On the Power of Tree-Walking Automata

Frank Neven*
Limburgs Universitair Centrum and Thomas Schwentick
Johannes Gutenberg-Universitiat Mainz
Institut fiir Informatik

No Institute Given

Abstract. Tree-walking automata (TWAs) recently received new attention in the
fields of formal languages and databases. Towards a better understanding of their
expressiveness, we characterize them in terms of transitive closure logic formulas in
normal form. It is conjectured by Engelfriet and Hoogeboom that TWAs cannot define
all regular tree languages, or equivalently, all of monadic second-order logic. We proof
this conjecture for a restricted, but powerful, class of TWAs. In particular, we show
that 1-bounded TWAs, that is TWAs that are only allowed to traverse every edge of
the input tree at most once in every direction, cannot define all regular languages. We
then extend this result to a class of TWAs that can simulate first-order logic (FO)
and is capable of expressing properties not definable in FO extended with regular path
expressions; the latter logic being a valid abstraction of current query languages for
XML and semi-structured data.

* Research Assistant of the Fund for Scientific Research, Flanders.

1 Introduction

Regular tree languages can be defined by means of many equivalent formalisms, for instance:
(non)deterministic bottom-up and nondeterministic top-down tree automata, alternating tree
automata, two-way tree automata, homomorphic images of local tree languages, and monadic
second-order logic [GS97,Tho97a]. However, it is not known whether there exists a natural
inherently sequential model for recognizing the regular tree languages. Of course, by definition,
they are recognized by bottom-up finite tree automata, but these automata are essentially
parallel rather than sequential: the control of the automata is at several nodes of the input tree
simultaneously, rather than at just one. With this aim in mind, Engelfriet, together with his co-
workers Bloem, Hoogeboom, and van Best, initiated a research program [BE,EH99a,EHvB99]
studying (extensions of) the tree-walking automata (TWAs) originally introduced by Aho and
Ullman [AUT71]. The finite control of a tree-walking automaton is always at one node of the
input tree. Based on the label of that node and its child number (which is ¢ if it is the ith
child of its parent), the automaton changes state and steps to one of the neighboring nodes
(parent or child). Without the test on the child number such automata cannot even search
the tree in a systematic way, such as by a pre-order traversal as is shown by Kamimura and
Slutzki [KS81]. However, also with the child test, it is conjectured that these automata cannot
express all regular tree languages [EH99a,EHvB99]. In this paper, we study the expressiveness
of tree-walking automata by characterizing them in terms of transitive closure logic formulas
in normal form and prove the above mentioned conjecture for a restricted, but powerful, class
of tree-walking automata.

Apart from the above purely theoretical motivation, recently, new interest in tree-walking
automata emerged from the field of database theory. Indeed, one of the major research topics
at the moment is the design and study of query languages for the manipulation of XML docu-
ments or electronic documents in general [ABS99,N99]. Such documents are usually modeled
by ordered labeled trees or graphs, depending on the application at hand. In this research,
tree-walking automata are used for various purposes and appeared in various forms. Milo, Su-
ciu, and Vianu [MSV], for instance, used a transducer model based on tree-walking automata
as a formal model for an XML transformer encompassing most current XML transformation
languages. Briiggeman-Kleinn, Hermann, and Wood [BHW99], proposed to use caterpillar ez-
pressions as a pattern language for XML transformation languages. Interestingly, caterpillar
expressions relate to tree-walking automata like regular expressions relate to string automata:
they are just a different, though a lot more user friendly, representation of the same thing.
Furthermore, they conjectured their formalims to be less expressive than the regular tree lan-
guages. Another, more direct, occurrence of tree-walking automata is embodied in the actual
XML transformation language XSLT [Cla99] proposed by the World Wide Web consortium
(W3C) and currently being implemented by IBM. In formal language theoretic terms, this
query language can be best described as a tree-walking tree transducer [BMN99]. Hence, re-
sults on the expressiveness of tree-walking automata could give insight in the expressiveness
of actual XML transformation languages.

We start by characterizing the expressiveness of (deterministic and nondeterministic) tree-
walking automata in terms of (deterministic and non-deterministic) transitive closure logic
(DTC and TC) formulas in normal form. That is, formulas of the form [(D)TC(¢)](e,), where
© is an FO formula containing predicates depth,,(z) defining = as a vertex whose depth is a
multiple of m; and where € refers to the root of the tree under consideration. Our result thus
implies that any lower bound on (D)TC formulas in normal form is also a lower bound for
(non)deterministic tree-walking automata. Unfortunately, proving lower bounds for the latter
logic does not seem much easier than the original problem as Ehrenfeucht games for DTC and
TC are quite involved. Therefore, we use a direct approach for a restricted, but expressive,
class of tree-walking automata in the hope that these techniques will provide insight for the
general case.

We first show that 1-bounded tree-walking automata, that is tree-walking automata that
are only allowed to traverse every edge of the input tree at most once in every direction, cannot

define all regular languages. In particular, we obtain that they can not evaluate tree-structured
Majority circuits where the gates have fan-in greater than 2. Next, we generalize this result to a
rather powerful class of tree-walking automata, called r-restricted. These automata are rather
expressive as they can define all of first-order logic (FO) and are capable of expressing some
tree languages not definable in FO extended with regular path expressions. The latter logic is
an abstraction of current query languages for semi-structured data and XML [ABS99,N99],
and, for instance, cannot define the set of trees representing Boolean circuits evaluating to
true [NS] which can easily be defined by r-restricted tree-walking automata.

