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ABSTRACT
We investigate the typechecking problem for XML queries:
statically verifying that every answer to a query conforms
to a given output DTD, for inputs satisfying a given input
DTD. This problem had been studied by a subset of the au-
thors in a simpli�ed framework that captured the structure
of XML documents but ignored data values. We revisit here

the typechecking problem in the more realistic case when
data values are present in documents and tested by queries.
In this extended framework, typechecking quickly becomes
undecidable. However, it remains decidable for large classes
of queries and DTDs of practical interest. The main contri-
bution of the present paper is to trace a fairly tight bound-

ary of decidability for typechecking with data values. The
complexity of typechecking in the decidable cases is also
considered.

1. INTRODUCTION
Databases play a crucial role in new internet applications

ranging from electronic commerce to Web site management

to digital government. Such applications have rede�ned the
technological boundaries of the area. The emergence of the
Extended Markup Language (XML) as the likely standard
for representing and exchanging data on the Web has con-
�rmed the central role of semistructured data but has also
rede�ned some of the ground rules. Perhaps the most impor-

tant is that XML marks the \return of the schema" (albeit
loose and exible) in semistructured data, in the form of its
Data Type De�nitions (DTDs), which constrain valid XML
documents. The bene�ts of DTDs are numerous. Some
are analogous to those derived from schema information in
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relational query processing. Perhaps most importantly to
the context of the Web, DTDs can be used to validate data

exchange. In a typical scenario, a user community would
agree on a common DTD and on producing only XML doc-
uments which are valid with respect to the speci�ed DTD.
This raises the issue of (static) typechecking: verifying at
compile time that every XML document which is the re-
sult of a speci�ed query applied to a valid input document,

satis�es the output DTD.
The XML standard is still under development. The basic

document model, the precise de�nition of DTD, and the lan-
guages for querying and transforming XML documents are
in a state of ux. Languages proposed for XML queries and
transformations include XML-QL [11], XSLT [9], XPath

[8], XQL [24], and Quilt [6]. Several variations and exten-
sions of DTDs are being considered by the XML community.
A recent e�ort tries to unify these extensions into a single
framework called XML-Schema [1, 2].
In a previous paper [19], a subset of the authors investi-

gated the typechecking problem in a limited framework. The

bare-bones structure of XML documents was abstracted as
ordered labeled trees. To circumvent the lack of a generally
accepted notion of DTD, regular tree languages were used
as types. The wide variety of XML query languages was
addressed by using a very general model of tree transformer
called k-pebble transducer, which was shown to subsume the

tree manipulation core of XML-QL and XSL. The main re-
sult of [19] is that typechecking k-pebble transducers is de-
cidable. That is, given an input type �1, an output type
�2, and a k-pebble transducer T , it is decidable whether
T (�1) � �2. However, this result has serious limitations.

Chief among them is the absence of data values from the
model. In fact, it is easily seen that typechecking becomes
undecidable when k-pebble transducers are augmented with
comparisons on data values.
The present paper extends the investigation of [19] to

typechecking of queries with comparisons of data values.

We focus on query languages in the style of XML-QL, and
on typing using DTDs and their variants. The main con-
tribution of the paper is to trace the boundary of decid-
ability of the typechecking problem in the presence of data
values, where the parameters consist of various features of
the query language and of the DTDs. On the decidabil-

ity side, we show that typechecking is decidable for queries
with non-recursive path expressions, arbitrary input DTD,
and output DTD specifying conditions on the number of
children of nodes with a given label. We are able to extend



this to DTDs using star-free regular expressions, and then

full regular expressions, by increasingly restricting the query
language. We also establish lower and upper complexity
bounds for our typechecking algorithms. The upper bounds
range from pspace to non-elementary, but it is open if these
are tight. The lower bounds range from co-np to pspace.
On the undecidability side, we show that typechecking be-

comes undecidable as soon as the main decidable cases are
extended even slightly. We mainly consider extensions with
recursive path expressions in queries, or with types decou-
pled from tags in DTDs (also known as specialization). This
traces a fairly tight boundary for the decidability of type-
checking with data values.

Related work. Typechecking XML transformations is an
important research problem that has been quite intensively
investigated lately. In our prior work [19] we showed that
typechecking is decidable for a certain class of transforma-

tions. That class is incomparable with the class of transfor-
mations discussed here, since it only applies to trees without
data values, but on such trees they are more powerful than
the XML-QL-style transformations we consider here. Type
inference for a more restricted class of XML transforma-
tions is considered in [22]. The approach taken there is to

extend the types from regular path expressions to context
free grammars to be able to express certain inferred types.
A di�erent approach to type checking XML transforma-

tions is taken by XDuce [15, 16]. XDuce is a general-purpose
functional language in the style of ML [17], whose types are
essentially DTDs with types decoupled from tags. Recursive

functions can be de�ned over XML data by pattern match-
ing against regular expressions. XDuce performs static type-
checking for these functions, verifying that the output of a
function will always be of the claimed output type. However,
the typechecking algorithm is only sound, not complete: one
can write in XDuce a function that always returns results of

the required output type, but that the typechecker rejects.
While this is expected in a general-purpose language that
can express non-terminating functions, the typechecker fails
even on simple functions that are expressible in, say, XML-
QL, and for which we know already that type checking is

decidable [19]. In other words, XDuce's typechecker could
be strengthened. The goal in XDuce however di�ers from
ours: XDuce focuses on making the typechecker practical,
both for the application writer and for the language imple-
menter, while our work is meant to study the theoretical
limits of typechecking.

Yet another approach to typechecking is taken by YAT [10,
7]. This system for semistructured data has an original type
system, based on unordered types. YATL (the query lan-
guage in YAT, combining datalog with Skolem functions)
admits type inference.
Type inference for the variables occurring in a query has

been considered in [18]. The problem there consists in �nd-
ing all types for the variables found in a query: this is dif-
ferent from inferring the output type of an XML transfor-
mation.

Organization. The paper is organized as follows. The
�rst section develops the basic framework, including our ab-
stractions of XML documents and DTDs, and the variant of
XML-QL used as a query language. Section 3 presents the
decidability and some complexity results. More complexity
results are provided in Section 4. Section 5 presents the un-

decidability results. The paper ends with brief conclusions.

2. BASIC FRAMEWORK
We introduce here the basic formalism used throughout

the paper, including our abstractions of XML document,

DTD, and XML-QL.

Data trees. Data trees are our abstraction of XML doc-
uments. They capture the nesting structure of XML ele-
ments, their tags, and data values associated with them.

We �x an in�nite set of data values denoted by D. A data
tree over �nite alphabet � is a triple ht; label; vali where t
is a �nite ordered tree, label is a mapping from the nodes
of t to �, and val is a mapping from the nodes of t to D.
Given a tree t, we denote its set of nodes by nodes(t) and its
root by root(t). We refer to elements in � as tags of t and

to elements in D assigned by val as data values of t. Note
that we do not restrict the number of children of any given
node, so data trees are unranked. We denote the set of data
trees over � by T�;D. The set of �nite labeled ordered trees
over � (without data values) is denoted by T�.

