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Abstract. This paper surveys work of the authors on pattern languages
for tree-structured data with XML as the main application in mind.
The main focus is on formalisms from formal language theory and logic.
In particular, it considers attribute grammars, query automata, tree-
walking automata, extensions of first-order logic, and monadic second-
order logic. It investigates expressiveness as well as the complexity of
query evaluation and some optimization problems. Finally, formalisms
that allow comparison of attribute values are considered.

1 Introduction

There is a powerful evolving technology around XML. A lot of proposals for
query languages, pattern languages and the like are emerging. Some of these are
complemented with working implementations. However, as such, there is no real
standard for an XML query language. Although there are some requirements
for an XML query language [31] and the latest XQuery working draft receives a
lot of attention [6], it is not clear what the desired expressive power of such a
query language should be. Furthermore, by and large, the expressive power and
complexity of the existing languages is not well understood. This paper surveys
research done by the authors on the expressiveness of query constructs for tree-
structured data (that is, XML). The main focus is on logic and formalisms from
formal language theory.

Let us look back at the history of query languages for relational databases.
There a standard for expressive capabilities emerged from the tight connec-
tion between some query mechanisms and logic. More precisely, the well-known
equivalence between relational algebra, core SQL and, first-order logic. First-
order logic is such a natural and robust notion that it is no surprise that there
are so many equivalent formalisms of the same expressive power. But the con-
nection did not only help to find a standard. Also database theory profited a
lot from it, e.g., it helped to understand what kinds of queries can be expressed
or not expressed and to clarify semantical issues. The compositional nature of
first-order logic further supported the development of a theory of views. In a
� Research Assistant of the Fund for Scientific Research, Flanders.



sense, first-order logic can be seen as a link between the operational nature of
relational algebra and the declarative, user-oriented nature of SQL.

Coming back to XML the natural question arises: Is there a logic that could
play a similar benchmark role for query languages for XML as first-order logic
did for relational databases? One immediate difference is that XML data is
primarily tree-structured. Obviously, this difference in representation affects the
way queries are asked. However, when searching for a natural logic on trees there
is one obvious candidate that was well investigated already 30 years ago: monadic
second-order logic (MSO). That is, the extension of first-order logic (FO) where
quantification over sets of nodes is allowed. There is a large body of research on
that logic on trees. [30] The expressive power of MSO logic exactly matches the
recognition power of several kinds of tree automata (e.g., bottom-up automata
that combine information about the tree in one pass from the leaves to the root)
and other formalisms like attributed grammars. It gives rise to a very robust
class: the class of regular tree languages which is almost as robust as the class of
regular string languages.

Further support for the consideration of MSO logic comes from an obser-
vation about existing query languages for XML. Most of them allow a kind of
pattern matching along paths in an XML document; some of them by means of
regular expressions. But there is a matching logic with the expressive power of
regular expressions. By Büchi’s Theorem it is MSO logic. Of course, there are
also various kinds of string automata that capture the same level of expressive
ability. By the way, there is an analogy to the case of relational databases that
there is an operational way of specification by automata, a logical way of spec-
ification by MSO logic and a user-oriented declarative specification by regular
expressions.

The mentioned connections strongly indicate that besides logic also automata
might be helpful in the design and understanding of query formalisms for XML
data. Further support in that direction is given by the very successful application
of automata theoretic methods in the realm of verification. There also tree-
structured data is very important and there is a tight interplay between logics
(here: temporal logics) and automata.

Altogether we deal in this article with four main topics.

– The use of logical formulas as query mechanisms for tree-structured data,
especially formulas of MSO and fragments of it;

– The use of parallel automata models (like bottom-up automata and attribute
grammars). What is the impact of the knowledge about regular tree lan-
guages in the context of XML? There are two mismatches one has to deal
with (a third one will be mentioned shortly): (1) For XML we are mainly
interested in querying tree-structured documents rather than checking prop-
erties of a document; (2) For XML we have to deal with trees of unbounded
degree (i.e., unranked trees) in contrast to the bounded degree trees in clas-
sical regular tree languages.

– The use of sequential automata models. Although it seems obvious that
sequential automata models on trees have limited power compared with par-
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allel automata this has not been proved yet. As these automata are related
to XSLT, the understanding of the exact expressive power of such automata
is a relevant topic.

– The fourth issue is orthogonal to the first three and it is related to the third
mismatch. XML documents might contain arbitrary text, numbers, refer-
ences etc., whereas the logics and automata mentioned so far work on trees
with a fixed finite set of labels. Actually, whether one allows arbitrary data
values or not is a main dividing line for theoretical work on tree-structured
data. Whereas subqueries like name = ‘‘Johnson’’ can still be handled
in the finite alphabet framework, propositions like value at vertex x =
value at vertex y cannot, in general. Whereas it is straightforward to
equip MSO with the ability to deal with data values there are several possi-
bilities how to extend automata models in that direction. We describe some
results on such models.

