
On the Power of Tree�Walking Automata

Frank Neven�

Limburgs Universitair Centrum and Thomas Schwentick
Johannes Gutenberg�Universit�at Mainz

Institut f�ur Informatik

No Institute Given

Abstract� Tree�walking automata �TWAs� recently received new attention in the
�elds of formal languages and databases� Towards a better understanding of their
expressiveness� we characterize them in terms of transitive closure logic formulas in
normal form� It is conjectured by Engelfriet and Hoogeboom that TWAs cannot de�ne
all regular tree languages� or equivalently� all of monadic second�order logic� We proof
this conjecture for a restricted� but powerful� class of TWAs� In particular� we show
that ��bounded TWAs� that is TWAs that are only allowed to traverse every edge of
the input tree at most once in every direction� cannot de�ne all regular languages� We
then extend this result to a class of TWAs that can simulate �rst�order logic �FO�
and is capable of expressing properties not de�nable in FO extended with regular path
expressions� the latter logic being a valid abstraction of current query languages for
XML and semi�structured data�

� Research Assistant of the Fund for Scienti�c Research� Flanders�



� Introduction

Regular tree languages can be de�ned by means of many equivalent formalisms� for instance�
�non�deterministic bottom�up and nondeterministic top�down tree automata� alternating tree
automata� two�way tree automata� homomorphic images of local tree languages� and monadic
second�order logic �GS�	�Tho�	a
� However� it is not known whether there exists a natural
inherently sequential model for recognizing the regular tree languages� Of course� by de�nition�
they are recognized by bottom�up �nite tree automata� but these automata are essentially
parallel rather than sequential� the control of the automata is at several nodes of the input tree
simultaneously� rather than at just one� With this aim in mind� Engelfriet� together with his co�
workers Bloem� Hoogeboom� and van Best� initiated a research program �BE�EH��a�EHvB��

studying �extensions of� the tree�walking automata �TWAs� originally introduced by Aho and
Ullman �AU	�
� The �nite control of a tree�walking automaton is always at one node of the
input tree� Based on the label of that node and its child number �which is i if it is the ith
child of its parent�� the automaton changes state and steps to one of the neighboring nodes
�parent or child�� Without the test on the child number such automata cannot even search
the tree in a systematic way� such as by a pre�order traversal as is shown by Kamimura and
Slutzki �KS
�
� However� also with the child test� it is conjectured that these automata cannot
express all regular tree languages �EH��a�EHvB��
� In this paper� we study the expressiveness
of tree�walking automata by characterizing them in terms of transitive closure logic formulas
in normal form and prove the above mentioned conjecture for a restricted� but powerful� class
of tree�walking automata�

Apart from the above purely theoretical motivation� recently� new interest in tree�walking
automata emerged from the �eld of database theory� Indeed� one of the major research topics
at the moment is the design and study of query languages for the manipulation of XML docu�
ments or electronic documents in general �ABS���N��
� Such documents are usually modeled
by ordered labeled trees or graphs� depending on the application at hand� In this research�
tree�walking automata are used for various purposes and appeared in various forms� Milo� Su�
ciu� and Vianu �MSV
� for instance� used a transducer model based on tree�walking automata
as a formal model for an XML transformer encompassing most current XML transformation
languages� Br�uggeman�Kleinn� Hermann� and Wood �BHW��
� proposed to use caterpillar ex�
pressions as a pattern language for XML transformation languages� Interestingly� caterpillar
expressions relate to tree�walking automata like regular expressions relate to string automata�
they are just a di�erent� though a lot more user friendly� representation of the same thing�
Furthermore� they conjectured their formalims to be less expressive than the regular tree lan�
guages� Another� more direct� occurrence of tree�walking automata is embodied in the actual
XML transformation language XSLT �Cla��
 proposed by the World Wide Web consortium
�W�C� and currently being implemented by IBM� In formal language theoretic terms� this
query language can be best described as a tree�walking tree transducer �BMN��
� Hence� re�
sults on the expressiveness of tree�walking automata could give insight in the expressiveness
of actual XML transformation languages�

We start by characterizing the expressiveness of �deterministic and nondeterministic� tree�
walking automata in terms of �deterministic and non�deterministic� transitive closure logic
�DTC and TC� formulas in normal form� That is� formulas of the form ��D�TC���
��� ��� where
� is an FO formula containing predicates depthm�x� de�ning x as a vertex whose depth is a
multiple of m� and where � refers to the root of the tree under consideration� Our result thus
implies that any lower bound on �D�TC formulas in normal form is also a lower bound for
�non�deterministic tree�walking automata� Unfortunately� proving lower bounds for the latter
logic does not seem much easier than the original problem as Ehrenfeucht games for DTC and
TC are quite involved� Therefore� we use a direct approach for a restricted� but expressive�
class of tree�walking automata in the hope that these techniques will provide insight for the
general case�

We �rst show that ��bounded tree�walking automata� that is tree�walking automata that
are only allowed to traverse every edge of the input tree at most once in every direction� cannot



de�ne all regular languages� In particular� we obtain that they can not evaluate tree�structured
Majority circuits where the gates have fan�in greater than �� Next� we generalize this result to a
rather powerful class of tree�walking automata� called r�restricted� These automata are rather
expressive as they can de�ne all of �rst�order logic �FO� and are capable of expressing some
tree languages not de�nable in FO extended with regular path expressions� The latter logic is
an abstraction of current query languages for semi�structured data and XML �ABS���N��
�
and� for instance� cannot de�ne the set of trees representing Boolean circuits evaluating to
true �NS
 which can easily be de�ned by r�restricted tree�walking automata�

We conclude by mentioning some related work� Bargury and Makowsky �MSV
 proved an
equivalence between transitive closure logic and two�way multihead automata operating on
grids� Their simulation of automata involves nesting of TC operators� Pottho� �Pot��
 showed
that the same normal form of TC we use� su�ces to de�ne all regular string languages� the op�
posite direction being trivial in the string case� Recently� Engelfriet and Hoogeboom �EH��b

showed that tree�walking automata with pebbles correspond exactly to TC� Hence� when
allowing pebbles one can simulate nested TC operators� F�ul�op and Maneth �FM
 recently
showed that the domains of partial attributed tree transducers correspond to the tree�walking
automata in universal acceptance mode�

This article is structured as follows� In Section �� we de�ne tree�walking automata� In
Section �� we proof the logical characterization of tree�walking automata in terms of transitive
closure logic� and in Section � we proof the Engelfriet and Hoogeboom conjecture for two
restrictions of tree�walking automata�

� Preliminaries

Trees� A tree domain � over N is a subset of N� � such that if v � i � � � where v � N
� and

i � N� then v � � � Here� N denotes the set of natural numbers� If i � � then also v � �i��� � � �
The empty sequence� denoted by �� represents the root� We call the elements of � vertices� A
vertex w is a child of a vertex v �and v the parent of w� if vi � w� for some i� A ��tree is
a pair t � �dom�t�� labt�� where dom�t� is a tree domain over N� and labt is a function from
dom�t� to �� The arity of a tree is the maximum number of children of its vertices� We only
consider trees with a �xed arity� The depth of a vertex u� denoted by depth�u� is the length
of u �interpreted as a string over N� �� The distance between two vertices u and v� denoted by
d�u� v� is de�ned as the length of the path between u and v where we assume that d�u� u� � ��

A ��tree t can be naturally viewed as a �nite structure �in the sense of mathematical logic
�EF��
� over the binary relation symbols E and �� and the unary relation symbols �O����� �
E is the edge relation and equals the set of pairs �v� v � i� for every v� v � i � dom�t�� The
relation � speci�es the ordering of the children of a node� and equals the set of pairs �v �i� v �j��
where i � j and v � j � dom�t�� For each �� O� is the set of nodes that are labeled with a ��

Tree�Walking Automata� Tree�walking automata �TWAs� can be seen as the simplest anal�
ogon of two�way string automata� A TWA starts its computation in an initial state at the
root of the input tree� In each step� it moves to a neighbour vertex of the current vertex �or
stays at the current vertex� and enters a state� The direction of movement and the new state
depend only on the current state� the symbol at the current vertex and the child number of
the current vertex� i�e�� the relative position of the current vertex in the ordered list of the
children of its parent�

More formally� a �k�ary� TWA is a tuple �S��� �� s�� F �� where S is the set of states� � is
an alphabet �the set of possible vertex labels�� s� � S is the initial state and F � S is the set
of accepting states� The only part where a TWA is formally di�erent from a standard string
automaton is the transition function �� The transition function � of a TWA is the union of
the functions �i and �root�i� where i � f�� 	 	 	 � kg� For a deterministic TWA�

� �root�i is a function from S �� to fstay� ��� 	 	 	 � �ig � S� and
� for each i � f�� 	 	 	 � kg� �i is a function from f�� 	 	 	 � kg�S�� to f�� stay� ��� 	 	 	 � �ig�S�



For a nondeterministic TWA the ranges of these functions are the respective power sets� If
several TWAs are around we write �M to denote the transition function of TWA M and the
like�

A con�guration c � �v� s
 of a TWA M on a tree t consists of a vertex v of t and a state s
of M � The immediate successor con�guration c� of a con�guration �v� s
 is de�ned as follows�

� If v � 
� v has i children and carries the symbol � then
� c� � �
� s�
� if �root�i�s� �� � �stay� s��� and
� c� � �j� s�
� if �root�i�s� �� � ��j � s���

� If v � wj� for some j � k� v has i children and carries the symbol � then
� c� � �w� s�
� if �i�j� s� �� � ��� s���
� c� � �v� s�
� if �i�j� s� �� � �stay� s��� and
� c� � �vj�� s�
� if �i�j� s� �� � ��j� � s���

We write c	M�t c
� to express that c� is the immediate successor con�guration of c in the

computation of M on t� Following standard convention we write c 	j
M�t c

� �c 	�
M�t c

�� to
express that c� is the j�th �some� successor con�guration of c in the computation of M on t�
If M and�or t are clear from the context we may omit them�

Example �� We illustrate the above de�nition by means of an example� In particular we de�ne
a deterministic tree�walking automaton that accepts all tree�structured Boolean circuits of
fan�in � that evaluate to true� A similar construction can be given for each �xed bound on the
fan�in� For convenience� we only consider circuits of the right format� That is� all inner nodes
and the root have exactly two children and are labeled with AND or OR� Further� all leaves
are labeled by � or �� These circuits are assigned a truth value in the usual way� De�ne M as
the tuple �S��� �� eval� F � with S � feval� �� �� left�child��� left�child��g� � � fAND�OR� �� �g�
and F � f�g� The transition function � is de�ned as follows�

� M starts by evaluating the �rst subtree of the root�
for all � � fAND�ORg� �root���eval� �� � ���� eval��

� When reaching a zero �one� leaf� which is a left child� M moves up with this information�

����� eval� �� � ��� left�child����

����� eval� �� � ��� left�child����

� IfM enters an inner vertex from a left child it is always in one of the two states left�child��
or left�child��� If the current vertex is an AND vertex and the state is left�child�� then
the current vertex will evaluate to � no matter the right subtree� An analogous statement
holds for OR�gates and the state left�child��� The information passed to the parent vertex
depends on whether the current vertex is itself a left or a right child� If the outcome of
the left child is not su�cient to determine the value of the current vertex M has to enter
its right child� Formally� for each i � f�� �g�

����� left�child���AND� � ��� left�child����
����� left�child���AND� � ��� ���
����� left�child���OR� � ��� left�child����
����� left�child���OR� � ��� ���
���i� left�child���AND� � ���� eval�� and
���i� left�child���OR� � ���� eval�	

� If M enters an inner vertex from a right child it is always in one of the states � or �� By
what we have said before� this state indicates the value of the subtree at the current vertex�
Hence� it only has to be passed to its parent vertex� Consequently� for each i � f�� �g and
� � fAND�ORg�

����� �� �� � ��� left�child����
����� �� �� � ��� left�child���� and
����� i� �� � ��� i�	



� It remains to handle the case of leaves that are right children of their parent� They simply
have to pass their value to the parent� For each i � f�� �g�

����� eval� i� � ��� i�	

It will be convenient to subsume the overall e�ect of a TWA on a subtree of a tree in
a so�called behaviour function� Intuitively� if f is the behaviour function of a subtree t then
f�s� � s� if and only if in the computation of M which starts at the root v of t in state s the
parent of v is entered in state s�� Obviously� the behaviour function of a subtree t depends on
the child number of its root in the full tree�

We de�ne behaviour functions more formally� Let M be a k�ary deterministic TWA and
let t be a �at most� k�ary tree� For i � k� let t�i� denote the tree which consists of a root which
has the root of t as the i�th child and i � � other children which are leaves� The behaviour
function fM�t�i of M on t as an i�th child maps states of M to states of M � It is de�ned as

follows� If s is a state of M then fM�t�i�s� � s�� if there is a j such that �i� s� 	j

M�t�i� �
� s
��

and j is minimal with this property�

Note that fM�t�i does not depend on the labels of the vertices outside of t� Furthermore it
does not depend either on the actual embedding of t in a larger tree as long as the root of t
is an i�th child�

For non�deterministic TWAs behaviour functions are de�ned analogously but with sets of
states as function values�

Next� we turn to the de�nition of some classes of restricted TWAs�

� We call a TWA ��bounded� if� for all trees t� it traverses each edge of t at most once in
each direction�

� We call a TWA M r�restricted if the following holds� For each pair u� v of vertices of a
tree t such that d�u� v� � r the computation of M on t does not contain � con�gurations
�u� s�
� �v� s�
� �u� s�
� �v� s�
 in the given order� Intuitively� this means that each path of
length more than r is traversed at most once in each direction�

Clearly� each ��bounded TWA is also r�restricted for every r 
 �� In Proposition �� we
show that the latter automata can de�ne all of �rst�order logic �FO�� Moreover� r�restricted
TWAs can even de�ne some tree languages not de�nable in FO extended with regular path
expressions� The latter logic is an abstraction of current query languages for semi�structured
data and XML �ABS��
� and� for instance� cannot de�ne the set of trees representing Boolean
circuits evaluating to true �NS
� In Section �� we show that r�restricted TWAs cannot de�ne
the set of all regular tree languages thereby giving an answer to the conjecture of Engelfriet
and Hoogeboom for a powerful class of TWAs�

Let� for m � �� depthm be a unary relation symbol� In the following we will consider trees
which have additionally the predicate depthm� for some m� In all trees� depthm will contain
all vertices the depth of which is a multiple of m� For a vertex u of a tree t� its r�sphere Str�u�
is the set fv j d�u� v� � rg� For a tuple of vertices �u� de�ne Str��u� as

S
u��u S

t
r�u�� We de�ne

its r�neighborhood N t
r��u� as the structure t extended with the constants �u restricted to the

set Str��u��

� A logical characterization of tree�walking automata

We characterize tree�walking automata by transitive closure logic formulas of the form TC���x� y�
��� ���
where � is an FO formula� which may make use of the predicate depthm� for some m� We say
that such a formula is in normal form� Further�

t j� TC���x� y�
��� ��



i� the pair ��� �� is in the transitive closure of the relation f�u� v� j t j� ��u� v
g� We use
deterministic transitive closure logic formulas �DTC� in an analogously de�ned normal form
to capture deterministic tree�walking automata� In particular�

t j� DTC���x� y�
��� ��

i� the pair ��� �� is in the transitive closure of the relation f�u� v� j t j� ��u� v
� ��z����u� z


z � v�g� The latter expresses that we disregard vertices u that have multiple ��successors�

Before we prove the characterization� we show �rst� as an appetizer� how TWAs can
evaluate FO sentences� The TWAs used for this task are of the restricted type introduced in
Section ��

Proposition �� Let � be an FO sentence which can make use of the predicate depthm� for
some m� There exists an r and an r�restricted TWA accepting exactly the class of trees de�ned
by ��

Proof� Our proof is an easy application of Hanf�s Theorem �see� e�g�� �EF��
�� The same re�
sult for FO sentences without modulo depth predicates is obtained by Engelfriet and Hooge�
boom �EH��a
� Consider a �threshold� q and a radius r� For a tree t� de�ne the function
f tr�q mapping each isomorphism type � of r�neighborhoods with one distinguished vertex to a
number in the interval ��� q
� as follows�

f tr�q��� ��

�
jfu � dom�t� j N t

r�u�
�� �gj jfu � dom�t� j N t

r�u�
�� �gj � q�

q otherwise�

By Hanf�s Theorem there are r and q such that� for every tree t� whether t j� � only depends
on f tr�q� The latter function can readily be computed by a �r�restricted TWA� Indeed� the
automaton traverses the input tree in pre�order and for each vertex u of t it computes the
substructure N t

r�u� in its �nite control by searching systematically the neighborhood of u
within distance r and keeping track of the depth modulo m of the current vertex� The latter
can be done in a straightforward way by keeping a counter in the state which is increased
�modulom� when the automaton moves down and decreased �modulom� when the automaton
moves up�

The proof of the next lemma is an easy extension of a proof of Pottho� �Pot��
 who
characterized two�way string automata by means of TC formulas in normal form�

Lemma �� Every deterministic tree�walking automaton is de�nable by a DTC formula in
normal form� Every nondeterministic tree�walking automaton is de�nable by a TC formula
in normal form�

Proof� We start with nondeterministic tree�walking automata� Therefore� let M be a non�
deterministic tree�walking automaton with state set f�� 	 	 	 �m��g and initial state �� W�l�o�g��
we can assume that if M accepts a tree it does so at its root in state ��

We start with some notation� For a vertex u� we denote by ancm�u� the closest ancestor
of u �including u� whose depth is a multiple of m� We denote by descm�u� the set of closest
descendants of u �u not included� whose depths are a multiple of m� By t�mu we denote the
subtree tu where we delete all the subtrees rooted at vertices in descm�u��

We only keep track of the states M assumes at vertices occurring on depths that are
multiples of m� We call such vertices �and con�gurations with such vertices� important� We
associate each important con�guration �v� i
� with the i�th vertex v�i� of t�mv in the DFS�
order� We are going to construct a FO�formula � such that the following holds� If v� w are
two important vertices thenM reaches the con�guration �w� j
 from �v� i
 without passing any
other important con�guration� if and only if� t j� ��v�i�� w�j���

� We make an exception from that rule for v � �� it may hold t j� ���� w�j�� whenever 	w� j
 can be
reached from 	�� �
 without passing important vertices�



As the computation between two successive important con�gurations only involves a sub�
tree of bounded size it is clear that such a formula � can be de�ned�

Then t j� TC���x� y�
��� �� i� M accepts t�
When M is deterministic� then t j� DTC���x� y�
��� �� i� M accepts t�

Theorem �� Nondeterministic tree�walking automata accept precisely the tree languages de�
�nable by TC formulas in normal form� Deterministic tree�walking automata accept precisely
the tree languages de�nable by DTC formulas in normal form�

Proof� We �rst restrict attention to nondeterministic automata� By Lemma �� it su�ces to
show that the set of tree languages de�nable by TC formulas in normal form can be recognized
by nondeterministic tree�walking automata� Therefore� let TC���x� y�
��� �� be such a formula�

By Gaifman�s Theorem �see� e�g�� �Ga
�
�� there exists an r such that � is equivalent to
a Boolean combination of sentences � and r�local formulas ��x� y�� Here� a formula ��x� y�
is r�local if for every tree t with vertices u and v� whether t j� ��u� v
 only depends on the
isomorphism type of N t

r�u� v�� As the rank of trees is �xed� there are only �nitely many
possible isomorphism types� M can evaluate the sentences � at the begin of the computation
as it is described in the proof of Proposition �� Therefore� if d�u� v� � �r then M can check
whether t j� ��u� v
 by inspecting N t

�r�u�� otherwise by �rst inspecting N t
r�u� and afterwards

N t
r�v��
Now suppose the automaton arrives at a vertex u �with u � � as the �rst case�� First�

the automaton nondeterministically� whether it will go to a vertex v of distance � �r or to
a vertex v of distance � �r� In the �rst case� it inspects N t

�r�u� and chooses a v such that
t j� ��u� v
 if this is possible� Otherwise it �rst computes the type of N t

r�u�� moves to a vertex
v of distance � �r and checks that the type of N t

r�v� implies that t j� ��u� v
�
Finally� if v is the root� the automaton accepts� Otherwise� it proceeds in the same manner�

Clearly� the automaton will eventually accept if TC���x� y�
��� ���
Next� we turn to DTC formulas� Consider the formula DTC���x� y�
��� ��� We construct

a deterministic TWA over k�ary trees accepting exactly the k�ary trees the above formula
de�nes� As in the case before� the automaton �rst evaluates all sentences � in the Gaifman
normal form of �� Let m be the maximum number of vertices occurring in an r�neighborhood
of a tree� That is� m �� maxfjSt

r�u�j j t a tree� u � dom�t�g� For each isomorphism type �

of r�neighborhoods with one distinguished vertex� the automaton additionally computes the
number of occurrences of � in t up to m � �� That is� M computes the function f tr�m�� as
speci�ed in the proof of Proposition �� Now� given a u� to �nd a v such that ��u� v� holds�
the automaton proceeds as follows� Let Y� be the set of all vertices w in N t

