
DTDs versus XML Schema: A Practical Study

Geert Jan Bex
Limburgs Universitair Centrum

Diepenbeek, Belgium

gjb@luc.ac.be

Frank Neven
Limburgs Universitair Centrum

Diepenbeek, Belgium

frank.neven@luc.ac.be

Jan Van den Bussche
Limburgs Universitair Centrum

Diepenbeek, Belgium

jan.vandenbussche@luc.ac.be

ABSTRACT
Among the various proposals answering the shortcomings
of Document Type Definitions (DTDs), XML Schema is the
most widely used. Although DTDs and XML Schema Defin-
tions (XSDs) differ syntactically, they are still quite related
on an abstract level. Indeed, freed from all syntactic sugar,
XML Schemas can be seen as an extension of DTDs with a
restricted form of specialization. In the present paper, we
inspect a number of DTDs and XSDs harvested from the
web and try to answer the following questions: (1) which
of the extra features/expressiveness of XML Schema not al-
lowed by DTDs are effectively used in practice; and, (2) how
sophisticated are the structural properties (i.e. the nature
of regular expressions) of the two formalisms. It turns out
that at present real-world XSDs only sparingly use the new
features introduced by XML Schema: on a structural level
the vast majority of them can already be defined by DTDs.
Further, we introduce a class of simple regular expressions
and obtain that a surprisingly high fraction of the content
models belong to this class. The latter result sheds light on
the justification of simplifying assumptions that sometimes
have to be made in XML research.

1. INTRODUCTION
As Document Type Definitions where historically the first
means to describe the structure of XML documents, a large
number of them can be found on the Web. The growing suc-
cess of XML, combined with certain shortcomings of DTDs,
generated a large number of alternative proposals for the
description of schemas, such as RELAX [12], TREX [6], Re-
lax NG [7], DSD [11], and XML Schema [1, 9, 17].
Judging from the number of schemas one can find on the
Web, XML Schema seems the most accepted one. The defi-
nition of XML Schema is nevertheless quite complicated and
the necessity of various constructs is not always very clear.
For this reason, we investigate a number of XSDs collected
from the Web, and try to determine to what extent the fea-
tures of XML Schema not occurring in DTDs are used in
practice. In the second part of the paper we look at struc-

Copyright is held by the author/owner.
Seventh International Workshop on the Web and Databases (WebDB 2004),
June 17-18, 2004, Paris, France.

tural properties of schemas. In particular, we show that the
vast majority of content models occurring in practice belong
to a well-defined class of simple regular expressions.
To facilitate a comparison between the two formalisms, we
first describe DTDs and XSDs on a structural level.

1.1 A structural view of DTDs and XSDs
When dealing with the structure of XML documents only, it
is common to view XML documents as finite ordered trees
with node labels from some finite alphabet Σ. We refer to
such trees as Σ-trees.

definition 1. A DTD is a pair (d, s) where d is a func-
tion that maps Σ-symbols to regular expressions over Σ, and
s ∈ Σ is the start symbol. A tree satisfies the DTD if its
root is labeled by s and for every node u with label a, the se-
quence a1 · · · an of labels of its children matches the regular
expression d(a).

The class of tree languages definable by DTDs is usually re-
ferred to as the local tree languages [4, 13]. A simple example
of a DTD defining the inventory of a store is the following:

store → dvd dvd∗

dvd → title price

For clarity, in examples we write a → r rather than d(a) = r.

We next recall the definition of a specialized DTD [15].

definition 2. A specialized DTD (SDTD) is a 4-tuple
(Σ, Σ′, δ, µ), where Σ′ is an alphabet of types, δ is a DTD
over Σ′ and µ is a mapping from Σ′ to Σ. Note that µ

can be applied to a Σ′-tree as a relabeling of the nodes, thus
yielding a Σ-tree. A Σ-tree t then satisfies the SDTD if t
can be written as µ(t′) where t′ satisfies the DTD δ.

As SDTDs are equivalent to unranked tree automata [4],
the class of tree languages definable by SDTDs is the class
of regular tree languages. The XML equivalent of that class
is captured by the schema language Relax NG [7].

