
Typechecking XML Views of Relational Databases∗

Noga Alon
Tel Aviv University

noga@tau.math.ac.il

Tova Milo
Tel Aviv University

milo@tau.math.ac.il

Frank Neven†

Limburgs Universitair Centrum

frank.neven@luc.ac.be

Dan Suciu
University of Washington

suciu@cs.washington.edu

Victor Vianu‡

U.C. San Diego

vianu@cs.ucsd.edu

Abstract

Motivated by the need to export relational databases
as XML data in the context of the Web, we inves-
tigate the typechecking problem for transformations
of relational data into tree data (XML). The prob-
lem consists of statically verifying that the output of
every transformation belongs to a given output tree
language (specified for XML by a DTD), for input
databases satisfying given integrity constraints. The
typechecking problem is parameterized by the class
of formulas defining the transformation, the class of
output tree languages, and the class of integrity con-
straints. While undecidable in its most general for-
mulation, the typechecking problem has many special
cases of practical interest that turn out to be decid-
able. The main contribution of this paper is to trace
a fairly tight boundary of decidability for typechecking
in this framework. In the decidable cases we exam-
ine the complexity, and show lower and upper bounds.
We also exhibit a practically appealing restriction for
which typechecking is in ptime.

1 Introduction

Since Codd [8], databases have been modeled as
first-order relational structures and database queries
as mappings from relational structures to relational
structures. This captured well relational databases,
where both data and query answers are represented
as tables.

Today’s technology trends require us to model data
that is no longer tabular. The World Wide Web Con-
sortium has adopted a standard data exchange for-

∗Work supported in part by the U.S.-Israel Binational Sci-
ence Foundation under grant number 97-00128.

†Post-doctoral researcher of the Fund for Scientific Re-
search, Flanders.

‡This author supported in part by the National Science
Foundation under grant number IIS-9802288.

mat for the Web, called Extended Markup Language
(XML) (see [1]), in which data is represented as a
labeled ordered tree, rather than as a table. XML
is rapidly becoming the de facto data format on the
Web, and many industries (e.g. financial, manufac-
turing, health care) are migrating their application-
specific formats to XML. All major database vendors
offer now tools for exporting relational data as XML,
thus making it easier for companies to define XML
views of their relational data and share it with busi-
ness partners over the Web. An important aspect
of XML is that it allows users to define types. A
type is a tree language, and the current standards
for XML types (DTD and XML-Schema) correspond
to restricted regular tree languages. XML data ex-
change is always done in the context of a fixed type:
a community (or industry) agrees on a certain type,
and subsequently all members of the community cre-
ate XML views of their relational data that are of
that type.

In this paper we study the problem of mapping
relational data into tree data, specifically addressing
the typechecking problem. Given a mapping and a
type for the output tree, we wish to automatically
check whether every database is mapped to a tree of
the desired output type. As explained, this is a crit-
ical problem in XML data exchange. In addition, as
we show here, this problem is also technically inter-
esting and non-trivial from a theoretical perspective.

We define a language, TreeQL, expressing map-
pings from relational structures to trees. A map-
ping m in TreeQL is specified as a tree where each
node is labeled by a logical formula, possibly with
free variables, and a symbol from a finite alphabet
Σ. An ordered relational structure is mapped into a
Σ-tree whose nodes consists of all tuples that satisfy
some formula in the tree, and whose edges are defined
based on the edges in m. In the typechecking prob-
lem we are given a regular tree language, called the
output type, and a set of integrity constraints, and are

asked to check whether every input structure satisfy-
ing the constraints is mapped into a tree in the output
type. Solving the typechecking problem boils down
to checking whether the strings generated by the or-
dered sets of tuples satisfying a sequence of logical
formulas belong to some regular language. The type-
checking problem is parameterized by the fragment
of TreeQL, the class of output types, and the class of
integrity constraints.

The typechecking problem in its various instanti-
ations requires an understanding of the interaction
between logic and tree languages. We found this in-
teraction interesting, and had to develop distinct ap-
proaches for the different instances of the typecheck-
ing problem, combining techniques from finite-model
theory, language theory, and combinatorics.

It is easily seen that typechecking becomes unde-
cidable when arbitrary first-order logic (FO) formulas
are allowed in the mapping, due to a reduction from
the FO finite satisfiability problem. Hence, we fo-
cus our investigation on the particular case when the
formulas are conjunctive queries. When the output
types are further restricted to star-free regular lan-
guages, typechecking is decidable. When the output
type is an arbitrary regular expression, typecheck-
ing is still decidable for projection-free conjunctive
formulas (the proof uses a combinatorial argument
based on Ramsey’s theorem). On the other hand,
we show that even small extensions to the basic de-
cidable cases lead to undecidability of typechecking.
Thus, our results provide a fairly tight boundary of
decidability of typechecking. A side benefit is new
insight into the subtle interplay between constraints,
query languages, and output tree types.

Related work. Type inference is a well-studied
topic in functional programming languages [15]. A
type inference system consists of a set of inference
rules that can be used to check whether a function
(program) is type safe. This means that during exe-
cution the program will never get into a state where it
attempts to apply an operator to operands of wrong
types. The problem we consider here is differentWe
are checking a semantic property, namely whether ev-
ery input database is mapped to an output tree of
the right type, which is in contrast to the syntactic
nature of applying the type inference rules. In our
setting type checking rapidly becomes undecidable if
we allow the transformation language or the output
types to be too expressive. In contrast, type inference
for functional programming languages (that are Tur-
ing complete) is usually decidable for powerful type
systems but is only sound.

Our work is motivated by the practical need to
typecheck XML views from relational databases.

SilkRoute [10] is a research prototype enabling an
XML view to be defined from a relational database
using a declarative language. The language TreeQL
used in the present paper is an abstraction of the
language used by SilkRoute.