Types and DTDs. DTDs and their variants provide a
typing mechanism for XML documents. We will use sev-
eral notions of types for data trees. The �rst corresponds
closely to the DTDs proposed for XML documents, and we
therefore (by slight abuse) continue to use the same term.

A DTD consists of an extended context-free grammar1 over
alphabet � (we make no distinction between terminal and
non-terminal symbols). A data tree ht; label; vali over � sat-
is�es a DTD D if the tree ht; labeli is a derivation tree of
the grammar. For example, the tree

a

b b c e

d

is valid w.r.t. to the DTD: a! b�:c:e; b! "; c! d�; d!
"; e! "
The set of data trees satisfying a DTD � is denoted by

inst(�). Note that DTDs place no restriction on the data
values in a data tree, and concern exclusively the tags.

Usual DTDs use regular languages to describe the al-
lowed sequences of children of a node. However, weaker
speci�cation mechanisms are su�cient in many applications.
We consider throughout the paper several such alternative
mechanisms, each yielding a restricted kind of DTD. To un-
derstand the rationale behind the restrictions, it is useful to

consider a logic-based point of view. First, note that strings
over alphabet � can be viewed as logical structures over the
vocabulary f<; (O�)�2�g where < is a binary relation and
every O� is a unary relation. A string w = a1 : : : an is rep-
resented by the logical structure (f1; : : : ; ng;<; (O�)�2�)

where < is the natural order on f1; : : : ; ng, and for each
i, i 2 O� i� ai = �. It is well-known that regular
languages are exactly those de�nable by Monadic Second-
Order (MSO) logic2 on the logical vocabulary of strings [4,

1In an extended cfg, the right-hand sides of productions are
regular expressions over the terminals and non-terminals.
2MSO is �rst-order logic augmented with quanti�cation over
sets.



12]. However, this is much more powerful than needed by

most DTDs. In many cases, the required properties of valid
strings can be expressed simply in First-Order logic (FO).
This corresponds to a well-known subset of the regular lan-
guages, called star-free [26]. There is a language-theoretic
characterization of star-free languages: they are precisely
described by the star-free regular expressions, which are

build from single symbols and � using concatenation, union,
and complement. We call DTDs using only star-free regu-
lar expressions star-free DTDs, and we refer to unrestricted
DTDs as regular DTDs.
We will consider an even simpler class of DTDs, which

specify cardinality constraints on the tags of children of a

node, but does not restrict their order. Such DTDs are
useful either when order is irrelevant, or when the order
of tags in the output is hard-wired by the syntax of the
query and so can be factored out. We use a logic called SL,
inspired by [21]. The syntax of the language is as follows.
For every a 2 � and natural number i, a=i and a�i are

atomic SL formulas. Every atomic formula is a formula and
the negation, conjunction, and disjunction of formulas are
also formulas. A word w over � satis�es an atomic formula
a=i if it has exactly i occurrences of a, and similarly for a�i.
Satisfaction of Boolean combination of atomic formulas is
de�ned in the obvious way. As an example, consider the SL

formula

co-producer
�1

! producer
�1
:

This expresses the constraint that a co-producer can only
occur when a producer occurs. One can check that lan-
guages expressed in SL correspond precisely to properties of

structures over the vocabulary f<; (O�)�2�g that can be ex-
pressed in FO without using the order relation, <. Thus, SL
forms a natural subclass of star-free regular expressions. We
refer to DTDs using the language SL as unordered DTDs.
We have so far de�ned DTDs and several restrictions.

We next consider an orthogonal extension of basic DTDs,

also present in more recent DTD proposals such as XML-
Schemas. This is motivated by a severe limitation of basic
DTDs: their de�nition of the type of a given tag depends
only on the tag itself and not on the context in which it oc-
curs. For example, this means that the singleton ftg where t
is the tree3 a(b(c); b(d)) cannot be described by a DTD, be-

cause the \type" of the �rst b di�ers from that of the second
b. This naturally leads to an extension of DTDs with spe-
cialization (also called decoupled types) which, intuitively,
allows de�ning the type of a tag by several \cases" depend-
ing on the context. Formally, we have:

Definition 2.1. A specialized DTD over � is a tuple

� = (�;�0; � 0; �) where

� � and �0 are �nite alphabets;

� � 0 is a DTD over �0; and

� � is a mapping from � to �0.

A tree t over � satis�es a specialized DTD � , if t 2 �(inst(� 0)).

Intuitively, �0 provides for some a's in � a set of specializa-
tions of a, namely those a0 2 �0 for which �(a0) = a. We also

denote by � the homomorphism induced on strings and trees

3We denote a tree with root r and sequence of subtrees
t1; : : : ; tn by r(t1; : : : ; tn).

by �. Interestingly, it turns out that specialized DTDs are

precisely equivalent to regular tree automata over unranked
trees [3, 22]. This is more evidence that specialized DTDs
are a robust and natural speci�cation mechanism. We will
consider specialization in conjunction with regular DTDs,
star-free DTDs, and unordered DTDs.

The query language QL. The query languages we con-
sider are subsets of XML-QL [11]. The queries have a where

clause and a construct clause. The where clause is a tree
pattern whose nodes are variables and whose edges are la-
beled by regular path expressions. Additionally, there may
be comparisons of data values associated with the variables.

The where clause is used to extract bindings of the vari-
ables, by matching the pattern into the input tree. The
construct clause speci�es how to construct an answer tree
from the bindings. Nesting is allowed: the construct clause
may use sub-queries. We later consider several extensions

and restrictions of the language.
We next de�ne our basic query language, denoted QL.

We �x an alphabet � and assume given an in�nite set Var
of variables (denoted x; y; z; : : : , possibly subscripted).

Definition 2.2. Let �z = z1; : : : ; zk be a sequence of vari-
ables in Var, and denote Z = fz1; : : : ; zkg. A QL query q(�z)
is a pair hW;Ci such that the following hold.

� W (the where clause) consists of a �nite tree and a
set of conditions. The tree has root in � and all other

nodes in Var, and edges labeled by a regular expression
over �. We denote by var(W ) the set of variables oc-
curring in W , and consider some canonical ordering4

on var(W ). The conditions are (in)equalities of the
form x = (6=)� where x 2 var(W ) [ Z and � is in
var(W ) [ Z [ D.

� C (the construct clause) is a �nite tree labeled as fol-

lows:

{ internal nodes are labeled by expressions of the
form f(�x) where �x is a sequence of distinct vari-
ables x1 : : : xn from var(W ) [ Z, n � 0, and
f 2 � [ fx1; : : : ; xng;

{ leaf nodes are labeled by an expression as above or

by another QL query q(�x), where �x is, as above,
a sequence of distinct variables from var(W )[Z.

Additionally, if a node is labeled by f(�x) and has a
child labeled g(�y), where g 2 � [ fx1; : : : ; xng, or
q(�y), where q is a QL query, then each variable in �x
must occur in �y.

