On the Power of Walking for
Querying Tree-Structured Data

Frank Neven
University of Limburg

frank.neven@luc.ac.be

Abstract

XSLT is the prime example of an XML query lan-
guage based on tree-walking. Indeed, stripped down,
XSLT is just a tree-walking tree-transducer equipped
with registers and look-ahead. Motivated by this
connection, we want to pinpoint the computational
power of devices based on tree-walking. We show
that in the absence of unique identifiers even very
powerful extensions of the tree-walking paradigm are
not relationally complete. That is, these extensions
do not capture all of first-order logic. In contrast,
when unique identifiers are available, we show that
various restrictions allow to capture LOGSPACE,
PTIME, PSPACE, and EXPTIME. These complexity
classes are defined w.r.t. a Turing machine model
working directly on (attributed) trees. When no at-
tributes are present, relational storage does not add
power; whether look-ahead adds power is related to
the open question whether tree-walking captures the
reqular tree languages.

1 Introduction

A main research topic in the theory of databases
is characterizing the expressiveness and computa-
tional complexity of query languages. Although nu-
merous XML transformation languages have been
defined [1, 8, 9], there are almost no complete char-
acterizations of their expressive power or computa-
tional complexity.

In this paper, we focus on the navigational part of
XML languages. More precisely, we study computa-
tion by tree-walking. This is a well-known paradigm

from formal language theory studied in the context
of attribute grammars and tree-transformations |3,
5, 11]. As XML documents are, by and large, at-
tributed trees, it is no surprise that this paradigm
popped up in XML research. Indeed, a first instance
of tree-walking is provided by the caterpillar expres-
sions of Briiggemann-Klein and Wood [7]. Further,
Milo, Suciu, and Vianu [17] defined a tree-walking
tree-transducer model with pebbles as an abstract
model for XML transformations. Finally, as ar-
gued by Bex, Maneth and Neven [4], stripped down,
XSLT is essentially a tree-walking tree-transducer
with registers and look-ahead. The present inves-
tigation is motivated by the latter model. In brief,
registers deal with data values and look-ahead al-
lows sub-computations. As we focus on the compu-
tational aspect of tree-walking, we restrict attention
to boolean queries and do not consider the trans-
ducer part.

Neven, Schwentick, and Vianu [20] showed, es-
sentially, that tree-walking automata with registers
are not relationally complete. That is, they cannot
compute all first-order logic (FO) definable prop-
erties. In the present paper, we push this result
quite a bit further by showing that tree-walking
is not relationally complete even in the presence
of look-ahead and a relational storage (rather than
with registers which can only contain a single data
value). The latter weakness is due to the absence
of unique IDs.

In strong contrast, if every node has a unique ID,
we show that various restrictions capture natural
complexity classes:

no look-ahead, single-valued registers | LOGSPACE
look-ahead, single-valued registers PTIME
no-look ahead, relational storage PSPACE
look-ahead, relational storage EXPTIME

To obtain the latter results we introduce a Tur-
ing machine model (XTMs) operating directly on
attributed trees. XTMs are adaptations of the do-
main Turing machines of Hull and Su [15]. XTMs
provide a convenient tool for measuring the ex-
pressiveness of tree-walking devices as they work
directly on trees. Further, there is a natural
time/space-correspondence with ordinary Turing
machines working on encodings of attributed trees.

When no attributes are present, it is easy to
see that relational storage does not add additional
power. In [4] it is shown that adding look-ahead
allows to capture all unary monadic second-order
logic formulas (MSO) and, therefore, all regular tree
languages [18]. Hence, whether look-ahead adds
power depends on the open question whether tree-
walking captures all regular tree-languages [12, 13,
19].

This paper is further organized as follows. In Sec-
tion 2, we provide background on attributed trees
and logic. In Section 3, we define the most general
class TW™! of tree-walking programs. In Section 4
we prove the relational incompleteness of Tw™!. In
Section 5, we define several restrictions of TW™!. In
Section 6, we define XTMs. In Section 7, we prove
characterizations of restrictions of TW™! in terms of
XTMs. We conclude in Section 8.

2 Background

2.1 Attributed Trees and XML

We start with the necessary definitions regarding
trees over a finite alphabet Y. To use these trees as
adequate abstractions of actual XML documents,
we extend them with attributes that take values
from an infinite (recursively enumerable) domain
D = {dy,ds,...}.

The set of Y-trees, denoted by Ty, is inductively
defined as follows: (i) every o € ¥ is a X-tree; (77) if
o€ X andty,...,t, € Ty, n > 1 then o(ty,...,t,)
is a X-tree. Note that there is no a priori bound on

the number of children of a node in a X-tree; such
trees are therefore unranked.

For every tree t € Ty, the set of nodes of t, de-
noted by Dom(¢), is the subset of N* defined as
follows: if t = o(ty---t,) with 0 € ¥, n > 0, and
ti,...,tn € Ty, then Dom(t) = {e} U{ui | i €
{1,...,n},u € Dom(t;)}. Thus, ¢ represents the
root while us represents the ¢-th child of u. By
lab!(u) we denote the label of in t.

Next, we add XML attributes. To this end, for
the rest of the paper, we fix a finite set of attributes
A.

Definition 2.1 An attributed X-tree is a pair
(t, (A\L)aca), where t € T, and for each a € A,
A Dom(t) — D is a function defining the a-
attribute of nodes in t.