We conclude by mentioning some related work. Bargury and Makowsky [MSV] proved an
equivalence between transitive closure logic and two-way multihead automata operating on
grids. Their simulation of automata involves nesting of TC operators. Potthoff [Pot94] showed
that the same normal form of TC we use, suffices to define all regular string languages, the op-
posite direction being trivial in the string case. Recently, Engelfriet and Hoogeboom [EH99b]
showed that tree-walking automata with pebbles correspond exactly to TC. Hence, when
allowing pebbles one can simulate nested TC operators. Fiilop and Maneth [FM] recently
showed that the domains of partial attributed tree transducers correspond to the tree-walking
automata in universal acceptance mode.

This article is structured as follows. In Section 2, we define tree-walking automata. In
Section 3, we proof the logical characterization of tree-walking automata in terms of transitive
closure logic, and in Section 4 we proof the Engelfriet and Hoogeboom conjecture for two
restrictions of tree-walking automata.

2 Preliminaries

Trees. A tree domain T over N is a subset of N*, such that if v -7 € 7, where v € N* and
i € N, then v € 7. Here, N denotes the set of natural numbers. If i > 1 then alsov- (i —1) € 7.
The empty sequence, denoted by ¢, represents the root. We call the elements of 7 vertices. A
vertex w is a child of a vertex v (and v the parent of w) if vi = w, for some 7. A X-tree is
a pair ¢t = (dom(t),lab;), where dom(¢) is a tree domain over N, and lab, is a function from
dom(t) to X. The arity of a tree is the maximum number of children of its vertices. We only
consider trees with a fixed arity. The depth of a vertex u, denoted by depth(u) is the length
of u (interpreted as a string over N*). The distance between two vertices u and v, denoted by
d(u,v) is defined as the length of the path between w and v where we assume that d(u,u) = 0.

A Y-tree t can be naturally viewed as a finite structure (in the sense of mathematical logic
[EF95]) over the binary relation symbols E and <, and the unary relation symbols (O,)se .
E is the edge relation and equals the set of pairs (v,v - i) for every v,v -7 € dom(t). The
relation < specifies the ordering of the children of a node, and equals the set of pairs (v-i,v-j),
where ¢ < j and v-j € dom(t). For each o, O, is the set of nodes that are labeled with a o-.

Tree-Walking Automata. Tree-walking automata (TWAs) can be seen as the simplest anal-
ogon of two-way string automata. A TWA starts its computation in an initial state at the
root of the input tree. In each step, it moves to a neighbour vertex of the current vertex (or
stays at the current vertex) and enters a state. The direction of movement and the new state
depend only on the current state, the symbol at the current vertex and the child number of
the current vertex, i.e., the relative position of the current vertex in the ordered list of the
children of its parent.

More formally, a (k-ary) TWA is a tuple (S, X, 8, so, F'), where S is the set of states, X' is
an alphabet (the set of possible vertex labels), so € S is the initial state and F' C S is the set
of accepting states. The only part where a TWA is formally different from a standard string
automaton is the transition function §. The transition function § of a TWA is the union of
the functions 6% and §"°%¢ where i € {0,...,k}. For a deterministic TWA,

— §mo°bi i a function from S x X to {stay, |1,...,];} x S, and
— foreach i € {0,...,k}, 6" is a function from {1,... ,k} x S x X to {1,stay, [1,..., i} xS.

For a nondeterministic TWA the ranges of these functions are the respective power sets. If
several TWAs are around we write §37 to denote the transition function of TWA M and the
like.

A configuration ¢ = [v, 5] of a TWA M on a tree ¢ consists of a vertex v of ¢t and a state s
of M. The immediate successor configuration ¢’ of a configuration [v, s] is defined as follows.

— If v = ¢, v has i children and carries the symbol o then
o ¢ =[], if 67°°%i(s,0) = (stay, s'), and
o ¢ =[j,s'], if 7°i(s,0) = (|5,).
— If v = wj, for some j < k, v has i children and carries the symbol ¢ then
o ¢ =[w,s'],if 6i(j,s,0) = (T,5'),
o ¢ =[v,s],if 6i(j,s,0) = (stay, s'), and
o ¢ =[vj', s, if §'(j,s,0) = (l;1,5').

We write ¢ =7+ ¢’ to express that ¢ is the immediate successor configuration of ¢ in the
computation of M on t. Following standard convention we write ¢ :>§'M7t c (c =,) to
express that ¢ is the j-th (some) successor configuration of ¢ in the computation of M on ¢.
If M and/or t are clear from the context we may omit them.

Example 1. We illustrate the above definition by means of an example. In particular we define
a deterministic tree-walking automaton that accepts all tree-structured Boolean circuits of
fan-in 2 that evaluate to true. A similar construction can be given for each fixed bound on the
fan-in. For convenience, we only consider circuits of the right format. That is, all inner nodes
and the root have exactly two children and are labeled with AND or OR. Further, all leaves
are labeled by 0 or 1. These circuits are assigned a truth value in the usual way. Define M as
the tuple (S, X, 8, eval, F') with S = {eval, 0, 1, left-child-0, left-child-1}, ¥ = {AND, OR, 0,1},
and F' = {1}. The transition function § is defined as follows:

— M starts by evaluating the first subtree of the root:
for all o € {AND, OR}, §™°%?(eval, o) = (|1, eval);
— When reaching a zero (one) leaf, which is a left child, M moves up with this information:

§°(1,eval, 0) = (1, left-child-0);
§°(1,eval, 1) = (1, left-child-1);

— If M enters an inner vertex from a left child it is always in one of the two states left-child-0
or left-child-1. If the current vertex is an AND vertex and the state is left-child-0 then
the current vertex will evaluate to 0 no matter the right subtree. An analogous statement
holds for OR~gates and the state left-child-1. The information passed to the parent vertex
depends on whether the current vertex is itself a left or a right child. If the outcome of
the left child is not sufficient to determine the value of the current vertex M has to enter
its right child. Formally, for each i € {1,2}:

62

62 (1, left-child-0, AND) = (1, left-child-0);

§2(2, left-child-0, AND) = (1,0);

62(1,left-child-1,0R) = (T, left-child-1);

§2(2, left-child-1,0R) = (1,1);

62 (i, left-child-1, AND) = (|o,eval); and
((

i, left-child-0, OR) = (|, eval).

— If M enters an inner vertex from a right child it is always in one of the states 0 or 1. By
what we have said before, this state indicates the value of the subtree at the current vertex.
Hence, it only has to be passed to its parent vertex. Consequently, for each ¢ € {0,1} and
o € {AND, OR}:

62(1,0,0) = (T, left-child-0);
62(1,1,0) = (1, left-child-1); and
62(27 i) 0-) = (T) Z)'

— It remains to handle the case of leaves that are right children of their parent. They simply
have to pass their value to the parent. For each i € {0, 1}:

§9(2,eval,i) = (1,4).

It will be convenient to subsume the overall effect of a TWA on a subtree of a tree in
a so-called behaviour function. Intuitively, if f is the behaviour function of a subtree ¢ then
f(s) = &' if and only if in the computation of M which starts at the root v of ¢ in state s the
parent of v is entered in state s’. Obviously, the behaviour function of a subtree ¢ depends on
the child number of its root in the full tree.

We define behaviour functions more formally. Let M be a k-ary deterministic TWA and
let ¢ be a (at most) k-ary tree. For i < k, let ¢(7) denote the tree which consists of a root which
has the root of ¢ as the i-th child and i — 1 other children which are leaves. The behaviour
function far:; of M on t as an i-th child maps states of M to states of M. It is defined as
follows. If s is a state of M then far:;(s) = s, if there is a j such that (i, s) :ﬁ\/l,t(i) (e,8")
and j is minimal with this property.

Note that far+; does not depend on the labels of the vertices outside of ¢. Furthermore it
does not depend either on the actual embedding of ¢ in a larger tree as long as the root of ¢
is an ¢-th child.

For non-deterministic TWAs behaviour functions are defined analogously but with sets of
states as function values.

Next, we turn to the definition of some classes of restricted TWAs.

— We call a TWA 1-bounded, if, for all trees ¢, it traverses each edge of ¢ at most once in
each direction.

— We call a TWA M r-restricted if the following holds. For each pair u,v of vertices of a
tree t such that d(u,v) > r the computation of M on ¢t does not contain 4 configurations
[u, s1], [v, 82], [u, $3], [v, 84] in the given order. Intuitively, this means that each path of
length more than r is traversed at most once in each direction.

Clearly, each 1-bounded TWA is also r-restricted for every r > 1. In Proposition 1, we
show that the latter automata can define all of first-order logic (FO). Moreover, r-restricted
TWASs can even define some tree languages not definable in FO extended with regular path
expressions. The latter logic is an abstraction of current query languages for semi-structured
data and XML [ABS99], and, for instance, cannot define the set of trees representing Boolean
circuits evaluating to true [NS]. In Section 4, we show that r-restricted TWAs cannot define
the set of all regular tree languages thereby giving an answer to the conjecture of Engelfriet
and Hoogeboom for a powerful class of TWAs.

Let, for m > 0, depth,,, be a unary relation symbol. In the following we will consider trees
which have additionally the predicate depth,,, for some m. In all trees, depth,, will contain
all vertices the depth of which is a multiple of m. For a vertex u of a tree ¢, its r-sphere St (u)
is the set {v | d(u,v) < r}. For a tuple of vertices u, define S.(a) as J,c, St(u). We define
its r-neighborhood N (%) as the structure ¢ extended with the constants @ restricted to the
set St(a).

3 A logical characterization of tree-walking automata

We characterize tree-walking automata by transitive closure logic formulas of the form TClp(z,y)](e,),
where ¢ is an FO formula, which may make use of the predicate depth,,, for some m. We say
that such a formula is in normal form. Further,

t = TClp(z,y)](e, ¢)

iff the pair (g,¢) is in the transitive closure of the relation {(u,v) | t & ¢[u,v]}. We use
deterministic transitive closure logic formulas (DTC) in an analogously defined normal form
to capture deterministic tree-walking automata. In particular,

t = DTClp(z,9)](e,)

iff the pair (g,¢) is in the transitive closure of the relation {(u,v) | t E ¢[u, v] A (V2)(¢[u, 2] —
z =v)}. The latter expresses that we disregard vertices u that have multiple (p-successors.

Before we prove the characterization, we show first, as an appetizer, how TWAs can
evaluate FO sentences. The TWAs used for this task are of the restricted type introduced in
Section 2.

Proposition 1. Let ¢ be an FO sentence which can make use of the predicate depth,,, for
some m. There exists an r and an r-restricted TWA accepting exactly the class of trees defined

by .