We call �z the query's free variables. Our discussion in
this paper is about queries without free variables that may,
however, have free variables in subqueries, hence we must

consider them in our de�nitions. We require the construct
clause C of the outermost query to have a root node labeled
f(), with f 2 � (i.e. without variables).
The semantics of QL is de�ned as follows. We use below

q and r to denote QL queries and f; g are assumed to be in
� [ fx1; : : : ; xng. A QL query q (without free variables)

de�nes a mapping from T�;D to T�. Since we need to de�ne
recursively the semantics of subqueries with free variables,

4For example the order in which variables appear in the
depth �rst traversal of the tree.



let q(�z) be a query hW;Ci and let T = ht; label; vali be an

input data tree. For each mapping  : Z ! nodes(T ) we
shall de�ne an output forest q(T ), in two steps: �rst we
de�ne the set of bindings of W into T that extend , and
next the construction of q(T ) from the bindings (and the
queries nested within C). For the topmost query, the output
forest will be a tree.

Consider a query q(�z) with where clauseW and construct

clause C, a tree T = (t; label; val), and  : Z ! nodes(t).
A -binding is a mapping � from var(W ) [ Z to nodes(t),
extending , such that �(root(W )) = root(t) and for each
edge from x to y in W with label r, the sequence of �-
labels on the path from �(x) to �(y) in t (exclusive of �(x)

and inclusive of �(y)) spells a word in r. Additionally, the
conditions on data values are satis�ed. That is, if x = (6=
)� is a condition of W , then val(�(x)) = (6=) val(�(�))
if � is a variable, and val(�(x)) = (6=) � if � is a data
value. We denote by Bind(q; t) the set of -bindings from
W to t. It will sometimes be useful to view Bind(q; t)

as a relation with attributes var(W ), to which the usual
relational algebra operations can be applied.
Note that since t is an ordered tree, the nodes in t can

be totally ordered by a depth-�rst, left-to-right traversal.
Since the variables var(W ) are also ordered, this induces a
lexicographic ordering of the sets of bindings Bind(q; t).

The output forest F = q(T ) is constructed from C and
Bind(q; t) as follows. Each node u in C contributes to the
following set of nodes in F :

� if u is labeled f(�x) then nodes(F) includes all pairs of
the form (u; �(�x)), for all � 2 Bind(q; t). Each such

node is labeled f if f 2 �, and label(�(f)) if f is a
variable in �x.

� if u is labeled with a subquery, r(�x), then nodes(F)

includes all nodes of r�j�x(T ), for all � 2 Bind(q; t).

Each edge (u; v) in C contributes to a set of edges in F , as
follows. Let u be labeled f(�x).

� if v is labeled g(�y), then for every � 2 Bind(q; t), the
node (v; �(�y)) is a child of (u; �(�x)). The children of
u are ordered by the bindings �(�y).

� if v is labeled r(�z), then for every � 2 Bind(q; t) the
roots of the forest r�j�y(T ) are children of (u; �(�x)),
ordered by the bindings � j �y.

Example 2.3 Consider XML documents holding informa-
tion about movies (titles, directors, actors, and possibly re-
views), described by the (partial) DTD:

root ! movie�

movie ! title:director:review�

title ! actor�

actor ! name:��

director ! �; review ! �

Figure 1 represents a QL query collecting the titles of movies
by W.Allen, their actors (grouped under title), all available

information about each actor (grouped under the actor with
the same tags as in the input), and the reviews, if any. Note
that a title cannot appear in the answer if there is no actor in
it, because the where clause of the query requires an actor.
However, a title does appear even if there is no review for
it. This is achieved by collecting the reviews for each title

using the nested query Q1.

Remark. Note that our de�nition does not address how

data values are to be included in the output tree. For in-
stance, in Example 2.3 it would make sense to extract the
actual values of titles, text of reviews, etc. There are many
ways to specify this, but the issue is irrelevant to our investi-
gation since the DTDs we consider do not restrict data val-
ues. Our framework can be augmented with any mechanism

for producing data values in the output without a�ecting
our typechecking results.

The typechecking problem. Given an input DTD �1,
an output DTD �2 (possibly specialized) and a query q,
we say that q typechecks (with respect to �1 and �2) i�

q(inst(�1)) � inst(�2). We will show in Section 5 that
typechecking for the full QL and unrestricted regular DTDs
is undecidable. Therefore, we are led to consider restricted
decidable cases.

3. DECIDABILITY RESULTS
We present in this section our decidability results on type-

checking QL queries, under various restrictions on QL and
output DTDs. There are three main decidability results, in-
volving increasingly restricted fragments of QL and increas-
ingly powerful output DTDs:

1. non-recursive QL (QL where path expressions de�ne
�nite languages), and unordered output DTDs;

2. non-recursive QL without tag variables in the construct
clause, and star-free output DTDs;

3. non-recursive QL without tag variables, no \projec-
tion", and regular output DTDs.

This highlights an interesting trade-o� between the query
language and the DTDs. The undecidability results of Sec-
tion 5 show that our decidability results are quite tight.
Our �rst result concerns non-recursive QL and unordered

output DTDs.

Theorem 3.1. The typechecking problem for non-recursive
QL queries, regular input DTDs, and unordered output DTDs
is decidable in co-nexptime.

Proof. The decidability is shown by bounding the size
of inputs that need to be checked to detect a violation of
the output DTD. Let q be a non-recursive QL query, �1
a regular input DTD, and �2 an unordered output DTD.

Suppose T 2 inst(�1) and q(T ) 6j= �2. We show that there
exists T0 2 inst(�1) with at most exponentially many nodes
(w.r.t. q; �1; �2), and q(T0) 62 inst(�2). We construct T0
from T as follows. Since q(T ) violates �2, there exists a
path n1 : : : nk from the root of q(T ) to a node nk with tag
a 2 � such that the sequence w of children of nk violates

the SL formula 'a speci�ed by �2. Thus, w satis�es :'a.
Clearly, :'a can be written as

W
l
Cl where each Cl is of

the form a�1i11 ^ : : :^a
�hih
h

where the aj are distinct symbols

in �, �j 2 f�;=g and each ij is an integer bounded by the
maximum integer occurring in 'a. Since w satis�es :'a, it
satis�es at least one Cl, say a

�1i1
1 ^ : : :^ a

�hih
h

. Let v1 : : : vn

be a subsequence of w that satis�es C=
l = a=i11 ^ : : :^ a

=ih
h

.
Each node on the path n1 : : : nk from root to nk, and among
the v1 : : : vn, arises from some binding of a subset of var(q).