Of course, in real XML documents, usually, not
all element types have the same set of attributes.
Obviously, this is just a convenience and not a re-
striction. Further, XML documents can contain ele-
ments with mixed content. As shown in [4], this can
be faithfully represented by attributed trees with
dummy intermediate nodes.

In the following, when we say tree we always
mean attributed X-tree.

2.2 Logic

As we will compare our tree-walking language with
FO, we explain how a tree is represented as a log-
ical structure. We make use of the vocabulary
5.4 = {E,<,=<,(0g)pex, (valg)aca}. Each val, is
a function, all other vocabulary symbols are rela-
tions. The domain of the structure representing ¢
is Dom(t). The relations are then interpreted in
the following way: E(u,us) for all u,ui € Dom(t)
and i € N (edge relation);! wi < wuj iff i < j
and 4,7 € N (ordering on siblings); u < wv for
all u,uv € Dom(t) (descendant relation); O, (u) iff
lab!(u) = o3 and val,(u) = Au(u). Note that val,
is a function from Dom(¢) to D. The logic at hand
is based on the logics accompanying the metafinite
structures of Gradel and Gurevich [14].

!Recall that i is a child of u.

An atomic formula is of the form E(z,y), z <
y, ¢ <y, Os(z), x = y, val,(z) = valy(y) or
valg(z) = d where a,b € A and d € D. Such
FO is ob-
tained by closing the atomic formulas under the
boolean connectives and first-order quantification
over Dom(t). As an example consider the FO sen-
tence Vz(val,(z) = d V val,(x) = valy(z)), express-
ing that the value of every a-attribute is d or is
equal to the b-attribute.

formulas have the obvious semantics.

2.3 FO(3*) and XPath.

The pattern language employed by XSLT is XPath.
For our inexpressibility result we abstract XPath by
binary FO(3*) formulas over the above mentioned
vocabulary. The latter logic is the fragment of first-
order logic where all formulas are in prenex normal
form and all quantifiers are existential. Addition-
ally, formulas can make use of the unary predicates
root(z), leaf(x), first(z), and last(z) (denoting that
z is the root, a leaf, the first and the last child, re-
spectively) and the binary predicate succ(z,y) (de-
noting that y is the right sibling of z, respectively).
Note that these predicates are FO-definable but not
FO(3*)-definable.

We consider the fragment of XPATH defined by
the following grammar:

p = pilp (union)
| /p (xoot)
| p1/p2 (child)
| p1//p2 (descendant)
| p1[p2] (filter)
| o (element test)
| * (wildcard)

We refer the reader unfamiliar with XPath to [10].

Clearly, XPath defined as such can be simulated
by FO(3*). As an example consider the XPath ex-
pression a//b[//c] [d] which is equivalent to the
FO(3*) formula

o(z,y) == JyeIys(z <y Ay < y2 AN E(y,y3)
A Oq(z) A Op(y) A Oc(y2) A Og(ys))-

We always take x as the current position and y as
the selected position. Note that FO(3*) can also
compare attribute values of nodes.

3 Computation by tree-walking

Before we give the definition of tree-walking au-
tomata, let’s recall two-way deterministic finite
state machines on strings: such devices ‘walk’ in
two directions over a string changing state and di-
rection depending on the current state, the current
symbol and whether the current position is the left
or right-delimiter. An automaton accepts if a final
state is reached at some point. Analogously, a tree-
walking automaton is a finite state device walking
a tree. Its control is always at one node of the in-
put tree. Based on the label of that node, its state,
and its position in the tree (first or last child, root,
or leaf), the automaton changes state and moves
to one of the neighboring nodes (parent, first child,
left or right sibling). The automaton accepts the
tree when it enters a final state.

To deal with D-values a tree-walking automaton
is equipped with a finite number of registers.? In [4]
these registers can only store D-values coming from
the attributes. In the present paper, we extend the
power of tree-walking automata in two ways: (1)
registers can store finite relations over D; (i7) tree-
walking automata can start subcomputations.

We explain this in a bit more detail. (i) We fix
a set of relation names X := Xi,..., X}, each of
a specific arity. These will serve as the relational
store and will be interpreted by finite relations over
D. We will use FO to define and manipulate the
relational storage. However, the logic has only ac-
cess to the attribute-values of the current node and
the relational storage. Moreover, all quantification
is over the active domain of the relational storage.
So there is no access to the tree structure. (i7) A
subcomputation computes a relation over D. Such
a subcomputation is not necessarily started at the
present location: an XPath expression (or in our
setting, an FO(3*) formula) is used to locate various

2In XSLT, the counterpart of registers are variables that
can be passed between templates.

positions in the tree. From every selected position
a subcomputation is started. When such a subcom-
putation accepts, it returns the content of its first
register. The overall result is then the union of the
relations computed by the subcomputations. When
one subcomputation rejects, the whole computation
rejects. To be concrete, a subcomputation is in-
voked by a construct of the form?® atp(p(z,y),q).
Suppose ¢(z,y) = x < y A leaf(y). Then the for-
mer starts a subcomputation in state g at all leaves
below z (the current node). As already mentioned,
the result is then the union of the results of the
various subcomputations.

