L(din) | T (t) 6∈ L(dout)}. So, L(A) = ∅ iff T typechecks
w.r.t. din and dout. The size of A is O((|din||T |

CK |dout|
CK)β)

for some constant β. As emptiness NTAs is in ptime, there
is a constant α such that the complexity of the typechecking
problem is O � (|din||T |

CK |dout|
CK )α � .

Checking whether the input of A is conform to the input
schema can be done by a simple product construction of
tree automata. We therefore focus on verifying whether the
output of the transformation is not conform to the output
schema. Intuitively, the tree automaton non-deterministi-
cally locates a node v in the input tree that generates a
subtree

σ(a′1(t
′
1) · · · a

′
m(t′m))

in the output such that a′1 · · · a
′
m 6∈ dout(σ). More specifi-

cally, A simulates T on the subtree rooted at v and runs the
DFA D representing dout(σ) on a′1 · · · a

′
n.

Let a(t1 · · · tn) be the tree rooted at v and suppose that
T processes v in state q. Suppose that rhs(q, a) contains
the subtree σ(z0q1z1 · · · qkzk), where z0, . . . , zk ∈ Σ∗ and
q1, . . . , qk ∈ QT . Then, A needs to simulate D on

z0 top � T q1 (t1) · · ·T
q1 (tn) � · · · top � T qk (t1) · · ·T

qk (tn) � zk

and accept if D rejects. Note that k is bounded by C. For
each ti, the automaton A guesses k pairs of states of D,
(p1

i,1, p
1
i,2), . . . , (p

k
i,1, p

k
i,2), so that top(T qj (ti)) takes D from

state pj
i,1 to state pj

i,2. We always make sure that

1. z0 takes D from its initial state to p1
1,1;

2. zk takes D from pk
n,2 to a rejecting state;

3. for each j = 1, . . . , k− 1, zj takes D from pj
n,2 to pj+1

1,1 ;
and

4. for each i = 1, . . . , n − 1 and j = 1, . . . , k, we have
pj

i,2 = pj
i+1,1.

Note that for this step, A needs to remember at most 2C
states of D for each subtree.

The most challenging part remains: testing whether for each
ti, and j = 1, . . . , k, the string top(T qj (ti)) takes D from
state pj

i,1 to state pj
i,2. We only sketch the idea. If rhs(qj , σi),

where σi is the root of ti, contains no deleting states, then
top(T qj (ti)) only depends on rhs(qj , σi) and not on ti and we
are done. When rhs(qj , σi) contains only one deleting state,
then we just need to guess k new pairs (pi,1, pi,2) and proceed
as before. So, for recursively deleting states that do not copy
we only need to remember k pairs of states. Otherwise,
when rhs(qj , σi) contains say ` deleting states, then we need
to guess k · ` pairs of states. As long as the transducer
deletes, each of these requires guessing new states. As K
is an upper bound for this number, CK is the maximum
number of pairs that need to be remembered at all time to
check whether for every i, top(T qj (ti)) takes D from state
pj

i,1 to state pj
i,2. We refer the interested reader to [15] for a

full proof.

From Lemma 4.1 the following tractability result then read-
ily follows.

Theorem 4.2. TC[Ttrac, DTD(DFA)] is in ptime.

So, not only do we obtain a ptime algorithm, Lemma 4.1
also provides a clear view on the concrete complexity in
terms of the different parameters.

Link with practice. At first sight, Lemma 4.1 seems to
be bad news as C and K occur in the exponent. Never-
theless, we believe these numbers to be small in practical
transformations. The good news, hidden in the definition
of K, is that there is no penalty for the recursive deletion
without copying that occurs in many filtering transforma-
tions. In contrast to our previous results that abandoned
deletion completely, the present result shows that transfor-
mations with small C and K but arbitrary deletion without
copying can still be efficiently typechecked.