It should be noted, that queries that do not compare values of different nodes
are very common and are also frequent as subqueries. Therefore it is reasonable
to try to understand them as good as possible. Nevertheless, the general formal
model allows not only a finite set of labels but also attributes that might take
values from an infinite domain. But we restrict access to these data values as we
only allow equality and inequality comparisons of data values.

The main goals of the work surveyed here are as follows.

– Understand the expressive power of the various formalisms;
– Find out their evaluation complexity; Maybe find new formalisms with a

better evaluation complexity;
– In particular, find formalisms that have a good combined evaluation com-

plexity, i.e., formalisms for which evaluation is efficient even if the query
itself is considered as part of the input;

– Investigate decidability issues, e.g., related to satisfiability and containment
of queries in the various formalisms.

The rest of the paper is structured as follows. In Section 2 we introduce the
necessary definitions. In Section 3, we consider pattern languages equivalent to
MSO. In Section 4, we look at sequential formalisms. In Section 5, we study
pattern languages based on fragment of MSO. In Section 6, we investigate for-
malisms with the ability to compare attribute values. Finally, we present some
conclusions in Section 7.

2 Preliminaries

In this section we introduce the basic formalisms used throughout the paper,
including the notion of (attributed) trees as abstraction of XML documents and
the logical framework.
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2.1 Trees and XML

We start with the necessary definitions regarding trees. Let Σ be a finite alpha-
bet. The Σ-symbols will correspond to the element names of the XML document.
To use trees as adequate abstractions of actual XML documents, we extend them
with attributes from a finite set A that take values from an infinite (recursively
enumerable) domain D = {d1, d2, . . .}. In the sequel we assume some fixed Σ
and D.

A tree domain τ over N is a subset of N
∗, such that if v · i ∈ τ , where v ∈ N

∗

and i ∈ N, then v ∈ τ . Here, N denotes the set of natural numbers without zero.
If i > 1 then also v · (i − 1) ∈ τ . The empty sequence, denoted by ε, represents
the root. We call the elements of τ vertices. A vertex w is a child of a vertex v
(and v the parent of w) if vi = w, for some i.

In this article, we only consider finite tree domains.

Definition 1. An attributed (Σ,A)-tree is a triple t = (dom(t), labt, (λa
t )a∈A),

where dom(t) is a tree domain over N, labt : dom(t) → Σ is a function, and for
every a ∈ A, λa

t : dom(t) → D is a partial function.

When Σ and A are clear from the context or not important, we sometimes say
tree rather than (Σ,A)-tree. Note that in the definition of a tree there is no a
priori bound on the number of children that a node may have.

We describe next the representation of XML documents as (Σ,A)-trees. We
represent XML elements by means of the finite set Σ of labels and attribute
values by the functions λa

t . Maximal sequences of character data are represented
by nodes (inevitable leaves) that are labeled by a special element TEXT of Σ
that is not used otherwise. The actual data is represented by an attribute PC
from D also not used otherwise (see example).

Example 2. The XML document

<beer name="Grimbergen Trippel">
<alc> 9 </alc>
<description>

<color> blonde </color>
<sort> trappist </sort>

</description>
</beer>

is faithfully modeled by the tree

beer

alc

TEXT

description

color

TEXT

sort

TEXT
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where λname
t (ε) = “Grimbergen Trippel”, λPC

t (11) = “9”, λPC
t (211) = “blonde”,

and λPC
t (221) = “trappist”. Here, the domain D is assumed to contain the subset

{“Grimbergen Trippel”, “9”, “blonde”, “trappist”}.
The XML specification allows also mixed content elements like

<example>
This is not a very
<stress> meaningful </stress>
sentence.

</example>

which can be modelled by the tree

example

TEXT stress

TEXT

TEXT

with λPC
t (1) = “This is not a very”, λPC

t (21) = “meaningful” and λPC
t (3) =

“sentence”.
�

As we already pointed out in the introduction, most of the query mechanisms
considered in this article do not allow the comparison of data values of different
nodes. It turns out that in these cases one can model XML documents adequately
by trees without data values, i.e., by (Σ, ∅)-trees. We refer to such trees simply
as Σ-trees. The reason for this is as follows. For the purposes of this article,
there is no need to fix a uniform representation of XML documents into trees
but rather it is sufficient to consider representations relative to the given query.
E.g., if the query asks for trappist beers and more than 9 % alcohol, we can
represent XML documents by trees over an alphabet that has a label trappist
& 9 or less % alcohol as well as a label for trappist and more than 9% alcohol
and so on. In this manner and in the absence of data value comparisons between
nodes, only a finite amount of information (depending on the query) is needed
from the potentially infinite set of data values. This finite amount of information
can be represented by Σ.

Hence, in sections 3 and 5 we only consider Σ-trees whereas in section 6 we
consider general (Σ,A)-trees.