Proof. Our proof is an easy application of Hanf’s Theorem (see, e.g., [EF95]). The same re-
sult for FO sentences without modulo depth predicates is obtained by Engelfriet and Hooge-
boom [EH99a]. Consider a “threshold” ¢ and a radius r. For a tree ¢, define the function
fvf,q mapping each isomorphism type 7 of r-neighborhoods with one distinguished vertex to a
number in the interval [0, ¢], as follows,

()= {I{u € dom(t) | Nj(u) = 7} [{u € dom(t) | Ni(u) 2 7}| < ¢,
AL q otherwise.

By Hanf’s Theorem there are r and ¢ such that, for every tree ¢, whether ¢ |= ¢ only depends
on fﬁ’q. The latter function can readily be computed by a 2r-restricted TWA. Indeed, the
automaton traverses the input tree in pre-order and for each vertex u of ¢ it computes the
substructure Nf(u) in its finite control by searching systematically the neighborhood of u
within distance r and keeping track of the depth modulo m of the current vertex. The latter
can be done in a straightforward way by keeping a counter in the state which is increased
(modulo m) when the automaton moves down and decreased (modulo m) when the automaton
moves up. O

The proof of the next lemma is an easy extension of a proof of Potthoff [Pot94] who
characterized two-way string automata by means of TC formulas in normal form.

Lemma 1. Every deterministic tree-walking automaton is definable by a DTC formula in
normal form. Every nondeterministic tree-walking automaton is definable by a TC formula
in normal form.

Proof. We start with nondeterministic tree-walking automata. Therefore, let M be a non-
deterministic tree-walking automaton with state set {0, ... ,m—1} and initial state 1. W.L.o.g.,
we can assume that if M accepts a tree it does so at its root in state 0.

We start with some notation. For a vertex u, we denote by anc,,(u) the closest ancestor
of u (including u) whose depth is a multiple of m. We denote by desc,,(u) the set of closest
descendants of u (u not included) whose depths are a multiple of m. By t.™ we denote the
subtree ¢, where we delete all the subtrees rooted at vertices in descy,(u)-

We only keep track of the states M assumes at vertices occurring on depths that are
multiples of m. We call such vertices (and configurations with such vertices) important. We
associate each important configuration [v,i], with the i-th vertex v(i) of /™ in the DFS-
order. We are going to construct a FO-formula ¢ such that the following holds. If v, w are
two important vertices then M reaches the configuration [w, j] from [v,i] without passing any
other important configuration, if and only if' ¢ = ¢(v(i), w(j)).

! We make an exception from that rule for v = e. it may hold ¢ |= (e, w(5)) whenever [w, j] can be
reached from [e, 1] without passing important vertices.

As the computation between two successive important configurations only involves a sub-
tree of bounded size it is clear that such a formula ¢ can be defined.

Then ¢ |= TClp(z,y)](e,) iff M accepts t.
When M is deterministic, then ¢ = DTClp(z,y)](e,€) iff M accepts ¢. O

Theorem 1. Nondeterministic tree-walking automata accept precisely the tree languages de-
finable by TC formulas in normal form. Deterministic tree-walking automata accept precisely
the tree languages definable by DTC formulas in normal form.

Proof. We first restrict attention to nondeterministic automata. By Lemma 1, it suffices to
show that the set of tree languages definable by TC formulas in normal form can be recognized
by nondeterministic tree-walking automata. Therefore, let TClp(z, y)](e, €) be such a formula.

By Gaifman’s Theorem (see, e.g., [Ga82]), there exists an r such that ¢ is equivalent to
a Boolean combination of sentences y and r-local formulas £(z,y). Here, a formula {(z,y)
is 7-local if for every tree ¢t with vertices w and v, whether ¢ = £[u,v] only depends on the
isomorphism type of Nf(u,v). As the rank of trees is fixed, there are only finitely many
possible isomorphism types. M can evaluate the sentences x at the begin of the computation
as it is described in the proof of Proposition 1. Therefore, if d(u,v) < 2r then M can check
whether ¢ |= ¢[u,v] by inspecting NI, (u), otherwise by first inspecting N/ (u) and afterwards
Ni(v).

Now suppose the automaton arrives at a vertex u (with u = ¢ as the first case). First,
the automaton nondeterministically, whether it will go to a vertex v of distance < 2r or to
a vertex v of distance > 2r. In the first case, it inspects NI .(u) and chooses a v such that
t = ¢[u,v] if this is possible. Otherwise it first computes the type of N!(u), moves to a vertex
v of distance > 2r and checks that the type of N!(v) implies that ¢ |= ¢[u,v].

Finally, if v is the root, the automaton accepts. Otherwise, it proceeds in the same manner.
Clearly, the automaton will eventually accept if TClp(z,y)](g,€).

Next, we turn to DTC formulas. Consider the formula DTClp(z,y)](e,). We construct
a deterministic TWA over k-ary trees accepting exactly the k-ary trees the above formula
defines. As in the case before, the automaton first evaluates all sentences y in the Gaifman
normal form of ¢. Let m be the maximum number of vertices occurring in an r-neighborhood
of a tree. That is, m := max{|S(u)| | t a tree,u € dom(t)}. For each isomorphism type T
of r-neighborhoods with one distinguished vertex, the automaton additionally computes the
number of occurrences of 7 in ¢ up to m + 2. That is, M computes the function fﬁ7m+2 as
specified in the proof of Proposition 1. Now, given a u, to find a v such that ¢(u,v) holds,
the automaton proceeds as follows. Let Yy be the set of all vertices w in N&,.(u) such that
Ni(u,w) | ¢(z,y). By inspecting the 3r-neighborhood of u, M can compute |Yp]|.