To simplify the definition of two way automata on
strings, one usually delimits strings with the start
and end symbols > and <, respectively. We do the
same for trees using the extra symbols A and V.
For instance, if ¢ is the tree a(bcd) then delim(¢) is
the tree

v
N

~
>;//Z$<

A A A

We assume that every attribute of a delimiter
contains L where L ¢ D. We refrain from giving a
formal definition of delim(t).

In the next definition, the r and [in TW" stand
for relational storage and look-ahead, respectively.

Definition 3.1 A k-register TW™!-automaton B is
a tuple (Q,qo,qr, 10, P) where Q is a finite set of
states; qo € @ 1is the initial state; qp € Q 1is the
final state; 7o : {1,...,k} — D U{L} is the ini-
tial register assignment; and, P is a finite set of
rules of the form (0,q,§) — «. Here, 0 € X,
q € Q, and & is an FO sentence over the vocab-
ulary X UUyea{a} UUqen{d} where each a and d
are constants. Intuitively, a transition can be ap-
plied when the current node carries a o, the current
state is q, and the contents of the relational store
satisfies &. The righthand side a has one of the
following forms:

3atp stands for apply templates. The latter terminology is
used by XSLT.

1. (¢',d) withq' € Q and d € {-,+,—,1,1}; intu-
itively, this means change to state ¢’ and move
in direction d (- means ‘stay’);

2. (¢',¢,i) with ¢ € Q, ¥ an FO formula over
the vocabulary X U J,e 4{a} U Uyepf{d}, and
i € {1,...,k}; intuitively, this means change to
state ¢’ and replace register ¢ with the relation
obtained by applying v;

3. (¢, atp(e(z,y),p),i) with ¢,p € Q, o(z,y)
an FO(3*) formula, and i € {1,...,k}; intu-
itively, this means change to state ¢’ and re-
place register 7 with the relation obtained by

applying atp(¢(z,y),p).

We assume that there is no transition possible
from the final state. Further, we assume that the
automaton never moves off the input tree. The size

of B is |Q| + X1 |70 ()] + B(,4,6)sacplél-

Let Dyctive be the set of D-elements occurring in
t and B. Given a tree t, a configuration of B on
t is a tuple [u,q,7] where v € Dom(t), ¢ € Q,
and 7 : {1,...,k} = U;>; Dliver That is, u
is the current node, g the current state, and 7
the register content. The initial configuration is
Yo := [g,q0,70]- A configuration [u,qp,7] is ac-
cepting. A rule (o,p,&) applies to a configuration
[u, q, 7] iff lab’(u) = &, p = ¢ and ¢ holds under the
interpretation induced by 7 where in addition each
a € A is interpreted by val’(u) and each d € D
is interpreted by d. We assume that automata are
deterministic: if (o,q,&1) and (o, q,&2) appear as
left-hand sides then there is never a configuration
such that both &; and &> apply.

Before we define the transition relation, we de-
fine the (partial) move function mgy for every d €
{-y,—, 1,1} as follows. For every node u, m.(u),
me(u), m—(u), my(u), and my(u) equals u, the
left sibling, the right sibling, the parent and the
first child of u, respectively (if they exist).

Denote the set of all configurations by CB+*. The
transition graph H*C CB! x OBt is the smallest
graph with nodes in C%* such that * is transitive;
further, there is an edge between v = [u,q, 7] and
v =[u', ¢, 7'] if there is a rule (o,q,3,£) = a in P
to which v applies and

e if « = (p,d) then ¢ = p, my(u) = v/, and
7 = 7'. Intuitively, this is a move in direction

d.

o if @ = (p,9,i) then ¢’ = p, v = u, 7'(j) = 7(j)
for all j # i, and 7'(7) = {d | ¥(d) holds in 7}.
Intuitively, register ¢ is replaced by the result

of 1.

o if @ = (p,atp(¢(z,y),p'),i) then ¢’ = p, u' =
u, 7'(j) = 7(j) for all j # 4, and 7'(i) =
Uj—y (1) where (uj,p/,7) F* (vj,qp,75) for
some node v; and {ui,...,us} = {v | t |=
o(u,v)} € Dom(t).

Intuitively, register ¢ is replaced by the result
of atp(p(z,y),p'); the latter, starts £ subcom-
putations at the nodes {ui,...,us} = {v |
t = ¢(u,v)} C Dom(t); these computations
are started in state p’ and with relational store
7; when they end in a final state, the contents
of the first register is returned (that is, 7;(1));
the content of register ¢ is then the union of the
results of all subcomputations.

B accepts the input tree ¢ if g F* v for some ac-
cepting configuration ~.

Example 3.2 Assume ¥ = {0,0} and A = {a}.
We define an automaton that accepts a tree if for ev-
ery d-labeled node all its leaf-descendants have the
same a-attribute. By leaf-descendants we do not
mean nodes labeled with A but the parents of those
nodes. We define a 1-register automaton where the

regiSter X1 is a set. Let Q = {q07q17Q27Q37q47qF}7
and 79(1) = (0. P consists of the following rules:

(V,qo0,true) — (q1,atp(p1,42),1) (1)
(V,q1,true) — (qr,-) (2)
(6, q2,true) — (g3,atp(p2,q4),1) (3)
(6,93,8) — (qr,) (4)
(6, qa,true) — (qr, ;1) (5)
) ((6)

— 6

(Ua q4atrue qr, T = a, 1)

where o1 = 2 < y A Os(y), p2 = iz < y A
E(y,y1) A Oa(y1), and & = VaVy (X1 (z) A Xi(y) —
T F#Y).