For ease of exposition, we always take Σ′ = {ai | 1 ≤ i ≤ ka,
a ∈ Σ, i ∈ N} for some natural numbers ka and set µ(ai) =
a.

A simple example of an SDTD is the following:

store → (dvd1 + dvd2)∗dvd2(dvd1 + dvd2)∗dvd2

· (dvd1 + dvd2)∗

dvd1 → title price
dvd2 → title price discount

Here, dvd1 defines ordinary DVDs while dvd2 defines DVDs
on sale. The rule for store specifies that there should be at
least two of the latter.

The following restriction on SDTDs corresponds to the ex-
pressiveness of XML Schema [13]:

definition 3. A single-type SDTD is an SDTD (Σ, Σ′,
(d, s), µ) with the property that no regular expression d(a)
has occurrences of types of the form bi and bj with the same
b but with different i and j.

The example SDTD above is not single type as both dvd1

and dvd2 occur in the rule for store. It is shown by Murata et
al [13], that the class of trees defined by single-type SDTDs
is strictly between the local and the regular tree languages.
An example of a single-type grammar is given below:

store → regulars discounts
regulars → (dvd1)∗

discounts → dvd2 dvd2 (dvd2)∗

dvd1 → title price
dvd2 → title price discount

Although there are still two element definitions dvd1 and
dvd2, they can only occur in a different context, regulars
and discounts respectively.

1.2 Related work
In 2000, while the XML Schema specification was still under
development, Sahuguet [16] investigated a sample of DTDs
to determine the shortcomings of the Document Type Defi-
nition specification. What he found missing has been reme-
died in XML Schema. Moreover, XML Schema introduces
many features not envisioned by Sahuguet. One of the goals
of this paper is to investigate to what measure these features
are used in real world XSDs currently available.

Choi [5] has tried to identify features that are characteristic
for DTDs used to describe three types of schemas: appli-
cation, data and meta-data related. He created a content
model classification based on syntactic features and consid-
ered several measures for the complexity of a DTD. In this
paper we extend his classification of content models and con-
sider XSDs beside DTDs.

1.3 Overview
Based on the characterizations given above, it is clear that
DTDs and XSDs are both grammar based where XML Sche-
ma in addition is extended with a restricted typing mecha-
nism. In Section 3, we inspect the use of that typing mech-
anism in practice together with another notion added to
XML Schema: derived types. In Section 4, we compare
the properties of the grammars underlying real DTDs and
XSDs. First, we discuss in the next section our dataset and
methodology.

2. DATASET AND METHODOLOGY
We have tried to gather a representative sample of DTDs
and XSDs. The XML Cover pages [8] have proved to be
an excellent repository so almost all schemas in our sample
have been obtained automatically from that source by using
a simple web crawler. To ensure that the sample contains a
base set of quality DTDs and XSDs, a number of the W3C
standards have been included. Among those are the DTDs
for MathML, SVG, XHTML, XML Schema and SMIL and
the XSD for RDF and XML Schema.
All in all, 109 DTDs and 93 XSDs have been obtained. Al-
though some 600 DTDs and XSDs are mentioned on the
Cover Pages, only these 109 + 93 were actually available for
download, thus illustrating once again the transient nature
of the Internet and its various technologies. All 93 XSDs
have been used for the analysis in Sections 3.2 and 3.3 while
unfortunately only 30 of the 93 XSDs can be used for most
of the analysis in Sections 3.1 and 4, due to various errors
discussed in Section 6 below. In the appendix, we provide a
list of some of the XSDs we used.

3. EXPRESSIVENESS OF XML SCHEMA

3.1 Single-type
The formal taxonomy presented in Section 1, elicits the
following question: is the expressive power of single-type
SDTDs actually used in real-world XSDs, and if so, to what
extent? Given that XSDs tend to be a bit unwieldy due
to their inherent verbosity, it is interesting to identify use
cases for the distinctive features of single-type SDTDs ver-
sus DTDs. Those use cases might suggest a simpler for-
malism that finds an appropriate balance between designer-
friendliness and expressive power.