4.2 Lower Bounds for Extensions
We address the question whether there are obvious exten-
sions of Ttrac for which typechecking remains tractable. First
of all, we cannot allow arbitrary copying as even without
deletion typechecking is pspace-hard (see Table 1). How-
ever, the restriction on deletion for Ttrac transformations is
very severe: the number of consecutive deletions is fixed in
advance and does not even depend on the transducer. As
a generalization, we can therefore consider the class Tnrd of
non-recursively deleting transducers for which no transducer
is recursively deleting. Note that now the length of a dele-
tion path is bounded by the number of states in the trans-
ducer. Unfortunately, the next theorem gives little hope for
a tractable typechecking algorithm for that class.

Theorem 4.3. TCi[Tnrd,bc, DTD(DFA)] is pspace-hard.

In a Ttrac transducer, a recursively deleting state can not
copy. A legitimate question is whether that restriction is
necessary. We show that even in the case of fixed input and
output schema, an increase to deletion width two for recur-
sively deleting states results in an exptime lower bound for
typechecking. We denote the class where every state can
have at most deletion width k by Tdw=k.



Theorem 4.4. TCi/o[Tdw=2,bc, DTD(DFA)] is exptime-
hard.

4.3 Tree Automata
In the last part of this section, we turn to schemas defined
by unranked tree automata. We show that when we fix
the copying width to one, denoted by cw = 1, then recur-
sively deleting of width one remains tractable in the presence
of DTA(DFA)s but not when DTA(NFA)s are used. Such
transformations are mild generalizations of relabelings. It is
hence not surprising that the output type of a transducer in
Tdw=1,cw=1 can be captured by a tree automaton. The latter
observation is a generalization of the corresponding result for
ranked tree transducers [9] (Proposition 7.8(b)). We only
have to show that the construction of the unranked tree au-
tomaton can be done in ptime. Typechecking then reduces
to containment checking of NTA(NFA)s in DTA(DFA)s. For
completeness, we also mention here that typechecking is
exptime-hard when we extend the copying width to two.

Theorem 4.5. 1. TC[Tdw=1,cw=1, DTA(DFA)] is
ptime-complete;

2. TCi[Tdw=1,cw=1, DTA(NFA)] is pspace-hard; and

3. TCi/o[Tnd,cw=2, DTA(DFA)] is exptime-hard.

5. DELETION, UNBOUNDED COPYING,
AND RE+

All tractable fragments of the previous setting assume a uni-
form bound on the copying and deletion width of a trans-
ducer. Although in practice these bounds will usually be
small and Lemma 4.1 provides a detailed account of their
effect, the restrictions remain somewhat artificial. In the
present section we therefore investigate fragments in which
there are no restrictions on the copying or deletion power
of the transducer. This implies that we have to restrict
schemas, e.g., by restricting the regular expressions in rules.

We consider the following regular expressions. Let RE+ be
the set of regular expressions of the form α1 · · ·αk where
every αi is ε, a, or a+ for some a ∈ Σ. An example is title
author+ chapter+. In this section, we show that type-
checking for arbitrary tree transducers w.r.t. DTD(RE+) is
in ptime. We note that every DTD(RE+) is either non-
recursive (i.e. an a-labeled node has no a-labeled descen-
dants) or defines the empty language. However, the tractabil-
ity of typechecking remains non-trivial, as in general type-
checking is already pspace-complete when using DTD(DFA)s
only defining trees of depth one [16].

Let T = (QT ,Σ, q
0
T , RT ) be a tree transducer, and denote

the input and output DTD by din and dout, respectively.
We’ll present a sketch of the proof. To this end, we intro-
duce some terminology. For an RE+ expression e and DTD
d, we denote by de the hedge language {a1(h1) · · · an(hn) |
a1 · · · an ∈ L(e) and for every i = 1, . . . , n, ai(hi) ∈ (d, ai)}.
So, if t1 · · · tn ∈ de then top(t1) · · · top(tn) ∈ L(e) and ev-
ery ti is a derivation tree of (d, top(ti)). Recall that (d, ai)
denotes DTD d with start symbol ai. For a state q ∈ QT

and an alphabet symbol a ∈ Σ, we say that the pair (q, a) is
reachable if there exists a tree t in din such that T processes

at least one node of t labeled with a in state q. The latter
set can be computed in ptime.