Let B consist of the set of nodes of T in the images of these
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title

CONSTRUCT CLAUSE

Allen’s-movies

title(X2)
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X2
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movie
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director

X5

*

actor(X2,X4)

X5(X2,X4,X5)

Allen’s-reviews(X2)

review(X2,Y2)

          Q1(X2)

Figure 1: The Woody Allen query

bindings, or on some path from the root of T to such a node.
Note that jBj � jqj2(jqj + j�2jj�j) (k � jqj; n � j�2jj�j, the
number of nodes in each binding is � jqj, and the number
of nodes from root to each node in a binding is bounded by

jqj)5. We will use the following observation. Let T 0 be any
tree whose restriction to depth up to jqj is a subtree of T ,
and that contains all nodes in B. Note that q(T 0) still con-
tains the node nk and its children v1 : : : vn, since all needed
bindings are still present in T 0. Thus, the sequence v of chil-
dren of nk in q(T

0) satis�es a�i11 ^: : :^a
�ih
h

. Furthermore, if

�j is equality, then v satis�es a
=ij
j , since every binding of q

in T 0 is also a binding of q in T , and the sequence of children

of nk in q(T ) satis�es a
=ij
j . It follows that v satis�es Cl and

so q(T 0) violates �2.
Let T0 be a minimal tree whose restriction to depth up to

q is a subtree of T , that contains all nodes in B, and that
satis�es �1. Since T0 satis�es the property just described,
q(T0) violates �2. An upper bound on the number of nodes
in T0 is found as follows. For each node n in T0, consider
the sequence of its children written as u1b1u2 : : : bmum+1

where bi 2 B, 1 � i � m, and uj contains no nodes in B,

1 � j � m + 1. Since T0 is minimal, the size of each uj
is bounded by j�1j (more precisely by the number of states
in the automaton for the regular language describing the
allowed sequences of children of n in �1). Since nodes in
B occur in T at depth at most jqj, the number of nodes

of T0 at depth up to jqj is bounded by [(jBj + 1)j�1j]
jqj.

Finally, observe that paths of T0 whose nodes are at depth
larger than jqj contain no paths with repeated labels in �
(otherwise we could pump down T0 thus contradicting its
minimality). Thus, the number of nodes at depth > jqj is
bounded by the maximum number of nodes at depth � jqj

times j�1j
j�j. This yields a total bound of [(jBj+1)j�1j]

jqj
�

(1 + j�1j
j�j) for the size of T0.

Hence, we simply guess a T0 of exponential size and then
verify whether (1) T0 satis�es �1, and (2) q(T0) violates �2.
The latter can be tested in exponential time. Indeed, let N
be the size of the input. Then (1) can be done in time linear
in T0 and N , which is exponential in N : just check for ev-
ery node that its sequence of children matches the speci�ed

regular expression. For testing (2), we �rst construct the
output tree. As there are at most jT0j

N possible bindings,
this takes time at most exponential in N . Next, we trans-

5The inequality n � j�2jj�j assumes the integers in �2 are
written in unary.

form each SL formula in DNF, which can be done in time
exponential in N and which can result in formulas that are
at most of exponential size. So in the worst case, we have to
check for an exponential number of nodes, an exponential

number of disjuncts.

Our second decidability result, corresponding to (2) above,
further restricts the QL queries but extends the output DTDs.

Theorem 3.2. The typechecking problem for non-recursive
QL queries without tag variables in the construct clause,
regular input DTDs, and star-free output DTDs, is decid-
able in co-nexptime.

Proof. The proof is by reduction to the case when the
output DTD is unordered, for which we can use Theorem
3.1. The key observation is the following:

(y) if r is a star-free regular expression and a1; : : : ; an are
distinct symbols in �, then there exists an SL sentence
', using integers whose size (in unary representation)

is linear in r and computable in exptime from r and
a1; : : : ; ak, such that

r \ a
�

1 : : : a
�

k = L(') \ a
�

1 : : : a
�

k:

The proof of (y) is by a straightforward induction on the

structure of r. Now consider a non-recursive QL query q
without tag variables in the construct clause, and a star-
free output DTD �2. Suppose �rst that

(�) all siblings in the construct clause of q have distinct
tags

(we eliminate this restriction below). Since q has no tag
variables, all sequences of sibling nodes in answers to q are of
the form a�1 : : : a

�

k for distinct ai 2 �. From (y) it follows that
q typechecks with respect to �2 i� it typechecks with respect

to � 02 for an unordered DTD � 02 computable in exptime from
�2. The decidability and co-nexptime upper bound then
follow from Theorem 3.1. The fact that � 02 is exponential in
�2 is not a problem since the size of the integers used in � 02
is only linear in the size of �2 and the size of the counter
example is only exponential in jqj, j�1j, and the integers

occurring in the SL formulas in �2.



Suppose now that q violates (�). We construct from q

a query �q by replacing in the construct clause all tags
a1; : : : ; ak by distinct b1; : : : bk, and we use the following
variant of (y):

(z) Let ai; bi 2 �, i 2 [1; k], where the bi are distinct, and
let h be the homomorphism mapping bi to ai. If r is
a star-free regular expression then there exists an SL
sentence ', using integers whose size (in unary repre-

sentation) is linear in r and computable in exptime

from r, a1; : : : ; ak, and b1; : : : ; bk, such that

r \ a
�

1 : : : a
�

k = h(L(') \ b
�

1 : : : b
�

k):

Using (z) it is clear that q typechecks with respect to �2 i�
�q typechecks with respect to an unordered DTD ��2 com-
putable in exptime from �2. The decidability and co-

nexptime upper bound follow as above.

Our third decidability result removes all restrictions on

output DTDs, allowing full regular DTDs. However, it re-
quires an additional restriction on QL queries. Intuitively,
this limits the projections which can be performed by the
query. We formalize this as follows.

Definition 3.3. Let q be a QL query and � an input
DTD. The query q is projection free with respect to � i� it is
equivalent, on all inputs satisfying � , to the query obtained

from q by replacing, in each nested query �q(�z) =< �W; �C > of
q (including q itself), each node f(�x) in �C by f(var( �W )[ �z).

Intuitively, this means that for every node f(�x), the bind-
ings of all the variables not in �x functionally depend on those
of �x. Obviously, there are many syntactic su�cient condi-
tions on q and � ensuring that q is projection-free w.r.t. � .

We illustrate this by an example.

Example 3.4 Consider the cinema DTD in Example 2.3.
The query in the same example is not projection-free (for ex-
ample, the node title(X2) is a violation since, for one given
title, there may be several actor children bound to X4. Re-
placing title(X2) by title(X4) will thus yield a di�erent out-

put). On the other hand, consider the query q in Figure 2.
The query collects the actors in W.Allen movies, together
with the title of the movie. Additionally, the nested query q0

produces for each such actor all other titles (not by W.Allen)
where the actor acts. This query is projection-free. Indeed,

since every actor node has a unique title parent, using ac-
tor(X3,X2) rather than actor(X3) yields no di�erence. Also,
when the nested query is evaluated, the binding for X3 is
�xed. There is only one ancestor title and movie nodes for
any given Y 3, and similarly, for each binding of Y 1 there
is a unique director child Y 4. So title(X3,Y2,Y3) could be

replaced by title(X3,Y1, : : : ,Y4).

We can show the following result, the most technically
challenging of this section.

Theorem 3.5. The typechecking problem for projection-
free non-recursive QL queries without tag variables, regular
input DTDs, and regular output DTDs, is decidable.

It remains open whether Theorem 3.5 holds without the

projection-free restriction.