2.2 Queries and Patterns

As argued by Fernandez, Siméon, and Wadler [13] for the case of XML, queries
on tree-structured data consist roughly of a pattern clause and a constructor
clause. The purpose of the pattern language is to identify the different parts of
the document that have to be combined to obtain the output document. The
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constructing part, on the other hand, indicates how the selected parts should be
assembled. Such queries can, for instance, be written as

WHERE ϕ(x̄), CONSTRUCT result(t),

where ϕ is a pattern selecting vertices and t is a tree containing at leaves special
constructs like yield(x), lab(x), subtree(x) indicating that at this position the
yield, the label, or the subtree rooted at the matched vertex for x should be
plugged in. Note that the WHERE clause maps trees to an intermediate result of
relational nature which is then transformed into a tree by the CONSTRUCT clause.

Pattern languages, therefore, form the basic building blocks of more gen-
eral query languages transforming documents into other documents. Clearly, the
choice of the pattern language can affect tremendously the expressive power of
the overall query language.

In this article we focus on pattern languages. In the rest of the article, the
terms query and pattern will both refer to mappings from trees to relations
corresponding to pattern clauses.

Many of the pattern mechanisms considered in this article can not produce
arbitrary relational results but are limited to unary results, i.e., results that are
sets of vertices. This is justified as the identification of relevant parts of a tree
is the most common purpose of pattern clauses (see e.g., the example queries of
the W3C [31]).

2.3 Logic

We view trees as logical structures (in the sense of mathematical logic [10]) over
the binary relation symbols E and <, and the unary relation symbols (Oσ)σ∈Σ .
We denote this vocabulary by τΣ . The domain of t, viewed as a structure, equals
the set of nodes of t, i.e., dom(t). Further, E is the edge relation and equals the
set of pairs (v, v · i) where v, v · i ∈ dom(t). The relation < specifies the ordering
of the children of a node, and equals the set of pairs (v · i, v · j), where i < j and
v · j ∈ dom(t). For each σ, Oσ is the set of nodes that are labeled with a σ.

We consider first-order (FO) and monadic second-order logic (MSO) over
these structures. MSO is FO extended with quantification over set variables. We
refer the unfamiliar reader to, e.g., the books by Ebbinghaus and Flum [10], or
the chapter by Thomas [30].

To be able to deal with attribute values (in section 6), we allow atomic
formulas of the forms a(x) = d where a is an attribute and d ∈ dom and of the
form a(x) = b(y). The former formula holds for u in t iff λa

t (u) = d, the latter
holds for u and v in t iff λa

t (u) = λb
t(v).

2.4 Complexity Issues

Besides comparing the expressive power of the different formalisms we are typi-
cally interested in the following kinds of computational problems related to the
classes C of queries under consideration (where C is a set of representations of
queries, e.g., automata or formulas).
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NON-EMPTINESS Given a query Q ∈ C, is there a tree t such that Q(t) �= ∅?
CONTAINMENT Given queries Q1, Q2 ∈ C, is Q1(t) ⊆ Q2(t), for all trees t?
EQUIVALENCE Given queries Q1, Q2 ∈ C, is Q1(t) = Q2(t), for all trees t?
QUERY EVALUATION Given a query Q ∈ C and a tree t, compute Q(t)?

For NON-EMPTINESS and CONTAINMENT the first question is whether
they are decidable, for a given class C. If so, for most cases we consider the
complexity is exptime. Note that NON-EMPTINESS is also called SATISFIA-
BILITY in the case of Boolean queries. The QUERY EVALUATION problem
comes in two flavors. Either the query is considered fixed or it is considered as
part of the input (so the complexity is a function in the length of the represen-
tation of Q and t). We refer to the former as the data complexity of QUERY
EVALUATION and to the letter as the combined complexity of QUERY EVAL-
UATION.

The linear time results and the complexity results in Section 5 assume Ran-
dom Access Machines with a unit cost measure as computational model. Further
they require a suitable representation of the input trees.

3 Pattern languages equivalent to MSO

As demonstrated in Section 2, XML documents can be faithfully represented
by attributed trees. Trees have been studied in depth in the area of formal lan-
guage theory for over 30 years and many formalisms have been proposed. We
re-consider some of these formalisms from the viewpoint of pattern languages.
More precisely we re-examine attribute grammars, tree automata, and tree trans-
ducers.

As mentioned in the introduction, there are two essential differences between
trees studied in formal language theory and attributed trees representing XML
documents as considered in this paper: (i) trees are unranked, that is, there
is no fixed bound on the number of children of a node; and (ii) XML trees
have attributes instantiated by elements coming from an infinite domain. In
this section we do only consider pattern languages which disallow comparisons
of attribute values of different vertices. Hence, as explained in Section 2 we
consider only Σ-trees.

3.1 Tree automata

The basic computational model in tree language theory is the tree automaton.
To warm-up, let us first consider finite state machines (FSMs) on strings. FSMs
process input strings from left to right by first assigning the initial state to the
first letter of the input string; a state for an inner position i is then determined
via the transition function based on the label of i− 1 and the state at i− 1. The
input string is accepted when a final state is reached at the end of the string.