To verify that the instance typechecks, we have to check
that for every reachable pair (q, a) and for every node u in
rhs(q, a) that

{z0top(T q1(h))z1 · · · zk−1top(T qk (h))zk | h ∈ de
in} ⊆ dout(σ),

where e = din(a), z0q1z1 · · · qkzk is the concatenation of u’s
children, and σ is the label of u. In the above, for h =
t1 · · · tn, we denote by T q(h) the hedge T q(t1) · · ·T

q(tn).

We denote the above language occurring to the left of ⊆ by
Lq,a,u. Note that the latter is not necessarily regular, or
even context-free. We construct an extended context-free
grammar Gq,a,u such that L(Gq,a,u) ⊆ dout(σ) iff Lq,a,u ⊆
dout(σ). More specifically, Gq,a,u = (V,Σ, P, S), where V =
{〈p, b〉 | p ∈ QT , b ∈ Σ} is the set of non-terminals, Σ is the
set of terminals, P is the set of production rules and S is
the start symbol. Intuitively, each non-terminal 〈p, b〉 cor-
responds to the string language {top(T p(t)) | t ∈ (din, b)}.
It remains to define the production rules P . For the start
symbol S, we have the rule

S → z0〈q1, e1〉
θ1 · · · 〈q1, en〉

θnz1 · · ·

· · · zk−1〈qk, e1〉
θ1 · · · 〈qk, en〉

θnzk,

where dout(σ) = eθ1

1 · · · eθn
n , every ei ∈ Σ and θi is either +

or ε. For a non-terminal 〈p, b〉 let din(b) = bα1

1 · · · bαm
m and

let top(rhs(p, b)) = s0p1s1 · · · p`s`. Then we add the rule

〈p, b〉 → s0〈p1, b1〉
α1 · · · 〈p1, bm〉αms1 · · ·

· · · s`−1〈p`, b1〉
α1 · · · 〈p`, bm〉αms`

to P . If there is no rhs(p, b) in RT , we add 〈p, b〉 → ε to
P . Note that Gq,a,u is an extended context-free grammar,
polynomial in the size of din and T . It is easy to see that
since din is not recursive, Gq,a,u is also non-recursive.

It follows from the next lemma that Lq,a,u ⊆ dout(σ) iff
L(Gq,a,u) ⊆ dout(σ). For a non-terminal 〈p, b〉 ∈ V , we de-
note by L(〈p, b〉) the language that is generated by (V,Σ, P,
〈p, b〉), i.e. the grammar Gq,a,u with start symbol 〈p, b〉.

Lemma 5.1. Let e and f be RE+ expressions, with e =
eθ1

1 · · · eθn
n , d a DTD(RE+) and T = (QT ,Σ, δT , RT ) a tree

transducer. For z0, . . . , zk ∈ Σ∗ and q1, . . . , qk ∈ QT , define

Le = {z0top(T q1 (h))z1 · · · zk−1top(T qk (h))zk | h ∈ L(de)},

L′
e = {z0top(T q1(h1))z1 · · · zk−1top(T qk (hk))zk |

h1, . . . , hk ∈ L(de)},

and

L′′
e = {z0s1z1 · · · zk−1skzk |

si ∈ L(〈qi, e1〉)
θ1 · · ·L(〈qi, en〉)

θn , i ∈ {1, . . . , k}}.

Then,

Le ⊆ L(f) ⇔ L′
e ⊆ L(f) ⇔ L′′

e ⊆ L(f).