A different but related problem is that of type-
checking tree transformations. In previous work [14]
a subset of the authors studied the typechecking
problem for transformations of unranked trees ex-
pressed by k-pebble transducers, and showed that
typechecking is decidable. The unranked trees con-
sidered there are labeled over a fixed, finite alphabet
Σ. So they do not take into account the data values
present in XML documents. In subsequent work [3]
we considered trees with labels from an infinite al-
phabet, that model more closely XML trees where
internal nodes have labels from a known, fixed al-
phabet, while leaves contain data values from an in-
finite domain. We showed that typechecking quickly
becomes undecidable, even if one considers very re-
stricted transformations. However, typechecking be-
comes decidable for several restrictions on the class of
transformations and/or the tree types. While some of
the techniques in [3] are similar in flavor to those in
the present paper, there are considerable differences
in the two settings. Relational structures can be en-
coded as XML, but the integrity constraints do not
have an analog in XML. Conversely, the DTDs that
constrain XML documents cannot be expressed by
the relational constraints we consider. However, some
of the lower bound results in the present paper can
be transferred to the XML context and strengthen
results from [3]. A more detailed comparison is de-
ferred to the full version of this paper.
Organization The paper is organized as follows.
The first section develops the basic formalism, in-
cluding our abstraction of XML documents, DTDs,
and the variant of TreeQL used as transformation
language. Section 3 presents the decidability results;
Section 4 the complexity analysis; and Section 5 the
undecidability results. The paper ends with brief con-
clusions. Due to space limitations, some proofs are
only sketched or omitted entirely.

2 Basic Framework

We introduce here the basic formalism used through-
out the paper, including our abstraction of XML doc-
uments, DTDs, and the query language TreeQL.
Trees. Trees are our abstraction of XML docu-
ments [1]. They capture the nesting structure of XML
elements and their tags. We refrain from modeling
data values as they are not relevant w.r.t. typecheck-
ing. Indeed, output types only constrain the struc-

ture of the output tree not the data values at the
leaves. We consider ordered trees with node labels
from a finite alphabet Σ. We also refer to such trees
as Σ-trees. We denote by nodes(t) the set of nodes of
a tree t; for a node v, we denote by lab(v) the label of
v. There is no a priori bound on the number of chil-
dren of a node; we therefore call these trees unranked.
We denote the empty tree by ε and the set of all trees
over Σ by TΣ. By root(t), we denote the root of t.
To define the semantics of TreeQL programs we also
need the notion of a forest which is just a sequence
of trees. We employ the following notational conve-
nience. By σ(t1, . . . , tn), where t1, . . . , tn are trees,
we mean the tree where the root is labeled with σ
and the i-th subtree is ti.

Types and DTDs. DTDs and their variants pro-
vide a typing mechanism for XML documents. We
use several notions of types for trees. For C a class
of string languages over Σ, a DTD over Σ w.r.t. C is
a mapping from Σ to languages in C. We denote the
class of all such DTDs by DTD(C). Let d ∈ DTD(C).
Then, a Σ-tree t satisfies d, if for every node v
of t with children v1, . . . , vn, lab(v1) · · · lab(vn) ∈
d(lab(v)). Note that, if n = 0, then ε should be-
long to d(lab(v)). The set of trees that satisfy d is
denoted by L(d).

Obvious examples of classes C are the regular lan-
guages (REG), the star-free regular languages (SF),
and the context-free languages (CFL). When C are
the regular languages our notion of DTDs corre-
sponds closely to the DTDs proposed for XML docu-
ments. Star-free regular languages are defined by the
star-free regular expressions, which are build from
single symbols and ε, using concatenation, union, and
complement. They correspond exactly to the lan-
guages defined by first-order logic (FO) over the vo-
cabulary {<, (Oσ)σ∈Σ} where < is a binary relation
and every Oσ is a unary relation [13, 18]. A string
w = σ1 . . . σn is then represented by the logical struc-
ture ({1, . . . , n};<, (Oσ)σ∈Σ) where < is the natural
order on {1, . . . , n}, and for each i, i ∈ Oσ iff σi = σ.

We will consider an even simpler class of DTDs,
which specify cardinality constraints on the tags of
children of a node, but does not restrict their order.
Such DTDs are useful either when order is irrelevant,
or when the order of tags in the output is hard-wired
by the syntax of the query and so can be factored out.
We use a logic called SL, inspired by [16]. The syntax
of the language is as follows. For every σ ∈ Σ and nat-
ural number i, σ=i and σ≥i are atomic SL formulas;
true is also an atomic SL formula. Every atomic for-
mula is a formula and the negation, conjunction, and
disjunction of formulas are also formulas. A string w
over Σ satisfies an atomic formula σ=i if it has ex-

actly i occurrences of σ, and similarly for σ≥i. Fur-
ther, true is satisfied by every string. 1 Satisfaction
of Boolean combination of atomic formulas is defined
in the obvious way. As an example, consider the
SL formula co-producer≥1 → producer≥1. This ex-
presses the constraint that a co-producer can only oc-
cur when a producer occurs. One can check that lan-
guages expressed in SL correspond precisely to prop-
erties of structures over the vocabulary {<, (Oσ)σ∈Σ}
that can be expressed in FO without using the order
relation, <. Thus, SL forms a natural subclass of the
star-free regular expressions.

We have so far defined DTDs and several restric-
tions. We next consider an orthogonal extension of
basic DTDs, also present in more recent DTD propos-
als such as XML-Schemas [4, 5]. This is motivated
by a severe limitation of basic DTDs: their definition
of the type of a given tag depends only on the tag
itself and not on the context in which it occurs. For
example, this means that the singleton {t} where t is
the tree a(b(c), b(d)) cannot be described by a DTD,
because the “type” of the first b differs from that of
the second b. This naturally leads to an extension
of DTDs with specialization (also called decoupled
types) which, intuitively, allows defining the type of
a tag by several “cases” depending on the context.
Formally, we have:

Definition 2.1. For a class of languages C, a
specialized DTD over Σ w.r.t. C is a tuple τ =
(Σ,Σ′, d, µ) where (i) Σ and Σ′ are finite alphabets;
(ii) d is a DTD over Σ′ w.r.t. C; and (iii) µ is a
mapping from Σ′ to Σ. A tree t over Σ satisfies a
specialized DTD τ , if t ∈ µ(L(d)). We denote the set
of all such specialized DTDs by S-DTD(C).