The proof of Theorem 3.5 uses Ramsey's Theorem [14,

23] and requires developing some technical machinery. We
dedicate the remainder of the section to this development.
Assume we are given some projection-free non-recursive

QL query q0. By the de�nition of projection free, q0 is equiv-
alent to some query q obtained from q0 by replacing in each
nested query �q(�z) =< �W; �C > of q0 (including q0 itself),

each node f(�x) in �C by f(var( �W ) [ �z). So it su�ces to
prove the theorem for q. Without loss of generality, we can
assume that all the path expressions in q are single labels or
disjunctions of such labels. (If not we add extra variables).
Recall that for a query q(�x) = hW;Ci, var(W ) denotes

the set of variables in W , and Bind(q; T ) denotes the set

of -bindings fromW to T . For the discussion below we need
to generalize these notions and then apply them to nodes in
the (nested) construct clauses of the query. We also de�ne
the auxiliary notions of node tags and variables.

Definition 3.6. Let q0 = hW0; C0i be a QL query. Let
c be a node in (a possibly nested) construct clause Ci of
q0, with q0 = hW0; C0i; : : : ; qi = hWi; Cii being the (nested)

queries on the path from the root query q0 to Ci. Let T be
some input tree.
We de�ne var�(qi) = �l=0:::ivar(Wl)
We de�ne Bind�(qi; T ) inductively as follows.
Bind�(q0; T ) = Bind;(q0; T )
Bind�(qj ; t) =

S
fBind(qj�1; T ) j  2 Bind�(qj�1; T )g

Finally, for the node c, vars(c) and Binds(c; T ) are de�ned
as follows. When c has a label of the form f(�x), vars(c) =
var�(qi) and Binds(c; T ) = Bind�(qi; T ). Otherwise, when
c is labeled by some nested query qi+1(�x), vars(c) = var�(qi+1)
and Binds(c; T ) = Bind�(qi+1; T ).

Definition 3.7. For a node c in the construct clause,
with a label of the form f(�x), we call f the tag of c, and �x

the variables of c. For a node c labeled by some nested query
qi, the tag of c (resp. the variables of c) is the tag (resp.
variables) of the root node in the construct clause of qi.

Definition 3.8. For a node c in the construct clause,
with a label of the form f(�x), we call f the tag of c, and �x
the variables of c. For a node c labeled by some nested query
qi, the tag of c (resp. the variables of c) is the tag (resp.

variables) of the root node in the construct clause of qi.

To simplify the presentation, we will assume �rst that,

for every node c in the construct clause of q, the tags of c's
children are all distinct. The general case where some tags
may repeat is considered afterwards.
Let �1; �2 be input and output DTDs respectively. Sup-

pose T 2 inst(�1) and q(T ) 6j= �2. Since q(T ) violates �2,

there exists a path n1 : : : nk from the root of q(T ) to a node
nk with some tag a 2 � such that the sequence w of children
of nk violates the regular expression ra speci�ed by �2. Note
that nk was constructed due to some node c in some (pos-
sibly nested) construct clause of q. If a1; : : : ; an are the
tags of the children of c in the construct clause, this w is

in the language r̂a = :ra \ a
�

1 : : : a
�

n. It readily follows from
properties of regular languages that r̂a is in fact a union of
languages, each described by a vector of n triplets of natural
numbers (k1; i1; j1); :::; (kn; in; jn), restricting the number of
the als, l = 1:::n, in every word to be kl+� for some positive
integer � such that � � il mod jl when jl > 0, and exactly

kl when jl = 0. Furthermore, the sizes of kl, il, and jl are at
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X1

X2

X3

 X4 = W.Allen

title dir
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CONSTRUCT

actor(X3)

answer

WHERE for q’ CONSTRUCT for q’

movie

root
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q’(X3)               Allen-title(X2,X3)

other-movies(X3)

Y3

 Y1

Y2 Y4

movie

title dir

actor

X3=Y3

Y4 != W.Allen

title(X3,Y2,Y3)

Figure 2: A projection-free query.

most exponential in the size of ra (the reason being that r̂a
is the negation of the regular expression ra). The following
is immediate.

Proposition 3.9. Let q be a QL query, let T be some in-
put tree, and let �2 be some output DTD. q(T ) violates �2 i�

there exists, in the construct clause of q, a node c with some
tag a and children c1; : : : ; cn having tags a1; : : : ; an and
variables �x1; : : : ; �xn, and a vector (k1; i1; j1); :::; (kn; in; jn)
in r̂a = :ra \ a�1 : : : a

�

n, s.t.

(y) Binds(c; T ) contains a tuple v where for all l = 1 : : : n,
��xl(�vars(c)=v(Binds(cl; T ))) is of size kl+� for some
positive integer � such that � � il mod jl when

jl > 0, and of size kl when jl = 0. 6

For brevity, we will refer in the sequel to the property (y)
of Binds(c; T ) as the modulo property.
It thus remains to show that, given an input DTD �1, a

query q, some node c in the construct part, and a vector
(k1; i1; j1); :::; (kn; in; jn) for c as de�ned above, one can de-
cide if the modulo property holds for some tree T 2 inst(�1).
To prove this it su�ces to show that if such a T exists,

then there exists a \small" such T , whose size is bounded
by some function of the sizes of the �1, q, and the numbers

(k1; i1; j1); :::; (kn; in; jn). Then, to decide if the above holds
we simply need to check all the trees up to that size. We
show below that such a bound on the tree size indeed exists.
Without loss of generality, assume that �1 contains no

redundant symbols. First observe that if none of the reg-
ular expressions in �1 contains � then it su�ces to look at

trees of size O(j�1j
jqj). This is because q looks at paths of a

bounded length. Thus all we need to check are trees of the
corresponding maximal depth and with a bounded width.
(The actual violating instance can then be obtained by re-
placing each of the tree leaves by some arbitrary derivation

tree for the leaf label.) We thus assume in the sequel that
at least some of the regular expressions in �1 contain �.
Next, note that T may be large due to its depths or to

its width. Since the query looks at a bounded depth in T ,
all nodes beyond depth jqj are essentially irrelevant. So we
only need to look at trees up to depth q. (As above, the

actual violating instances can later be obtained from these
trees by replacing each of the tree leaves by some arbitrary
derivation tree for the leaf label.) For brevity, we will abuse

6Recall that we view Bind(c; T ) as a relation with attributes
vars(c).

below the standard terminology and from now on whenever

we say a tree we mean a tree of depth � jqj. Whenever
we say that a tree T satis�es �1 we mean that T can be
extended, by adding nodes only in depth greater than jqj to
a tree that satis�es �1.
Let T 2 inst(�1) be a tree of minimum size having the

modulo property. Let N be the set of nodes in T consisting
of the following.

1. all the nodes in the vector v,

2. for every cl where the relation

Rl = �vars(c)=v(Binds(cl; T )))

is not empty, the nodes in some vector rl 2 Rl,

3. for every cl with corresponding triplet (kl; il; jl), all
the nodes in some sub-relation of size kl of

��xl�vars(c)=v(Binds(cl; T )));

and

4. all the nodes on the paths from the root to the nodes
in items 1-3 above.

We next argue that the size of N is bounded by the input
and not by T . Indeed, (1) generates at most jqj nodes; as
the number of c's is bounded by jqj, (2) generates at most

jqj2 and (3) at most ki � jqj2 nodes. Let the sum of these
numbers be m. Then, taking into account (4), the size of
N is bounded by m � jqj. Clearly, N only depends on the
input and not on T .
Our goal is to show that if T is bigger than a given size

then it contains a set of nodes X, not including any of the

nodes in N , such that the tree T 0 obtained from T by remov-
ing X still belongs to inst(�1) and has the modulo property.
This will contradict the minimality of T .
Clearly if X is not chosen carefully, the resulting tree may

no longer belong to inst(�1). We will thus be interested only
in deletion of nodes that leave the tree in �1. To this end we

de�ne the notion of a deletable unit.