On trees there are two quite different types of generalizations of this mecha-
nism. They can be characterized as sequential and parallel tree automata, respec-
tively. Sequential tree automata are similar to string automata as they have only
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one head which moves around the tree. In order to inspect the whole tree they
have to visit some vertices several times. Sequential automata will be discussed
in Section 4. On the other hand, most parallel tree automata keep the visit po-
sitions only once paradigm of string automata. Bottom-up tree automata, for
instance, process trees in one pass from the leaves to the root. That is, first initial
states are assigned to leaf nodes (depending on the symbol they carry). Second,
the state at an inner node is determined via the transition function based on the
label of the inner node and on the states assumed at their children. Finally, the
automaton accepts if a final state is reached. In this subsection we study parallel
tree automata as query mechanisms for trees.

How do we define the transition function for a bottom-up tree automaton?
If the arity of the input trees is bounded by n, a transition function is simply a
function δ :

⋃n
i=0 Qn × Σ → Q. However, when the arity is unbounded, we can

not adapt this approach as it would imply having to define transitions for an
infinite number of cases. Brüggemann-Klein, Murata, and Wood [4] proposed a
solution based on regular sets of states which we explain next.

Formally, a (bottom-up) tree-automaton is a tuple T = (Q,Σ, δ, q0, F ) where
Q is a set of states, Σ is the alphabet of labels, q0 is the initial state and F is the
set of accepting states, as in the definition of finite state machines, Finally, δ : Q×
Σ → 2Q∗

is a transition function mapping every pair (q, σ) to a regular language
over Q. T accepts a tree t if there is a labeling function γ : dom(t) → Q such that
(i) for every vertex v, with children v1 · · · vn, γ(v1) · · · γ(vn) ∈ δ(γ(v), labt(v)); 1

and (ii) γ(ε) ∈ F , that is, a final state is reached. A tree language, that is, a set
of trees, is regular when it is accepted by a tree-automaton.

Using regular string languages to specify properties of the sequence of chil-
dren in unranked trees lies at the core of many of the following formalisms.

3.2 Query Automata

This section is based on [23]. A query automaton (QA) is a two-way (i.e., up and
down) deterministic finite tree automaton with a distinguished set of selecting
states. At each step of a computation, there is a partial mapping s from dom(t)
to Q. Intuitively, the set C of vertices v, for which s(v) is defined contains those
vertices of the tree that are currently visited by a head of the automaton. This
set C has to contain exactly one vertex of each path from the root to a leaf. A
computation step consists of either a down transition or an up transition. I.e.,
either in C, a vertex is replaced by its children, or, if all children of a certain
vertex v are in C, they might be replaced by v itself. In both cases, the new
vertices in C are assigned states depending on the transition function.

A vertex is selected by a QA if it is visited at least once in a selecting state.
Hence, a QA can compute unary queries in a natural way: the result of a QA on
a tree consists of all those nodes that are selected during the computation of the
QA on that tree. We stress that QAs are quite different from the tree acceptors
studied in formal language theory [14]. Although two-way tree acceptors are

1 Note, that in particular, when v is a leaf, ε should be in δ(γ(v), labt(v)).
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equivalent to one-way acceptors [20] it is straightforward to see that (two-way)
QAs are not equivalent to bottom-up query automata. Indeed, a bottom-up QA,
for example, cannot compute the query “select all leaves if the root is labeled
with σ”, simply because it cannot know the label of the root when it starts at
the leaves.

Theorem 3. On ranked trees, QAs express exactly the MSO definable unary
patterns.

For QAs on unranked trees the picture looks quite different. QAs over un-
ranked trees cannot even express all FO definable unary patterns. The basic
reason is that in the unranked case very little information can be passed from
one sibling to another. To resolve this, QAs are equipped with stay transitions
where a two-way string-automaton reads the string formed by the states at the
children of a certain node, and then outputs for each child a new state. Automata
are then restricted to make only a constant number of stay transitions for the
children of each node. These automata are called strong QAs.

Theorem 4. On unranked trees, strong QAs compute exactly all MSO-definable
unary patterns.

W.r.t. standard decision problems we obtain the following.

Theorem 5. NON-EMPTINESS, CONTAINMENT, and EQUIVALENCE of
strong QAs are complete for exptime.

Although the run time of a QA might be quadratic in the size of the tree
query evaluation can be done more efficiently.

Theorem 6. The data complexity of QUERY EVALUATION for QAs is linear
time. The combined complexity of QUERY EVALUATION for QAs is PTIME.

3.3 Attribute Grammars

Attribute grammars (AGs), as defined by Knuth [16], constitute a deeply studied
general computational model for trees [9]. In brief, an AG consists of a context-
free grammar and a set of rules defining annotations (called attributes) of nodes
of derivation trees. As defined by Knuth, the domain of attributes can be any-
thing and the semantic rules can be any recursive function. Further, attributes
can be defined in a top-down (inherited) or a bottom-up (synthesized) way.