Next, it computes the type of Ni(u) and the set T of all types 7 of r-neighborhoods
for which the following holds: if Nf(w) is of type 7 and Ni(w) and N!(u) are disjoint then
Ni(u,w) | ¢(z,y). The latter is a fixed finite computation which can be encoded into the
transition function. We call vertices of a type from T' good vertices (w.r.t. the current u) and
denote the set of good vertices in ¢ by Y;. Note that M can deduce |Y;| (up to m + 2) from
the precomputed information.

The set of good vertices in NI (u) that are not in Yy is denoted by Y>. By inspecting the
3r-neighborhood of u again, M computes |Y3| and the relative positions of all vertices in Y3
w.r.t. u.

Let Y = Yy U (Y1 — Y3). YV is the set of vertices w of ¢ such that N!(u,w) | p(z,y). M
can compute |Y| without further moving (note that |Ys| < m). If |Y| is different from 1 then
M can immediately reject. Let us assume in the following that Y| = 1.

If the unique element v of Y is from Y,, M can directly go to v. If, on the other hand,
Yy = Y5 = () then M can move to the unique v € ¥; via a DFS traversal of the tree.

The only complicated case is when Yy = () and |Y; —Y3| = 1 but Y5 # 0. The complication
arises from the following possibility. M has to traverse the tree to find the correct unique

good w outside N, (u). As it does not know? in which part of the tree w is located its way
to w might lead back to u. In that case we have to make sure that it does not confuse w with
a vertex from Y5.

We can assume w.l.o.g. that the root of the tree is not in N¥ (u) because otherwise M
can easily distinguish the vertices of Y> from the desired vertex. Now, M proceeds as follows.
It starts a DFS walk through the tree starting from w and first inspecting the first subtree
of u. Whenever it encounters a vertex z it starts a subcomputation which inspects the 3r-
neighborhood of z to find out whether there is a good vertex w in Ni,.(2). If such a w is found
then M checks whether there is a vertex «' such that w has the same relative position w.r.t.
u' as one of the vertices in Y5 had wrt 4 and whether there are good vertices w' in the same
relative position to u' as there are vertices in Y5 relative to u. If M finds a w for which either
no such v’ exists, or w’' is behind z in the DFS order then w is the desired vertex and M
goes there. Otherwise it proceeds in its DFS walk. When the DFS walk finishes at the root
(without finding the target vertex) then M walks back (reverse DFS) until it reaches u again
(easily recognized as the first vertex w which has vertices from Y] in its neighborhood and
relates to them as u does). Then it starts a reverse DFS walk from u (going upwards first)
analogously to the first DFS walk.

We have to show that M always finds the correct target vertex. First, we show that M
never moves to a vertex in Ys. Let w € Y;. If M reaches w during the inspection of the
neighborhood of a vertex z before its DFS walk arrives at the root then it will find out that it
relates to u as a Ys-vertex and that u is in the DFS order before z. The analogous statement
holds true if z is found in the reverse DFS walk after coming back to u.

Finally, we show that M indeed reaches a target vertex v from Y; (which then is the
correct one). This follows easily from the fact that either v does not relate to any u' as the
Y5 vertices do to w or this «' is different from u. Hence, it is encountered either in the DFS
walk or in the reverse DFS walk. O

4 Weakness of tree-walking automata

Let k be fixed and let T}, be the set of all k-ary trees the leaves of which are labeled with 0
or 1. For each vertex v of a tree v € T}, we inductively define a value 0 or 1 as follows. If v
is a leaf then its value (0 or 1) is determined by its label (0 or 1). If v has ¢ children then v
has the value 1 if and only if at least % of its children have the value 1. Intuitively, T}, is the
set of all tree-structured Majority circuits. Let T} (T?) denote the set of all trees t € T} for
which the root gets the value 1 (0).

We call a vertex v of a tree t € T}, a I-vertex (0-vertez) if it gets the value 1 (0). Analogously,
we call the subtree rooted at a 1-vertex (0-vertex) a I-subtree (0-subtree).

Lemma 2. For each k, the set T} is a regular set of trees.

Proof. Whether a tree from T}, is in T} can be easily expressed by an MSO formula 3X ¢,
where X is intended to be the set of vertices that have value 1 and ¢ is a first-order formula
which checks that the root of a tree is in X and whether X is consistent with the bottom-up
evaluation described above. O

We have seen in Example 1 that there is a deterministic TWA which recognizes T4 (note
that T3 U T can be seen as the set of trees representing Boolean circuits consisting of only
OR-gates). This was due to the fact that the automaton, after evaluating a right subtree of
a vertex v, could conclude the value of the corresponding left subtree of v from the label of v
and the fact that it had to enter the right subtree. For k£ > 2, things are more complicated.
In fact, we conjecture the following.

2 Actually, there is an alternative construction where M keeps track of the relative positions of
neighbourhoods like NY(u) and N¥,(v) as these may only appear a bounded number of times in #
(otherwise ¥ would be too large).

Conjecture 1. For k > 2, T}} can not be recognized by a deterministic or non-deterministic
TWA.

In this section we prove this conjecture fora restricted type of TWAs, 1-bounded TWAs.
The proof can be easily generalized to the sets T}, for each k& > 3. Furthermore, it can be
extended to show that, for each r there is a related regular set of trees which can not be
recognized by any r-restricted TWA.