Definition 3.10. Given a tree T 2 inst(�1) and a node
n in T , a consecutive subsequence �n of n's children is called
a deletable unit if (i) the tree T 0 obtained from T by deleting
�n (and the subtrees rooted at them) still belongs to inst(�1),
and (ii) �n does not contain a sub-sequence having the above

property.

We can show the following.



Proposition 3.11. Let U be a maximal division of T into

non-overlapping deletable units, not containing any of the
nodes in N . The number of the deletable units in U is no
less than jT j=((j�1j � (jN j+ 1))jqj).

Proof. (Sketch) First, note that, by the pumping lemma
for regular languages, the size of each deletable unit is at
most j�1j, and the number of siblings separating any two
consecutive deletable units is also at most j�1j. Similarly,

a node in N has a sequence of at most j�1j following (pre-
ceding) siblings not including any node which is either in
N or belongs to some deletable unit. Consider the maximal
size of a tree not having any deletable unit. This is a tree
where every node has as children nodes in N separated by

at most j�1j nodes. So, the maximal size of such a tree is
(j�1j�(jN j+1))

h, where h is the depth of the tree. Any node
added to this tree is part of some deletable unit. In the case
of T , each such additional node belongs, in the worst case,
to one distinct deletable unit. For c := (j�1j�(jN j+1))jqj�1 ,
the number of such nodes is then at least jT j=(c + 1). Fur-

thermore, since each deletable unit is of size at most j�1j this
yields at least T=((c + 1) � j�1j) deletable units. Summing
up, we have that the number of deletable units is at least

T=(((j�1j � (jN j+ 1))
jqj�1

+ 1)� j�1j);

which is bounded by

T=((j�1j � (jN j+ 1))
jqj
:

Corollary 3.12. For each positive integer m, each tree
T 2 inst(�1) of size larger than m � ((j�1j � (jN j + 1))jqj)

has at least m deletable units not including any of the nodes
in N .

We will use Corollary 3.12 to derive the required bound on
the size of T . In particular, we will show that if T is larger
than a given size then it contains enough deletable units
so that some can be removed without a�ecting the modulo

property.
To each deletable unit u of T we associate a vector tu =

(t1u; :::t
n
u) where tlu, l = 1 : : : n, is the number of tuples in

��xl(�vars(c)=v(Binds(cl; T ))) that contain some node in u,
modulo jl.
Similarly, to each set s of deletable units of size k � jqj

we associate a vector ts = (t1s; :::t
n
s ) where for all l = 1:::n,

tls is the number of tuples in ��xl(�vars(c)=v(Binds(cl; T )))
that contain some node in s, modulo jl.
From Ramsey's Theorem (stated below for convenience),

and from Corollary 3.14, it follows that for every m > 0, if

T is larger than some given bound (a function of the m, the
given j0ls, j�1j, and jqj, called the Ramsey bound) then there
exists a set X of m deletable units in T , not including any
of the nodes in N s.t. for every number r � jqj, all subsets
of X of size r have the same associated vector (there may
be di�erent vectors for di�erent r's, but all subsets of the

same size r have the same vector).
Let m = �l=1:::njl � k! (where k = jqj). If T is larger

than the above Ramsey bound, then it contains a set X of
m deletable units with the above property. Now, consider
the tree T 0 obtained from T by removing all the nodes in X.
Note that T 0 still satis�es �1, and since none of the nodes in

N was deleted, the following hold.

� v 2 Binds(c; T 0).

� For every cl where, in the corresponding (kl; il; jl) triplet,
jl = 0, ��xl(�vars(c)=v(Binds(cl; T

0))) contains exactly
kl tuples.

� For every cl where �xl is the empty vector
��xl(�vars(c)=v(Binds(cl; T

0))) =

��xl(�vars(c)=v(Binds(cl; T ))): (Namely, the relations
are either both empty or both contain a single 0-ary
tuple.) 7

To show that T 0 has the modulo property, it remains to
prove that for every cl where �xl is not the empty vector, the
relations ��xl(�vars(c)=v(Binds(cl; T

0))) is of size (��jl+ il)
for some positive integer �. Rather than computing the

exact size of this relation, we will compute the number of
vectors deleted from

��xl(�vars(c)=v(Binds(cl; T ))):

If we show that this number is zero modulo jl, then we are
done.
Observe that since the query is projection-free, each deleted

node a�ects precisely the tuples in

��xl(�vars(c)=v(Binds(cl; T )))

in which it appears. The total e�ect of the deletion of all the
nodes in X is described by the following inclusion-exclusion
formula

nl = m�c
1
l �

 
m

2

!
�c

2
l +

 
m

3

!
�c

3
l � :::+=�

 
m

jXj

!
�c

jXj

l
;

which we explain next. The formula �rst counts separately

for each node in a deletable unit in X how many tuples are
deleted in ��xl(�vars(c)=v(Binds(cl; T ))) when the node is
removed. Note that according to the corollary to Ramsey's
Theorem mentioned above, the number of images destroyed
for each node are the same { this is essentially the value of
the l entry in the vectors associated with subsets of X of size

1. Let c1l be this number. Thus the total sum of destroyed
images is at most m� c1l . However, this is an overestimate:
some tuples, (i.e. those containing two or more nodes in X)
are counted several times. To �x this we subtract for every
pair of nodes the number of tuples in which the two nodes
appear together. There are

�
m

2

�
such pairs of nodes, each

appearing, (again according to the corollary to Ramsey's
Theorem), in c2l images, (where c2l is the value of the l entry
in the vectors associated with subsets of X of size 2). So
we deduct

�
m

2

�
� c2l . Note that this time we deducted too

much: some tuples (i.e. those containing 3 or more nodes

in X) where counted several times. To compensate, we add
for every triplet of nodes the number of tuples in which the
three nodes all appear. As above this is

�
m

3

�
� c3l , for some

constant c3l . Now again we added too much so we deduct
for the four-or-more images, etc. Since the maximal number

of nodes in a tuple is bounded by jqj the inclusion/exclusion
sum can stop when that size is reached.
Since we chose m to be the number �l=1:::njl�k! (where

k = jqj), each element in the above sum divides by jl, so the
total number nl of Xl assignments that we lost divides by

7This is because in the de�nition of N we picked (in item 2)
a tuple from each non empty relation Ri. So, if Ri was not
empty the projection results in one tuple - the empty tuple.



jl. It follows that T 0 still has the modulo property, which

contradicts the minimality of T .
To conclude, we state Ramsey's Theorem, and the corol-

lary used above.

Theorem 3.13. (Ramsey's Theorem) ([14], see also [23],
pp.7-9) For all natural numbers k;m;w there exists a �nite

number R(k;m;w) such that for every set Y of elements
with jY j � R(k;m;w) and every coloring of the family of all
the subsets of Y of size k with w colors, Y contains a subset
X � Y of size jXj = m where all the subsets of X of size k
have the same color.