Finally, testing whether L(Gq,a,u) ⊆ L(dout(σ)) can then
be done in ptime using standard techniques. We have thus
obtained the following theorem.

Theorem 5.2. TC[Td,c, DTD(RE+)] is in ptime.

The simplicity of RE+-expressions seems to be the price to
pay for a tractable algorithm for arbitrary transducers. In-
deed, the inclusion problem for a class of regular expressions
C can readily be reduced to typechecking with DTD(C)s.
As it is shown in [17] that inclusion of obvious extensions
of RE+-expressions is conp-hard, typechecking for the cor-
responding fragment is conp-hard. In particular, [17] dis-
cusses expressions of the form α1 · · ·αn where all αi belong
to classes (1) a or a?, and (2) a or a∗. By using similar tech-
niques as in [17], it can also be shown that inclusion is conp-
hard for expressions where all αi belong to classes (3) a or
(a+

1 + · · ·+a+
n ), (4) a or (a1 · · · an)+ (5) a or (a1 + · · ·+an)+

and (6) (a1 + · · · + an) or a+.

An interesting question is whether we can also obtain a
ptime typechecking algorithm if we allow expressions of the
form α and α+ ε where α is an RE+ expression. This prob-
lem remains open. The following simple example shows why
Lemma 5.1 does not hold anymore for such expressions.

Example 7. Consider the DTD din with rules r → a + ε
and a → ε, and let T be a tree transducer with start state
q0 and rules

(q0, r) → r(q1 q2) (q1, a) → a (q2, a) → b.

Then Lr = {ε, ab} and L′
r = {top(T q1(t1)T

q2 (t2)) | t1, t2 ∈
da+ε
in } = {ε, a, b, ab}. But Lr ⊆ L(a+b+ + ε), while L′

r 6⊆
L(a+b+ + ε). 2

6. XPATH EXPRESSIONS
An approach complementary to deletion, is the use of XPath
expressions to skip nodes of the input tree. We only con-
sider XPath expressions for downward navigation and there-
fore restrict attention to the following axes and predicates:
child (/), descendant (//), wildcard (∗), disjunction (|), and
filter ([ ]). We allow node tests and either the child or
descendant axis in every fragment of XPath we consider.
We use the following notational convention: for a sequence
X of axes and predicates, we denote by XPath{X} the
XPath expressions that only use the axes and predicates in
{X}. We assume that the semantics of XPath is known (see,
e.g., [6]). Recall that an XPath pattern defines a function

t× Dom(t) → 2Dom(t).

Let P be a set of patterns. We explain how the syntax and
the semantics of transducers is extended to patterns in P .
We denote the latter fragment by T P . Rules are now of the
form (q, a) → h where h ∈ HΣ((Q×P )∪Q). That is, state-
pattern pairs 〈q, ψ〉 can now also occur at leaves. Previously,
all children of the current node were processed; now, only
the nodes selected by ψ starting from the current node (in
document order). We denote state-pattern pairs with angled
parentheses to avoid confusion in the string representation
of trees. In our framework, we only use XPath expressions
that start with · , i.e. always start from the context node.

So, if T is a tree transducer, t = a(t1 · · · tn) and there is
a rule (q, a) → h ∈ RT then T q(t) is obtained from h by
replacing every node u in h labeled with 〈p, ψ〉 by the hedge
T p(t/u1) · · · T

p(t/un) where ψ(t, ε) = {u1, . . . , un} and the
sequence u1, . . . , un occurs in document order. Here, we
denote by t/u the subtree of t rooted at u. Note that the
context node is always set to the root of the subtree that is
to be processed by T .

Example 8. When making use of XPath expressions, we
can write the first document transformation in Example 3
more succinctly as follows:

(q, book) → book(q)
(q, chapter) → chapter 〈q, ·//title〉
(q, title) → title

2

Via a reduction to Theorem 4.2, we show that for very sim-
ple XPath expressions added to the formalism typechecking
remains in ptime.