Before we state and prove the result we introduce some important concepts for that proof
and show a purely combinatorial result.
For any d > 1 a critical tree of depth d is a full ternary tree ¢ of depth d with the following
properties.
—teTy;
— each 1-vertex of ¢ has exactly two children which are 1-vertices;
— each O-vertex has only O-vertices as children.

In particular, there are no 1-leaves in O-subtrees of ¢. Intuitively, a critical tree of depth d is a
tree of depth d from T35 which contains a full binary subtree of depth d which only has 1-leaves
and all other leaves are 0-leaves. In particular, a critical tree of depth d has 2¢ 1-leaves.

A numbering N of a critical tree t of depth d is an injective mapping of the 1-leaves of ¢
into the set {0,...,2¢ — 1}. All critical trees of a fixed size d are defined on the same tree
domain 74. A mapping M which maps each leaf of 74 to a subset of {0,...,2? — 1} with at
most m elements is called an m-labeling. We say that an m-labeling M of 74 is compatible
with a numbering N of a critical tree ¢ of depth d if, for each 1-leaf v of t, N(v) € M(v).

Lemma 3. For each m > 0 there is a d > 0 such that, for each m-labeling M of T4 there is
a critical tree of depth d for which there is no numbering that is compatible with M.

Proof. Let d be chosen such that (%)d > m. Let M be an m-labeling of 74. As, for each

leaf v of 74, M(v) contains at most m elements from {0,...,2? — 1} there must be some
i € {0,...,2% — 1} which occurs in M (v) for at most "ﬁd leaves v of 74. Let A be the set

of vertices v such that i € M(v). We construct a critical tree ¢ of depth d which does not
have a 1-leaf from A. This implies the statement of the lemma as ¢t can not have a compatible
numbering because no leaf of ¢t can be numbered by 4.
Let wp,w;,ws be the children of the root and let, for each i € {0,1,2}, 4; := {v €
A | visaleafin t,,}. Let wy be chosen such that |Ag| is maximal. Clearly, both A; and
|A]

Az contain at most 5 elements from A. In ¢, wo will be a 0-vertex and w; and we will be

1-vertices. Hence, each subtree rooted at 1-vertices of depth 1 contains at most |2i| elements
from A. We proceed inductively in an analogous manner for these subtrees. At each depth 4
we will select the 2 children of 1-vertices that have the least number of leaves from A in their
subtree. Hence, for each j, the selected 1-vertices of ¢t at depth j may contain at most |2i,-|
1-leaves from A in their subtree. In the end, we have constructed a critical tree which has at
most

Al m3?

94 ~ a1 <1
1-vertices from A in the subtree rooted at a leaf. Hence, ¢ has no 1-leaves from A at all. [

Theorem 2. (a) There is no 1-bounded (deterministic or non-deterministic) TWA which
recognizes Ty .

(b) For each r > 0, there is is a regular tree language that can not be recognized by an
r-restricted (deterministic or non-deterministic) TWA.

Proof. The main task is to prove (a). Statement (b) will follow by an easy generalization of
that proof.

Towards a contradiction assume there exists a non-deterministic TWA M’ which recog-
nizes Ts. The proof consists of 3 main steps:

— We transform M’ into a TWA M which accepts exactly the same trees as M' but always
rejects when it visits a O-leaf. From this property we can conclude that if M accepts a
certain tree ¢ then it also accepts every tree which results from ¢ by replacing 0-subtrees
with 1-subtrees.

— We show that there are two trees ¢,¢' € T4 with the same tree domain such that M has
accepting computations for these trees which enter some vertex v in the same state s but
with different “histories”.

— We show these these accepting computations can be combined into one accepting com-
putation on a tree from T%.

Before we describe the construction of M we show that the O-subtrees and 1-subtrees
have disjoint sets of behaviour functions. Let, for i € {1,...,3}, Fi > (FJ?/[,J) denote the set
{farei |t €T3} ({fmrni |t € TR}) of behaviour functions that M’ can have on 1-subtrees
(O-subtrees) that have child number i. If, for some 4, Fy;, ; N Fpp, ; # 0 then we can easily
construct trees t; € Ty and ty € TY that are either both accepted or both rejected by M'. To
this end let f € Fy, ;N Fpp; and let t° € T3 and t* € Ty such that fap 0 = far g1 Let
to be a tree which consists of a root with 3 children which has t° as i-th child and one of the
other children is a 1-leaf and the other is a 0-leaf. The tree ¢; is the same as t; with the only
exception that it has the subtree ¢! instead of t°. As the behaviour functions of M’ on t° and
t! are the same the acceptance behaviour of M’ on ¢y and ¢; is also the same.

Hence, we can assume that Fy;, ; and Fy, ; are disjoint.

We turn to the construction of M. Intuitively, the idea is as follows. Whenever M' can go
from a vertex v to vi then M can either do the same or, to prevent visiting a 0-leaf, it can
guess that vi is the root of a O-subtree. In the latter case instead of going down to vi it picks
a behaviour function f € F? ,; and enters a new state at v according to f. Formally, for each
j<k,s€ SandoeX—{0},

65\4(j)5)0):6§\/l’(j)5>0)u U (Oaf(sl))
(3',s")€88 1, (55,0)
FEFY 4

For each j < k and s € S, we define §i,(j,5,0) = (0, L) where L is a state from which no
transition is possible.

We have to show that M accepts exactly all trees in T4 . Let therefore ¢ be from T4, hence,
by assumption, t is accepted by M'.