Surprisingly, most XSDs in our sample turn out to define lo-
cal tree languages, that is, can actually be defined by DTDs.
Only 5 out of 30 are true single-type SDTDs, which corre-
sponds to approximately 15%. There might be several pos-
sible reasons for this low percentage. A first possibility is
that expressiveness beyond local tree languages is simply
rarely needed. Another explanation might be that due to
the relatively new nature of XML Schema and its compli-
cated definition most users have no clear view on what can
be expressed.

All five examples we found are of the following form:

p → . . . a1 . . .

q → . . . a2 . . .

a1 → expr1

a2 → expr2

The meaning of a1 and a2 is the following: when the parent
of an A is P (resp. Q) use the rule for A1 (resp. A2). No
other use cases have been found in the sample.

3.2 Derived types
Two kinds of types are provided by XML Schema: simple
and complex types. The former describes the character data
an element can contain (cfr. #PCDATA in DTDs) while
the latter specifies which elements may occur as children in
a given element.

simple type (%) complex type (%)
extension 27 37
restriction 73 7

Table 1: Relative use of derivation features in XSDs

XML Schema facilitates derivation of new types from ex-
isting types via two mechanisms: extension and restriction.
Both simple and complex types can be extended or restricted.
The four cases are introduced below; for a thorough discus-
sion, we refer to the W3C specification [9, 17].

• A complex type can be derived from a simple type by
extension to add attributes to elements.

• A complex type can be extended to add a sequence
of additional elements to its content model or to add
attributes.

• Restricting a simple type limits the acceptable range
of values for that type. For example, one can enforce
that a phone number should consist of three digits, a
dash, followed by six more digits.

• Restricting a complex type is similar to restricting a
simple type in that it limits the set of acceptable sub-
trees.

Table 1 lists the number of XSDs using a particular deriva-
tion feature. Note that in this section we used all 93 XSDs
we retrieved since conformance was not an issue for this
analysis.

Approximately one fifth of the XSDs considered do not con-
struct new types through derivation at all. Extension is
mostly used to define additional attributes (58%); elements
are added to a content model to a lesser degree (42%).
As expected, restriction of complex elements is hardly used
(7%). A typical example of the latter mechanism is the mod-
ification of the multiplicity of an element:
maxOccurs =”unbounded” to maxOccurs=”1”.
The statistics also show that only just over a third of the
XSDs (37%) use extension of complex types, a feature that
parallels inheritance in the object orientation paradigm. This
might indicate that the data modeled by these XSDs is of-
ten too simple to merit such a (relatively) sophisticated ap-
proach. It might also be “underused” due to the relative
novelty of XML Schema, since many data architects are
trained to think in terms of relational data rather than ob-
ject orientation. Extension of simple types occurs in 27% of
the XSDs.
Restriction of simple types is most heavily used (73%), which
comes as no surprise since it allows a much more fine-grained
control over the content of an element, rather than the un-
restrictive #PCDATA DTDs are limited to, thus alleviating
one of the more glaring shortcomings of DTDs.

Several mechanisms have been defined to control type cre-
ation by derivation. The final attribute for type definitions
indicates that the type can not either be restricted, extended
or both. Only 6 out of the 93 XSDs use this feature. As op-
posed to finalizing a type definition, it can also be declared

abstract implying that one should derive new types from it.
Although slightly more common, it is only used in 11 XSDs
in our sample.

As a general rule, derived types can occur anywhere in the
content model where the original type is allowed. However,
this can be prevented by applying the block attribute to
the original type. As for the final attribute, replacement
by either restricted, extended or both types can be blocked.
Blocking is used in 2 out of the 93 XSDs.

The fixed attribute that is usually used to indicate that an
element or an attribute is restricted to a specific value also
serves a purpose in the context of derivation from simple
types. It can be applied to fix a facet of a simple type (e.g.
the length of a xsd: string) in a restrictive type derivation.
Only a single XSD uses the fixed attribute in this sense.

Although not directly related to derivation, the substitution
group feature nevertheless deserves to be mentioned here.
Elements are declared members of a substitution group using
the substitutionGroup attribute with an element name as
value and may occur instead in the content model akin to
derived types. Substitution groups are used in 10 out of 93
XSDs.

3.3 Additional features
XML Schema defines various additional features with re-
spect to DTDs, see [9, 18] for an introduction.

One feature of SGML DTDs that was lost to XML DTDs is
the &-operator that specifies that all elements must occur
but that their order is not significant. Obviously this can
be simulated in an XML DTD by explicitly listing all orders
(e.g. a1&a2&a3 ≡ a1a2a3 | a2a3a1 | . . . | a3a2a1, so a
choice between 6 cases), but this doesn’t exactly improve
the clarity of the content model. XML Schema restores this
feature by defining the xsd: all element. However, only 4
out of 93 XSDs use this operator.

Elements in an XML document can be identified using ID at-
tributes and referred to by IDREF or IDREFS. This feature
is part of the XML 1.0 specification [2] and is supported by
DTDs. These IDs are unique throughout a document and
are the only attributes with such a restriction for DTDs.
In XML Schema, any element or attribute can be declared
to require a unique value by selecting the relevant nodes
using an XPath expression and specifying the list of fields
that combined should have a unique value. In our sample, 6
XSDs out of 93 use this feature, all applied to a single field.

Referring to elements can also be accomplished by key/keyref
pairs. Using a reference to a key implies that the element
with the corresponding key should exist in the document.
This feature is reminiscent of the foreign key concept in re-
lational databases. It is used in 4 XSDs in our sample.

An interesting feature introduced in XML Schema is the use
of namespaces for modularity. This allows to use elements
and types defined in the current XSD that are defined else-
where without fear of name clashes. Apart from the obvious
inclusion of the XML Schema namespace, 20 XSDs in our
sample used this mechanism.

A last feature to discuss is the ability to redefine types and
groups. It should be noted that W3C’s primer on XML
Schema cautions against the use of this feature since it may
break type derivation without warning. It turns out that the
authors of the XSDs in our sample set heeded this advice
and avoided redefine altogether.

4. REGULAR EXPRESSION CHARACTER-
IZATION

The second question we try to answer is how sophisticated
regular expressions tend to be in real world DTDs and XSDs.
If simple expressions make up the vast majority of schema
definitions, it is worthwhile to take this into account when
developing implementations of XML related applications and
fine-tune algorithms to take advantage of this simplicity
whenever possible.

In order to facilitate the analysis some preprocessing was
performed. For the DTDs parsed entities were resolved
and conditional sections included/excluded as appropriate.
Since we are only concerned with the schema structure, the
DTD element definitions were extracted and converted to a
canonical form, which abstracts away the actual node labels
and replaces them by canonical names c1, c2, c3, . . . For
example,

< !ELEMENT l i b ((book | j ou r na l)∗)>

is represented by a canonical form (c1 | c2)
∗ to preserve only

the structure related DTD information.

The XSDs were preprocessed using XSLT to the canonical
representation mentioned above for DTDs. To capture mul-
tiplicity constraints, ’?’ is used, e.g. for an element a with
minOccurs=”1”, maxOccurs=”3”, \lstinlinea a? a?— is substi-
tuted. This approach allows us to reuse much of the software
developed to analyze DTDs for XSDs as well.

For all DTDs, there is a total of 11802 element definitions
which reduce to 750 distinct canonical forms. The 1016
element definitions in the XSDs yield 138 distinct canonical
forms, totaling 838 for both types of schemas combined. The
majority of these can be classified in one of the categories of
“simple expressions”, which are subclasses of the expressions
studied by Martens, Neven, and Schwentick [14].

definition 4. A base symbol is a regular expression a,
a?, or a∗ where a ∈ Σ; a factor is of the form e, e∗, or e?
where e is a disjunction of base symbols. A simple regular
expression is ε, ∅, or a sequence of factors.

The following is an example of a simple regular expression:
(a∗ + b∗)(a + b)?b∗(a + b)∗.

We introduce a uniform syntax to denote subclasses of sim-
ple regular expressions by specifying the allowed factors. We
distinguish base symbols extended by ? or ∗. Further, we
distinguish between factors with one disjunct or with ar-
bitrarily many disjuncts; the latter is denoted by (+ · · ·).
Finally, factors can again be extended by ∗ or ?. For exam-
ple, we write RE((+ a)∗, a?) for the set of regular expres-
sions e1 · · · en where every ei is (a1 + · · · + an)∗ for some

a1, . . . , an ∈ Σ and n ≥ 1, or a? for some a ∈ Σ. Table 2
provides an overview.