Towards pattern languages for tree-structured data, Neven and Van den
Bussche [27] considered Boolean-valued AGs (BAGs) where attributes are re-
stricted to be Boolean-valued and rules are propositional formulas over at-
tributes. As an example consider the following BAG working on a list of para-
graphs

L → Lp odd(0) := ¬odd(1)
L → p odd(0) := true.
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Here, the attribute odd will be true for all L-labeled nodes on an odd position
when starting counting from the bottom. In brief, odd is true for the last L-
labeled node; for an inner node odd is the negation of the odd-value of the
next L. In the semantic rules the numbers 0 and 1 refer to the left-hand side
and the first non-terminal of the right-hand side of a production, respectively.
By designating odd as the result attribute, on an input tree the BAG retrieves
all nodes for which odd is true. Although BAGs constitute a seemingly simple
formalism, it can be shown that BAGs express precisely all MSO definable unary
patterns [27, 3].

XML documents, however, are usually described by extended context-free
grammars (DTDs). These are grammars with regular expressions on the right-
hand sides of productions. The above context-free grammar could be specified,
for instance, like List → L∗, L → p. One problem that arises when defining AGs
to work on such grammars is that semantic rules should be able to depend on an
unbounded number of attributes (as the production List → L∗ does not put any
restriction on the number of L’s). The latter problem can be resolved by using
regular languages over attribute values as semantic rules.2 Consider the rule

List → L∗ odd(1) := L∗#L(LL)∗

and the tree consisting of a root with label List and four children with label
L. To determine whether odd is true for, say, the second child, we consider the
string L#LLL∗ where we insert the marker # in front of the second position.
As this string matches the regular expression L∗#L(LL)∗, odd will be true for
the second child. In general, semantic rules can also depend on the values of
other attributes, as opposed to labels of nodes; we refer the interested reader to
[22]. Again unary patterns can be expressed by designating some attribute as
the result attribute.

The next theorem provides evidence for the robustness of the definition of
AGs on unranked trees.

Theorem 7. AGs compute exactly all MSO-definable unary patterns.

Theorem 8. NON-EMPTINESS, CONTAINMENT, and EQUIVALENCE of
AGs are complete for exptime.

The latter result can be used to improve optimization of Region Algebra ex-
pressions [8]. Indeed, by exhibiting a linear time translation from Region Algebra
expressions to attribute grammars, one obtains that testing equivalence of Re-
gion Algebra is in exptime. This should be contrasted to the hyper-exponential
upper bound of Milo and Consens [8].

Corollary 9. EQUIVALENCE of Region Algebra expressions is in exptime.

The data complexity of QUERY EVALUATION for AGs is linear time. This
is clear because of the equivalence with Query Automata. But there is also a
straightforward evaluation strategy which gives this time bound directly, if the
evaluation of single rules can be done in constant time. The combined complexity
is ptime.
2 Actually, some more problems arise. See [22].
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3.4 Related Work

We briefly discuss some related formalisms for unranked trees. Neumann and
Seidl define a µ-calculus for specifying unary patterns [28] and a push-down tree
automaton model for evaluating them. These expressions can be evaluated by a
one-pass traversal of the tree. Murata defines a pattern language for expressing
unary patterns based on tree-regular expressions [21]. These correspond exactly
to MSO. Finally, we mention that tree-transducers (over unranked trees) as a
formal model for XSLT have been considered in [17]. We come back to XSLT in
Section 6.

4 Pattern languages based on sequential automata

The automata model discussed in the previous section is a parallel one. For in-
stance, a down transition assigns states to all children of the current vertex which
in turn are processed rather independently. So the control of the automaton is
at several nodes of the input tree simultaneously, rather than at just one. In
contrast, the finite control of a tree-walking automaton (TWA) is always at one
node of the input tree. The computation starts at the root in the initial state.
Based on the label of the current node and its location (that is, root, first child,
last child, or leaf) the automaton changes state and steps to one of the neigh-
boring nodes (that is, parent, first child, last child, left sibling, right sibling). An
automaton can express selections in the same way as query automata: all nodes
that are visited in a selecting state are selected.

It is an open problem whether TWAs can express all MSO definable selection
patterns. This is related to the question whether TWAs can define all regular
tree languages. To be precise, a TWA accepts a tree when it selects the root.
Engelfriet and Hoogeboom conjecture that TWAs are strictly weaker than tree
automata [11, 12] which would imply that TWA cannot define all MSO selection
patterns. In [25] it is shown that over ranked trees, TWAs accept precisely the
set of trees definable in a fragment of deterministic unary transitive closure logic.
Further, the conjecture is proved for a restriction of TWAs: TWAs that visit each
subtree only once (and a mild generalization thereof) cannot express the set of
all regular tree languages.

In research on tree-structured data, tree-walking automata are used for var-
ious purposes and appeared in various forms. Milo, Suciu, and Vianu [19], for
instance, use a transducer model based on tree-walking automata as a formal
model for an XML transformer encompassing most current XML transforma-
tion languages. Another occurrence of tree-walking automata is embodied in the
actual XML transformation language XSLT [7] proposed by the W3C. In for-
mal language theoretic terms, this query language can be best described as a
tree-walking tree transducer [2].