Let C' = ¢p, ¢, ... ,cl, be an accepting computation of M’ on t. We show that there is also
an accepting computation C' = ¢y, ... , ¢, of M on t. We construct C' by suitably modifying
C'. Let v = wj be a 0-leaf of ¢, for some vertex w and some j. By the prerequisite on M’, v is
at most visited once in C'. If v is not visited at all, we do not need to modify C’ with respect
to v. If v is visited then there are successive configurations [w, s;], [v, $i+1], [w, Si42] in C".
Here, we assume w.l.o.g. that M’ moves in each step. In C' we replace these 3 configurations
by [w, s;], [w, s;+2]. This reflects a legal transition of M as it corresponds to the computation
of M’ on the 0-subtree which consists of a single 0-leaf. We end up with a legal accepting
computation C' on t.

For the opposite direction, let C = ¢y, ..., ¢, be an accepting computation of M on a
tree t € T3. We construct a tree t' by replacing some of the 0-leaves of ¢ by 0-trees and an
accepting computation C' of M’ on t' by modifying C accordingly. By the construction of ¢
it will follow that ¢ € Ty if and only if ¢’ € Ts. Hence, as M" accepts t' it also accepts ¢.

More formally, let [v, s], [v, s'] be two successive configurations from C such that it does not
hold [v,s] =+ [v,s']. Hence, this subcomputation is possible only by the new transitions
introduced in M. By definition, there must be j < k, s € S, f € Fp, ; and a O-tree
to such that [v,s] =wm ¢ [v],s"] and far4,,;(s") = s'. From this we can conclude that
there exist configurations c¢(v,1),...,c(v,l) such that [v, s], [v], s"], c(v,1),... ,e(v,1),[v,s] is
a legal subcomputation of M’ on the tree, denoted by ¢(v), in which the subtree rooted at vj

is replaced by the 0-subtree to. If t € T then also t(v) € TY as we only replaced a (0- or 1-)
subtree by a 0-subtree. By inductively applying this argument we arrive at a tree ' and an
accepting computation C’ on t'. Hence, by assumption, ¢’ € T4 and therefore t € Ty .

It should be noted that the latter construction relies on the assumption that M’ traverses
each edge at most once. Otherwise, it could be the case that the configuration C visits v two
times but the extension to C' makes use of two different 0-subtrees rooted at v.

Let now ¢ be a critical tree of depth d and let C' = ¢y, ... , ¢, be an accepting computation
of M on t. If C' does not visit all 1-leaves then we can easily construct a tree t' € Ty which is
accepted by M. Hence, we assume that C' visits each 1-leaf of ¢ exactly once. Let v be such a
1-leaf of ¢ and let ¢; = [v, s] be the configuration of C' which visits it. Let, for ¢ € {1,...,d},
v; denote the vertex of depth ¢ on the path from the root of ¢ to v. As v is a 1-leaf, each
v; is a 1-vertex. Therefore, as ¢ is critical, each vertex v; has exactly one sibling v} which is

a l-vertex. For each ¢, v} is visited in exactly one of the subcomputations co,...,c;—1 and
Cjtls--- > Cm. We define, for each 1-leaf v its history string z = hy c(v) = 21 - - - zq by setting
z; = 1 if and only if v} is visited in ¢o,... ,c¢j—1. These history strings have a couple of nice

properties which are straightforward to prove given the assumptions on M.

— The binary number b, c(v) represented by z = hy c(v) (where zq is the least significant
bit) coincides with the number of 1-leaves that are visited in C' before v. This follows from
the restriction that the automaton can visit each subtree at most once. Hence, when a
1-vertex v at level i is entered, then all 27 1-leaves in the subtree of v have to be visited
before the subtree is left. In this way, a 1 at the i-th bit of the history string corresponds
to 2¢=% 1-leaves that have been already visited.

— Consequently, the function b; ¢ defines a numbering of ¢. In particular, each 0-1-string
occurs exactly once as a history string of a 1-leaf v.

We claim that, there exists a d, two critical trees ¢,t' of depth d, two accepting computa-
tions C,C" of M on t,t', respectively, and a leaf v of 74 such that

— v is a 1-leaf of ¢ and #’,
— C and C'’ visit v in the same state s, and

- hc7t(v) ?é hC/Jf (1))

Towards a contradiction assume that this claim is false. Let m be the number of states of
M and let d be a number as given by Lemma 3. Let ¢ and ¢ be two critical trees of depth d,
let v be a common 1-leaf of ¢t and ¢’ and let C' and C' be accepting computations of ¢ and ¢,
respectively, which visit v in the same state s. The assumption implies that he +(v) = her p(v)
and therefore be ¢(v) = ber ¢ (v). We can conclude that, for each vertex v of 74 and each state
s of M, there is only one number n(v, s) such that be t(v) = n(v, s) for all critical trees ¢ with
1-leaf v and all accepting computations which visit v in the state s. In other terms, there
exists an m-labeling M of the leaves of 7; such that, for each critical ¢ and each accepting
computation C on ¢ the numbering bc; is compatible with M. This contradicts Lemma 3, as
desired. Therefore, the claim is proved.

Let d, t,t', C,C' and v be as given by the above claim. We complete the proof by con-
structing a tree ty € T9 which is accepted by M. Let z = ho(v) and 2z’ = heor v (v). Let j
be minimal such that z; # 2. We can assume w.l.o.g. that z; = 0 and 2} = 1. Let, for each
i€ {l,...,d}, v; be defined as above, w; be the 1-sibling of v; in ¢ and w; be the 1-sibling of
v; in t'. We construct ¢y as follows.