The automaton works as follows: (1) a subcom-
putation is initiated that selects all d-labeled de-
scendants of the root; (2) when all subcomputa-
tions return, that is, state ¢; is reached, the tree is
accepted; (3) every d-labeled node selects all leaves
(recall that we work with delimited trees); (4) when
the returned set is a singleton, the subcomputation
accepts (otherwise, the subcomputation gets stuck
and the main computation rejects); as (5) and (6)
make sure that every leaf returns the value of its a
attribute, the computations initiated by (3) accepts
in (4) iff every leaf has the same a-attribute. Note
that £ = a is the formula that defines the set con-
taining the value of the a-attribute of the current
node. O

In the next section we show that Tw”, as such,
is actually very weak. That is, the language is
not even relationally complete. In contrast, when
unique IDs are present, various restrictions of TW”™!
capture natural complexity classes. So, we show in
Section 7 that under very reasonable assumptions
Tw"! is in fact a very robust language.

4 Inexpressibility

The present section is devoted to the proof of the
following theorem which shows that TW™ is not re-
lationally complete.

Theorem 4.1 TW"! can not simulate FO over the
vocabulary Ts; 4 when X # 0 and A # 0.

For ease of exposition, we restrict attention to
strings, that is, monadic trees. In particular, we
take ¥ = {0} and A = {a}. As we are proving an
inexpressibility result, this is no loss of generality.
For convenience, we write a tree o(o(o(c0))) with
No(2) = do, Mo(1) = di, Mo(2) = da, and X (3) = ds
simply as the string dod;dads.

Before we state the string language not com-
putable with a TW"l-program, we introduce some
notation. A I-hyperset over D is a finite subset
of D. For ¢ > 1, an i-hyperset over D is a finite
set of (i — 1)-hypersets over D. We often denote
i-hypersets with a superscript 7, as in S,

For ease of presentation, we assume that

D contains all natural numbers. For each
j > 0, let D; be D — {1,...,5}. Next, let
g > 0 be fixed. We inductively define encod-

ings of i-hypersets over Dj;. First, a string
w = ldydy---d,1 over Dj; is an encoding of the
1-hyperset H(w) = {di,...,d,} over D;. For each
i < 7, and encodings wy, ..., wy, of (i —1)-hypersets,
twitws - - - twyt is an encoding of the i-hyperset
{H(w;) | i < n}. Define L™ as the language {f#g |
f and g are encodings of m-hypersets over D,,
and H(f) = H(g)}.
The following is shown in [20].

Lemma 4.2 For each m, L™ is definable in FO.

We next show that no TW”l-program can com-
pute L for sufficiently large m. The proof is based
on communication complexity. More precisely, ()
we show that every Tw” -program can be computed
by a specific communication protocol (Lemma 4.5);
(74) we show that no protocol can compute L™ for
sufficiently large m (Lemma 4.6). Step (i) is the
most involved one.

Define expy(n) := n and exp;(n) = 28Pi-1(n),
for + > 0. We say that two strings s; and sy are
k-equivalent, denoted s; =j so if they satisfy the
same FO(3*)-formulas with & variables. We write
(83915 yin), 91,---,in, € Dom(s), for the struc-
ture where each 4; is taken as a constant. By
tpg (8541, ... ,in) we denote the =g-equivalence class
to which (s;41,...,4,) belongs. We also call tp,(s)
the k-type of s.

Lemma 4.3 Let D be a finite subset of D. Let f
and g be two strings over D.

1. tp,(f#g;4,7) with i < j only depends on
top(f31,7) and tp(g) when i and j refer to po-
sitions in f; on tpi(f;1) and tpi(g;7) when i
and j refer to positions in f and g, respectively;
and, on tp,(f) and tp,(f;i,7) when i and j re-
fer to positions in g;

2. the number of equivalence classes of =i is not
more than exps(p(k+|D|)) for some polynomial

p-

Proof. (sketch) The proof of (1) is a standard
Ehrenfeucht-game argument. The proof of (2)
is a counting argument. Indeed, the number of
atomic formulas is bounded by p(k + |D|) for some
polynomial p. As every FO(3*) is equivalent to
one with quantifier-free part in disjunctive normal
form, the total number of formulas is bounded by
expy(p(k + |D|)). As a =j-class is determined by
the set of formulas its members satisfy, the number
of =g-classes is bounded by exp;(p(k +|DJ)). O

a {#Beﬁnition 4.4 Let N be a natural number. Let P

be a binary predicate on i-hypersets over D. We say
that P can be computed by an N-communication
protocol between two parties (denoted by I (male)
and II (female)) if there is a polynomial p such
that for all i-hypersets X and YO over a finite
set D there is a finite alphabet A of size at most
exps(p(N+|D|)) such that P(X®,Y) can be com-
puted as follows: I gets X and IT gets YO both
know D and A; they send elements from A back and
forth; and, after 2|A| rounds of message exchanges,
both I and II have enough information to decide
whether P(X® Y ") holds.

We refer to strings of the form f#g, where f and
g do not contain #, as split strings. A communica-
tion protocol computes on such strings by giving f
to I and g to II. Note that T and II have unlimited
power on the strings assigned to them.

Lemma 4.5 On split strings, the strings recognized
by TW"l-programs of size N can be computed by an
N -protocol.

Proof. (sketch) Let B = (Q, qo, F, 79, P) be a TW"-
program and f#g¢g be an input string over alphabet
D. Assume B never changes direction at the marker
#. Assume the position of # in f#g is b.

We take A as the set containing all tuples of the
form

q, 7, NeedAnswer)
send configuration of subcomputation)

e (p,q,0,T) (atp-request);
* (R) (reply);
e (q,7) (send main configuration)
(
(

e (0) (send N-type);

e (reject) and (accept),

where ¢ is an FO(3*) formula occurring in B, ¢ € Q,
0 is an =y-equivalence class and each R; and R are
relations over D. By Lemma 4.3(2), A is of the
required size.

Recall that I is given f while IT is given g. The
two parties simulate the behavior of B. As an ini-
tialization step, I sends the N-type of f to II and
IT in turn answers with the N-type of g. Here-
after, I starts computation in the start configura-
tion [e, qo, To].

Both I and II make use of a stack during
their computation (which we denote by Stack! and
Stack!!, respectively). The stack alphabet of I
(resp., II) consists of the symbol ReturnAns to-
gether with all symbols Compute&Return(S, R;p, 7)
and Compute(S, R;u,p,7,i) where S is a set of
positions in f# (resp., #g), p € @, R is a
relation over D, i € {1,...,k}, 7 is the con-
tents of a relational store, and w is a position
in f# (resp., #g9). When ReturnAns is on top
of the stack, this means that when the com-
putation reaches the final state, the content of
the first register should be sent to the other
party. The symbols Compute&Return(S, R;p,T)
and Compute(S, R;u,p,T,i) are used to compute
atp-request from the other party and the present
party, respectively. More precisely, S contains the
position which still have to be processed; R is the
intermediate result; the other information is used
to start new subcomputations.

We only explain the behavior of I, IT’s behav-
ior is analogous. Assume that at some point the
computation in f is in configuration v = [u,q,7].
That is, I is simulating the computation and IT is
waiting. Suppose first that ¢ = gp.

1. Assume Stack! is empty. This means that the
current computation is the main one. Hence,
the string is accepted. Therefore, I sends
(accept) to IT and both parties know the string
is accepted.

2. Assume top(Stack!) = ReturnAns. This
means that IT has sent a configuration and ex-

pects an answer. Therefore, I pops the stack
and sends (7(1)) to II.

3. Assume top(Stack") =
Compute&Return(S, R;p, 7'). This means
that the current computation is computing the
I-part of an atp-request of II. If S = () then
the request is completed. So, I pops the stack,
sends (RUT(1)) to II, and waits for an answer.
Otherwise, I takes an element v from S, pops
the stack, pushes (S — {v},R U 7(1);p,7")
on the stack and continues in configuration
[v,p, T'].

4. Finally, assume top(Stack®) =
Compute(S, R;u,p,7',i). This means that
the current computation is computing the
I-part of an atp issued by I himself. If
S = () then the computation is finished. So, I
pops the stack and continues in configuration
[u,p,7"] where 7"(j) = 7'(j) for j # 4 and
7"(i) = RUT(1). Otherwise, if S is not empty,
I takes an element v from S, pops the stack,
pushes (S — {v}, R U 7(1);p,7") on the stack
and continues in configuration [v,p, 7'].

Suppose ¢ # gr. If no rule applies. Then I sends
(reject) to II. Both parties then know that the au-
tomaton rejects. Conversely, let (0,q,£) — « be
the rule that applies to [u, g, T].

1. If @ = (p,d) then I computes the new config-
uration [p, mg(u), 7] as B would do. If u is a
position in f then I continues as before. Oth-
erwise, the computation leaves f. If Stack®
is empty, then the main computation leaves f
and I sends (p,7) to II and waits for an an-
swer. If top(Stack!) contains ReturnAns, this
means that I should send a relation to II. How-
ever, the computation hasn’t finished yet, but
returns to II. She will now take care of this
subcomputation. Therefore, I pops the stack,
sends (p,7) to II and waits for an answer.
Otherwise, if the stack contains a Compute
or a Compute&Return, I needs the result of
the subcomputation. Therefore, he I sends
(p, 7, Need Answer) to II.

2. If @« = (p, 9, 1) then I computes the new config-
uration [p,u,7'] as B would do, and continues
as before.

3. f a« = (p,atp(p,p’),7) then I pushes
Compute(S, 0;u,q, 7,7) on the stack where S =
{v |t ¢(u,v)}. Note that by Lemma 4.3(2),
the latter only depends on tpy(f;u) and

tpN(g)' NeXta he sends <907pla tpN(f; ’LL), T> to
IT and waits for an answer.

Suppose the computation resides in g and I re-
ceives a message [3.

1. If B = (accept) ((reject)) then I knows the
string is accepted (rejected).

2.1f g = (p,q,0,7) then I pushes
Compute&Return(S — {v'},0;q,7) the
stack where v’ is an arbitrary element in
S. Here, S is is the set of position in f#
selected by ¢. By Lemma 4.3(1), the latter
only depends on f and 6. Next, I starts
computation in configuration [v', ¢, 7].

on

3.f B = (R) and top(Stack!) =
Compute(S, R; u, p, T,1) then I pops
the stack, takes a v € S, pushes

compute(S — {v},R U R';u,p,7,i) on the
stack, and starts computation in configu-
ration [v,p,7]. If top(Stack!) contains a
Compute&Return, I acts similarly. The top of
the stack can not contain ReturnAns.