The following variant is an easy consequence of Ramsey's
Theorem.

Corollary 3.14. For all natural numbers k;m;w there
exists a �nite number R0(k;m;w) such that for every set Y

of elements of size jY j � R0(k;m;w) and every coloring of
the family of all the subsets of Y of size � k with w colors,
Y contains a subset X � Y of size jXj = m where for all
k0 � k, all Xs subsets of size k0 have the same color (there
may be di�erent colors for di�erent k0s).

Observe that in the proof above we simply need to con-
sider each possible vector attached to a set of deletable units
as a color. The number w of available colors is then simply
j1 � ::: � jn; k = jqj; and, m = �l=1:::njl � k!. Now, recall
from Corollary 3.12 that every tree T of size larger than
R0(k;m;w) � ((j�1j � (jN j + 1))jqj) has at least R0(k;m;w)

deletable units not including any of the nodes in N . The
rest follows immediately from Corollary 3.14.

Finally, recall that we assumed at the beginning of the
proof that, for every node c in the construct clause of q,

the tags of c's children are all distinct. It is therefore left to
consider the case of repeated tags. Let q be a query and � an
output DTD. As in the proof of Theorem 3.2 we construct
from q a query �q by replacing in the construct clause all
tags a1; : : : ; ak of children of a node labeled a by distinct
tags b1; : : : bk. We also construct from � a new DTD �� by

replacing the regular expression 'a by h�1(ra) \ b�1 : : : b
�

k

where h is the mapping h(bi) = ai, 1 � i � k. It is easy
to see that q typechecks with respect to � i� �q typechecks
with respect to �� (the input DTD remains unchanged). This
concludes the proof of Theorem 3.5.

4. MORE ON COMPLEXITY
Theorems 3.1 and 3.2 provide an upper bound of co-

nexptime on the complexity of typechecking non-recursive
QL queries with respect to unordered output DTDs, or non-
recursive QL queries without tag variables and star-free out-
put DTDs. However, it remains open whether this complex-

ity is tight.
There are signi�cant special cases in which the complexity

of typechecking can be brought down to pspace. We con-
sider the case when the input DTDs are of bounded depth
(which implies that queries are also of bounded depth). This
is a restriction of practical interest, since many applications

use shallow DTDs. For example, relational databases can
naturally be represented by DTDs of depth8 at most 2. We
can show the following using the proofs of Theorems 3.1 and
3.2.

8The root has depth zero.

Corollary 4.1. Let � and M > 0 be �xed. (i) Type-

checking non-recursive QL queries with respect to input DTDs
of depth � M and unordered output DTDs is in pspace;
(ii) Typechecking non-recursive QL queries without tag vari-
ables with respect to input DTDs of depth �M and star-free
DTDs is in pspace.

Proof. The size of the smallest counterexample is now
polynomial in the ouput, but testing whether a candidate

input is indeed a counterexample requires pspace.

Once again, it remains open whether the above complexity
is tight. However, we can show the following lower bounds.

Theorem 4.2. Typechecking non-recursive QL queries with-
out tag variables with respect to input DTD of depth � 2,
and unordered output DTDs is:

(i) co-np-hard for QL queries without conditions on data
values;

(ii) dp-hard9 for QL queries with equalities on data values;

(iii) �p

2-hard for QL queries with equalities and inequalities
on data values.

Proof. For (i), we reduce validity of propositional formu-
las to the typechecking problem. Let ' be a propositional

formula using variables x1; : : : ; xn. Consider the input DTD
root ! X1 : : : Xn;Xi ! (zero + one); 1 � i � n; zero !
�; one! �: The query q is represented in Figure 3. Basically,
each nested query qi returns Xi i� Xi has a child labeled
\one" in the input. (The pattern in the where clause of q
is only used to ensure that the set of bindings of q is non-

empty.) The SL formula for the output DTD is obtained
from ' by replacing each positive literal xi by X=1

i and
each negative literal :xi by X=0

i , 1 � i � n. Clearly, ' is
valid i� q typechecks w.r.t. �1 and �2.
The proof of (ii) is by simultaneous reduction of propo-

sitional validity and conjunctive query containment, which
is known to be np-complete. The query consists of the con-
catenation of two independent sub-queries, one correspond-
ing to propositional validity and the other to conjunctive
query containment. The subquery corresponding to propo-
sitional validity (and its corresponding SL formula) is the

one described in (i). We briey describe the subquery cor-
responding to conjunctive query containment. Consider two
conjunctive queries q1(�x); q2(�y) over relation R of arity k.
We build an input DTD �1, QL query q, and output un-
ordered DTD �2 as follows. The DTD �1 is root! R+; R!

(1 + : : : + k). The query q's construct clause is:

root

WHERE

pattern
corresponding

to q1(x)

CONSTRUCT

answer

Q1(x)

 Q2(x)

The pattern in the where clause corresponds in the natural
way to q1(�x). For example, the pattern corresponding to
q1(x; x

0) = 9z(R(x; z) ^R(z; x0)) is:

9Recall that dp properties are of the form �1 ^ �2 where
�1 2 np and �2 2 co-np.
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Figure 3: The query for propositional validity

root

X     Z    Z’     X’

R

2 2

Z = Z’

Y1       Y2

1 1

R

Thus, Q1 occurs in the answer once for each �x in the
answer to q1 on R. The query Q2 is a nested query with root
Q2 which collects bindings corresponding to q2(�y), where
additionally �x and �y have the same associated data values.

Thus, q1 � q2 i� the answer to Q2 is non-empty for each �x
in the answer to q1. The unordered output DTD is simply
answer! Q

�0

1 ; Q1 ! Q
�1

2 .
The proof of (iii) is by reduction of containment of con-

junctive queries with inequalities, which is known to be �p

2-

complete [25]. The reduction is similar to that of (ii).

For star-free output DTDs, we can show a pspace lower
bound, even without conditions on data values:

Proposition 4.3. Typechecking non-recursive QL queries
without conditions on data values and without tag variables
with respect to input DTD of depth � 2 and star-free output
DTDs (using FO sentences) is pspace-hard.

Proof. We use a reduction from the Quanti�ed 3-SAT
problem, known to be pspace-complete [13].

5. UNDECIDABILITY RESULTS
So far, we have shown that typechecking QL queries is

decidable under various restrictions on the query language
and output DTD. In particular, all decidability results re-
quire non-recursive QL queries, and output DTDs without
specialization. In this section we show that these restrictions

are largely necessary for decidability. Speci�cally, we show
the following:

1. allowing specialization in output DTDs leads to un-

decidability of typechecking even for highly restricted
queries and DTDs (QL queries with path expressions
limited to single symbols, no inequality tests on data
values, no tag variables, unordered input DTDs of
depth two, and unordered output DTDs);

2. nested queries can be traded in the above against dis-
junction in path expressions (expressions of the form
a or a+ b, for a; b 2 �) and tag variables; and

3. allowing recursive path expressions in QL queries yields
undecidability of typechecking even for very simple

output DTDs without specialization.