Factor Abbr.
a a
a∗ a∗

a? a?
(a1 + · · · + an) (+a)

Factor Abbr.
(a1 + · · · + an)∗ (+a)∗

(a1 + · · · + an)? (+a)?
(a∗

1 + · · · + a∗

n) (+a∗)
(a∗

1 + · · · + a∗

n)∗ (+a∗)∗

Table 2: Possible factors in simple regular expres-
sions and how they are denoted (a, a1, . . . , an ∈ Σ).

We analyze the DTDs and XSDs to characterize their con-
tent models according to the subclasses defined above. The
result is represented in Table 3 that lists the non-overlapping
categories of expressions having a significant population (i.e.
more than 0.5%). Two prominent differences between DTDs
and XSDs immediately catch the eye: XSDs have (1) more
simpleType elements (denoted by #PCDATA) and (2) less
expressions in the category RE(a, (+ a)∗). The first dif-
ference is due to the fact that it pays to introduce more
distinct simpleType elements in XSD since thanks to type
restriction, it is now possible to fine tune the specification
of an element’s content (cfr. the discussion in Section 3.2).
The second distinction is most probably due to the nature
of the XSDs in the sample since those describing data are
overrepresented with respect to those describing meta doc-
uments [5]. The latter tend to have more complex recursive
structures than the former.

To gauge the quality of our sample of XSDs, we compared
DTDs and XSDs using several of the measures proposed by
Choi [5]. No significant differences between the two sam-
ples are observed, which is confirmed by an additional mea-
sure in Figure 1, the density of XSDs. The density of a
schema is defined as the number of elements occurring in
the right hand side of its rules divided by the number of
elements. DTDs and XSDs do not fundamentally differ in
this respect. Several other measures such as the width and
depth of canonical forms viewed as expression trees show no
significant differences.

Figure 1: Fraction of DTDs (left) and XSDs (right)
versus their density

More importantly though, it is clear that the vast majority
of expressions are simple, i.e. 92% and 97% of all element
definitions in DTDs and XSDs respectively. Figure 2 shows
the fraction of DTDs and XSDs versus the fraction of their

DTDs (%) XSDs (%)
#PCDATA 34 48
EMPTY 16 10
ANY 1 0
RE(a) 5 5
RE(a, a?) 2 10
RE(a, a∗) 8 10
RE(a, a?, a∗) 1 4
RE(a, (+ a)) 3 3
RE(a, (+ a)?) 0 1
RE(a, (+ a)∗) 20 2
RE(a, (+ a)?, (+ a)∗) 0 1
RE(a, (+ a∗)∗) 0 2

total simple expr. 92 97
non-simple expr. 8 3

Table 3: Relative occurrence of various types of reg-
ular expressions given in % of element definitions

simple content models: the majority of documents have 90%
or more simple content models.

Figure 2: Fraction of DTDs (left) and XSDs (right)
having a given % of simple expression content mod-
els

The relative simplicity of most DTDs and XSDs is further
illustrated by the star height that is given in Table 4. The
star height of a regular expression is the maximum nest-
ing depth of Kleene stars occurring in the expression, e.g.
2 for the last example given below, 1 for all others. Con-
tent models with star height larger than 1 are very rare.
No significant differences are observed between DTDs and
XSDs, except for the star height but this is consistent with
the relative abundance of RE(a, (+ a)∗) type of expressions
in DTDs with respect to XSDs.

star height DTDs (%) XSDs (%)
0 61 78
1 38 17
2 1 4
3 0 ≈ 0

Table 4: Star height observed in DTDs and XSDs

In a sense this should not come as too great a surprise:
DTDs and XSDs model data that reflect real world entities.
Mostly those entities are subject to simple relations among
one another such as is-a, or is-part relations (pertainym1,

1meaning relating to or pertaining to

holonym/meronym relations) that are very often quite sim-
ple to express.