4. If B = (q,7), then I starts computation in con-
figuration [b, g, 7].

5. If p = (q,7,NeedAnswer), then I pushes
ReturnAns on the stack and continues compu-
tation in configuration [b, ¢, 7].

It remains to argue that we need at most 2|A|
rounds of message exchanges. Thereto, we slightly
alter the protocol. Suppose a party (say I) needs
to send a request (an atp-request or a configuration
of a subcomputation), then (i) if I has already sent
this request and obtained an answer, then the re-
quest isn’t sent but the already obtained value is
used; (77) if I has already sent the request but no

answer is obtained yet, then the computation got
stuck in a cycle and I sends (reject) to II; (4ii) if
no such request has been made, I simply sends it
to II. Hence, each request will only be sent at most
once. By the definition of the protocol, each request
will be answered once. Further, each configuration
can only be sent at most once in every direction. Fi-
nally, an N-type will only be sent once. This means
that there are at most 2|A| rounds of message ex-
changes. O

Lemma 4.6 For m > 6, L™ cannot be computed
by an N -communication protocol for any N.

Proof. Suppose there is a protocol computing L.
For any given input f#g¢, the number of different
possible messages is |A| = exps(p(|D| + N)) with
D the symbols in f#g. Call a complete sequence
of exchanged messages a1bjasbs ... a dialogue. Ev-
ery dialogue has at most 2 exp3(p(|D|+ N)) rounds.
Suppose for ease of exposition that it has ex-
actly that many rounds. Hence, there is less than
exp3((p(|D] + N) + 1) - expy(p(| D] + N) + 1)) dif:
ferent dialogues. However, the number of different
m-hypersets over D is exp,,(|D|). Hence, for m > 6
and D large enough, there are m-hypersets f # g
such that the protocol gives the same dialogue for

f#f and g#g¢, and therefore also on f#g and f+#g.
This leads to the desired contradiction. O

5 Restrictions

We consider several restrictions of Tw™!: TW" has
no look-ahead (only relational storage), TW' has
registers only containing single D-values; TW is TW'
without look-ahead. Formally, we have the follow-
ing definition.
Definition 5.1 & TW" is TW"! where no transi-
tions of the form B — (q, atp(p,p),i) are al-
lowed.

o TW! is the restriction of TW™! where all rela-
tions are unary and contain at most one data
value during every execution . It is also possi-
ble to give a syntactic definition. Indeed, every

formula v in a rule B — (q,,1) is quantifier-
free and defines only one value. Further, every
v in a rule B — (q,atp(p,p),i) should select
only one node (for instance, select parent or
first child). So, the look-ahead will compute
one data-value rather than a set of values or a
relation.

e TW is TW' where no transitions of the form
B = (q, atp(p,p),1) are allowed.

6 XML Turing Machines

As a technical vehicle we introduce XML Turing
machines (XTM). These are inspired by the domain
Turing machines of Hull and Su [15]. The input
to such machines is an attributed tree. A machine
is equipped with a finite number of registers and a
one-way infinite work-tape.

Definition 6.1 An XTM is a TW with a one-way
infinite work-tape. The alphabet of the work tape
is finite. The size of the input is the number of
nodes in the tree.* PTIMEX (EXPTIME™) is the class
of XTMs that make at most a polynomial (exponen-
tial) number of transitions in the size of the input.
LOGSPACE™ and PSPACEX is the class of XTMs that
use at most an amount of space on the worktape
that is logarithmic/polynomial in the size of the in-
put. Alternating complexity classes, denoted by an
A in front of their name, are defined w.r.t. alter-
nating TWS.

We omit the proof of the following theorem.

Theorem 6.2 FEvery tree language that is rec-
ognizable in LOGSPACEX, ALOGSPACEX PTIME®,
PSPACE™, APSPACE™ is recognizable by an ordinary
TM working on the encoding of trees in LOGSPACE,
ALOGSPACE, PTIME, PSPACE, APSPACE and vice
versa.

4Tt does not matter for the results whether we count the
sizes of the D-values or not.

7 Unique IDs

In this section we assume the existence of an at-
tribute 1D whose value is unique among the at-
tribute values of the nodes in the tree. That is,
for every tree ¢t and for all nodes u,v € Dom(t), if
Ao (u) = X (v) then u = .

This attribute will only be used for navigational
purposes to the benefit of TW”!s. Storing these val-
ues in registers can be seen as placing pebbles on
the corresponding nodes. We use this analogy in
the proofs. When an XTM has at least logspace
workspace at its disposal it does not matter whether
the 1D-attribute can be used. Indeed, the XTM can
assign on the fly to each node its number in the
in-order of the tree and recompute it when neces-
sary. Therefore, we assume w.l.o.g. that XTMs have
access to IDs.

Due to space limitation we only briefly mention
the techniques used in the proofs below.