Theorem 6.1. TC[T XPath{/,∗}
trac

, DTD(DFA)] is in ptime.

Proof. We will show that for any tree transducer T ∈

T
XPath{/,∗}
trac , we can construct an equivalent tree transducer
T ′ ∈ Ttrac such that size(T ′) is O(size(T )) and T and T ′

have the same copying width and deletion path width.

Intuitively, we convert every XPath-expression x occurring
in T to a DFA, which we simulate by using deleting states
in T ′. The simulation of such DFAs only introduces non-
recursively deleting states of deleting width one.

Formally, let T = (QT ,Σ, q
0
T , RT ) and let XT be the XPath

expressions occurring in T . For each XPath-expression x ∈
XT , let Ax = (Qx,Σ, δx, {q

I
x}, {q

F
x }) be the DFA represent-

ing it. According to [10], each Ax is linear in the size of x.
Further, Ax is acyclic, only accepts a finite language, and
all strings in L(Ax) are of the same length. Without loss of
generality, we assume that the sets Qx are pairwise disjoint
and disjoint from QT .

We construct T ′ = (QT ′ ,Σ, q0T , RT ′ ) as follows. Its state set
is QT ∪

�
x∈XT

QX . For every rule (q, a) → h in RT , and

for every 〈p, x〉 occurring in h we have the following set of
rules in RT ′

• (q, a) → h′ where h′ is the hedge obtained from h by
replacing every occurrence of 〈p, x〉 by qI

x;

• (px, b) → δx(px, b) for every px ∈ Qx and b ∈ Σ such
that δx(px, b) 6= qF

x ; and

• (px, b) → rhs(p, b) for every px ∈ Qx and b ∈ Σ such
that δx(px, b) = qF

x .

We only need to argue that the XPath expressions in T are
evaluated correctly in T ′. To this end, it easy to see that



we only use deleting states for nodes that are skipped in the
input tree by the XPath expressions, and that we continue in
the correct state in QT in the nodes that are selected by the
XPath expressions. Further, only deleting states of width
one are introduced. So, T ′ ∈ T C,K

trac whenever T ∈ T C,K
trac .

Although the fragment XPath{/, ∗} is very limited, the next
theorem shows that there is not much room for improve-
ment. The lower bounds in the first bullet follow from a re-
duction from XPath containment in the presence of DTDs [21,
27]. The lower bound in the second bullet follows from a re-
duction from the intersection emptiness problem for DFAs
over a unary alphabet.

Theorem 6.2. The following problems are conp-hard.

1. TC[T X
nd,bc, DTD(DFA)], for X among

XPath{/, |},XPath{//, |},XPath{/, []} and XPath{//, []};
and

2. TC[T
XPath{//}

trac , DTD(DFA)].

We denote by T DFA the fragment where patterns are spec-
ified by DFAs (every node that is reached in a final state
is selected). When we completely disallow deletion, we still
have tractability when patterns are specified by DFAs.

Theorem 6.3. TC[T DFA
nd,bc , DTD(DFA)] is in ptime.

Using the link between DFAs and XPath expressions that
was laid in [10], we immediately obtain that typechecking

is in ptime for T
XPath{/,//,∗}

nd,bc where patterns are such that
the number of wildcards occurring between two descendant
axes is bounded by a constant. It remains open whether

typechecking for T XPath{/,//,∗}
nd,bc is in ptime in general.

Finally, we discuss XPath in connection with the RE+ ex-
pressions of the previous section. As DFA-patterns can be
rather directly simulated by deleting states, we obtain that
typechecking is also in ptime when we allow the transducer
to use such expressions.

Corollary 6.4. TC[T DFA
d,c , DTD(RE+)] is in ptime.