As a third example we mention the caterpillar expressions of Brüggeman-
Klein and Wood. [5] These are regular expressions over moving instructions {up,
left, down, right, isLeaf, isFirst, isLast, isRoot} and Σ-symbols. For instance,

11



the expression a isLeaf (up∗ b down∗ c), selects all a-labeled leaves that have a
b-labeled ancestor who in turn has a c-labeled descendant. Again, a caterpillar
accepts a tree when it selects the root. Brüggeman-Klein and Wood leave it as an
open question whether caterpillar expressions can define all regular (unranked)
tree languages.

Hence, results on the expressiveness of tree-walking automata could give
insight in the expressiveness of actual XML transformation languages.

5 Pattern languages based on fragments of MSO

In this section we consider fragments of MSO as query mechanisms for tree-
structured data. We still keep the restriction that the comparison of data values
other than comparisons with fixed constants are not allowed. Hence, as discussed
in Section 2 we deal with Σ-trees without data values. Section 6 treats the case
where data values are present. This section is based on the work reported in
[24, 29]. First we introduce an intermediate logic (FOREG) between FO and
MSO logic which attempts to capture the expressive power of languages with
regular path expressions in a very general way. The basic idea is to allow regular
expressions over formulas that are evaluated along a vertical path or along the
children of a node. Then we turn our attention to fragments of MSO, FOREG
and FO respectively, for which the QUERY EVALUATION problem has low
combined complexity. These fragments are obtained by restricting quantification
of variables in the spirit of guarded logics [1] on one hand and by allowing vertical
path expressions on the other hand.

5.1 Regular expressions

As mentioned before, the logic FOREG is an extension of FO by regular path
expressions. Further, it is designed to capture also arbitrary nesting of such
expressions. It uses the following two kinds of path formulas.

– If P is a regular expression (in the usual sense) over formulas with free
variables r and s then ϕ = [P ]↓r,s(x, y) is a vertical path formula.

– If P is a regular expression over formulas with free variable r then [P ]→r (x)
is a horizontal path formula.

We refer to path formulas also by the term path expressions. A simple example
of a horizontal path formula is [(Oa(r))∗Ob(r)]→r (x).

The semantics of such formulas is defined as follows.

– Let ϕ = [P ]↓r,s(x, y) be a vertical path formula. Let t be a tree and let v, w be
vertices of t. Then, t |= ϕ[v, w], iff w is in the subtree rooted at v and there
is a labeling of the edges on the path from v to w with formulas, such that
(1) each edge (u, u′) is labeled with a formula θ(r, s) such that t |= θ[u, u′],
and (2) the sequence of labels along the path from v to w matches P .
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– Let ψ = [P ]→r (x) be a horizontal path formula. Then t |= ψ[v], iff there is a
labeling of the children of v with formulas, such that (1) each child w of v
is labeled with a formula θ(r) such that t |= θ[w], and (2) the sequence of
labels is matched by P .

Example 10. (a) The example formula [(Oa(r))∗Ob(r)]→r (x) holds at a vertex v,
iff the rightmost child of v is labeled with a b and the remaining children are
labelled with an a.

(b) For a more involved example consider first the formula ϕ(x) = [(true true)∗]→r (x).
Here, true stands for a formula like r = r which always holds. Hence, ϕ
holds at a vertex v if the number of children of v is even. Then the formula
ψ(x, y) = [(ϕ(r)(¬ϕ(r)))∗]↓r,s(x, y) holds for vertices v and w, if w is below
v, the path from v to w is of even length and the vertices above w on this
path have alternatingly even and odd degree. An example is given in Figure
1.

u

�

� �

� �

ϕ

�

¬ϕ

� �

ϕ

v

¬ϕ

� �

�

Fig. 1. The formula ψ(x, y) = [(ϕ(r)(¬ϕ(r)))∗]↓r,s(x, y) holds for the pair (u, v) as the
path can be labeled by the sequence ϕ¬ϕϕ¬ϕ.

The logic FOREG is the extension of FO by vertical and horizontal path
formulas.3 More formally,

(1) Every FO formula is an FOREG formula.

3 It should be noted that this logic was called FOREG∗ in [24]. There, the analogue
logic in which path expressions are only formed over atomic formulas was called
FOREG.
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(2) If P is a regular expression over FOREG formulas then ϕ = [P ]↓r,s(x, y) is
an FOREG formula.

(3) If P is a regular expression over FOREG formulas then [P ]→r (x) is an
FOREG formula.

Of course, FOREG can express all FO queries and every FOREG query can be
expressed in MSO. It was shown in [24] that these inclusions are strict, i.e., there
are MSO queries that can not be expressed in FOREG and there are FOREG
queries that can not be expressed in FO.

5.2 Guarded Fragments

There is a significant difference between the data complexity and the combined
complexity of the QUERY EVALUATION problem for MSO formulas. Whereas
the data complexity is linear time the combined complexity is non-elementary
(i.e., there is no fixed tower of exponentials that captures the complexity) [18].
In particular, the translation of an MSO formula into an equivalent tree automa-
ton is non-elementary. Even for first-order formulas the combined complexity of
QUERY EVALUATION is pspace-complete.