Theorem 7.1 1. TW captures LOGSPACE? ;

2. W' captures PTIMEY ;
3. TW" captures PSPACE™ ; and,
4. TW"! captures EXPTIMEY .

Proof. (sketch) (1) Clearly, every TW can be simu-
lated in LOGSPACEX. The reverse direction is sim-
ilar to the proof that multi-head automata capture
LOGSPACE. [22] For ease of exposition let M be a
LOGSPACE™ XTM such that on every tree the com-
putation needs at most logy(|¢|) space (rather than
the more general k-logs(|t|) space). Assume further
that the tape can only contain the symbols 0 and
1. As we have unique IDs, we can place a finite
number of pebbles on positions of the input tree by
storing their IDs in designated registers. The tape
content can be represented by a number between 0
and |t| — 1. We consider the nodes in in-order. So,
if the tape contains j then a pebble is placed on
the (5 4+ 1)th node in the in-order of the tree (the
root represents zero). We refer to this pebble as
the tape pebble. As the tape initially contains 0, the
tape pebble is placed on the root. We also need to
remember the position of the head. This is done by

a second pebble in an analogous fashion. We refer
to the latter pebble as the head pebble. If the head
is placed on the ith cell from the right, the head
pebble is placed on the ith node. We only need
to be able to do two things: (a) check whether the
symbol under the head is 0 or 1; and, (b) overwrite
the symbol under the head.

(a) We simply have to check whether j divided
by 201 is even. Node j/2 can be found by plac-
ing a pebble on the root and one on j and letting
them walk towards each other. The latter can be
repeated 1 — 1 times. It remains to check whether
the resulting node is even or not. This can be done
by walking towards the root and counting modulo
two.

(b) If position 4 has to be changed from 0 to 1 we
add 2¢ to j otherwise we substract. Obtaining the
number 2¢, addition and substraction is done in the
obvious way.

(2) We first sketch that every Tw! is in PTIMEY.
Indeed, there are only polynomially many configu-
rations in the size of the input tree. One can first
construct the configuration graph in a bottom-up
manner (this is an inflationary process as only edges
will be added) and then check whether a final con-
figuration can be reached from the initial one. Of
course, we cannot directly write D-values onto the
tape, but we can assign a unique number to each
D-value by considering the first occurrence in the
in-order of the tree in which it appears.

For the converse direction, we first note that
Theorem 6.2 and the known fact that ALOGSPACE
equals PTIME implies that PTIMEX =ALOGSPACE?.
One can easily adapt the simulation in (1) to alter-
nating TW's with logspace worktape. Indeed, when
a universal state is entered the TW' uses a subcom-
putation for each branch. Every branch returns a
value indicating whether that branch accepts or not.

(3) Every TW" is in PSPACEY. Indeed, when no
look-ahead is present, the configuration graph is a
chain. As every configuration is of size polynomial
in the size of the input tree, we can only keep the
last configuration on the work tape.

Every XTM in PSPACEX can be simulated by a
TW" by encoding the tape into a relation in the

standard way (see, e.g, [16, 23]) and then using FO
to compute the new configuration from the current
one.

(4) The proof is analogous to (2) taking into ac-
count that there are an exponential number of con-
figurations and that APSPACE equals EXPTIME. O

For the sake of completeness, we examine the sit-

uation when A = (). Obviously, when A = () there
are no IDSs.
Proposition 7.2 When A = 0, Tw" = tw! =

MSO and TW" = TW.

Proof. Clearly, when A = () there are only a finite
number of register contents. These contents can
therefore be kept in the state. Hence, TW™! = Tw!
and TW" = Tw. In [4], it is shown that TW' can
simulate MSO. Further, when A = (), TW' can be
rather directly simulated in MSO. O

It is an open problem whether TW can simulate
MSO [12, 13, 19]. We point out that TW' is not
included in MSO when A # () [20].

8 Discussion and related work

We presented a formal analysis of the tree-walking
paradigm. The main motivation is the XML trans-
formation language XSLT. We showed that in the
absence of unique IDs even very powerful enhance-
ments of this paradigm fail to capture all of first-
order logic. This result is a strengthening of a re-
sult by Neven, Schwentick, and Vianu [20] to look-
ahead and relational storage. The present proof is
again based on communication complexity, but is
more subtle than the latter one. Indeed, although
the proof in [20] takes alternation into account, the
protocol is memory-less and keeps track of the com-
plete configuration tree as a whole. Here, the pro-
tocol needs to follow a strict evaluation order where
new communications depend on previous ones.
Communication complexity was first applied in
databases by Abiteboul, Herr, and Van den Buss-
che [2]. The only other applications we are aware of
are [6] and [20]. The used protocols are mostly sim-
ilar. The main difficulty is actually the simulation

10

lemma. It would be desirable to come up with gen-
eral criteria when communication complexity can
be applied.

In contrast to the negative result, when IDs are
present in XML documents, we exhibited natu-
ral fragments that capture precisely LOGSPACE?,
PTIMEYX, PSPACEX and EXPTIMEX. Although the
proofs of these results are combinations of known
techniques in complexity, finite model theory, and
formal languages, they provide a quite complete pic-
ture of the expressiveness of query languages based
on tree-walking. The most surprising might be that
TW” which is the abstraction of XSLT defined in [4]
captures in fact precisely PTIME. Of course, one im-
mediate drawback of the current approach is that
the formalisms under consideration do not generate
output. This is the subject of further research.