7. REMARKS
In practice it is relevant that typechecking algorithms can
generate counterexample trees (or a description of them) for
instances that it rejects. As our main upper bound theorem
reduces the typechecking problem to the emptiness problem
for a NTA(NFA) of polynomial size, and since it is possi-
ble to generate a description of a tree in the language of an
NTA(NFA) in polynomial time, we can also generate a coun-
terexample tree for the typechecking algorithm in polyno-
mial time. Further, the algorithm for TC[Td,c, DTD(RE+)]
can also be adapted to generate a description of a counterex-
ample tree.

Corollary 7.1. If an instance of TC[Ttrac, DTD(DFA)]
or TC[Td,c, DTD(RE+)] does not typecheck, we can generate
a counterexample in ptime.

We say that an instance of the typechecking problem type-
checks almost always iff the set {t ∈ din | T (t) 6∈ dout} is
finite. The latter notion is introduced by Engelfriet and
Maneth [12]. Since the finiteness problem of NTA(NFA) is
decidable in ptime, we have obtained the following.

Corollary 7.2. Almost always typechecking of Ttrac trans-
ducers w.r.t. DTD(DFA)s is in ptime.

8. CONCLUSION
We provided a rather complete overview of how the differ-
ent parameters influence the complexity of the typechecking
problem. As the main focus of the paper is on tractable sce-
narios, we did not investigate upper bounds for intractable
cases.

First, we considered the complexity of typechecking in the
presence of fixed input and/or output schemas. In com-
parison with the results in [16], fixing input and/or output
schemas only lowers the complexity in the presence of DTDs
and when deletion is disallowed.

In the remainder of the paper we identified several interest-
ing practical tractable cases that can be classified depend-
ing on the strength of the schema languages. The most
liberal setting is where RE+ expressions suffice to define
schema languages: we have ptime typechecking for all trans-
ducers in our framework. In fact, any fragment of XPath
whose patterns can be translated in polynomial time to
DFAs can be added to the transformations. Sometimes,
however, one needs more expressive regular expressions in
schema languages. For instance, to express choice like in
(section + table + figure)∗. Our results show that there
is still a ptime algorithm when those expressions can be
translated in ptime to DFAs and when one can bound si-
multaneous copying and deletion. Interestingly, arbitrary
deletion without copying can be allowed. As copying is usu-
ally fairly limited in the simple transformations for which
XSLT is used, but unbounded deleting without copying is
required for so-called filtering transformations, our result
identifies a tractable fragment with potential in practice.
Further, we obtained that the XPath axes / and ∗ can be
added without increasing the complexity. Finally, when de-
terministic tree automata are required, no copying can be
allowed but arbitrary deletion is permitted.

Though we left some questions open, we also showed that
none of the above restrictions can be severely relaxed with-
out rendering the typechecking problem intractable. So, for
these larger classes of transformations or schema languages,
it is more appropriate to develop incomplete or approximate
algorithms.

In future work we will try to settle the remaining questions
concerning the XPath fragments, look at how fixed input
and/or output schemas influence the complexity of type-
checking w.r.t. DTD(RE+)s, and consider data values.

Acknowledgment
We thank Giorgio Ghelli for raising the question about the
complexity of typechecking in the setting of a fixed output
schema. We thank Dirk Leinders, Thomas Schwentick, and



Stijn Vansummeren for their comments on a previous version
of this paper.

9. REFERENCES
[1] N. Alon, T. Milo, F. Neven, D. Suciu, and V. Vianu.

Typechecking XML views of relational databases.
ACM Transactions on Computational Logic,
4(3):315–354, 2003.

[2] N. Alon, T. Milo, F. Neven, D. Suciu, and V. Vianu.
XML with data values: Typechecking revisited.
Journal of Computer and System Sciences,
66(4):688–727, 2003.

[3] G. J. Bex, S. Maneth, and F. Neven. A formal model
for an expressive fragment of XSLT. Information
Systems, 27(1):21–39, 2002.
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