In this section we consider syntactic restrictions GFO, GFOREG and GMSO
of the logics FO, FOREG and MSO, respectively, that have a much better com-
bined complexity, linear time in the tree size and exponential time in the formula
size. But they still can express all queries of the respective full logic. Clearly,
this means, e.g., that there are MSO formulas that are much more succinct than
their counterpart in the restricted fragment. But we believe that the restricted
formulas allow the formulation of natural queries in a transparent way.

For the moment, we restrict attention to unary queries. In particular, all
formulas considered have one free variable. Whether a vertex v is selected by a
query might depend on properties of the subtree rooted at v, on properties of
the path from the root to v and on properties of the remainder of the tree. It is
reasonable to assume that in many cases properties of the subtree at v and of
the path to v will be more important than properties of the rest of the tree.

In this spirit the fragments we define express properties of vertices in a tree in
a modular way, i.e., by Boolean combinations of formulas ϕ(x) that only speak
about the subtree rooted at x and formulas [P ]↓r,s(root, x) speaking about the
path from the root to x and, if necessary, about the rest of the tree. In the
latter kind of formulas, P is a regular expression over formulas ψ(r, s) each of
which is restricted to the subtree rooted at r. Therefore such subtree-restricted
quantification is the basic ingredient of our logic.

We first define the syntax of GFOREG formulas. GFO formulas are then
obtained as the restriction of GFOREG where only star-free regular expressions
are allowed.

First of all, we make use of an additional partial order. For vertices u, v of a
tree t it holds u � v if v is a vertex of the subtree of t that is rooted at u.

Besides the usual kind of variables x, y, x′, x1, x2, . . . (to which we refer as
quantifier variables in the following) we use a second kind of variables, called
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expression variables. They are only used in path expressions and are denoted by
symbols like r and s.

The syntax of GFOREG formulas is defined as follows.

(i) Every atomic formula is a GFOREG formula.
(ii) If y is a quantifier variable and ϕ is a GFOREG formula with free quantifier

variables from {x, y} then ∃y(x � y ∧ ϕ) is a GFO formula.
(iii) If P is a regular expression over GFOREG formulas without free quantifier

variables then [P ]↓r,s(x, y) is a GFOREG formula.
(iv) If P is a regular expression over GFOREG formulas without free quantifier

variables then [P ]→r (x) is a GFOREG formula.
(v) Any Boolean combination of GFOREG formulas is a GFOREG formula.

GMSO formulas have the additional ability to quantify over sets but quan-
tification is restricted to the current subtree. I.e., if ϕ is a GMSO formula,
free(ϕ) ⊆ {x,X} then ∃X(x � X ∧ ϕ) is a GMSO formula.

A closer inspection of the definitions above shows that the fragments are
essentially two-variable fragments of their respective full logics (in the case of
MSO with one additional free set variable). In so far and in the general way of
thinking about trees they are quite similar in spirit to temporal logics on trees.
Actually, a design goal for the development of a usable query language based on
these fragments could be to get rid of the explicit use of variables in a similar
way as variables are omitted in temporal logics.

As already mentioned, we get the following results about the expressive power
of the defined fragments.

Theorem 11. For each FO (FOREG, MSO) formula ϕ(x) there is a Boolean
combination of GFO (GFOREG, GMSO) formulas ψ(x) and formulas [P ]↓r,s(root, x)
where P consists of GFO (GFOREG, GMSO) formulas which is equivalent to ϕ
on Σ-trees.

The evaluation complexity is as follows.

Theorem 12. 1. There is an algorithm which computes on input (t, ϕ), where
t is a tree and ϕ is a GFOREG formula, the set of all vertices v of t such
that t |= ϕ(v) in time O(|t|2|ϕ|).

2. There is an algorithm which computes on input (t, ϕ), where t is a tree and
ϕ is a GMSO formula, the set of all vertices v of t such that t |= ϕ(v) in
time O(|t|2|ϕ|2).

3. There is an algorithm which computes on input (t, ϕ), where t is a tree and
ϕ is a GMSO formula in which no vertical path formulas occur within the
scope of any set quantification, the set of all vertices v of t such that t |= ϕ(v)
in time O(|t|2|ϕ|).

In principal, the logical approach makes it very easy to go from unary queries
to queries of arbitrary arity by simply passing from formulas with one free vari-
able to formulas with more free variables. This can not be done directly in the
case of the fragments considered here as the restricted use of variables is essen-
tial for them. Nevertheless, it was shown in [29] that queries of arbitrary arity
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can be expressed in a very similar way with one additional kind of path expres-
sions which talk about the children of a vertex v between those two children
that contain vertices u and w in their subtree, respectively. The results about
expressive power go through. In the first two statements on evaluation complex-
ity of Theorem 12 one has to replace the factor |t| by |t|k in the case of k-ary
queries. Furthermore, on input (t, ϕ) one can compute in time O(|t|22|ϕ|) a data
structure which allows to check in time O(|v|), whether t |= ϕ(v) holds, for a
given tuple v.