Finally, we recall the relational attribute gram-
mars (RAGs) studied by Neven and Van den Buss-
che [21] which also have a relational storage. As
the latter capture linear parallel time they are in-
cluded in Tw"!, Tw!, and TW", and this inclusion
is probably strict.

Acknowledgment

I thank Thomas Schwentick and Stijn Vansum-
meren for comments on a previous version of this
paper. A suggestion of Thomas leading to a great
simplification of the TW™ formalism is gratefully
acknowledged.

References

[1] S. Abiteboul, P. Buneman, and D. Suciu. Data
on the Web : From Relations to Semistructured
Data and XML. Morgan Kaufmann, 1999.

[2] S. Abiteboul, L. Herr, and J. Van den Bussche.
Temporal connectives versus explicit times-
tamps to query temporal databases. Journal
of Computer and System Sciences, 58(1):54—
68, 1999.

11

3] A.V. Aho and J. D. Ullman. Translations on a
context-free grammar. Information and Con-
trol, 19(5):439-475, 1971.

[4] G. J. Bex, S. Maneth and F. Neven. A formal
model for an expressive fragment of XSLT. In-
formation Systems, 27(1): 21-39, 2002.

[5] R. Bloem and J. Engelfriet. A comparison of
tree transductions defined by monadic second
order logic and by attribute grammars. Journal
of Computer and System Sciences, 61(1):1-50,
2000.

[6] N. Bidoit and S. De Amo. Implicit temporal
query languages: towards completeness. C. P.
Rangan, V. Raman, and R. Ramanujam, edi-
tors, Foundations of Software Technology and
Theoretical Computer Science, volume 1738 of
Lecture Notes in Computer Science, pages 245—
257. Springer, 1999.

[7] A. Briiggemann-Klein and Derick Wood.
Caterpillars: a context specification technique.
Markup Languages, 2(1):81-106, 2000.

[8] D. Chamberlin et al. XQuery 1.0: An XML
Query Language. W3C Working Draft, June
2001. http://www.w3.org/TR/xquery/

[9] J. Clark. XSL Transformations (XSLT) Ver-
sion 1.0. W3C Recommendation, November
1999. http://www.w3.org/TR/xslt

[10] J. Clark and S. DeRose. XML Path
Language (XPath) Version 1.0 W3C
Recommendation 16 November 1999
http://www.w3.org/TR/xpath

[11] P. Deransart, M. Jourdan, and B. Lorho. At-
tribute Grammars: Definition, Systems and
Bibliography, volume 323 of Lecture Notes in
Computer Science. Springer, 1988.

[12] J. Engelfriet and H. J. Hoogeboom. Tree-

walking pebble automata. In J. Karhum ki,
H. Maurer, G. Paun, and G.Rozenberg, edi-
tors, Jewels are forever, contributions to The-
oretical Computer Science in honor of Arto Sa-
lomaa, pages 72-83. Springer-Verlag, 1999.

[13]

[14]

[16]

[17]

[18]

[20]

[21]

J. Engelfriet, H.J. Hoogeboom, and J.-P. van
Best. Trips on trees. Acta Cybernetica, 14:51—
64, 1999.

E. Gradel and Y. Gurevich. Metafinite
model theory. Information and Computation,
140(1):26-81, 1998.

R. Hull and J. Su. Algebraic and calculus
query languages for recursively typed complex
objects. Journal of Computer and System Sci-
ences, 47(1):121-156, 1993

N. Immerman. Relational queries computable
in polynomial time. Information and Control,
68(1-3):86-104, 1986.

T.Milo, D. Suciu, and V. Vianu. Typechecking
for XML Transformers. To appear in Jour-
nal of Computer and System Sciences. Ex-
tended abstract in Proceedings of the ACM
Symposium on Principles of Database Systems
(PODS 2000), pp. 11-22, 2000.

F. Neven and T. Schwentick. Query au-
tomata. To appear in Theoretical Computer
Science. Extended abstract in Proceedings of
the FEighteenth ACM Symposium on Princi-
ples of Database Systems, pages 205-214. ACM
Press, 1999.

F. Neven and T. Schwentick. On the power of
tree-walking automata. To appear in Informa-
tion and Computation. Extended abstract in
27th International Colloguium on Automata,
Languages and Programming (ICALP 2000),
pages 547-560, Lecture Notes in Computer Sci-
ence, volume 1853. Springer, 2000.

F. Neven, T. Schwentick, and V. Vianu. To-
wards regular languages over infinite alpha-
bets. J. Sgall, A. Pultr, P. Kolman, editors,
Mathematical Foundations of Computer Sci-
ence (MFCS 2001), volume 2136 of Lecture
Notes in Computer Science, pages 560-572.
Springer, 2001.

F. Neven and J. Van den Bussche. Expres-
siveness of structured document query lan-

12

[22]

[23]

guages based on attribute grammars. To ap-
pear in Journal of the ACM. Extended ab-
stract in Proceedings of the Seventeenth ACM
Symposium on Principles of Database Systems
(PODS 1998), pages 11-17. ACM Press, 1998.

I. H. Sudborough. On tape-bounded com-
plexity classes and multihead finite automata.
Journal of Computer and System Sciences,
10(1):62—-76, 1975.

M. Y. Vardi. The complexity of relational
query languages. In Proceedings of the 14th
Annual ACM Symposium on Theory of Com-
puting (STOC 1982, pages 137-146. ACM
Press, 1982.