Intuitively, Σ′ provides for some a’s in Σ a set of
specializations of a, namely those a′ ∈ Σ′ for which
µ(a′) = a. We also denote by µ the homomorphism
induced on strings and trees. Interestingly, it turns
out that the class S-DTD(REG) is precisely equiv-
alent to the class of regular tree automata over un-
ranked trees [7, 17]. This is more evidence that spe-
cialized DTDs are a robust and natural specification
mechanism.

Logic. Consider some fixed relational vocabulary S.
A database over S is just an S-structure defined in
the usual way [2, 9]. We denote the domain of a
database A by dom(A). Further, let L be a logic
over S. Then we denote the free variables occurring
in ϕ ∈ L by Free(ϕ). In the sequel, L will usually
be the set of conjunctive queries over S, denoted by

1The empty string is obtained by
∧

σ∈Σ σ=0 and the empty
set by ¬true. We, hence, use ε and ∅ as shorthands in SL
formulas.

CQ. Formally, a conjunctive query is a positive exis-
tential first-order logic formula ϕ(x1, . . . , xn) having
conjunctions as its only Boolean connective, that is,
a formula of the form ∃y1 · · · ∃ymψ(ȳ, x̄), where ψ is a
conjunction of atomic formulas over S (so, no equal-
ities). By CQ with superscripts in {=,¬} we mean
CQ where ψ can contain equality and negations of
atomic formulas, respectively. A conjunctive query
is projection-free when there are no leading existen-
tial quantifiers. Another logic frequently referred to
in the sequel consists of the FO formulas of the form
∃x̄∀ȳϕ(x̄, ȳ) with ϕ quantifier-free. We denote this
class by FO(∃∗∀∗).

In relational databases, one usually considers
databases satisfying some integrity constraints [2].
These are sentences in a specific logic. A database
A satisfies a set of constraints Φ, if A |= ϕ for ev-
ery ϕ ∈ Φ. We mainly consider constraints specified
in FO(∃∗∀∗). Note that they encompass functional
dependencies (FDs), but not, for instance, inclusion
dependencies (IDs). Recall that FDs are expressions
of the form X → Y where X and Y are sets of coor-
dinates of a relation, and X → Y holds in a relation
if whenever two tuples agree on X they also agree on
Y . IDs are of the form R[i1, . . . , ik] ⊆ S[j1, . . . , jk]
where R and S are relation symbols, and i1, . . . , ik
and j1, . . . , jk are natural numbers less than or equal
to the arity of R and S, respectively. A database sat-
isfies the above inclusion dependency iff πi1,...,ik

(R) ⊆
πj1,...,jk

(S) where π denotes projection as usual. An
inclusion dependency is unary when k = 1. A set Φ
of dependencies is cyclic iff either one of the following
holds

• Φ contains a dependency of the form R[̄i] ⊆ R[j̄]
with ī �= j̄; or

• Φ contains dependencies R1 [̄i1] ⊆ R2[j̄2],
R2 [̄i2] ⊆ R3[j̄3], . . . , Rm [̄im] ⊆ R1[j̄1].

A set of dependencies is acyclic when it is not cyclic.
We denote the class of acyclic inclusion dependencies
by AcIDs.

Finally, we recall the following technical notion.
For a finite set of variables X, an X-substitution θ
for A is a mapping from X to dom(A). Let x̄ be
variables not occurring in X and let ā be as many
elements of dom(A). Then θ ∪ {x̄ 	→ ā} denotes the
(X ∪ {x̄})-substitution that maps each xi to ai and
every y ∈ X to θ(y).
TreeQL. The transformation language we consider,
mapping databases to trees, is an abstraction of
RXL [10]. We refer to it as TreeQL. The queries
are tree patterns where nodes are labeled with label-
formula pairs. Therefore, denote by Σ × L the set of
pairs (σ, ϕ(x̄)) with σ ∈ Σ, and ϕ(x̄) a formula in L.

TreeQL programs are trees in TΣ×L. In the next def-
inition, denote by formula(v) the formula associated
to a node v.

Definition 2.2. A TreeQL(L,Σ) program is a
tree P ∈ TΣ×L such that Free(formula(v)) ⊆
Free(formula(v′)), for all nodes v and v′ where v′ is a
descendant of v; in addition, the formula in the label
of the root is equivalent to true.

If L or Σ are clear from the context or not im-
portant, we sometimes omit them. Sometimes, we
abbreviate the label (σ, true) simply by σ.

Let A be a database over S, < a total order on
dom(A), and P a TreeQL program.

Definition 2.3. The tree P (A, <) generated by P
from A and < is defined as follows. Its nodes consist
of pairs of the form (v, θ) where v is a node of P and θ
an x̄-substitution (where x̄ = Free(formula(v))) such
that A |= ϕ[θ] for every formula ϕ labeling v or label-
ing an ancestor of v in P . The root is (root(P), ())
and nodes are ordered component-wise, using the node
order in P for v and the lexicographic order < on θ.
The edges in P (A, <) are ((v, θ), (v′, θ′)) such that v′

is a child of v in P and θ′ is an extension of θ. Fi-
nally the label of a node (v, θ) is the Σ label of v in
P .

Example 2.4. Consider the TreeQL(CQ) program
P = v0(v1, v2, v3) (i.e. the tree has root node
v0 with children v1, v2, v3) and lab(v0) = (a, true),
lab(v1) = (b,R(x, y)∧R(y, x)), lab(v2) = (c,R(x, y)),
lab(v3) = (d,R(x, y)∧R(u, v)), and consider database
A in which R = {(i, j) | 0 ≤ i ≤ j ≤ 9}, and the nat-
ural order < on {0, . . . , 9}. Then P (A, <) is a tree
whose root has 10 children labeled b followed by 55
children labeled c and followed by 552 = 3025 chil-
dren labeled d.

We remark that RXL [10], the language TreeQL is
an abstraction of, also allows to output data values
occurring in the input database as labels of leaves in
XML documents. However, as we study typechecking
and output types do not constrain these data values
we chose to omit them from the formalism.

An extension: TreeQL with virtual nodes. We
will use an extension of TreeQL that allows programs
to define “temporary” nodes, called virtual, that are
eliminated in the final answer. To see why this is
useful, consider an input binary relation R providing
titles and speakers of talks (ordered alphabetically
by title). Suppose we wish to output a tree listing
under the root the ordered title/speaker pairs. This
cannot be defined by a TreeQL program, because
it cannot group the titles and speakers as required.

However, suppose we can use temporary nodes,
identified by a special label #. Consider the query
root((#, R(t, s))((title, R(s, t)), (speaker,R(s, t)))).
This produces one node labeled # for each tuple in
R, whose children are the corresponding title and
speaker. The ordered sequence of title/speaker pairs
can now be obtained by a “flattening” operation
that eliminates the # nodes and concatenates their
children.

More formally, let # be a special symbol not oc-
curring in Σ. We denote by Σ# the set Σ∪{#}. The
symbol # will be used to specify virtual nodes. De-
fine the function λ# which maps trees to forests by
eliminating #-labeled nodes, recursively as follows.
Let t be the tree σ(t1, . . . , tn). Then

λ#(t) :=
{

σ(λ#(t1), . . . , λ#(tn)) if σ �= #;
λ#(t1), . . . , λ#(tn) if σ = #.

Definition 2.5. A TreeQL(L,Σ) program P with
virtual nodes is a TreeQL(L,Σ#) program where
lab(root(P)) �∈ {#}×L. We denote the set of all such
programs by TreeQLvirt(L,Σ). The tree generated by
P from A and < is defined as λ#(P (A, <)), and de-
noted, by slight abuse of notation, also by P (A, <).

Typechecking. We next formalize the central prob-
lem of this paper.

Definition 2.6. A TreeQL program P typechecks
with respect to a set of constraints Φ and an output
type d iff P (A, <) ⊆ L(d) for every database A that
satisfies Φ and every total order < on dom(A).

Example 2.7. Continuing with Example 2.4, con-
sider the DTD defined by the mapping d :
{a, b, c, d} → REG given by:

d(a) = (b∗.(c.c)∗.(d.d)∗) | (b∗.(c.c)∗.c.(d.d)∗.d)

and d(b) = d(c) = d(d) = ε. The type says that there
are an even number of c’s and d’s or an odd number of
both under nodes labeled a. Then the TreeQL program
P in Example 2.4 typechecks w.r.t. this DTD.

The typechecking problem is parameterized by (1)
the fragment of TreeQL; (2) the output type; and (3)
the integrity constraints. Therefore, we denote by

TC[R, D, IC],

the above decision problem where R is a fragment
of TreeQL or TreeQLvirt, D is a class of output
types, and IC is a class of integrity constraints.
To reduce notation, we abbreviate TreeQL(L) and
TreeQLvirt(L) by L and Lvirt, respectively; and, we
abbreviate DTD(C) and S-DTD(C) by C and Cspec,
respectively.

Clearly, TC[L, D, IC] is undecidable for any logic
L for which satisfiability is undecidable. Indeed, for
a sentence ϕ ∈ L, consider the program result((a, ϕ))
with an output type d that maps d(result) to {ε}.
Then ϕ is satisfiable iff the program does not type-
check w.r.t. d.

In the sequel we focus on conjunctive queries,
which correspond to the widely used select-project-
join queries in SQL. As shown in Section 5, the type-
checking problem quickly becomes undecidable. Nev-
ertheless, as shown in the next section, we obtain de-
cidability and even tractability for a large class of
transformations.

3 Decidability

We present in this section our decidability results on
typechecking TreeQL queries:

(i) When restricting output DTDs to star-free lan-
guages we show that typechecking is decidable
for TreeQL(CQ=,¬) programs and integrity con-
straints in FO(∃∗∀∗). The proof gives a co-
nexptime upper bound. In Section 4, we pro-
vide the matching lower bound.

(ii) By restricting the queries to projection-free CQs
and the integrity constraints to FDs, we show
that typechecking w.r.t. DTDs with full regu-
lar expressions is decidable. The proof is based
on Ramsey theory and yields a non-elementary
upper bound. It is open whether this can be
improved.

In Section 5, we show that the above results are es-
sentially optimal: slight increase of the power of the
DTDs or the integrity constraints lead to undecidabil-
ity. However, it remains open whether in (ii) above,
the restriction to projection-free CQs is required. We
first consider star-free output types and integrity con-
straints in FO(∃∗∀∗).

Theorem 3.1. TC[CQ=,¬, SF, FO(∃∗∀∗)] is in co-
nexptime.

Proof. The decidability is shown by bounding the
size of inputs that need to be checked to detect a vio-
lation of the output DTD. Let R be a TreeQL(CQ=,¬)
program, let d ∈ DTD(SF), and let Φ be a finite set
of FO(∃∗∀∗) sentences.

We start by stating a technical lemma. Extend the
star-free regular expressions by the constructs σ=i

and σ≥i. These denote the languages {σi} and {σj |
j ≥ i}, respectively.

Lemma 3.2. Let r be a star-free regular expression.
Then r ∩ σ∗

1 · · ·σ∗
n is equivalent to a disjunction ρr

of expression of the form σ∗1i1
1 · · ·σ∗nin

n where each
∗j ∈ {=,≥} and ij ∈ N. Moreover, i1, . . . , in ≤ |r|,
the size of ρr is exponential in |r|+ n, and ρr can be
computed in time exponential in |r| + n.

Note that R does not typecheck w.r.t. d iff

• there is a path v1, . . . , vk in R where (i)
v1 is a child of the root; (ii) lab(vi) =
(σi, ϕi(x̄1, . . . , x̄i)), for i ∈ {1, . . . , k}; (iii)
vk has precisely n children with labels
(δ1, ψ1(x̄, ȳ1)), . . . , (δn, ψn(x̄, ȳn)) and in that or-
der; and

• there is an A with elements ā := ā1, . . . , āk such
that (i) A |= Φ; (ii) A |= ϕi(ā1, . . . , āi) for each
i = 1, . . . , k; and (iii) δi1

1 · · · δin
n �∈ d(σk) with

|{b̄ | A |= ψj(ā, b̄)}| = ij for all j = 1, . . . , n.

Let d(σk) be represented by the star-free regular
expression r. So, δi1

1 · · · δin
n �∈ L(r). Since for each A,

this string will be of the form δ∗1 · · · δ∗n, it suffices to
restrict attention to ¬r ∩ δ∗1 · · · δ∗n. By Lemma 3.2,
¬r ∩ δ∗1 · · · δ∗n is equivalent to a disjunction, of expo-
nential size, of expressions of the form δ∗1j1

1 · · · δ∗njn
n

where each ∗i ∈ {=,≥} and ji ≤ |r|. Let D be a
particular disjunct δ∗1j1

1 · · · δ∗njn
n such that there is a

structure A with elements ā := ā1, . . . , āk with

(1) A |= Φ and A |= ϕi(ā1, . . . , āi) for each i; and

(2) |{b̄ | A |= ψi(ā, b̄)}| ∗i ji for i = 1, . . . , n.

We next show there is a structure B of size poly-
nomial in |R| + |d| + |Φ| satisfying (1) and (2).
To see this, we introduce some notation. Sup-
pose Φ =

⋃
� ∃x̄α

� ∀ȳα
� α�(x̄α

� , ȳα
�), ϕi(x1, . . . , xi) =

∃x̄ϕ
i γi(x1, . . . , xi, x̄

ϕ
i), for each i = 1, . . . , k, and

ψi(x̄, ȳi) = ∃x̄ψ
i βi(x̄, ȳi, x̄

ψ
i), for each i = 1, . . . , n.

For each �, pick a tuple āα
� such that A |=

∀ȳα
� α�(āα

� , ȳα
�). Let E1 be the set of these elements.

Next, pick a1, . . . , an and for each i ∈ {1, . . . , k}
pick a tuple āϕ

i such that A |= γi(a1, . . . , ai, ā
ϕ
i).

Let E2 be the set of these elements. Further, for
i = 1, . . . , n, pick ji tuples b̄i and for each such tuple
pick a tuple āψ

i such that A |= βi(a1, . . . , ai, b̄i, ā
ψ
i).

Let E3 be the set of these elements. Note that the
size of E := E1 ∪ E2 ∪ E3 is at most polynomial in
|R|+ |d|+ |Φ|. Clearly, |{b̄ | A|E |= ψj(ā, b̄)}| ∗i ji for
i = 1, . . . , n. Moreover, A|E |= Φ. The latter follows
by a standard argument (see, e.g., [6]). Indeed, for
each �, (A, E1) |= ∀ȳα

� αj(x̄α
� , ȳα

�), where the elements
in E1 are taken as constants. As these resulting sen-
tences are universal, (A|E , E1) |= ∀ȳα

� α�(x̄α
� , ȳα

�) for
each �. Hence, A|E |= ∃x̄α

� ∀ȳα
� α�(x̄α

� , ȳα
�) for each �.

Then take B as A|E .
Hence, to look for a database that satisfies the dis-

junct D it suffices to guess one of exponential size.

Recall that if we find such an A, R does not type-
check w.r.t. d. The overall algorithm consists of two
stages: (i) For every node v labeled with σ and with
children (δ1, ψ1(x̄, ȳ1)), . . . , (δn, ψn(x̄, ȳn)), compute
the normal form for ¬d(σ) ∩ δ∗1 · · · δ∗n as specified in
Lemma 3.2. There is a linear number of nodes, so al-
together we need exponential time. (ii) Subsequently,
guess a path v1, . . . , vk, a disjunct D, and a structure
A such that the above holds. As described above this
can all be done in nexptime. �

The following result shows that decidability of
typechecking holds even when DTDs use full regular
languages, as long as the conjunctive queries in the
TreeQL program are restricted to be projection-free
and the constraints are FDs. The proof is non-trivial
and is based on Ramsey’s theorem. It is similar to
the proof of an analogous but harder result in [3]. A
self-contained proof will be provided in the full paper.

Theorem 3.3. TC[projection-free CQ=,¬, REG,
FD] is decidable.

It remains open whether the projection-free restric-
tion can be removed or whether the class of con-
straints can be extended.

4 Complexity

Theorem 3.1 provides an upper bound of conexp-
time on the complexity of type-checking. We show
in this section that this is tight. Our proof requires
negation and inequality in CQs. However, we show
that even without these, typechecking remains in-
tractable, more precisely dp-hard.2 Nevertheless,
by further restricting the structure of CQs and SL-
formulas we obtain a ptime algorithm for typecheck-
ing. To this end define SLr as the fragment of SL
where there are no occurrences of the form σ=i and all
occurrences of the form σ≥i are such that i ∈ {0, 1}.
We abbreviate σ≥1 simply by σ. This fragment al-
ready suffices to obtain the next lower bound.

Theorem 4.1. TC[CQ¬,=, SLr, ∅] is hard for co-
nexptime.

Proof. The proof consists of a reduction from the
satisfiability problem of FO(∃∗∀∗) sentences without
equality, which is known to be hard for nexptime
(see, e.g., [6]), to the complement of the typechecking
problem.

Let ϕ be a formula of the form
∃x1, . . . , xn∀y1, . . . , ymψ(x̄, ȳ) over the relations
R1, . . . , Rk without equality. The input database

2Recall that dp properties are of the form σ1 ∧ σ2 where
σ1 ∈ np and σ2 ∈ co-np.

for the TreeQL program consists of the relations
D1, . . . , Dn, R1, . . . , Rk. The sets D1, . . . , Dn will
be singletons and will serve as the interpretations for
the variables x1,. . . ,xn.

We have to check whether there is a database A
with a tuple d̄ such that A |= ∀ȳψ(d̄, ȳ). We test
the converse, that is A �|= ∀ȳψ(d̄, ȳ) or equivalently
A |= ∃ȳ¬ψ(d̄, ȳ). Assume that ¬ψ is of the form∨k

j=1 Lj(x̄, ȳ) where each Lj(x̄, ȳ) is a conjunction∧
C of atomic formulas and negations thereof. Thus,

each Lj is a projection-free query in CQ¬. We define
a TreeQL program as follows: the root is labeled with
‘result’ and has exactly one child labeled with

(D,
n∧

i=1

Di(xi))

giving the required interpretation to the xis. Further,
D has the following children

1. for each i = 1, . . . , n, (twoi,∃zi∃z′i(Di(zi) ∧
Di(z′i)∧zi �= z′i)), indicating that Di has at least
two elements; and

2. for each j = 1, . . . , k, (@j ,Lj(x̄, ȳ)).

The output DTD d is of the following form
d(result) := true and

d(D) :=
n∨

i=1

twoi ∨
k∨

j=1

@j .

Suppose the TreeQL program R does not typecheck.
Then at least one D and none of the twois appear.
That is, all Di are singleton sets. Let Di = {di}
for each i. Further, none of the @js appear. Hence,
A �|= ∃ȳ¬ψ(d̄, ȳ). Hence, A |= ∃x̄∀ȳψ and ϕ is sat-
isfiable. Conversely, if A is a model of ϕ and we
instantiate D1,. . . , Dn with the witnesses for the ex-
istential quantifiers then R does not typecheck for
A ∪ {D1, . . . , Dn}. �

Although it is unclear whether in Theorem 4.1,
negation or inequality can be dispensed with, we show
that in any case the complexity of the problem, even
for the standard case, remains intractable. Indeed,
one can easily reduce the containment of conjunc-
tive queries and propositional validity to typecheck-
ing. CQ�= denotes CQ with inequality.

Proposition 4.2. 1. TC[CQ, SLr,∅] is dp-hard.

2. TC[CQ �=, SLr,∅] is Πp
2-hard.

The proof of Proposition 4.2 implies that, in or-
der to have a ptime algorithm for typechecking, we

must at least restrict the queries so that testing con-
tainment is in ptime and that validity of the SLr

formulas used must be in ptime. We present one
set of restrictions that leads to a ptime typecheck-
ing test. Let CQk denote the conjunctive queries in
FOk, i.e. the set of conjunctive queries using at most
k variables. Such queries can be evaluated in com-
bined complexity ptime [11, 20]. We restrict TreeQL
programs as follows: there exists some k such that,
for each node v in the program, the conjunction of
all queries of nodes along the path from root to v is
in CQk. Furthermore, no distinct siblings v, v′ in the
query tree have labels (a, ϕ) and (a, ϕ′) for the same
a ∈ Σ. We call such a program k-bounded and denote
the set of k-bounded TreeQL programs by TreeQLk.
Finally, we also need a restriction on the SLr formu-
las used in the DTD: they are in conjunctive normal
form. We call such SLr formulas conjunctive.

Theorem 4.3. TC[CQk, conjunctive SLr, ∅] is in
ptime for TreeQLk programs.

Proof. Let R be a TreeQLk program and let d be
a DTD using conjunctive SLr formulas. We assume
w.l.o.g. that every bound variable occurs only once
and is different from any free variable. For every non-
leaf node v of R with children v1, . . . , vn, we do the
following. Let d(lab(v)) = ϕv, where ϕv = ∧i Ci

and each Ci is a disjunction of positive or negated
ai’s. Further, let γ be the conjunction of the formulas
occurring in labels along the path from root to v. The
program typechecks w.r.t. v if for every input, the
sequence of children of v in the output satisfies each
of the Ci’s. So it is enough to typecheck separately
with respect to each of the Ci’s. Each Ci is of the
form a1 ∨ . . .∨ak ∨¬b1 ∨ . . .¬bm. For each a ∈ Σ, let
ψa denote the formula associated to the unique child
of v labeled with a. There are three cases to consider:

1. k > 0 and m > 0. Then Ci is (b1 ∧ . . . ∧
bm) → (a1 ∨ . . . ∨ ak). We must check that

∃(ψb1 ∧ . . . ∧ ψbm
∧ γ)

→ ∃((ψa1 ∧ γ) ∨ . . . ∨ (ψak
∧ γ))

where the ∃ quantify all variables on the left,
resp. righthand sides. From standard conjunc-
tive query techniques it follows that the above
holds iff there exists j such that

∃(ψb1 ∧ . . . ψbm
∧ γ) → ∃(ψaj

∧ γ).

This in turn holds iff the result of evaluating the
conjunctive query ∃(ψaj

∧ γ) on the canonical
structure associated to the matrix of ∃(ψb1∧. . .∧
ψbm

∧γ) is true. Since ∃(ψaj
∧γ) is in CQk, this

can be checked in ptime.

2. m = 0. This amounts to testing that ∃((ψa1 ∧
γ)∨ . . .∨ (ψak

∧ γ)) is true on every input. This
is false on the empty input, so the program does
not typecheck.

3. k = 0. Since ∃(ψb1 ∧ . . . ∧ ψbm
∧ γ) is always

satisfiable, this never typechecks. �

5 Undecidability Results

We have seen in the previous section that
TC[CQ¬,=, SF, FO(∃∗∀∗)] is decidable. This is a
fairly tight bound. Indeed, we next show that even
minor extensions lead to undecidability. We con-
sider several extensions of the output DTDs, TreeQL
queries, and integrity constraints. Specifically, we
consider (i) specialization, (ii) virtual nodes, and
(iii) acyclic inclusion dependencies (AcID), and show
that typechecking becomes undecidable with each of
these extensions. Another parameter in the formal-
ism is the class of string languages used by DTDs.
Recall that decidability still holds if we replace SF
by REG when restricting to projection-free CQs and
omit integrity constraints. We show that this most
likely cannot be extended beyond REG: allowing de-
terministic CFLs (DCFL) in DTDs leads to undecid-
ability.

We first consider the impact of augmenting DTDs
with specialization.

Theorem 5.1. TC[projection-free CQ, SLr
spec, ∅] is

undecidable.

Proof. We use a reduction from satisfiability of
first-order logic formulas over graphs without equal-
ity, which is well known to be undecidable (see, e.g.,
[6]). The satisfiability problem is to check, given
an FO formula ψ, whether there is a non-empty
graph A such that A |= ψ. Let ϕ be the negation
of ψ. We give the reduction by example. Assume
ϕ = ∃x1∀x2∃x3δ(x1, x2, x3), where δ is quantifier-free
and in disjunctive normal form, that is, of the form∨m

i=1 Li, where each Li is of the form P i ∧
∧mi

j=1 N i
j

where P i is a conjunction of atomic formulas and each
N i

j is the negation of a single atomic formula. For a
negated atomic formula N we denote the unnegated
formula by Ñ . Recall that atomic formulas can only
be of the form E(xi, xj).

Consider the TreeQL(CQ) program R depicted in
Figure 1. By Li we denote the sequence

(P i, P i)(N i
1, Ñ

i
1) . . . (N i

mi
, Ñ i

mi
).

Recall that the first component of the pair is a label
while the second one is a formula. Intuitively, every

L1 . . . Lm

�������� ��
��������

(X3, x1 = x1 ∧ x2 = x2 ∧ x3 = x3)

(X2, x1 = x1 ∧ x2 = x2)

(X1, x1 = x1)

result

Figure 1: The TreeQL program R.

occurrence of an Xi in the output tree represents a
value assignment for the variable xi. The specialized
DTD then takes care of the quantification pattern of
ϕ. Indeed, it should verify that there is an X1-node
such that for all its X2-children there is an X3-node
that satisfies δ. To this end let Σ′ = {Yi,Xi | i ∈
{1, . . . , n}} ∪ {result}. Intuitively, whenever a node
is labeled Yi, this indicates that the path from the
root to this node can be extended to a satisfiable
path. Define d(result) := Y1 ∨ ε, d(Y1) := Y2 ∧ ¬X2,
d(Y2) := Y3, and d(X1) := d(X2) := d(X3). Here, ε
makes sure the empty graph typechecks. Finally, set
for each i, µ(Xi) := Xi and µ(Yi) := Xi. Clearly,
R typechecks w.r.t. d iff A |= ϕ for every non-empty
structure A.

One can get rid of equality in the CQ’s by intro-
ducing a relation containing all elements in the active
domain. Details omitted. �

The next result shows that typechecking becomes
undecidable when queries can use virtual nodes. The
proof is similar to the proof of Theorem 5.1 and is
omitted.

Theorem 5.2. TC[projection-free CQvirt, SF, ∅] is
undecidable.

Remark 5.3. The undecidability result in Theo-
rem 5.5 requires DTDs using SF formulas. The next
proposition shows that restricting the DTD language
to SL renders typechecking decidable, even when vir-
tual nodes are allowed.

Proposition 5.4. TC[CQ¬,=
virt, SL, FO(∃∗∀∗)] is de-

cidable. �

Next, we consider the effect of the constraints on
decidability. We show that even the usually well-
behaved unary AcIDs (which are not definable in
FO(∃∗∀∗)) render typechecking undecidable.

Theorem 5.5. TC[CQ¬,=, SLr, unary AcIDs] is un-
decidable.

Proof. We consider the fragment of FO consisting of
formulas of the form ∀xϕ(x) where ϕ is a quantifier-
free formula over the vocabulary of two unary func-
tions f and g. It is well-known that it is undecidable
whether there is a non-empty structure A such that
A |= ∀xϕ(x) (see e.g. [6]). The schema of the in-
put database consists of the two binary relations F
and G (representing the functions f and g), and a
unary relation D representing the active domain of
the structure. Using D will allow to get rid of circu-
lar dependencies.

First, we have to make sure that F and G are in-
deed functions, that their domain is D, and their
range is included in D. These are specified by the
cyclic unary inclusion dependencies

(a) F [1] ⊆ D[1] (e) D[1] ⊆ F [1]
(b) G[1] ⊆ D[1] (f) D[1] ⊆ G[1]
(c) F [2] ⊆ D[1]
(d) G[2] ⊆ D[1].

However, we will only keep the dependencies (e) and
(f): we show that (a)–(d) can be expressed by the
TreeQL program itself. We next describe this TreeQL
program in detail. We first check whether the inclu-
sion dependency (a) holds. If not we generate the
flag (a) does not hold.

((a) does not hold,∃x∃y(F (x, y) ∧ ¬D(x))).

result

The same is done for the dependencies (b)–(d). Next
we have to check whether F is indeed a function and
not a relation. For instance, both (a, b) and (a, c),
with b �= c, could belong to F . This can be detected
as follows

(wrong F ,∃x∃y∃z(F (x, y), F (x, z) ∧ y �= z)).

result

The same is done for G. In particular, if G is a re-
lation and not a function then the flag wrong G is
raised.

We test whether A �|= ∀xϕ(x), that is, A |=
∃x¬ϕ(x). We can rewrite ∃x¬ϕ(x) to

n∨
i=1

(∃x)Li,

where each Li is of the form
∧mi

j=1 Ci
j where each Ci

j

is an equality or an inequality between terms. For
instance, C1 ≡ fgx = ffx (parenthesis omitted for
clarity) or C2 ≡ fgx �= ffx. Obviously, there is a

canonical way to associate a CQ=,¬ with each C. For
instance,

ϕC1(x) = ∃y2, y3, z2, z3(G(x, y2) ∧ F (y2, y3)
∧ F (x, z2) ∧ F (z2, z3) ∧ y3 = z3),

and

ϕC2(x) = ∃y2, y3, z2, z3(G(x, y2) ∧ F (y2, y3)
∧ F (x, z2) ∧ F (z2, z3) ∧ y3 �= z3).

Further, we define ϕLi
as ϕCi

1
(x)∧ . . .∧ϕCi

mi
(x). The

just described part of the TreeQL query is then of the
form:

(L1,∃xϕL1(x)) . . . (Ln,∃xϕLn
(x)).

�������� ��
��������

result

Hence, A �|= ∀xϕ(x) whenever one of the error flags
Li is raised.

Finally, we have to make sure that D is non-empty.
Therefore we have

(D-not empty, ∃zD(z)).

result

The final TreeQL program is the concatenation of
the previous programs (that is, the concatenation of
all children under one result node). Note that a non-
empty input structure for which A |= ∀xϕ(x) simply
generates the tree result(D-not empty). The output
DTD d then maps result to D-not empty → error,
where error is the disjunction over all error flags. If
R does not typecheck w.r.t. d, then there is an A and
an ordering < such that R(A, <) �∈ L(d). By con-
struction, A is non-empty and no error flag is raised.
Therefore, A|D |= (∀x)ϕ(x). Conversely, if there is
an A such that A |= ∀xϕ(x) then for every ordering
<, R(A ∪ D,<) �∈ L(d), where D is interpreted by
the active domain of A. �

Theorem 3.3 showed that typechecking remains de-
cidable even for DTDs using full regular languages,
as long as the queries are restricted to be projection
free. As shown next, going beyond regular languages
quickly leads to undecidability.

Theorem 5.6. TC[projection-free CQ, DCFL, ∅] is
undecidable.

Proof. The proof is a reduction from Hilbert’s tenth
problem, diophantine equations, well-known to be
undecidable [12]. We consider the following variant.

For a polynomial P (x1, . . . , xn) with integer coeffi-
cients, are there positive integers i1, . . . , in such that
P (i1, . . . , in) = 0? We only give the reduction by
example. The general case is a straightforward gen-
eralization. Consider, for instance, the polynomial
2xy−x2 + 1. The input database consists of two sets
X and Y where the cardinalities of X and Y stand
for the numbers x and y, respectively. We describe
a TreeQL program that generates from X and Y se-
quences of a’s and b’s. A positive term in P generates
a’s while a negative one generates b’s. Hence, an a
stands for +1, and a b stands for −1. The output
DTD states that the number of a’s differs from the
number of b’s. This holds iff |X| and |Y | do not form a
solution to P , and the language specified by the DTD
can easily be recognized by a deterministic PDA. The
TreeQL program is a tree of depth one. For the ex-
ample polynomial, the nodes under the root are:

(a,X(x) ∧ Y (y)) · (a,X(x) ∧ Y (y))
· (b,X(x1) ∧ X(x2))
· (a, true).

Here, the first two symbols correspond to the term
2xy and generate a’s as the term is positive; similarly,
the third and the fourth symbol correspond to −x2

and +1, respectively. The output generates sequences
of a’s and b’s. The deterministic PDA accepts when
the number of a’s is different from the number of
b’s. Hence, the TreeQL program typechecks iff the
diophantine equation has no positive solution. �

6 Conclusions

We investigated the problem of typechecking XML
views of relational databases satisfying given integrity
constraints. This is a practically important problem
in the context of the Web, where relational databases
must be exported in XML form that satisfies tar-
get DTDs. The formal query language TreeQL maps
first-order relational structures to tree data, and is
a faithful abstraction of the view definition language
used in the SilkRoute prototype. The results of the
paper trace a fairly tight border of decidability for the
typechecking problem. The parameters considered
include features of the query language, of the DTDs,
and the class of integrity constraints satisfied by the
relational database. The proofs bring into play a va-
riety of techniques at the confluence of finite-model
theory, language theory, and combinatorics.

References
[1] S. Abiteboul, P. Buneman, and D. Suciu. Data on the

Web : From Relations to Semistructured Data and XML.
Morgan Kaufmann, 1999.

[2] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[3] N. Alon, T. Milo, F. Neven, D. Suciu, and V. Vianu.
XML with data values: typechecking revisited. To apper
in PODS 2001.

[4] D. Beech, S. Lawrence, M. Maloney, N. Mendelsohn, and
H. Thompson. XML schema part 1: Structures, May
1999. http://www.w3.org/TR/xmlschema-1/.

[5] P. Biron and A. Malhotra. XML
schema part 2: Datatypes, May 1999.
http://www.w3.org/TR/xmlschema-2/.

[6] E. Börger, E. Grädel, and Y. Gurevich. The classical
decision problem. Springer, 1997.

[7] A. Bruggemann-Klein, M. Murata, and D. Wood. Regular
tree languages over non-ranked alphabets, 1998.

[8] E. F. Codd. A Relational Model for Large Shared Data-
banks. Communications of the ACM, 13 (6), pp. 377-387,
1970.

[9] H.-D. Ebbinghaus and J. Flum. Finite Model Theory.
Springer, 1995.

[10] M. Fernandez, D. Suciu and W. Tan. SilkRoute: trading
between relations and XML. Proceedings of the WWW9
Conference, Amsterdam, pp. 723–746, 2000,

[11] N. Immerman. Upper and lower bounds for first-order ex-
pressibility. J. of Computer and System Sciences, vol.25,
pp. 76–98, 1982.

[12] Yuri V. Matiyasevich. Hilbert’s tenth problem. Founda-
tions of Computing Series. MIT Press, 1993.

[13] R. McNaughton and S. Papert. Counter-Free Automata.
MIT Press, 1971.

[14] T.Milo, D. Suciu, and V. Vianu. Typechecking for
XML Transformers. In Proc. ACM SIGMOD-SIGACT-
SIGART Symp. on Principles of Database Systems, pp.
11-22, 2000.

[15] John C. Mitchell. Foundations for Programmng Lan-
guages, MIT Press, 1996.

[16] F. Neven and T. Schwentick. Unordered DTDs. Unpub-
lished manuscript, 1999.

[17] Y. Papakonstantinou and V. Vianu. DTD inference for
views of XML data. In Proc. ACM SIGMOD-SIGACT-
SIGART Symp. on Principles of Database Systems, pp.
35-46, 2000.

[18] W. Thomas. Languages, automata, and logic. In Rozen-
berg and Salomaa, Handbook of Formal Languages, vol-
ume III, chapter 7. Springer, 1997.

[19] R. van der Meyden. The complexity of querying infinite
data about linearly ordered domainsJCSS, 54(1):113-135,
1997.

[20] M. Vardi. On the complexity of bounded-variable queries.
In Proc. ACM SIGMOD-SIGACT-SIGART Symp. on
Principles of Database Systems, pp. 266–276, 1995.