In conjunction with the previous decidability results, this
yields a fairly tight boundary of decidability for typecheck-

ing.
The �rst result shows that allowing specialization in out-

put DTDs quickly leads to undecidability of typechecking,
even under stringent assumptions. We call a QL query con-
junctive if every path expression in the where clause is a
single symbol in �.

Theorem 5.1. Typechecking is undecidable for conjunc-
tive QL queries without tag variables and without inequality,
unordered input DTDs of depth � 2, and unordered output
DTDs with specialization.

Proof. The proof is by reduction of the implication prob-
lem for FDs and inclusion dependencies [20, 5]. Let D be
a set of FDs and inclusion dependencies over some k-ary
relation R, and f an FD over R. We construct an input
DTD �1, a QL query q, and an output DTD �2 (satisfy-
ing the restrictions in the statement) such that q typechecks

with respect to �1 and �2 i� D j= f . The input DTD is:
root ! R>0; R ! 1=1 ^ : : : ^ k=1; i ! �; 1 � i � k.
Intuitively, R encodes a k-ary relation. The query q is the
concatenation of several parts, each of which is used to verify
(in conjunction with the output DTD) whether the depen-
dencies in D and f are satis�ed by R. We illustrate these

using an example for each kind of dependency. Consider an
inclusion dependency, say R[12] � R[23]. The correspond-
ing portion of the query is illustrated in Figure 4. Note that
R[12] � R[23] is satis�ed i� every R12 node has at least one
child labeled R23. Now consider an FD, say 1! 2. The cor-

responding portion of the query is represented in Figure 5.
Note that the FD is satis�ed i� every pair node has at least
one child labeled eq. Clearly, one can state using a special-
ized unordered DTD that either some dependency in D is
violated, or f is satis�ed. Thus, q typechecks i� D j= f .

Similar undecidability results can be shown for slightly

di�erent combinations of features, which highlight rather
subtle trade-o�s. For example, one might wonder if nested
queries are essential to undecidability. The following re-
sult shows that they are not: nested queries can be traded
against disjunctions in path expressions and tag variables in
the construct clause. We call a QL program disjunctive if

the path expressions in the where clause are of the form a
or a+ b where a; b are single symbols.

Proposition 5.2. Typechecking is undecidable for disjunc-
tive QL queries with tag variables, without inequality, and
without nested queries, unordered input DTDs of depth � 2,

and unordered output DTDs with specialization.
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Figure 4: Query for inclusion dependency
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1 2   1          2

X1=X2

CONSTRUCT

answer

pair(X1,Y1,X2,Y2)
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Q-eq (X1,Y1,X2,Y2)

eq  (X1,Y1,X2,Y2)

witness (X1,Y1,X2,Y2,Z)

Figure 5: Query for functional dependency

Proof. The proof is again by reduction from the implica-
tion problem for functional and inclusion dependencies.

All the decidability results of Section 3 assume non-recur-
sive QL queries. We next show that removing this restriction
immediately causes undecidability of typechecking, even with
very simple output DTDs.

Theorem 5.3. Typechecking is undecidable for QL queries
and any output DTD that requires a nonempty sequence of
children under the root.

Proof. We reduce the Post Correspondence Problem

(PCP) to typechecking a QL query with respect to an out-
put DTD requiring a nonempty sequence of children under
the root. Let u1; : : : ; uk and v1; : : : ; vk be an instance of
the PCP, where ui; vi 2 fa; bg+. We encode a solution to
the PCP as a linear data tree (a single path). For simplic-
ity, we represent the path as a string where to each position

is associated a symbol (the label of the node) and a data
value (the data value of the node). We write such a string
as b1(v1) : : : bt(vt) where the bi are symbols and the vi data
values (which may be omitted). Suppose i1 : : : im is a so-
lution to the PCP, and ui1 : : : uim = vi1 : : : vim = a1 : : : an.
The encoding of the solution is a string x$y# where x and y

specify how a1 : : : an is parsed as ui1 : : : uim , and vi1 : : : vim ,
respectively. For each i; 1 � i � n, the string x contains four
consecutive positions w(i)s(j)ijai, where ai occurs within
uij . The string y is analogous for vi1 : : : vim . As an exam-
ple, consider the instance of the PCP:

u1 u2 u3
aba aab bb

v1 v2 v3
a abab babba

and its solution 1; 3; 2; 1. Note that u1u3u2u1 = v1v3v2v1 =
ababbaababa. The corresponding encoding is the string (read

top-down and left-to-right):

w(1)s(1)1a
w(2)s(1)1b

w(3)s(1)1a
w(4)s(2)3b
w(5)s(2)3b
w(6)s(3)2a
w(7)s(3)2a
w(8)s(3)2b

w(9)s(4)1a
w(10)s(4)1b
w(11)s(4)1a
$

w(1)s(1)1a
w(2)s(2)3b

w(3)s(2)3a
w(4)s(2)3b
w(5)s(2)3b
w(6)s(2)3a
w(7)s(3)2a
w(8)s(3)2b

w(9)s(3)2a
w(10)s(3)2b
w(11)s(4)1a
#

The input DTD we use is the following:

root! w w! s s! 1 + : : :+ k
i! a+ b (1 � i � k) a! w + $ +#
b! w + $ +# $! w #! �

The query q is the concatenation of several queries, each of
which checks for a violation of the correct form for the en-

coding of a solution. Then q typechecks i� every input yields
a violation, so the PCP instance has no solution. Details are
omitted.

6. CONCLUSIONS
The main contribution of the present paper is to shed

light on the feasibility of typechecking XML queries that
make use of data values in XML documents. The results
trace a fairly tight boundary of decidability of typecheck-

ing. In a nutshell, they show that typechecking is decidable



for XML-QL-like queries without recursion in path expres-

sions, and output DTDs without specialization. As soon as
recursion or specialization are added, typechecking becomes
undecidable.
The decidability results highlight subtle trade-o�s between

the query language and the output DTDs: decidability is
shown for increasingly powerful output DTDs ranging from

unordered and star-free to regular, coupled with increasingly
restricted versions of the query language. Showing decid-
ability is done in all cases by proving a bound on the size
of counterexamples that need to be checked. The techni-
cal machinery required becomes quite intricate in the case
of regular output DTDs and involves a combinatorial argu-

ment based on Ramsey's Theorem. For the decidable cases
we also consider the complexity of typechecking and show
several lower and upper bounds.
The undecidability results show that specialization in out-

put DTDs or recursion in queries render typechecking un-
feasible. If output DTDs use specialization, typechecking

becomes undecidable even under very stringent assumptions
on the queries and DTDs. Similarly, if queries can use re-
cursive path expressions, typechecking becomes undecidable
even for very simple output DTDs without specialization.
Several questions are left for future work. We showed

decidability of typechecking for regular output DTDs and

queries restricted to be projection free. It is open whether
the latter restriction can be removed. With regard to com-
plexity, closing the remaining gaps between lower and upper
bounds remains open.
Beyond the immediate focus on typechecking, we believe

that the results of the paper provide considerable insight
into XML query languages, DTD-like typing mechanisms
for XML, and the subtle interplay between them.
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