Some randomly chosen examples of non-simple regular ex-
pressions that we encountered follow:

c1
+ | (c2?c3

+)

(c1c2?c3?)?c4?(c5 | . . . | c18)
∗

c1?(c2c3?)?(c4 | . . . | c44)
∗

c45
+

c1?c2c3?c4?(c5
+ | ((c6 | . . . | c61)

+
c5

∗))

c1(c2 | c3)
∗(c4, (c2 | c3 | c5)

∗)
∗

5. SCHEMA AND AMBIGUITY
The XML 1.0 specification published by the W3C [2] re-
quires schema definitions to be one-unambiguous, i.e. that
all regular expressions in the grammar’s rules are determin-
istic in the following sense [3]: a regular expression is one-
unambiguous iff the corresponding Glushkov automaton is
deterministic. Note that the terminology is somewhat con-
fusing in the literature: in the context of SGML ‘unambigu-
ous’ is used to denote this feature while Choi [5] refers to it
as ‘deterministic’.

We checked whether the DTDs and XSDs in our sample
respect this requirement and find that they almost all do.
IBM’s XML Schema Quality Checker (SQC) [10] reported
3 out of 93 XSDs as having one or more ambiguous content
models (see also Section 6). For DTDs, a first exception is a
regular expression of the following type: (. . . | ci | . . . | ci | . . .)∗

that occurred in several DTDs. However, this is merely a
typo, not a design feature.

A second type of one-unambiguous regular expression proves
to be more interesting: c1c2?c2?. The designer’s intention is
clearly to state that c2 may occur zero, one or two times.

The latter example illustrates a shortcoming of DTDs that
has been addressed in XML Schema. Element definitions
in the latter formalism allow the specification of the num-
ber of times an element can occur using the minOccurs and
maxOccurs attributes. The specification for the example
above would be captured by the following snippet of XML
Schema (with slight abuse of notation):

<xsd : s equence>
<xsd : e l ement name=”c1” type=”t1”/>
<xsd : e l ement name=”c2” type=”t2”

minOccurs=”0” maxOccurs=”2”/>
</ xsd : s equence>

We found three XSDs defining non-deterministic (or am-
biguous) content models. Two canonical forms are found:
c1?(c1 | c2)

∗ and (c1c2) | (c1c3).

6. ERRORS
It was a bit disappointing to notice that a relatively large
fraction of the XSDs we retrieved did not pass a confor-
mance test by SQC. As mentioned in Section 2, only 30 out
of a total of 93 XSDs were found to be adhering to the cur-
rent specifications of the W3C [17]. We decided to use only
conforming XSDs for those parts of the analysis that require

conversion to canonical form to ensure correct processing by
our software.
Often, lack of conformance can be attributed to growing
pains of an emerging technology: the SQC validates accord-
ing to the 2001 specification and 19 out of the 93 XSDs have
been designed according to a previous specification. Some
simple types have been omitted or added from one version
of the specs to another causing the SQC to report errors.
Some errors concern violation of the Datatypes part of the
specification [1]: regular expressions restricting xsd:string

are malformed.
Some XSDs violate the XML Schema specification by e.g.
specifying a type attribute for a complexType element or leav-
ing out the name attribute for a top-level complexType ele-
ment.

7. CONCLUSION
Our analysis has shown that many features defined in the
XML Schema specification are not widely used yet, espe-
cially those that are related to object oriented data model-
ing such as derivation of complex types by extension. Most
importantly, it turns out that almost all XSDs are local tree
grammars, i.e. proper single type grammars are rarely used.
The expressive power encountered in real world XSDs turns
out to be mostly equivalent to that of DTDs. Hence it seems
that — barring some exceptions — the current generation
of XSDs could just as well have been written as DTDs from
the point of view of structure. This might change in the fu-
ture, as acceptance of a relatively new technology increases,
or it might be a symptom that the level of sophistication
offered by XML Schema is simply unnecessary for many ap-
plications.
The data type part of the XML Schema specification is heav-
ily used though since it alleviates a glaring shortcoming of
DTDs, namely the ability to specify the format and type of
the text of an element. This is accomplished through re-
striction of simple types.
The content models specified in both real world DTDs and
XSDs tend to be very simple. For XSDs, 97% of all con-
tent models can be classified in the categories of simple ex-
pressions we identified. This observation can guide software
engineers when developing new implementations of XML re-
lated tools and applications, for instance by avoiding opti-
mizations for complex cases that rarely occur in practice.