�r�u� such that
N t
r�u�w� j� ��x� y�� By inspecting the �r�neighborhood of u� M can compute jY�j�
Next� it computes the type of N t

r�u� and the set T of all types � of r�neighborhoods
for which the following holds� if N t

r�w� is of type � and N t
r�w� and N t

r�u� are disjoint then
N t
r�u�w� j� ��x� y�� The latter is a �xed �nite computation which can be encoded into the

transition function� We call vertices of a type from T good vertices �w�r�t� the current u� and
denote the set of good vertices in t by Y�� Note that M can deduce jY�j �up to m� �� from
the precomputed information�

The set of good vertices in N t
�r�u� that are not in Y� is denoted by Y�� By inspecting the

�r�neighborhood of u again� M computes jY�j and the relative positions of all vertices in Y�
w�r�t� u�

Let Y � Y� � �Y� � Y��� Y is the set of vertices w of t such that N t
r�u�w� j� ��x� y�� M

can compute jY j without further moving �note that jY�j � m�� If jY j is di�erent from � then
M can immediately reject� Let us assume in the following that jY j � ��

If the unique element v of Y is from Y�� M can directly go to v� If� on the other hand�
Y� � Y� � � then M can move to the unique v � Y� via a DFS traversal of the tree�

The only complicated case is when Y� � � and jY��Y�j � � but Y� �� �� The complication
arises from the following possibility� M has to traverse the tree to �nd the correct unique



good w outside N t
�r�u�� As it does not know

� in which part of the tree w is located its way
to w might lead back to u� In that case we have to make sure that it does not confuse w with
a vertex from Y��

We can assume w�l�o�g� that the root of the tree is not in N t
�r�u� because otherwise M

can easily distinguish the vertices of Y� from the desired vertex� Now� M proceeds as follows�
It starts a DFS walk through the tree starting from u and �rst inspecting the �rst subtree
of u� Whenever it encounters a vertex z it starts a subcomputation which inspects the �r�
neighborhood of z to �nd out whether there is a good vertex w in N t

�r�z�� If such a w is found
then M checks whether there is a vertex u� such that w has the same relative position w�r�t�
u� as one of the vertices in Y� had wrt u and whether there are good vertices w� in the same
relative position to u� as there are vertices in Y� relative to u� If M �nds a w for which either
no such u� exists� or u� is behind z in the DFS order then w is the desired vertex and M

goes there� Otherwise it proceeds in its DFS walk� When the DFS walk �nishes at the root
�without �nding the target vertex� then M walks back �reverse DFS� until it reaches u again
�easily recognized as the �rst vertex w which has vertices from Y� in its neighborhood and
relates to them as u does�� Then it starts a reverse DFS walk from u �going upwards �rst�
analogously to the �rst DFS walk�

We have to show that M always �nds the correct target vertex� First� we show that M
never moves to a vertex in Y�� Let w � Y�� If M reaches w during the inspection of the
neighborhood of a vertex z before its DFS walk arrives at the root then it will �nd out that it
relates to u as a Y��vertex and that u is in the DFS order before z� The analogous statement
holds true if z is found in the reverse DFS walk after coming back to u�

Finally� we show that M indeed reaches a target vertex v from Y� �which then is the
correct one�� This follows easily from the fact that either v does not relate to any u� as the
Y� vertices do to u or this u� is di�erent from u� Hence� it is encountered either in the DFS
walk or in the reverse DFS walk�

� Weakness of tree�walking automata

Let k be �xed and let Tk be the set of all k�ary trees the leaves of which are labeled with �
or �� For each vertex v of a tree v � Tk we inductively de�ne a value � or � as follows� If v
is a leaf then its value �� or �� is determined by its label �� or ��� If v has i children then v

has the value � if and only if at least i
� of its children have the value �� Intuitively� Tk is the

set of all tree�structured Majority circuits� Let T �
k �T �

k � denote the set of all trees t � Tk for
which the root gets the value � ����

We call a vertex v of a tree t � Tk a ��vertex ���vertex� if it gets the value � ���� Analogously�
we call the subtree rooted at a ��vertex ���vertex� a ��subtree ���subtree��

Lemma �� For each k� the set T �
k is a regular set of trees�

Proof� Whether a tree from Tk is in T �
k can be easily expressed by an MSO formula �X��

where X is intended to be the set of vertices that have value � and � is a �rst�order formula
which checks that the root of a tree is in X and whether X is consistent with the bottom�up
evaluation described above�

We have seen in Example � that there is a deterministic TWA which recognizes T �
� �note

that T �
� � T �

� can be seen as the set of trees representing Boolean circuits consisting of only
OR�gates�� This was due to the fact that the automaton� after evaluating a right subtree of
a vertex v� could conclude the value of the corresponding left subtree of v from the label of v
and the fact that it had to enter the right subtree� For k � �� things are more complicated�
In fact� we conjecture the following�

� Actually� there is an alternative construction where M keeps track of the relative positions of
neighbourhoods like N t

r�u� and N t

�r�v� as these may only appear a bounded number of times in t

�otherwise Y would be too large��



Conjecture �� For k � �� T �
k can not be recognized by a deterministic or non�deterministic

TWA�

In this section we prove this conjecture fora restricted type of TWAs� ��bounded TWAs�
The proof can be easily generalized to the sets T �

k � for each k � �� Furthermore� it can be
extended to show that� for each r there is a related regular set of trees which can not be
recognized by any r�restricted TWA�

Before we state and prove the result we introduce some important concepts for that proof
and show a purely combinatorial result�

For any d 
 � a critical tree of depth d is a full ternary tree t of depth d with the following
properties�

� t � T �
� �

� each ��vertex of t has exactly two children which are ��vertices�
� each ��vertex has only ��vertices as children�

In particular� there are no ��leaves in ��subtrees of t� Intuitively� a critical tree of depth d is a
tree of depth d from T� which contains a full binary subtree of depth d which only has ��leaves
and all other leaves are ��leaves� In particular� a critical tree of depth d has �d ��leaves�

A numbering N of a critical tree t of depth d is an injective mapping of the ��leaves of t
into the set f�� 	 	 	 � �d � �g� All critical trees of a �xed size d are de�ned on the same tree
domain �d� A mapping M which maps each leaf of �d to a subset of f�� 	 	 	 � �d � �g with at
most m elements is called an m�labeling� We say that an m�labeling M of �d is compatible
with a numbering N of a critical tree t of depth d if� for each ��leaf v of t� N�v� �M�v��

Lemma �� For each m � � there is a d � � such that� for each m�labeling M of �d there is
a critical tree of depth d for which there is no numbering that is compatible with M �

Proof� Let d be chosen such that
�
�
�

�d
� m� Let M be an m�labeling of �d� As� for each

leaf v of �d� M�v� contains at most m elements from f�� 	 	 	 � �d � �g there must be some

i � f�� 	 	 	 � �d � �g which occurs in M�v� for at most m�d

�d
leaves v of �d� Let A be the set

of vertices v such that i � M�v�� We construct a critical tree t of depth d which does not
have a ��leaf from A� This implies the statement of the lemma as t can not have a compatible
numbering because no leaf of t can be numbered by i�

Let w�� w�� w� be the children of the root and let� for each i � f�� �� �g� Ai �� fv �
A j v is a leaf in twi

g� Let w� be chosen such that jA�j is maximal� Clearly� both A� and

A� contain at most jAj
� elements from A� In t� w� will be a ��vertex and w� and w� will be

��vertices� Hence� each subtree rooted at ��vertices of depth � contains at most jAj
� elements

from A� We proceed inductively in an analogous manner for these subtrees� At each depth i

we will select the � children of ��vertices that have the least number of leaves from A in their
subtree� Hence� for each j� the selected ��vertices of t at depth j may contain at most jAj

�j

��leaves from A in their subtree� In the end� we have constructed a critical tree which has at
most

jAj

�d
�

m�d

�d�d
� �

��vertices from A in the subtree rooted at a leaf� Hence� t has no ��leaves from A at all�

Theorem �� �a� There is no ��bounded �deterministic or non�deterministic� TWA which
recognizes T �

� �
�b� For each r � �� there is is a regular tree language that can not be recognized by an

r�restricted �deterministic or non�deterministic� TWA�

Proof� The main task is to prove �a�� Statement �b� will follow by an easy generalization of
that proof�

Towards a contradiction assume there exists a non�deterministic TWA M � which recog�
nizes T �

� � The proof consists of � main steps�



� We transform M � into a TWA M which accepts exactly the same trees as M � but always
rejects when it visits a ��leaf� From this property we can conclude that if M accepts a
certain tree t then it also accepts every tree which results from t by replacing ��subtrees
with ��subtrees�

� We show that there are two trees t� t� � T �
� with the same tree domain such that M has

accepting computations for these trees which enter some vertex v in the same state s but
with di�erent �histories��

� We show these these accepting computations can be combined into one accepting com�
putation on a tree from T �

� �

Before we describe the construction of M we show that the ��subtrees and ��subtrees
have disjoint sets of behaviour functions� Let� for i � f�� 	 	 	 � �g� F �

M ��i �F
�
M ��i� denote the set

ffM ��t�i j t � T �
� g �ffM ��t�i j t � T �

� g� of behaviour functions that M
� can have on ��subtrees

���subtrees� that have child number i� If� for some i� F �
M ��i � F �

M ��i �� � then we can easily

construct trees t� � T �
� and t� � T �

� that are either both accepted or both rejected by M �� To
this end let f � F �

M ��i � F �
M ��i and let t� � T �

� and t� � T �
� such that fM ��t��i � fM ��t��i� Let

t� be a tree which consists of a root with � children which has t� as i�th child and one of the
other children is a ��leaf and the other is a ��leaf� The tree t� is the same as t� with the only
exception that it has the subtree t� instead of t�� As the behaviour functions of M � on t� and
t� are the same the acceptance behaviour of M � on t� and t� is also the same�

Hence� we can assume that F �
M ��i and F �

M ��i are disjoint�
We turn to the construction of M � Intuitively� the idea is as follows� Whenever M � can go

from a vertex v to vi then M can either do the same or� to prevent visiting a ��leaf� it can
guess that vi is the root of a ��subtree� In the latter case instead of going down to vi it picks
a behaviour function f � F �

M ��i and enters a new state at v according to f � Formally� for each
j � k� s � S and � � � � f�g�

�iM �j� s� �� � �iM ��j� s� �� �
�

�j� �s����i
M�

�j�s���

f�F �
M��j�

��� f�s���	

For each j � k and s � S� we de�ne �iM �j� s� �� � ����� where � is a state from which no
transition is possible�

We have to show thatM accepts exactly all trees in T �
� � Let therefore t be from T �

� � hence�
by assumption� t is accepted by M ��

Let C � � c��� c
�
�� 	 	 	 � c

�
n be an accepting computation ofM � on t� We show that there is also

an accepting computation C � c�� 	 	 	 � cm of M on t� We construct C by suitably modifying
C �� Let v � wj be a ��leaf of t� for some vertex w and some j� By the prerequisite on M �� v is
at most visited once in C �� If v is not visited at all� we do not need to modify C � with respect
to v� If v is visited then there are successive con�gurations �w� si
� �v� si��
� �w� si��
 in C ��
Here� we assume w�l�o�g� that M � moves in each step� In C we replace these � con�gurations
by �w� si
� �w� si��
� This re�ects a legal transition of M as it corresponds to the computation
of M � on the ��subtree which consists of a single ��leaf� We end up with a legal accepting
computation C on t�

For the opposite direction� let C � c�� 	 	 	 � cm be an accepting computation of M on a
tree t � T�� We construct a tree t� by replacing some of the ��leaves of t by ��trees and an
accepting computation C � of M � on t� by modifying C accordingly� By the construction of t�

it will follow that t � T �
� if and only if t� � T �

� � Hence� as M
� accepts t� it also accepts t�

More formally� let �v� s
� �v� s�
 be two successive con�gurations from C such that it does not
hold �v� s
 	M ��t �v� s

�
� Hence� this subcomputation is possible only by the new transitions
introduced in M � By de�nition� there must be j � k� s�� � S� f � F �

M ��j and a ��tree
t� such that �v� s
 	M ��t �vj� s��
 and fM ��t��j�s

��� � s�� From this we can conclude that
there exist con�gurations c�v� ��� 	 	 	 � c�v� l� such that �v� s
� �vj� s��
� c�v� l�� 	 	 	 � c�v� l�� �v� s�
 is
a legal subcomputation of M � on the tree� denoted by t�v�� in which the subtree rooted at vj



is replaced by the ��subtree t�� If t � T �
� then also t�v� � T �

� as we only replaced a ��� or ���
subtree by a ��subtree� By inductively applying this argument we arrive at a tree t� and an
accepting computation C � on t�� Hence� by assumption� t� � T �

� and therefore t � T �
� �

It should be noted that the latter construction relies on the assumption that M � traverses
each edge at most once� Otherwise� it could be the case that the con�guration C visits v two
times but the extension to C � makes use of two di�erent ��subtrees rooted at v�

Let now t be a critical tree of depth d and let C � c�� 	 	 	 � cn be an accepting computation
of M on t� If C does not visit all ��leaves then we can easily construct a tree t� � T �

� which is
accepted by M � Hence� we assume that C visits each ��leaf of t exactly once� Let v be such a
��leaf of t and let cj � �v� s
 be the con�guration of C which visits it� Let� for i � f�� 	 	 	 � dg�
vi denote the vertex of depth i on the path from the root of t to v� As v is a ��leaf� each
vi is a ��vertex� Therefore� as t is critical� each vertex vi has exactly one sibling v�i which is
a ��vertex� For each i� v�i is visited in exactly one of the subcomputations c�� 	 	 	 � cj�� and
cj��� 	 	 	 � cm� We de�ne� for each ��leaf v its history string z � ht�C�v� � z� � � � zd by setting
zi � � if and only if v�i is visited in c�� 	 	 	 � cj��� These history strings have a couple of nice
properties which are straightforward to prove given the assumptions on M �

� The binary number bt�C�v� represented by z � ht�C�v� �where zd is the least signi�cant
bit� coincides with the number of ��leaves that are visited in C before v� This follows from
the restriction that the automaton can visit each subtree at most once� Hence� when a
��vertex v at level i is entered� then all �d�i ��leaves in the subtree of v have to be visited
before the subtree is left� In this way� a � at the i�th bit of the history string corresponds
to �d�i ��leaves that have been already visited�

� Consequently� the function bt�C de�nes a numbering of t� In particular� each ����string
occurs exactly once as a history string of a ��leaf v�

We claim that� there exists a d� two critical trees t� t� of depth d� two accepting computa�
tions C�C � of M on t� t�� respectively� and a leaf v of �d such that

� v is a ��leaf of t and t��
� C and C � visit v in the same state s� and
� hC�t�v� �� hC��t��v��

Towards a contradiction assume that this claim is false� Let m be the number of states of
M and let d be a number as given by Lemma �� Let t and t� be two critical trees of depth d�
let v be a common ��leaf of t and t� and let C and C � be accepting computations of t and t��
respectively� which visit v in the same state s� The assumption implies that hC�t�v� � hC��t��v�
and therefore bC�t�v� � bC��t��v�� We can conclude that� for each vertex v of �d and each state
s of M � there is only one number n�v� s� such that bC�t�v� � n�v� s� for all critical trees t with
��leaf v and all accepting computations which visit v in the state s� In other terms� there
exists an m�labeling M of the leaves of �d such that� for each critical t and each accepting
computation C on t the numbering bC�t is compatible with M � This contradicts Lemma �� as
desired� Therefore� the claim is proved�

Let d� t� t�� C�C � and v be as given by the above claim� We complete the proof by con�
structing a tree t� � T �

� which is accepted by M � Let z � hC�t�v� and z� � hC��t��v�� Let j
be minimal such that zj �� z�j � We can assume w�l�o�g� that zj � � and z�j � �� Let� for each
i � f�� 	 	 	 � dg� vi be de�ned as above� wi be the ��sibling of vi in t and w�

i be the ��sibling of
vi in t�� We construct t� as follows�

� For each i � j� if zi � � �i�e�� wi is visited before v in C� then we copy the subtrees rooted
at the siblings of vi from t�

� For each i � j� if zi � � �i�e�� w�
i is visited before v in C �� then we copy the subtrees

rooted at the siblings of vi from t��
� At the siblings of vj we root ��subtrees� This assures that t� is a ��tree�



� In the subtree rooted at vj all leaves are labeled ��

Let C � c�� 	 	 	 � cm� C
� � c��� 	 	 	 � c

�
n and let k and k� be such that ck � c�k� are the con�gura�

tions in which v is visited�
It is straightforward to check that

� c�� 	 	 	 � ck is a valid subcomputation on t� because all ��leaves of t that are visited in
c�� 	 	 	 � ck are also ��leaves in t��

� c�k� � 	 	 	 � c
�
n is a valid subcomputation on t� because all ��leaves of t� that are visited in

c�k� � 	 	 	 � c
�
n are also ��leaves in t�� hence

� c�� 	 	 	 � ck � c�k� � 	 	 	 � c
�
n is an accepting computation on t�� the desired contradiction�

This concludes the proof of statement �a��

To prove �b� we use a slightly di�erent set U�
� of trees� These trees have an additional label�

�� Inner vertices that are labeled with � have � children which are interpreted as threshold
gates� Inner vertices that are not labeled with � have only � child� Hence� at a ��vertex there
are starting � paths which lead either to another ��vertex or to a leaf� Now a ��vertex is
evaluated to �� if at least � of its � descendants ���vertex or leaf� evaluate to �� Intuitively�
U�
� is the same as T �

� but the edges of trees in T �
� are replaced by paths in U�

� � In fact� the
proof of the fact that no r�restricted TWA recognizes U�

� is almost word for word the proof
given in �a� but in the trees that are used� each edge has to be replaced by a path of length
r � �� The old vertices are labeled with �� the new ones not�

Acknowledgements�

We thank Joost Engelfriet� Clemens Lauteman� and Martin Grohe for helpful discussions�

References

	ABS��
 S� Abiteboul� P� Buneman� and D� Suciu� Data on the Web � From Relations to Semistruc�

tured Data and XML� Morgan Kaufmann� �����
	AU��
 A� V� Aho and J� D� Ullman� Translations on a context�free grammar� Inform� and Control�

��
�������� �����
	BMN��
 G� Bex� S� Maneth� and F� Neven� XSL revisiTed
variables add power� Submitted�
	BE
 R� Bloem and J� Engelfriet� Characterization of properties and relations de�ned in monadic

second order logic on the nodes of trees� Technical Report ������ Rijksuniversiteit Leiden�
�����

	BHW��
 A� Br�uggeman�Klein� S� Hermann� and D� Wood� Context� caterpillars� tree automata� and
tre pattern matching� In Proceedings of the �th International Conference on Developments
in Language Theory� �����

	Cla��
 J� Clark� XSL Transformations version ��� �november ������ http
��www�w��org�TR�xslt�
	EF��
 H��D� Ebbinghaus and J� Flum� Finite Model Theory� Springer� �����
	EH��a
 J� Engelfriet and H� J� Hoogeboom� Tree�walking pebble automata� In J� Karhum ki�

H� Maurer� G� Paun� and G�Rozenberg� editors� Jewels are forever� contributions to Theo�

retical Computer Science in honor of Arto Salomaa� pages ������ Springer�Verlag� �����
	EH��b
 J� Engelfriet and H� J� Hoogeboom� Private communication�
	EHvB��
 J� Engelfriet� H�J� Hoogeboom� and J��P� van Best� Trips on trees� Acta Cybernetica�

��
������ �����
	FM
 Z� F�ul�op and S� Maneth� Domains of partial attributed tree transducers� Technical Report

������ Leiden University� �����
	Ga��
 H� Gaifman� On local and nonlocal properties� In J� Stern� editor� Logic Colloquium ����

pages �������� North Holland� �����
	GS��
 F� G�ecseg and M� Steinby� Tree languages� In Rozenberg and Salomaa 	RS��
� chapter ��
	KS��
 T� Kamimura and G� Slutzki� Parallel and two�way automata on directed ordered acyclic

graphs� Information and Control� �����
������ April �����



	MSV
 Y� Bargury and J� A� Makowsky� The expressive power of transitive closure logic and ��way
multi�head automata� In E� Borger� G� J�ager� H� K� B�uning� and M� M� Richter editors�
Computer Science Logic� volume ��� of Lecture Notes in Computer Science� pages �����
Springer�Verlag� �����

	MSV
 T� Milo� D� Suciu� and V� Vianu� Type checking for XML transformers� Submitted�
	N��
 F� Neven� Design and Analysis of Query Languages for Structured Documents � A Formal

and Logical Approach� Doctor�s thesis� Limburgs Universitair Centrum �LUC�� �����
	NS
 F� Neven and T� Schwentick� Expressive and e�cient pattern languages for tree�structured

data� Submitted�
	Pot��
 A� Pottho�� Logische Klassi�zierung regul�arer Baumsprachen� Doctor�s thesis� Institut f�ur

Informatik u� Prakt� Math�� Universit�at Kiel� �����
	RS��
 G� Rozenberg and A� Salomaa� editors� Handbook of Formal Languages� volume �� Springer�

�����
	Tho��a
 W� Thomas� Languages� automata� and logic� In Rozenberg and Salomaa 	RS��
� chapter ��


