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Abstract. Motivated by formal models recently proposed in the context of XML, we
study automata and logics on strings over infinite alphabets. These are conservative
extensions of classical automata and logics defining the regular languages on finite
alphabets. Specifically, we consider register and pebble automata, and extensions of
first-order logic and monadic second-order logic. For each type of automaton we con-
sider one-way and two-way variants, as well as deterministic, non-deterministic, and
alternating control. We investigate the expressiveness and complexity of the automata,
their connection to the logics, as well as standard decision problems. Some of our results
answer open questions of Kaminski and Francez on register automata.

1 Introduction

One of the significant recent developments related to the World Wide Web (WWW) is the
emergence of the Extensible Markup Language (XML) as the standard for data exchange on
the Web [1]. Since XML documents have a tree structure (usually defined by DTDs), XML
queries can be modeled as mappings from trees to trees (tree transductions), and schema
languages are closely related to tree automata, automata theory has naturally emerged as
a central tool in formal work on XML [5,16-22]. The connection to logic and automata
proved very fruitful in understanding such languages and in the development of optimization
algorithms and static analysis techniques. However, these abstractions ignore an important
aspect of XML, namely the presence of data values attached to leaves of trees, and comparison
tests performed on them by XML queries. These data values make a big difference — indeed, in
some cases the difference between decidability and undecidability (e.g., see [4]). It is therefore
important to extend the automata and logic formalisms to trees with data values. In this
initial investigation we model data values by infinite alphabets, and consider the simpler case
of strings rather than trees. Strings are also relevant in the tree case, as most formalisms allow
reasoning along paths in the tree. In the case of XML, it would be more accurate to consider
strings labeled by a finite alphabet and attach data values to positions in the string. However,
this would render the formalism more complicated and has no bearing on the results. Although
limited to strings, we believe that our results provide a useful starting point in investigating
the problem. In particular, our lower-bound results will easily be extended to trees.

We only consider models which accept precisely the regular languages when restricted to
finite alphabets. It is useful to observe that for infinite alphabets it is no longer sufficient
to equip automata with states alone. Indeed, automata should at least be able to check
equality of symbols. There are two main ways to do this: (1) store a finite set of positions
and allow equality tests between the symbols on these positions; (2) store a finite set of
symbols only and allow equality tests with these symbols. The first approach, however, leads
to multi-head automata, immediately going beyond regular languages. Therefore, we instead
equip automata with a finite set of pebbles whose use is restricted by a stack discipline. The
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automaton can test equality by comparing the pebbled symbols. In the second approach,
we follow Kaminski and Francez [14,13] and extend finite automata with a finite number of
registers that can store alphabet symbols. When processing a string, an automaton compares
the symbol on the current position with values in the registers; based on this comparison it
can decide to store the current symbol in some register. In addition to automata, we consider
another well-known formalism: monadic second-order logic (MSO). To be precise, we associate
to strings first-order structures in the standard way, and consider the extensions of MSO and
FO denoted by MSO* and FO*, as done by Gradel and Gurevich in the context of meta-finite
models [8]. MSO has proven to be a good yardstick when other generalizations of regular
languages were investigated, e.g., for trees, infinite strings [24] and graphs [6].

Our results concern the expressive power of the various models, provide lower and up-
per complexity bounds, and consider standard decision problems. For the above mentioned
automata models we consider deterministic (D), non-deterministic (N), and alternating (A)
control, as well as one-way and two-way variants. We denote these automata models by dC-X
where d € {1,2}, C = {D,N,A}, and X € {RA,PA}. Here, 1 and 2 stand for one- and two-
way, respectively, D, N, and A stand for deterministic, non-deterministic, and alternating,
and PA and RA for pebble and register automata. Our main results are the following (results
on expressiveness are graphically presented in Figure 1).

Registers. We pursue the investigation of register automata initiated by Kaminski and
Francez [14]. In particular, we investigate the connection between RAs and logic and show
that they are essentially incomparable. Indeed, we show that MSO* cannot define 2D-RA.
Furthermore, there are even properties in FO* that cannot be expressed by 2A-RAs. The
proof of the latter is a non-trivial argument based on communication complexity [12].
Next, we consider the relationship between the various RA models. We separate 1IN-RAs,
2D-RAs, 2N-RAs, and 2A-RAs, subject to standard complexity-theoretic assumptions.

Pebbles. We consider two kinds of PAs: one where every new pebble is placed on the first
position of the string and one where every new pebble is placed on the position of the
current pebble. We refer to them as strong and weak PAs, respectively. Clearly, this pebble
placement only makes a difference in the case of one-way PAs. In the one-way case, strong
1D-PA can simulate FO* while weak 1N-PA cannot (whence the names). The proof of the
latter separation is again based on communication complexity. Furthermore, we show that
all pebble automata variants can be defined in MSO*. Finally, we provide more evidence
that strong PAs are a robust notion by showing that the power of strong 1D-PA, strong
1N-PA, 2D-PA, and 2N-PA coincide.

Decision Problems. Finally, we consider decision problems for RAs and PAs, and answer
several open questions from Kaminsky and Francez. First, we show that universality and
containment of 1N-RAs and non-emptiness of 2D-RA are undecidable. Next, we obtain
that non-emptiness even for weak 1D-PAs is undecidable.

As RAs are orthogonal to logically defined classes one might argue that PAs are better suited
to define the notion of regular languages over infinite alphabets. Indeed, they are reasonably
expressive as they lie between FO* and MSO*. Furthermore, strong PAs form a robust notion.
Adding two-wayness and nondeterminism does not increase expressiveness and the class of
languages is defined under Boolean operations, concatenation and Kleene star. Capturing
exactly MSO* most likely requires significant extensions of PAs, as in MSO* one can express
complete problems for every level of the polynomial hierarchy, while computations of 2A-RAs
are in P.

Related work. Kaminski and Francez were the first to consider RAs (which they called finite-
memory automata) to handle strings over infinite alphabets. They showed that 1N-RAs are
closed under union, intersection, concatenation, and Kleene star. They further showed that



non-emptiness is decidable for 1IN-RAs and that containment is decidable for 1IN-RAs when
the automaton in which containment has to be tested has only two registers.

When the input is restricted to a finite alphabet, PAs recognize the regular languages,
even in the presence of alternation [17]. We point out that the pebbling mechanism we employ
is based on the one of Milo, Suciu, and Vianu [17] and is more liberal than the one used by
Globerman and Harel [9]: indeed, in our case, after a pebble is placed the automaton can still
walk over the whole string and sense the presence of the other pebbles. Globerman and Harel
prove certain lower bounds in the gap of succinctness of the expressibility of their automata.

Overview. This paper is organized as follows. In Section 2, we provide the formal framework.
In Section 3, we study register automata. In Section 4, we examine pebble automata. In
Section 5, we compare the register and pebble models. In Section 6, we discuss decision
problems. We conclude with a discussion in Section 7. Due to space limitations proofs are
only sketched. Full proofs can be found in the Appendix.

2 Definitions

We consider strings over an infinite alphabet D. Formally, a D-string w is a finite sequence
dy---d, € D*. As we are often dealing with 2-way automata we delimit input strings by two
special symbols, >, < for the left and the right end of the string, both of which are not in D.
Le., automata always work on strings of the form w = >uv<, where v € D*. By dom(w) we
denote the set {1,...,|w|} with |w]| the length of w. For ¢ € dom(w), we also write val,, (7)
for d;.

2.1 Register automata
The following definition is the one from Kaminski and Francez [14,13].
Definition 1. A k-register automaton B over D is a tuple (Q, qo, F, 70, P) where

— (@ is a finite set of states; go € @ is the initial state; F' C @ is the set of final states;
—10:{1,...,k} > DU{>, <} is the initial register assignment; and,
— P is a finite set of transitions of the forms (i,¢) — (¢',d) or ¢ — (¢',,d).

Here,i € {1,...,k}, ¢,¢" € Q and d € {stay, left, right}.

Given a string w, a configuration of B on w is a tuple [j, ¢, 7] where j € dom(w), ¢ € Q,
and 7: {1,...,k} = DU{>, <}. The initial configuration is vy := [1, qo, 70]- A configuration
[7,q, 7] with ¢ € F is accepting. Given v = [4, ¢, 7], the transition (i,p) — 3 (respectively, p —
B3) applies to v iff p = q and val,, (5) = 7(4) (respectively, val,, (7) # 7(i) for alli € {1,...,k}).

Given v = [j,¢,7] and 7" = [j',¢', '], we define the one step transition relation - on
configurations as follows: v F +/ iff there is a transition (i,q) — (¢’,d) that applies to 7,
7 =71,and 5 = 5,7 =j—1,7 = 7+ 1 whenever d = stay, d = left, or d = right,
respectively; or there is a transition ¢ — (¢',4,d) that applies to 7, j' is as defined in the
previous case, and 7’ is obtained from 7 by setting 7'(7) to val,(j). We denote the transitive
closure of F by F*. Intuitively, transitions (i,¢) — (¢’,d) can only be applied when the value
of the current position is in register 7. Transitions ¢ — (¢',%,d) can only be applied when
the value of the current position differs from all the values in the registers. In this case, the
current value is copied into register ¢.

We require that the initial register assignment contains the symbols > and <, so automata
can recognize the boundaries of the input. Furthermore, from a > only right-transitions and
from a < only left-transitions are allowed.

As usual, a string w is accepted by B, if 79 F* , for some accepting configuration ~y. The
language L(B) accepted by B, is defined as {v | >v< is accepted by B}.



The automata we defined so far are in general non-deterministic. An automaton is deter-
manistic, if in each configuration at most one transition applies. If there are no left-transitions,
then the automaton is one-way. Alternating automata will be defined below. As explained in
the introduction, we refer to these automata as dC-RA where d € {1,2} and C = {D,N, A}
Clearly, when the input is restricted to a finite alphabet, RAs accept only regular languages.

2.2 Pebble automata

We borrow some notation from Milo, Suciu, and Vianu [17].
Definition 2. A k-pebble automaton A over D is a tuple (@, qo, F,T) where

— @ is a finite set of states; go € @Q is the initial state; F C @Q is the set of final states; and,

— T is a finite set of transitions of the form a — 3, where « is of the form (i, s, P,V,q) or
(i, P,V,q), where i € {1,...,k}, s e DU{>,<}, P,V C {1,...,i— 1}, and S is of the
form (q,d) with ¢ € Q and d € {stay, left, right, place-new-pebble, lift-current-pebble}.

Given a string w, a configuration of A on w is of the form v = [i, ¢, 0] where i € {1,...,k},
geQand@:{1,...,i} —» dom(w). We call # a pebble assignment and ¢ the depth of the con-
figuration (and of the pebble assignment). Sometimes we denote the depth of a configuration
v (pebble assignment #) by depth(vy) (depth(#)). The initial configuration is vy := [1, qo, o]
where 6p(1) = 1. A configuration [, ¢, 8] with ¢ € F' is accepting.

A transition (i,s, P,V,p) — 3 applies to a configuration v = [j,q, 8], if

Li=73,p=q

. P={l<i]|val,(0(l) = val,(0(i))},
.V ={l<il|6() =0(i)}, and

. val, (6(7)) = s.

= W N

A transition (i, P, V, q) — 3 applies to + if (1)-(3) hold and no transition (i’,s’, P", V', ¢') = 8
applies to 7. Intuitively, (i, s, P, V,p) — [ applies to a configuration, if 7 is the current number
of placed pebbles, p is the current state, P is the set of pebbles that see the same symbol as
the top pebble, V' is the set of pebbles that are at the same position as the top pebble, and
the current symbol seen by the top pebble is s.

We define the transition relation b as follows: [i,q,0] F [i',¢’,6'] iff there is a transition
a — (p,d) that applies to v such that ¢’ = p and 0'(j) = 6(j), for all j < i, and

if d = stay, then i’ =i and 0'(i) = 0(i),

if d = left, then i’ =i and 6'(:) = 0(z) — 1,

— if d = right, then i’ =i and 6'(i) = 6(7) + 1,

— if d = place-new-pebble, then i’ =i+ 1, 6'(i + 1) = 0'(i) = 6(7),
— if d = lift-current-pebble then i’ =7 — 1.

The definitions of the accepted language, deterministic and one-way are analogous to the
case of register automata. We refer to these automata as dC-RA where d and C are as before.

In the above definition, new pebbles are placed at the position of the most recent pebble.
An alternative would be to place new pebbles at the beginning of the string. While the choice
makes no difference in the two-way case, it is significant in the one-way case. We refer to the
model as defined above as weak pebble automata and to the latter as strong pebble automata.
Strong pebble automata are formally defined by setting 6'(i+1) = 1 (and keeping 6’ (i) = 0(7))
in the place-new-pebble case of the definition of the transition relation.



2.3 Alternating Automata

For both automata models we also define an alternating version. Alternating automata A
additionally have a set U C Q of universal states. The sets from @ — U are called existential.
If U = 0, then the automaton is non-deterministic.

A run of A on w is a tree where nodes are labeled with configurations as follows:

1. the root is labeled with the initial configuration;

2. every inner node labeled with an existential configuration v has exactly one child 4" and
v F+'; and,

3. every inner node labeled with a universal configuration v has exactly n children labeled
with y1,...,vn and {y1,..., W} ={¥Y v F '}

An accepting run is a run where every leaf node is labeled with a final configuration. The
language accepted by A, is defined as L(.A) := {w | there is an accepting run of A on >w<}.

2.4 Logic

We consider first-order and monadic second-order logic over D-strings. The representation
as well as the logics are special instances of the meta-finite structures and their logics as
defined by Gridel and Gurevich [8]. A string w is represented by the logical structure with
domain dom(w), the natural ordering < on the domain, and a function val : dom(w) — D
instantiated by val,. An atomic formula is of the form x < y, val(z) = val(y), or val(z) = d
for d € D, and has the obvious semantics. The logic FO* is obtained by closing the atomic
formulas under the boolean connectives and first-order quantification over dom(w). Hence, no
quantification over D is allowed. The logic MSO* is obtained by adding quantification over
sets over dom(w); again, no quantification over D is allowed.

2.5 Complexity Classes over Infinite Alphabets

Some of our separating results are relative to complexity-theoretic assumptions. To this end,
we assume the straightforward generalization of standard complexity classes (like LOGSPACE,
NLOGSPACE, and PTIME) to the case of infinite alphabets that can be defined, e.g., by using
multi-tape Turing machines which are able to compare and move symbols between the cur-
rent head positions. It should be clear that the collapse of two of these generalized classes
immediately implies the collapse of the respective finite alphabet classes.

3 Register Automata

We start by investigating RAs. In particular, we compare them with FO* and MSO*. Our
main conclusion is that RAs are orthogonal to these logics as they cannot even express all
FO* properties but can express properties not definable in MSO*. Further, we separate the
variants of RAs subject to standard complexity-theoretic assumptions.

3.1 Expressiveness
Theorem 3. MSO* cannot define all 2D-RA.

Proof. (sketch) Consider strings of the form u#v where u,v € (D — {#})*. Define N,, and
N, as the set of symbols occurring in u and v, respectively. Denote by n, and n, their
cardinalities. We show that there is a 2D-RA A that accepts u#tv iff n, = n, while there is
no such MSO* sentence.



To show that a 2D-RA can check this property we introduce some notation. For a string
w, denote by lmo,(d) the position in w of the left most occurrence of d € D. Suppose
N, ={a1,...,a,} and N, = {b1,...,b,} where for every i < j, Imo,(a;) < lmo,(a;) and
lmo, (b;) < lmo,(b;). Then the 2D-RA compares n, with n, by visiting lmo, (a1 ), lmo, (b1),
lmo, (az), Imo, (bs), ...in sequence. In this manner it can check whether n = m. More details
are provided in the Appendix.

Asssume towards a contradiction that ¢* is an MSO* sentence such that u#v E ¢* iff
Ny = Ny. Let C be the set of D-symbols mentioned in ¢*. We call a string u#v admissible
iff N, N N, = 0; each D-symbol occurs at most once in u or v; and, no symbol in C' occurs
in u or v. Let ¢ be obtained from ¢* by replacing each occurrence of val(xz) = val(y) by
x =y, and every occurence of val(x) = d by false, if d # #. Then for every admissible string
dy - --dpfter - em, a™#b™ = @ iff the string satisfies ¢* iff n = m. Hence, {a"#b" | n € N}
would be MSO definable and therefore regular, the desired contradiction. O

We next show that RAs cannot capture FO*, even with alternation. The proof is based
on communication complexity.

Theorem 4. 2A-RA cannot express FO*.

Proof. We start with some terminology. Let D be a finite or infinite set. A I-hyperset over
D is a finite subset of D. For i > 1, an i-hyperset over D is a finite set of (i — 1)-hypersets
over D. For clarity, we will often denote i-hypersets with a superscript i, as in S().

Let us assume that D contains all natural numbers and let, for j > 0, D; be D—{1,...,5}.
Let 7 > 0 be fixed. We inductively define encodings of i-hypersets over D;. A string w =
1dids - - - d, 1 over D; is an encoding of the 1-hyperset H(w) = {d1,...,d,} over D;. For each
i < j, and encodings wy, ..., w, of (i — 1)-hypersets, iwiiws - - -iw,? is an encoding of the
i-hyperset {H (w;) | i < n}. Define L™ as the language

{u#tv | v and v are encodings of m-hypersets over D,,, — {#} and H(u) = H(v)}.

In the appendix we prove the following lemma.
Lemma 5. For each m, L™ is definable in FO*.

Next, we show that no 2A-RA can recognize L™ for m > 4. The underlying idea is that
for large enough m, a 2A-RA simply cannot communicate enough information between the
two sides of the input string to check whether H (u) equals H(v). Our proof is inspired by a
proof of Abiteboul, Herr, and Van den Bussche [2]. To separate the temporal query languages
ETL from TS-FO, they showed that every query in ETL on a special sort of databases can be
evaluated by a communication protocol with a constant number of messages. This is not the
case for TS-FO. To simulate 2A-RA, however, we need a more powerful protocol where the
number of messages depends on the number of different data values in v and v. This protocol
is defined next. First, define exp,(n) := n and exp,(n) := 2°%Pi-1(")_for i > 0.

Definition 6. Let P be a binary predicate on i-hypersets over D and let &k, > 0. We say
that P can be computed by a (k,1)-communication protocol between two parties (denoted by
I and II) if there is a polynomial p such that for all i-hypersets X9 and Y'() over a finite set
D there is a finite alphabet A of size at most p(|D|) such that P(X®,Y(®) can be computed
as follows:

1. I gets X and IT gets Y9 both know D and A;
2. T sends a message a; (D, X?) to IT and II replies with a message by = by(D,Y" ay)
to I. Each message is a k-hyperset over A.

3. I sends a message ay = ag(D7X(i)7b1) to IT and II replies with a message by =
bo(D, Y ay) to I.



4. After exp,(p(|D])) rounds of message exchanges, both I and II have enough informa-
tion to decide whether P(X(i),Y(i)) holds. Formally, they apply a Boolean function
arp1(D, XD b, (for I) or b1 (D, Y a,) (for II) that evaluates to true iff P(X () Yy (?))
holds.

So, formally, a protocol consists of the functions ai,...,ary1,01,...,0,41. Note that the
computing power of I and II can be completely arbitrary.

Lemma 7. For m >4, L™ cannot be computed by a (2,2)-communication protocol.

Proof. Suppose there is a protocol computing L™. For every finite set D with d elements,
the number of different possible messages is the number of 2-hypersets which is at most
exp-(p(d)). Call a complete sequence of exchanged messages ajbjasbs ... a dialogue. Every
dialogue has at most exp, (p(d)) rounds. Hence, there are at most exp, (2d-exp, (p(d))) different
dialogues. However, the number of different m-hypersets over D is exp,,(d). Hence, for m > 4
and D large enough there are m-hypersets X(™) # Y (™) guch that the protocol gives the
same dialogue for P(X (™ X (™)) and P(Y (™ Y (™). But that means it also gives the same
dialogue on P(X (™ Y(™)) and P(Y' (™), X("™)), This leads to the desired contradiction. [
We refer to strings of the form u#v, where u and v do not contain #, as split strings. A
communication protocol computes on such strings by giving « to I and v to IT.

Lemma 8. On split strings, the language defined by a 2A-RA can be recognized by a (2,2)-
communication protocol.

Proof. (sketch) Let B be a 2A-RA working on split strings over D. On an input string
w := u#v, [e,q, 7] is a #-configuration when e is the position of # in w. Define p(n) := |Q|n*,
where @) and k are the set of states and number of registers of B, respectively. Then the number
of #-configurations is |Q|m* where m is the number of different symbols in w. We assume
w.l.o.g. that there are no transitions possible from final configurations. Further, we assume
that B never changes direction or accepts at the symbol #. Hence, on w, when B leaves u to
the right it enters v and vice versa. In essence, both parties compute partial runs where they
send the #-configurations in which B walks off their part of the string to the other party. To
be concrete, I computes all the runs of B on u the leaves of which consist of #-configurations
or final configurations, and no inner vertex is labeled with a #-configuration. It then sends
to II the set of all sets of #-configurations appearing at leaves of such runs. Party IT in
turn, computes the same information for runs starting from the sets of #-configurations it
received and sends it to I. This process is repeated. If after exp,(|Q|m*) messages there is
a message containing the empty set then the input is accepted (as final configurations are
not transmitted, the presence of an empty set indicates a run where all leaves are accepting

configurations).
A full proof is provided in the Appendix. g
Theorem 4 now follows from Lemmas 5, 7, and 8. a

When restricted to one-way computations, RAs can only express “regular” properties.
The next proposition is easily shown using standard techniques.

Proposition 9. MSO* can simulate every IN-RA.

3.2 Control

On strings of a special shape, RAs can simulate multi-head automata. These strings are of
even length where the odd positions contain pairwise distinct elements and the even positions
carry an a or a b. By storing the unique ids preceding the a’s and b’s, the RA can remember the
positions of the heads of a multi-head automaton. Note that 2D-RAs can check whether the
input string is of the desired form. As deterministic, nondeterministic, and alternating multi-
head automata recognize precisely LOGSPACE, NLOGSPACE, and PTIME languages, respectively,



membership for 2D-RA, 2N-RA, and 2A-RA is hard for these classes, respectively [23,15].
Furthermore, it is easy to see that the respective membership problems also belong to the
infinite alphabet variants of these classes. Thus, we can show the following proposition in
which all complexity classes are over infinite alphabets.

Proposition 10. 1. Membership of 2D-RA is complete for LOGSPACE;
2. Membership of 2N-RA is complete for NLOGSPACE; and
3. Membership of 2A-RA is complete for PTIME.

The indexing technique above cannot be used for 1N-RAs, because they cannot check
whether the odd positions form a unique index. However, we can extend (2) to IN-RAs using
a direct reduction from an NLOGSPACE-complete problem: ordered reachability. Details are
provided in the Appendix.

Proposition 11. Membership of IN-RA is complete for NLOGSPACE.

From Theorem 3 and Proposition 9 we can immediately conclude that the class accepted
by 1N-RA is different from those accepted by 1N-RA and 2N-RA. It is a consequence of
Proposition 11 that all four classes defined by the mentioned automata models are different
unless the corresponding complexity classes collapse.

4 Pebble Automata

In this section we show that PAs are better behaved than RAs with regard to the connection
to logic. In a sense, PAs are more “regular” than RAs. Indeed, we show that strong 1D-
PAs can simlate FO* and that even the most liberal pebble model, 2A-PA, can be defined
in MSO*. 1D-PAs are clearly more expressive than FO*; furthermore, we can separate 2A-
RAs from MSO* under usual complexity-theoretic assumptions. Next, we show that weak
one-way PAs do not suffice to capture FO*. Again, the proof is based on communication
complexity. Finally, we prove that for strong PAs, the one-way, two-way, deterministic and
nondeterministic variants collapse. Together with the straightforward closure under Boolean
operations, concatenation and Kleene star, these results suggest that strong PAs define a
robust class of languages.

4.1 Expressiveness
The proof of the next proposition is obvious and provided in the Appendix.
Proposition 12. FO* is strictly included in strong 1D-PA.
We next show that PAs are subsumed by MSO*. Thus, they behave in a “regular” manner.
Theorem 13. MSO* can simulate 2A-PA.

Proof. The proof is an extension to infinite alphabets of a proof in [17] where it is shown that
alternating tree-walking pebble automata over finite alphabets can be simulated in MSO. In
brief, we reduce the simulation problem of a k-pebble automaton to the Alternating Graph
Accessibility Problem, AGAP [10]. An alternating graph (or and/or graph) is a graph G =
(V, E) whose nodes V are partitioned into and-nodes and or-nodes: V"= VA UV,,. The problem
consists in deciding whether a node x € V is accessible with accessibility defined as follows:
an and-node is accessible if all its successors are accessible; an or-node is accessible if at least
one of its successors is accessible. Note that and nodes with no successor are by definition
accessible. It can be shown that the set of accessible nodes is definable in MSO and therefore
in MSO*. Indeed, consider the formula

o(x) == VS(reverse-closed(S) = S(x)), (1)



where reverse-closed(S) is:

Vy(Dv(y) A3z(E(y,z) A S(2)) = S(y))
AVY(Da(y) AVz(E(y, z) = 5(2)) = S(y)). (2)

Here, D\, and D, are unary relations containing the or- and and-nodes, respectively.

Given an alternating k-pebble automaton A = (Q,U,qo, F,T) over D and a string w,
we construct the following and/or graph G, = (V, E). Its or-nodes are all configurations
of A on w whose states are existential; its and-nodes are all configurations whose states are
universal, together with an additional distinguished node . The set of edges E is {(v,7) | v F
Y'Y UA{(y,¢€) | v is accepting}. It follows directly from the definitions of L(A) and of AGAP
that a string w is in L(A) iff the initial configuration vy is accessible in the graph G4, .,.
Hence, it only remains to show that we can express the AGAP problem on G 4, in MSO*.
Here, the difficulty lies in the fact that the nodes in G 4,,, are tuples of nodes from the input
structure w (a configuration v = [i, ¢, 8] is represented by the i-tuple (6(1),...,6(i)); ¢ does
not depend on w and will be encoded separately.) Hence, the set S in (1) is no longer unary.
To circumvent that, we rely on a special property of G 4,.,. Namely, if two nodes described
by an i-tuple (8(1),...,0(i)) and a j-tuple (6'(1),...,0'(j)) are connected by an edge, then
either e = j,ort =75+ 1,0or i =j — 1, and the tuples agree on all but the last position. This
follows from the stack discipline on pebbles in A (only the last pebble can be moved) and
allows us to quantify independently, on different portions of the graph. The construction of
the MSO™* formula relies on this observation; we outline this construction in the Appendix. O

It is open whether the above inclusion is strict. However, we can show the following.

Proposition 14. For every ¢ € N, there are MSO* formulas @; and ; such that the model
checking problem for ¢; and ; is hard for XF and I1F, respectively. In contrast, membership
for 2A-PAs is PTIME-complete.

Here, the model checking problem for a logical formula consists in determining, given a string
w, whether w |= ¢. A proof is given in the Appendix. Since the first part of the proposition is
already known for graphs, it suffices to observe that graphs can readily be encoded as strings.
We end this section by considering weak PAs. Recall that this notion only makes a difference
for one-way PAs. Unlike their strong counterparts, we show that they cannot simulate FO*,
which justifies their name. The proof is again based on communication complexity.

Theorem 15. Weak 1N-PA cannot simulate FO*.

Proof. The proof is similar to the proof of Theorem 4. We show by a communication complex-
ity argument that the FO*-expressible language L2 defined in that proof cannot be recognized
by a weak 1N-PA. In the current proof, however, we use a different kind of communication
protocol which better reflects the behaviour of a weak 1N-PA. We define this protocol next.
Recall that the strings we use are of the form u#v where u and v encode 2-hypersets. Let & be
fixed and let Si,S> be finite sets. The protocol has only one agent which has arbitrary access
to the string u but only limited access to the string v. On u, its computational power is unlim-
ited. The access to v is restricted as follows. There is a fixed function f : D* x D x §; = S»
and the agent can evaluate f on all arguments (v,d, s), where d is a tuple of length k of
symbols from u and s € S;. Based on this information and on u the agent decides whether
u#v is accepted.

We show in the appendix that there is no function f such that there is an agent which
recognizes L2. It remains to show that on split strings a weak 1N-PA can be simulated by a
protocol. Intuitively, this works as follows. On input u#tv, as we consider one-way weak PAs,
whenever the current pebble enters v, the computation remains in v until that pebble is lifted.
Therefore, the set of states which can be obtained when lifting the pebble only depends on
v, the symbols below the pebbles placed in u and the placement information, that is, which



pebbles are located on the same positions. Hence, we define f(v,d,s) as the set of states that
can be reached when pebble 7 enters v in state ¢ and the pebbles in u are placed on d. Here,
and ¢ are coded into s. Moreover, s also contains the position placement of the pebbles in w.
This function then provides enough information for the agent to simulate the 1IN-PA. More
details are given in the Appendix. O

4.2 Control

Our next result shows that all variants of strong pebble automata without alternation collapse.
This suggests that strong PAs provide a robust model of automata.

Theorem 16. The following have the same expressive power: 2N-PA, 2D-PA, strong 1N-PA
and strong 1D-PA.

Proof. We show that, for each 2N-PA A, there is a strong 1D-PA B which accepts the same
language. Actually, in our construction, B will use the same number of pebbles as A. Let
therefore A = (Q, qo, F, T) be a 2N-PA with k pebbles.

For technical simplicity, we assume w.l.0.g. that A lifts pebbles only at the right delimiter
(instead of lifting a pebble at an arbitrary position it can remember the target state ¢, go to
the right delimiter and lift the pebble there, moving into state ¢).

First, we informally describe the idea of the construction. Recall the classical powerset
construction which translates a non-deterministic 1-way automaton M (over a finite alphabet
and without pebbles) into a deterministic one, M'. Intuitively, M’ computes, for each prefix
u of the input string w = wy - - - wy, the set of states that M might reach by reading u. M’
performs an on-line simulation of M in the sense that each step in the computation of M
corresponds to exactly one step of M.

One cannot expect such an on-line simulation to work for 2-way automata (even for finite
alphabets), as the non-deterministic behaviour of a 2-way automaton might involve moving in
different directions. Instead (in the finite case without pebbles) the deterministic automaton
can compute, for each position i in the input string w, a function f; which describes the
aggregated behaviour of M on w; ---w;, i.e., the portion of the input which is at the left-
hand side of the i-th position. The functions f; can be computed inductively from left to right
(forgetting f;—1 once f; is computed). In the end, f, and the knowledge of the possible first
states that the automaton assumes at the right delimiter of the input provide all necessary
information to decide whether w is accepted.

It is maybe a bit surprising that this approach can, by and large, be adapted to the
case where pebbles are present and the alphabet is inifinte. We proceed as follows. First, we
assume that A is further normalized in that it accepts its input only in configurations [1, ¢, 6],
i.e., with only one pebble. By virtually adding two steps we view an accepting computation
as consisting of (1) a first step in which the first pebble is placed at the first position, (2)
a computation in which always at least one pebble is there, and (3) a final step in which
the only remaining pebble is removed. Writing [0, p, 8] for a (virtual) configuration without
pebble, to determine whether A accepts, one has to find out whether [0, g0, 8p] F* [0, ¢, 8y],
for some final state q.

The latter can be done by recursively solving subproblems of the form [i, q,6] %, [i, ¢, 6],
where the subscript > ¢ indicates that only subcomputations are considered in which, at every
step, more than ¢ pebbles are present.

More formally, we show the following claim by induction on ¢ (starting from i = k).

Claim. For each i € {0,...,k} and each finite set R, there is a strong 1D-PA B; (with &
pebbles) such that, whenever B; starts from a configuration [i, p, 8], where p € R, the next
configuration of depth ¢ of B; is [i, (p, S), 6], where S = {(¢,¢') € Q | [i,¢,0] F%,; [i,¢,6]}. In
particular, the set of states of B; contains R and R x 29%@,
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First, it should be noted that the theorem follows from the claim, by setting ¢ = 0. To this
end, we let R = {po} (the intended initial state of By) and obtain an automaton which ends
up in a state (po, S), where S is the set {(¢,¢') € Q| [0,¢,0] F<4 [0,¢',6]}. The set of final
states of By simply consists of all states (po,.S), where S contains a pair (qo,q) with ¢ € F.

For i = k the proof of the claim is trivial, as there are no configurations of depth > k.
Hence, By, can compute (p, S) by a stay-transition. Therefore, let 7 < k and suppose the claim
holds for all j > i.

Intuitively, the set S can be computed by one left-to-right pass of the (i + 1)st pebble.
During this pass, B; computes, for each position [ in the string the sets of pairs (¢, ¢'), such that
there is a sub-computation which starts from state ¢ at position 1 (position I, respectively)
and ends in state ¢’ at position [, without moving pebble i + 1 to positions I’ > [. Note
that such subcomputations might move pebbles j > ¢ 4+ 1 to positions > [. To compute this
information, the automaton B;; is used repeatedly. More details are given in the Appendix.
O

5 Registers versus Pebbles

The known inclusions between the
classes that we considered are depicted
in Figure 1. The pebble and register
models are rather incomparable. In-

2D-PA 2N-PA

deed, from the connection with logic
S1D-PA S1N-PA

we can deduce the following. As 2D-
RA can already express non-MSO* de-
finable properties, no two-way register
model is subsumed by a pebble model.
Conversely, as strong 1D-PAs can al-
ready express FO*, no strong pebble
model is subsumed by any two-way

register model. Some open problems  Fig. 1. Inclusions between the classes under con-
about the relationships between regis-  gjderation. Solid lines indicate inclusion (strictness
ter and pebble automata are given in  ghown as #), dotted lines indicate that the classes
Section 7. are incomparable. Dashed lines indicate strict inclu-
sion subject to complexity-theoretic assumptions.

6 Decision Problems

We briefly discuss the standard decision problems for RAs and PAs. Kaminski and Francez
already showed that non-emptiness of IN-RAs is decidable and that it is decidable whether
for a IN-RA A and a IN-RA B with 2-registers L(.A) C L(B). We next show that univer-
sality (does an automaton accept every string) of IN-RAs is undecidable, which implies that
containment of arbitry 1IN-RAs is undecidable. Kamingki and Francez further asked whether
the decidability of non-emptiness can be extended to 2D-RAs: we show it cannot. Regarding
PAs, we show that non-emptiness is already undecidable for weak 1D-PAs. This is due to the
fact that, when PAs lift pebble i, the control is transferred to pebble ¢ — 1. Therefore, even
weak 1D-PAs can make several left-to-right sweeps of the input string.

6.1 Register Automata

Theorem 17. It is undecidable whether a IN-RA is universal.

11



Proof. We use a reduction from Post’s Correspondence Problem (PCP) which is well-known
to be undecidable [11]. An instance of PCP is a sequence of pairs (z1,%1),- .-, (Zn, Yn), where
x;,y; € {a,b}* for i = 1,...,n. This instance has a solution if there exist m € N and
at,...,am € {1,...,n} such that ©a, - Za,, = Ya, * " Yoy, -

We consider input strings of the form w = uffv, where # is a delimiter and u, v are
strings representing a candidate solution (Zay,...,%a,,;Yss---»>Ys,) for the PCP instance
in a suitable way. To check whether such a candidate is indeed a solution, we roughly have
to check whether (1) a; = f3; for each i, that is, corresponding pairs are taken; and (2) both
strings are the same, that is, corresponding positions in x4, -+ Z4,, and ya, - Ya,, carry the
same symbol. To check (1) and (2), we use a double indexing system based on unique data
values. The IN-RA will only accept an input string when it is not of the required form or
when the candidate solution does not represent a solution for the PCP instance. Hence, the
IN-RA accepts all inputs if and only if the PCP instance has no solution. Details are given
in the Appendix. a

Corollary 18. Containment of 1IN-RAs is undecidable.

The following question was also raised by Kaminski and Francez. In Section 3.2, we ob-
served that two-way RAs can simulate multi-head automata on strings of a special shape. As
non-emptiness of multi-head automata is undecidable the next proposition easily follows.

Proposition 19. It is undecidable whether a 2D-RA is non-empty.

6.2 Pebble Automata

The next result implies that all standard decision problems are undecidable for all classes of
pebble automata.

Theorem 20. It is undecidable whether a weak 1D-PA is non-empty.

Proof. The proof is again a reduction from PCP and goes along the same lines as the proof
of Theorem 17. Recall that in that proof the constructed IN-RA accepts when it can guess
an error. In contrast, the 1D-PA verifies one by one that there are no errors and accepts if
this is the case. Details are given in the Appendix. a

7 Discussion

We investigated several models of computations for strings over an infinite alphabet. One
main goal was to identify a natural notion of regular language and corresponding automata
models. In particular, such a notion should agree in the finite alphabet case with the classical
notion of regular language. We considered two plausible automata models: RAs and PAs.
Our results tend to favor PAs as the more natural of the two. Indeed, the expressiveness of
PAs lies between FO* and MSO*. The inclusion of FO* provides a reasonable expressiveness
lower bound, while the MSO* upper bound indicates that the languages defined by PAs
remain regular in a natural sense. Moreover, strong PAs are quite robust: all variants without
alternation (one or two-way, deterministic or non-deterministic) have the same expressive
power.

Some of the results in the paper are quite intricate. The proofs bring into play a variety of
techniques at the confluence of communication complexity, language theory, and logic. Along
the way, we answer several questions on RAs left open by Kaminski and Francez.

Several problems remain open: (i) can weak 1D-PA or weak 1N-PA be simulated by 2D-
RAs? (i7) are 1D-RA or IN-RA subsumed by any pebble model? (We know that they can
be defined in MSO*. As IN-RAs are hard for NLOGSPACE they likely cannot be simulated by
2A-PAs.) (ii1) are weak 1N-PAs strictly more powerful than weak 1D-PAs? (iv) are 2A-PAs
strictly more powerful than 2N-PAs?
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Appendix

Proof of Theorem 3 continued. We explain how the 2D-RA can visit lmo,, (a1 ), Imo, (b1 ),
lmo,, (az), lmo, (b2), ...in sequence. Clearly, lmo,(a;) and lmo, (by) are the first positions of
u and v, respectively. If A has the values of a; and b; stored in its registers it can compute
a;+1 and b;11. E.g., to compute a1 it proceeds as follows. It first moves its head to position
lmo,,(a;) by going to the left boundary and afterwards walking to the right until it encounters
a;. Now it tests, for all positions lmo,,(a;) + j, 7 > 0, starting with j = 1, whether they carry
a leftmost occurrence of a symbol d. This is done as follows: from position lmo,, (a;)+j it goes
to the left until it either sees a d or reaches the left end of the string. In the former case, it
goes back to lmo,,(a;) + 7 (identified by the first d) and proceeds with lmo,,(a;)+j+ 1. In the
latter case lmoy,(a;) + j carries the leftmost d, therefore a;11 is identified. The computation
of b;11 can be done in a similar way. O
Proof of Lemma 5. Let £ > 1 be fixed. For each ¢ < k, we define an FO* formula
oi(xf, 2T, y!, yr) expressing on input w that the intervals [z¢, 27] and [y¢, y?] encode the same
i-hyperset over D; — {#}.

By z € [y,z] we abbreviate y < x Az < z. By clean;(z,y) we abbreviate the formula
-dz(z < zAz<yAval(z) € {i,...,k,#}).

The formula ¢, is inductively defined as follows:

o1 (4,27, it D) o= val(ad) = 1 Aval(a]) = 1 Aval(y!) = 1 Aval(a]) = 1
A cleany (2, 27) A cleany (¢, y7)
AVa(x € [21, 2] = Jy(y € [y1, yi] A val(z) = val(y))
AVy(y € [y1,9i] = Fo(x € [of, 27] A val(z) = val(y)); and

for ¢ > 1, define

it 2,y yT) = val(wf) = i Aval(a]) = i A val(y!) =i A val(z]) = i
A clean; (zf, 27) A clean; (yf, y7)

AVzE wl o (wf y,af ) € [, af] A cleang(w] 2] ;) =
!yl iyl € WY A e () gLyl )
ANVYS_ 1y (i1, vi € [yih ui] A clean; (y;_y, yj_y) —

Ay, wi_y (wioy,wi_y € [wf, 2]] A i (w1, 1, Y1, ¥i-1))-
The language L is then expressed by the formula,

Saf, o}, 2,y vh(eh = LAZE +1 =2 Aval(z) = #

Az+ 1=y Ayp = max Agk (g, 25, Yk, Y5))-

Here, 1 and max refer to the first and last element of the string, respectively, and +1 is the
successor function. O
Proof of Lemma 8. Let B = (Q, qo, U, F, 7, P) be a k-register 2A-RA working on split strings
over D. We assume w.l.o.g. that there are no transitions possible from final configurations.
Further we assume that B never changes direction at the symbol #. Hence, on a split string
uFFv, when it leaves u to the right it enters v and vice versa. Define p as the polynomial
p(n) := |Q|n*, that is, the number of configurations that can be assumed at the position
labeled with # on strings with at most n different data values. Let w = u#fv be an input
split string; let D be the set of data values occurring in w. Let the position in the string of
the split symbol # be e. Then, set A :={[e,q,7] | ¢ € Q,and 7:{1,...,k} — D}. Note that
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|Al = p(|D|). Further, A is the set of configurations that can be assumed at the position of
the split symbol. We refer to these as #-configurations.

A configuration [i, g, 7] is called a u-configuration if i < e and a v-configuration if i > e.
A #-configuration is called a u#-configuration if it is assumed from the left and a #wv-
configuration if it is assumed from the right. Note that, by our assumption that 5 never
changes direction at #, we can distinguish these two sets of configurations.

We start by introducing the following notions. For an arbitrary configuration v, a (v, #)-
run is a run where the root is labeled with 7, all the leaves are labeled with final config-
urations or #-configurations and no inner vertex, besides possibly the root, is labelled by
a #-configuration. For such a run ¢, we define Leaf-labels(t) as the set of #-configurations
occurring at the leaves of ¢. For a set C(Y) = {~,,...,7,} of configurations, define £(CV)) as
the set of sets of configurations

{U Leaf-labels(t;) | for each i, ¢; is a (v;, #)-run}.

=1

Note that E(C’(l)) is computable for any set of configurations C. Finally, for a set S(®) of sets
of configurations, define £(S®)) := {Jou) g ((CW).

Let Sp be the singleton 2-hyperset containing the singleton set {7y}, that is, Sy := {{70}}.
Recall, that 7 is the initial configuration. Define a sequence of 2-hypersets of configurations
by S; := ((S;_1), for all ¢ > 1. Note that, for ¢ > 0, if i is even then S; is a 2-hyperset of
#v-configurations. If 7 is odd then S; is a 2-hyperset of u#t-configurations.

Let us call a run ¢ an ¢-pass run if all its leaf configurations are either #-configurations
that are reached by computations that have visited # exactly i times. Clearly, if C(") € S;,
then there is an i-pass run ¢ of B on w such that Leaf-labels(t) = C'") and vice versa. Hence,
B accepts w iff there is an i and a C(1) € S; containing the empty set.

The protocol works as follows. Party I starts by sending S;. For ¢ > 0, when party
IT receives Sy;—1 it responds with Si;; when party I receives Ss; it responds with Sa;y;.
The parties accept whenever a 2-hyperset with the empty set is transmitted. As there are
only exp,(]A|) different 2-hypersets over A the parties can reject if the empty set was never
obtained after exp,(|4|) rounds of messages. O
Proof of Proposition 9. Let B = (Q, qo, F, 70, T') be a IN-RA. We describe the construction
of an MSO* formula ¢ which holds for an input w = wy - - - w, iff B accepts w, i.e., if B has
an accepting computation on w. First of all, ¢ guesses, for each position 7 of w, the state that
B takes after reading w;. This can be done by existentially quantifying over sets (Sq)qecq-
Next, ¢ guesses, again for each position 7, which transition B applies when it reads w;. This
is done by quantifying over sets (T;)¢c7. Now assume that there is an accepting computation
of B on w and that (S;),eq and (T%)ier are chosen accordingly. Then, for each register j, the
register content of B before reading position 7, can be determined as follows. It is the symbol
wy, where [ = max{m < i | m € T, where ¢ is of the form ¢ — (¢’, ,d)}. It is straightforward
to express this in MSO* (even in FO*). With the ability to determine register contents it is
now easy to check (again in FO*) that (Sq)4eq and (T})ier are consistent with the transition
relation of B. O
Proof of Proposition 11. Clearly, membership is in NLOGSPACE. For the hardness we use
a reduction from ordered reachability: given an ordered graph with the property that if there
is an edge from u to v then uw < v; is there a path from the first node to the last one? This
problem is hard for NLOGSPACE. Indeed, consider the following LOGSCPACE reduction from
ordinary reachability. Given a graph G with n nodes, a source s and a sink ¢, we construct
the graph G’ with vertices {(i,7) | 4,5 < n} where there is an edge from (i,j) to (i, j')
iff i/ =i+ 1 and (j,5') is an edge in G. The source and sink then are (1,s) and (n,t),
respectively. Clearly, ¢ is reachable from s in G iff (n, ) is reachable from (1, s) in G'. Further,
G’ is computable in LOGSPACE. Hence, ordered reachability is hard for NLOGSPACE. We next
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reduce the latter to the membership problem of 1N-RAs. The input to the 1N-RA is of the
form [1, abed][2,efg]...[n]. Here, [i,a1a2a3] encodes that there is an edge from ¢ to each a;.
Then the IN-RA accepts when n can be reached from 1 by following edges. Every ordered
graph can be encoded as such a list. Hence, since ordered reachability is hard for NLOGSPACE,
membership for IN-RA is. a
Proof of Proposition 12. Clearly, FO* cannot define the D-strings of even length while
even strong 1D-PAs can. An FO* sentence ¢ in prenex normal form can be evaluated in a
rather straightforward way. We use one pebble for each quantifier. Pebble 1 is used for the
outermost quantifier, the pebble with the largest number is used for the innermost quantifier.
The automaton cycles through all possible assignments of positions to the pebbles hence to
the variables. It maintains all information about equality and inequality between the symbols
at the pebble positions in its state. a
Proof of Theorem 13. We continue the proof of Theorem 13. For simplicity, we can assume
w.l.o.g. that for each universal state ¢ and (i,s, P,V), either {8 | (i,s,P,V,q) — 3} = 0
or there are two states ¢qi,¢g2 such that {8 | (i,s,P,V,q) = 8} = {(q,stay), (¢z, stay)}. It
will also be convenient to assume that @ is partitioned into disjoint @1 U ... U @y such that
states in @); “control” pebble i. Furthermore, we enumerate the states in ) such that Q =
{a0, @15 qn}, and Q1 ={qos - -+, qny }» @2 = {41, -+ na }y -+ s @k = {0y i1, 5 O -

We show first the case when A uses a single pebble, to illustrate how one encodes the
state in a configuration and how to encode the transitions. For simplicity we only consider
transitions involving constants; dealing with transitions without constants is an easy gener-
alization. In the case of only one pebble, configurations can be assimilated with pairs (g, z),
and transitions can be simplified to (s,q) — (p,d) where d € {stay,left,right}. The MSO*
formula ¢ 4 defining acceptance by A uses a different unary relation S; for each state ¢; € Q.
Namely ¢ 4 is:

pA:=VSoVSy ... VSy, (reverse-closed — Sp(1)), (3)

where reverse-closed is a sentence stating that Sp, S1,...,S,, are closed under reverse tran-
sitions of A according to the and/or semantics. Thus, @ 4 states that the initial configuration
of A is accessible in the and/or graph G 4.,. It follows that ¢ 4 holds iff A accepts w.

The formula reverse-closed is a direct representation of the transitions in A (and edges in
G A w) in MSO*. For each transition (a,q,) — 3 of A where ¢ is existential, reverse-closed
includes one conjunct. For example, if 3 = (g, right), the corresponding conjunct is

Vay((val(x) = a A suce(z,y) A S, (y)) = S (@),

where succ(x,y) is the FO* formula defining the successor relation on dom(w). If ¢, is uni-
versal, a € D, and ¢,’s transitions under a are (a,q,) = (¢, stay) and (a,q.) — (gs, stay),
reverse-closed includes the conjunct

Va((val(z) = a NS, (z) A Ss(x)) — Syu(x)).

To see that ¢ 4 holds on w iff A accepts w, it suffices to notice the similarity between (1)
and (3). For that, one needs to observe how the formula for reverse-closed in a general graph
(2) becomes the formula above when instantiated to G 4,.. For example notice that each
and-node in G 4 ,, has zero or two successors (hence the universal quantifier in (2) becomes a
conjunction).

We now extend (3) to the case when k is arbitrary. We will define a predicate reverse—closed(i),
for each i = 1,..., k, stating that S,,_,+1,.-.,Sn, are closed under reverse transitions of .A.
Then, the MSO formula equivalent to A will be ¢4 in (3), with reverse-closed replaced with
reverse-closed™ . The predicate reverse-closed”) assumes that pebbles 1,2,...,7—1 are fixed,
and their positions described by the free variables zi,...,x;_1; it also has free variables
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So0,S1,...,5n,_,. The predicate only considers moves affecting pebbles ¢,7 + 1,..., k. Parti-
tion A’s transitions into 7' = T; U ... U Ty, where T; is the set of transitions from states in
Qi~ Then7
reversed-closed? = /\ U,
TET;

For transitions 7 not lifting or placing a pebble, 1 is the same as for reverse-closed above,
except that now it also inspects the presence/absence of the previous i — 1 pebbles and tests
equality /inequality of the corresponding values with the current value. For example, for i = 3
and 7 = ((3,a,{1},{2}, ¢u) — (qu, stay)) the corresponding v, is

Va(val(z) = a Aval(z) =val(xzy) A val(z) #val(zs) AN z#x1 AN z=22 N Sy(2)
— SU(x))

In general, for a transition (¢, s, P,V,q) — 8 we use the formulas

Ep(xr,. .. x) = /\ (val(z;) = val(x;)) A /\ (val(x;) # val(xj)),
jeP jgpP
and
Yy (1,0, @) = /\ (xi = ;) A /\ (i # xj).
JjeV JEV
The new transitions are the lift-current-pebble and place-new-pebble transitions. These
determine the following conjuncts in reverse-closed " :

— for 7 = (i, s, P, V,qu) = (qu, place-new-pebble),

Yy =Vari((val(z;) =5 A Ep(xr,...,x0) A Yy(zr,...,x) A o)) = 8, (),

where (1) = VS, 1 ...VS,,,, (reverse-closed™) = S, (x;)). Note the resemblance
of Ut to (3): here ¢, acts as an initial state for pebble 7 + 1.

— for 7 = (i, s, P, V,qu) = (qu, lift-current-pebble),
Uy =V ((val(z;) =s AN Ep(xr,...,xi) N Yy(zr,...,zi) AN Sp(zi1)) = Sul(zi)).
Note that here ¢, acts as a terminal state for pebble .

This completes the proof of the translation of A into MSO*. Note that the stack discipline
imposed on the use of pebbles is essential to the construction in the proof. a

Proof of Proposition 14. Ajtai, Fagin, and Stockmeyer [3] showed that for every level of the
polynomial hierarchy (PH) there is an MSO formula over graphs such that model checking
is hard for that level. Let ¢ be an MSO formula over graphs and let G = ({1,...,n}, E)
be a graph such that determining G |= ¢ is hard for a specific level of the PH. We next
give an MSO* formula ¢* and a string w(G) for which testing w(G) = ¢* is hard for that
level of the PH. Define w(G) as the string consisting of blocks of the form #i; ...1; where
ie{l,...,n} and {i1,...,ix} = {j | G |E E(i,j)}. Further, let vertex(x) be the formula
(32")(val(z’") = # A succ(z’') = x). Then ¢* is obtained from ¢ by replacing every occurrence
of E(x,y) by

Jy' (val(y') = val(y) Az <y’ A—Fz(x < 2 Az <y Aval(z) = #).
Then inductively replace from the inside to the outside every occurrence of a subformula Iz,

Va, AX «, and VX «, by Jz(vertex(z) A «), Vo (vertex(z) — «), X (Vo' (X (2") — vertex(z)) A
a), and VX (V2'(X (2') — vertex(z)) — a).
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A configuration of a k-pebble 2A-PA consists of a state and at most k positions of the
pebbles. This takes only logarithmic space in the size of the input. Therefore, a 2A-PA can be
executed in ALOGSPACE which equals pTIME. Hardness, for instance, follows from a reduction
from AGAP [10] as defined in the proof of 13. a

Proof of Theorem 15 continued. First, we show that there is no function f such that
there is an agent which recognizes L2. Let D be a finite subset of D, containing 1 and 2,
and let u#v be an input string where u only consists of symbols from D. Let d := |D|,
my := |S1|, and ma := |S3|. We can assume w.l.o.g. that the agent always evaluates f for all
possible arguments. As there are at most d*m; many such arguments there are at most mgkml
many different “interactions” between the agent and function f. it is important here, that the
protocol is non-adaptive, i.e., the order of the questions does not matter. Let h = 2277 Let
uq,...,u, be encodings of all the h possible 2-hypersets over D — {1,2}. If d is large enough
with respect to k, my, and my then there are more 2-hypersets on D — {1,2} than different
interactions, hence there must be encodings u, v’ of 2-hypersets with H(u) # H (u') such that
the interactions on u#u and u'#u’ are the same. Hence, the agent accepts u#u if and only
if he accepts u#u’, which is a contradiction.

It remains to show how to transform a weak 1N-PA that recognizes a language L of split
strings into a protocol of the above type that recognizes L. We only have to define f and
describe how the agent works. Let A be a weak 1N-PA for L with k+ 1 pebbles and which has
Q as set of states. For simplicity, we assume that the automaton never places a new pebble
on #. To denote pebble placement, we use equivalence relations G that contain elements in
{1,...,k} with the additional property that if i + 1 € dom(G) then i € dom(G). Intuitively,
each equivalence class of G contains all the pebbles that are placed on the same position in
u. Let S1 := Q x G, where G is the class of equivalence relations as described above. Further,
Sy := P(Q) is the powerset of Q. Let v be a string over D, d := di,...,d; be a vector of k
DU {>}-values, ¢ € Q, and let G € G. Further, let u be the string (d; - - - dj)*. The definition
of f is based on a partial computation of A on uffv. We inductively place pebbles on
according to d and G as follows. If i € dom(G) is the smallest number in its equivalence class
then pebble i is placed on a position which carries symbol d;. If j < i is the smallest number
in i’s equivalence class then pebble 7 is placed on the same position as pebble j. The first
pebble not in dom(G) is put on #. Now, we simulate all possible computations of A starting
from this pebble assignment and state ¢ until they either stop or reach a configuration in
which no pebble is placed on v. The pebble assignment of the latter kind of configuration is
the same as the one the computation started from, besides that there is no pebble on #. The
function value for f is now defined as the set of all states of these configurations.

To simulate A, the agent proceeds as follows. On input u#wv it simulates all possible
computations of A. Whenever in a computation a pebble reaches # it uses f to figure out the
set of configurations that can be reached by a subcomputation which visits v. The argument
that f is asked about consists of the state ¢, the vector of data values the pebbles are on
(arbitrarily extended if less than k pebbles are placed) and an equivalence relation G which
contains ¢ if pebble i is placed; further, ¢ and j are in the same equivalence class if pebbles ¢
and j are at the same position. In this way, the agent can compute whether A accepts without
knowing v. O

Proof of Theorem 16 continued. We introduce some more notation first. Let the input
string w of length n be fixed. For I < n, let §' denote the (i + 1)-pebble assignment which
coincides with @ in the first 4 pebbles and for which #!(i + 1) = I. We write S—(#') for the set
of pairs (g, q’) of states such that there is a computation starting at [i + 1, ¢, #'] and reaching
[i +1,¢',0"] which only includes configurations [j,¢", 6] that fulfil j > i+ 1 or (j =i+ 1 and
0'(i + 1) < 1). Intuitively, this says that pebble ¢ + 1 is not allowed to move to the right of
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position . We write S_.(I) for the set of pairs (g,¢’') of states for which [i + 1,¢’,6'] can be
reached from [i + 1, ¢, #*] by a subcomputation fulfilling the same property.

Now we are ready to finish the proof of the claim. The set S—(f') can be computed as
follows. Let R— (') be the set of pairs (¢, ¢') for which one of the following conditions hold:

(a) There exist pi,ps such that [i +1,q,0'] F [i + 1,p1,0' 1], (p1,p2) € S=(8'"1), and [i +
Lp, 0 ' F[i+1,¢,0';

(b) [Z + ]-7 qvel] |_*>i+1 [Z + ]-7 qlvel];

(€) [i+1,q,07[i+1,¢,0]

It is straightforward that S—(#) is simply the transitive closure of R—(6). The information
needed for (a) can be computed in a left to right pass of pebble ¢ + 1. By induction we
can assume a subautomaton B;;; which computes, for each position [, the part of R—(8)
contributed by condition (b). Note that (¢) and the computation of the transitive closure do
not require any pebble movements. During the same pass, the automaton can compute, for
each position [, the set S_.(I). The computation of S_.(I) makes use of the sets S—(6).

From S—(6"), S—.(n) and the transition relation of A it can deduce, during a lift-pebble
step, the set S as in the claim. Note that n is the position of the right delimiter.

This completes the proof of the claim and of the theorem. O

Proof of Theorem 17. We use a reduction from Post’s Correspondence Problem (PCP)
which is well-known to be undecidable [11]. An instance of PCP is a sequence of pairs
(x1,91)s -+, (@n,Yn), where z;,y; € {a,b}* for i« = 1,...,n. This instance has a solution
if there are m € N and aq,...,a, € {1,...,n} such that za, ' Za,, = Yoy Yau, -

Suppose w.l.o.g. that the integer numbers {1,...,n} and the values a,b, &, # are in D.
Denote the latter set of symbols by Sym. The initial register assignment assigns these values to
the first n+ 5 registers. We consider input strings of the form w = u#wv, where # is a delimiter
and, u and v are strings representing a candidate solution (zqa,, ..., %a,, ;Y85 - - -, Ya,, ) for the
PCP instance in a suitable way.

To check whether such a candidate is indeed a solution, we roughly have to check whether
(1) a; = B; for each i, that is, corresponding pairs are taken; and (2) both strings are the
same, that is, corresponding positions in z,, -+ z4,, and ya, * ¥4, carry the same symbol.
To check (1) and (2), we use a double indexing system based on unique data values.

We describe the construction in more detail. Each item x,; is encoded as a string of the
form &y a; d1a1 - --dray. Here, & is a separator, ¥ € D — Sym represents j by a unique data
value, the a; are from {a, b} such that z,, = a1 - ax and the J; represent the position of a;
in x by a unique data value. To achieve uniqueness, all y- and J-symbols are allowed to occur
only once in u. Correspondingly, yg, is encoded by a string of the form &~ 3; d1a; -+ drax
such that ys, = a1 - - - ax and the corresponding conditions hold. A string u#tv is syntactically
correct if it has the properties described so far and fulfils the following two conditions.

— The y-projection of u (i.e., the string consisting of the v-entries of u) equals the ~-
projection of v.
— The §-projection of u equals the §-projection of v.

A syntactically correct string u#tv represents a solution of the PCP instance, if, for each
d, the symbol from {a, b} at the right of § is the same in u and in v.

We construct an IN-RA A that accepts an input string w if and only if it is not syntactically
correct or does not represent a solution. Hence, A accepts all inputs if and only if the PCP
instance has no solution.

A checks that one of the following conditions holds for its input string w.

1. w is of the wrong form.
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(a) w is not of the form uffv or w or v is not of the form (&vi d1ay ---Orag)*, (i €
{1,...,n}).
(b) x; # ay - --ak in some entry in u or y; # ay - - - a in some entry in v.
2. The ~v-projections are wrong.
(a) the first v in u differs from the first  in v;
(b) the last v in w differs from the last v in v;
(c) two 7’s in u are the same;
(d) two v’s in v are the same; or
(e) 71 and 72 are successors in u but not in v.
The latter three conditions involve non-deterministic guesses of the positions where the
failure takes place.
3. The §-projections are wrong. This can be done in a completely analogous fashion.
4. w does not represent a solution:
(a) The a-value for some v in u is different from the corresponding 3-value in v.
(b) The a/b-value for some ¢ in u is different from the corresponding a/b-value in v.

Clearly, w is not a solution iff one of these conditions holds. O

Proof of Theorem 20. The proof is again a reduction from PCP. We use the notation
introduced in the proof of Theorem 17. Consider the PCP instance (z1,y1),...,(Zn,Yn),
where z;,y; € {a,b}*" for i = 1,...,n. Again, we consider input strings of the form uftv,
where # is a delimiter and, u and v are strings representing a candidate solution for the PCP
instance in the same way as in the proof of Theorem 17.

The weak 1D-PA A first checks whether the input is of the desired form and then accepts
if the input encodes a solution of the PCP instance. As pebbles can only be moved to the
right, we keep the first pebble on the first position and invoke subroutines at that position
which are then performed by the other pebbles. A puts the first pebble down at the first
position and then operates as follows.

1. A checks whether v and v are of the form (&~vidiay - - dgar)* and that z; = a; -+ - ax and
Y; = ay - - - ag, respectively, for all entries in v and v. This can be achieved by one left to
right scan of the second pebble. When reaching the end of the string the pebble is simply
lifted.

2. To check that w is syntactically correct, A further verifies the following.

(a) All 4’s in u are different: A places the second pebble on the first v and scans the
other 7’s in w with the third pebble. If all are different from the first one, the second
pebble is moved to the next « and the process is repeated.

(b) Checking that all v’s in v are different is similar.

) The first v in w equals the first v in w: A puts the second pebble on the first v and

uses the third pebble to run to the first v in w.

) Checking that the last v in u equals the last v in w is similar.

(e) If v, and 72 are successors in u then they also are successors in v: this involves four
pebbles (numbered 2 to 5). The second pebble cycles through all v in . For each
such value d, the automaton proceeds as follows. The third pebble is placed on the v
right after the second pebble. The fourth pebble then cycles through the y-symbols
in v until it finds d. If d is found, the fifth pebble is placed on the v right after d and
consistency can be checked. If this check fails or d is not found in v then the input is
rejected. Otherwise the three most recent pebbles are removed.

(f) In an analogous way, it can also be verified that the 0’s form an index.

3. To check that w represents a solution of the PCP instance A proceeds as follows.

(a) A checks that when x; is picked in w the corresponding choice in v is y;. Hereto, the
second pebble cycles through all v values of u. A keeps the corresponding a-value in
the finite memory, uses the third pebble to run to the same v in v and checks whether
the B-entry of the latter conforms to the a-entry of the former.

~
a2 o
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(b) In an analogous way, A can also check that the a-values at corresponding d-entry are
the same.

This completes the description of the construction of A. It is straightforward to check that A
accepts an input if and only if it represents a solution of the PCP instance, hence the PCP
instance has a solution at all if and only if L(.A) is non-empty. O
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