— Foreachi < j,if z; = 1 (i.e., w; is visited before v in C') then we copy the subtrees rooted
at the siblings of v; from t.

— For each i < j, if z; = 0 (i.e., w} is visited before v in C') then we copy the subtrees
rooted at the siblings of v; from ¢'.

— At the siblings of v; we root 0-subtrees. This assures that ¢y is a O-tree.

— In the subtree rooted at v; all leaves are labeled 1.

Let C =co,... ,¢m, C' =¢p,... ,c, and let k and k' be such that ¢, = ¢}, are the configura-
tions in which v is visited.
It is straightforward to check that

— ¢p,...,c is a valid subcomputation on ty; because all 1-leaves of ¢ that are visited in
co, . -- ,Ck are also 1-leaves in tg;

— Cyry--- 50 18 a valid subcomputation on ¢y because all 1-leaves of ¢' that are visited in
Clrs- -+ ,C, are also 1-leaves in ¢o; hence

— Coy..v yCk =Cly,... ,C is an accepting computation on to, the desired contradiction.

This concludes the proof of statement (a).

To prove (b) we use a slightly different set U3 of trees. These trees have an additional label,
+. Inner vertices that are labeled with + have 3 children which are interpreted as threshold
gates. Inner vertices that are not labeled with 4+ have only 1 child. Hence, at a +-vertex there
are starting 3 paths which lead either to another +-vertex or to a leaf. Now a +-vertex is
evaluated to 1, if at least 2 of its 3 descendants (+-vertex or leaf) evaluate to 1. Intuitively,
Us is the same as T3 but the edges of trees in T3 are replaced by paths in Uj. In fact, the
proof of the fact that no r-restricted TWA recognizes Uz is almost word for word the proof
given in (a) but in the trees that are used, each edge has to be replaced by a path of length
r + 1. The old vertices are labeled with +, the new ones not. O

Acknowledgements.

We thank Joost Engelfriet, Clemens Lauteman, and Martin Grohe for helpful discussions.

References

[ABS99] S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web : From Relations to Semistruc-
tured Data and XML. Morgan Kaufmann, 1999.

[AUT1] A.V.AhoandJ. D. Ulman. Translations on a context-free grammar. Inform. and Control,
19:439-475, 1971.

[BMN99] G. Bex, S. Maneth, and F. Neven. XSL revisiTed:variables add power. Submitted.

[BE] R. Bloem and J. Engelfriet. Characterization of properties and relations defined in monadic
second order logic on the nodes of trees. Technical Report 97-03, Rijksuniversiteit Leiden,
1997.

[BHW99] A. Briiggeman-Klein, S. Hermann, and D. Wood. Context, caterpillars, tree automata, and
tre pattern matching. In Proceedings of the 4th International Conference on Developments
in Language Theory, 1999.

[Cla99] J. Clark. XSL Transformations version 1.0 (november 1999). http://www.w3.org/ TR /xslt.

[EF95] H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer, 1995.

[EH99a] J. Engelfriet and H. J. Hoogeboom. Tree-walking pebble automata. In J. Karhum ki,
H. Maurer, G. Paun, and G.Rozenberg, editors, Jewels are forever, contributions to Theo-
retical Computer Science in honor of Arto Salomaa, pages 72-83. Springer-Verlag, 1999.

[EH99b] J. Engelfriet and H. J. Hoogeboom. Private communication.

[EHvB99] J. Engelfriet, H.J. Hoogeboom, and J.-P. van Best. Trips on trees. Acta Cybernetica,
14:51-64, 1999.

[FM] Z. Filop and S. Maneth. Domains of partial attributed tree transducers. Technical Report
99-08, Leiden University, 1999.

[Ga82] H. Gaifman. On local and nonlocal properties. In J. Stern, editor, Logic Colloguium ’81,
pages 105-135. North Holland, 1982.

[GS97] F. Gécseg and M. Steinby. Tree languages. In Rozenberg and Salomaa [RS97], chapter 1.

[KS81] T. Kamimura and G. Slutzki. Parallel and two-way automata on directed ordered acyclic
graphs. Information and Control, 49(1):10-51, April 1981.

[MSV] Y.Bargury and J. A. Makowsky. The expressive power of transitive closure logic and 2-way
multi-head automata. In E. Borger, G. Jiager, H. K. Biining, and M. M. Richter editors.
Computer Science Logic, volume 626 of Lecture Notes in Computer Science, pages 1-14.
Springer-Verlag, 1991.

[MSV] T. Milo, D. Suciu, and V. Vianu. Type checking for XML transformers. Submitted.

[N99] F. Neven. Design and Analysis of Query Languages for Structured Documents — A Formal
and Logical Approach. Doctor’s thesis, Limburgs Universitair Centrum (LUC), 1999.

[NS] F. Neven and T. Schwentick. Expressive and efficient pattern languages for tree-structured
data. Submitted.

[Pot94] A. Potthoff. Logische Klassifizierung regulidrer Baumsprachen. Doctor’s thesis, Institut fiir
Informatik u. Prakt. Math., Universitat Kiel, 1994.

[RS97] G. Rozenberg and A. Salomaa, editors. Handbook of Formal Languages, volume 3. Springer,
1997.

[Tho97a] W.Thomas. Languages, automata, and logic. In Rozenberg and Salomaa [RS97], chapter 7.