8. REFERENCES
[1] P. Biron and A. Malhotra. XML Schema part 2:

datatypes. W3C, May 2001,
http://www.w3.org/TR/xmlschema-2/

[2] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler,
and F. Yergeau. Extensible Markup Language (XML)
1.0. W3C, 3 edition, February 2004,
http://www.w3.org/TR/2004/REC-xml-20040204/

[3] A. Brüggemann-Klein and D. Wood.
One-unambiguous regular languages. Information and
computation, 140(2):229–253, 1998.

[4] A. Brüggemann-Klein, M. Murata, and D. Wood.
Regular tree languages over non-ranked alphabets
(draft 1). Unpublished manuscript, 1998.

[5] B. Choi. What are real DTDs like? In Proceedings
WebDB 2002, pages 43–48, 2002.

[6] J. Clark. TREX - Tree Regular Expressions for XML:
language specification, February 2001,
http://www.thaiopensource.com/trex/spec.html

[7] J. Clark and M. Murata. RELAX NG Specification.
OASIS, December 2001,
http://www.oasis-open.org/committees/

relax-ng/spec-20011203.html

[8] R. Cover. The cover pages, 2003,
http://xml.coverpages.org/

[9] D. Fallside. XML Schema part 0: primer. W3C, May
2001, http://www.w3.org/TR/xmlschema-0/

[10] IBM corp. XML Schema Quality Checker, 2003.
http://www.alphaworks.ibm.com/tech/xmlsqc

[11] A. Møller. Document Structure Description 2.0.
BRICS, 2003, http://www.brics.dk/DSD/dsd2.pdf

[12] M. Murata. Document description and processing
languages – regular language description for XML
(RELAX): Part 1: RELAX core. Technical report,
ISO/IEC, May 2001.

[13] M. Murata, D.Lee, M. Mani, and K. Kawaguchi.
Taxonomy of xml schema languages using formal
language theory. To be submitted to ACM TOIT,
2003.

[14] W. Martens, F. Neven and T. Schwentick Complexity
of Decision Problems for Simple Regular Expressions.
Submitted.

[15] Y. Papakonstantinou and V. Vianu. DTD inference
for views of XML data. In PODS proceedings, pages
35–46, 2000.

[16] A. Sahuguet. Everything you ever wanted to know
about DTDs, but were afraid to ask. In Proceedings of
WebDB 2000, 2000.

[17] H. Thompson, D. Beech, M. Maloney, and
N. Mendelsohn. XML Schema part 1: structures.
W3C, May 2001,
http://www.w3.org/TR/xmlschema-1/

[18] E. van der Vliet. XML Schema. O’Reilly, Cambridge,
2002.

APPENDIX
A list of XSDs used in the regular expression and single-type
analysis (with number of definitions in brackets) and a few
of the XSDs considered in the other parts of the paper.

DSML v2 (1), EPAL-cs-xacml-schema-policy (34), EPAL-
epal-interface (12), epal-interface (12), extensions (13), ipdr
2.5 (14), mets (1), OAI DC (1) OAI GetRecord (9), ODRL-
EX v1.0 (25), ODRL-EX v1.1 (23), PersonName v1.2 (8),
PIDXLib-2002-02-14 v1.0 (255), PMXML2 (1), PostalAddress
v1.2 (16), RIXML2 (1), simpledc (15), TC-1025 schema v1.0
xpdl (91), UKGovTalk-BS7666 v1.2 (68), VRXML 20021204
(43), wsrp v1.0 types (1), WS-Security-Schema-xsd-20020411
(7), wsui (26), xgmml (8), xpdl (91), BPML, GenXML v1.0,
GML Base, HEML, LogML, MPEG21, PSTC-CS v1.0, RDF,
UDDI v2.0, XML Schema