6 Formalisms with comparisons between data values

In this section we allow comparisons between attribute values as described in
Section 2.3. In the above we showed that many formalisms for Σ-trees are equiva-
lent to MSO. Obtaining such a correspondence for trees with data values is much
harder if comparisons of values of different vertices are allowed. One of the rea-
sons is that the data complexity of QUERY EVALUATION increases quite a bit.
More precisely, it is shown in [26] that for every i ∈ N, there are MSO formulas
ϕi and ψi such that the QUERY EVALUATION on (Σ,A)-trees for ϕi and ψi is
hard for ΣP

i and ΠP
i , respectively. The prime reason is that attributed trees can

encode graphs in a way such that even FO formulas can decode them. So when
defining computational devices over attributed trees one should define powerful
(complex) formalisms to capture MSO or settle for less. We choose for the latter.

This section is based on [26]. It should be noted that the results in that
paper are formulated for automata on strings over data values. But the results
we mention here easily carry over to tree automata. Therefore, our exposition
moves back and forth between string automata and tree automata.

To keep our operational models simple and manageable, we only consider for-
malisms which are included in the regular languages when restricted to ordinary
trees. It is useful to observe that for attributed trees it is no longer sufficient to
equip automata with states alone. Indeed, automata should at least be able to
check equality of attributes. There are two main ways to do this:

– store a finite set of positions and allow equality tests between the symbols
on these positions;

– store a finite set of symbols only and allow equality tests with these symbols.

The first approach, however, leads to multi-head automata, immediately going
beyond regular languages. Therefore, we instead equip tree-walking automata
with a finite set of pebbles whose use is restricted by a stack discipline. That is,
all pebbles have a number and pebble i can only be lifted when pebble i + 1 is
not placed. The automaton can test equality by comparing the attributes of the
pebbled symbols. We refer to these automata as pebble automata. In the second
approach, we follow4 Kaminski and Francez [15] and extend finite tree-walking
automata with a finite number of registers that can store attribute values. When

4 Their model is based on strings but easily translates to trees.

16



walking on a tree, an automaton compares an attribute value with values in the
registers; based on this comparison it can decide to store the current symbol in
some register. We refer to these automata as register automata. Both models
can express unary queries by means of a selection function.

There is a great mismatch in expressive power between register and pebble
automata. Indeed, register automata do not fit nicely into the framework of
logically defined queries or languages.

Theorem 13. – There are Boolean FO queries not expressible by any register
automaton.

– There are Boolean queries expressible by register automata that are not de-
finable in MSO.

On the one hand, register automata cannot even define all properties in FO. The
basic idea is as follows. Consider strings of the form u#v where u, v ∈ Σ∗. Here,
# functions as a delimiter. The only way an automaton can compare the data
values of the left side with the ones from the right side is by storing values in
the registers. Based on communication complexity theoretic arguments one can
show that this does not suffice to express all of FO. On the other hand, register
automata are quite strong as they can express properties not even expressible in
MSO. To see this, consider strings of the same form u#v as before. Define Nu

and Nv as the set of symbols occurring in attributes in u and v, respectively. It
can be shown that there is a register automaton that accepts u#v iff |Nu| = |Nv|
while there is no such MSO sentence.

The formal model of XSLT of [2] is based on tree-walking transducers with
registers. By applying Theorem 13 we get that XSLT programs without nested
calls cannot define all of FO.

Pebble automata behave much better, their expressiveness lies in between
FO and MSO. Indeed, pebbles provide a mechanism to instantiate variables
occurring in formulas. A brute force approach to check, for instance, the formula
∃x∃yδ(x, y), where δ(x, y) ≡ E(x, y) ∧ a(x) = b(y), is the following. Assign a
pebble to x and one to y, say ix and iy. Put them subsequently on all possible
combinations of vertices and test whether δ(ix, iy) holds. The latter only involves
local checks. The automaton accepts when it finds such two vertices. Further,
the enforced stack discipline makes sure the model behaves in a regular way.
Indeed, it can be shown that pebble automata can be defined in MSO.

Theorem 14. – All unary FO queries are expressible by pebble automata.
– Every query defined by a register automaton is also definable in MSO.

The evaluation complexity is as follows.

Theorem 15. The data complexity of QUERY EVALUATION for register and
pebble automata is in ptime.

7 Discussion

We surveyed work investigating well-known formalisms from formal languages
and logic as a pattern languages for tree-structured data. The main focus was
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on expressiveness, evaluation complexity, and decision problems relevant to op-
timization. Although attribute grammars as well as query automata are quite
expressive they are quite complicated formalisms and do not seem to be the basis
for an easy-to-use pattern language. Tree-walking automata are much more intu-
itive. Therefore, we need to understand better their expressiveness. However, the
problem whether they capture MSO hac been open for a while now and therefore
appears to be difficult. The restricted logics we considered might be useful in the
design of a pattern language but this requires further work. We merely touched
upon the issue of comparison of data values. Undoubtedly it deserves a lot more
investigation.

References
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