Expressive and efficient pattern languages for tree-structured data
(extended abstract - revised version - Dec 21, 1999)

Frank Neven* Thomas Schwentick
Limburgs Universitair Centrum Johannes Gutenberg-Universitat Mainz
Institut fir Informatik

Abstract

It would be desirable to have a query language for tree-structured data that is (1) as easily usable
as SQL, (2) as expressive as MSO-logic, and (3) efficiently evaluable. The paper develops some ideas
in this direction. Towards (1) the specification of sets of vertices of a tree by combining conditions on
their induced subtree with conditions on their path to the root is proposed. Existing query languages
allow regular expressions (hence MSO logic) in path conditions but are limited in expressing subtree
conditions. It is shown that such query languages fall short of capturing all MSO queries. On the
other hand, allowing a certain guarded fragment of MSO-logic in the specification of subtree conditions
results in a language fulfilling (2), (3) and, arguably, (1).

“Research Assistant of the Fund for Scientific Research, Flanders.

1 Introduction

One of the reasons for the success of relational
databases is the existence of a robust and well-
behaved core query language, first-order logic,
which together with its relatives SQL and rela-
tional algebra is at the same time user-friendly,
reasonably expressive and can be evaluated rela-
tively efficient [3].

In various applications, however, data is struc-
tured less uniformly than relational data. One ex-
ample of particular importance is tree-structured
data, e.g., in the context of structured documents
or heterogeneous database environments (as mod-
eled, e.g., by semi-structured data [1, 7]). From
the more complicated structure of data there arises
the need for a more expressive query language for
which the evaluation procedures, in turn, are more
demanding. Furthermore, a query language for
tree-structured data should permit the formula-
tion of queries with tree-valued results. Most of
the work in this direction has been done in the
context of structured document queries and semi-
structured data [2]. We follow this line of research
and focus on structured documents, like for in-
stance XML documents, as the prime example of
tree-structured data. We model documents as la-
beled trees where the children of a node are or-
dered. There is no restriction on the number of
children of a vertex.

Although there is no generally accepted trans-
formation language for structured documents, sev-
eral ones have emerged during the last years, in-
cluding XML-QL [13], XSLT [11], XQL [30], specif-
ically for XML, and Lorel [4], StruQL [16], and
UnQL [8], for the semi-structured data model. Al-
most all these languages can be divided into a pat-
tern language part and a constructing part [15].
The purpose of the pattern language is to identify
the different parts of the document that have to
be combined, possibly after some more manipula-
tion, to obtain the output document. The con-
structing part indicates how the output should be
assembled. Pattern languages, therefore, form the
basic building blocks of more general query lan-
guages transforming documents into other docu-
ments. Clearly, the choice of the pattern language

can affect tremendously the expressive power of
the overall query language.

As we feel that query languages for tree-
structured data should be based on an equally ro-
bust foundation as those for relational data, we
propose monadic second-order logic (MSO) as a
benchmark for pattern languages for structured
documents. In brief, MSO is just first-order logic
(FO) extended with set quantification. An MSO
formula ¢(xy,...,z,) can readily be used to ex-
press patterns. Indeed, it just selects all tu-
ples of vertices vy,...,v, of a tree t for which
t E ¢[v,...,v,). Further, MSO is an expres-
sive and versatile logic: on trees, for instance, it
captures many robust formalisms, like regular tree
languages [35], query automata [24], finite-valued
attribute gramars [25, 23], Finally, MSO can
take the inherent order of children of vertices into
account, a desirable property for XML pattern lan-
guages [15, 31]. On the negative side, however,
MSO suffers from a severe drawback: although
MSO properties of trees can be evaluated by a lin-
ear time algorithm, if they are specified, e.g., by a
bottom-up tree automaton, the formula-evaluation
problem (i.e., when a tree and a formula are given)
is PSPACE-complete and the time of the natural
evaluation algorithm is exponential in the size of
the tree.

Before we define a fragment of MSO logic
which avoids this shortcoming, we first investigate
the expressive power of the pattern languages of
the structured document transformation languages
mentioned above.

Regular path expressions. The current lan-
guages can be naturally modeled as FO extended
with wvertical regular path expressions. The lat-
ter are the usual constructs expressing regularity
conditions on strings formed by the labels of ver-
tices on paths in the tree. To obtain the logic
FOREG, we also add horizontal regular path ex-
pressions which allow to express regularity condi-
tions on strings induced by the labels of siblings.
A natural generalization, motivated by the pattern
language of XSLT and XQL, is embodied in the
logic FOREG*. This logic is the variant of FOREG
where regular expressions can be over formulas (see

Section 3 for a formal definition). Clearly, FOREG
is a sublogic of FOREG*. By employing suitable
pebble games we show that FOREG* is strictly
more expressive than FOREG. Clearly, the major
shortcoming of FO augmented with regular path
expressions is that it can only look along paths of
the input document. We confirm this intuition by
formally proving that FOREG* cannot define the
set of all trees representing Boolean circuits evalu-
ating to true (this query can be defined in MSO).
We chose this particular query only to facilitate
our proof. We give in Section 3 an example of a

more realistic query exemplifying the same weak-
ness of FOREG*.

Guarded MSO quantification. Intuitively,
FOREG and FOREG* lack expressive power be-
cause their second-order quantification is restricted
to paths of the input tree. On the other hand,
as mentioned above, full MSO logic is not very
handy and only expensive evaluation algorithms
are known. We introduce a fragment of MSO logic
that tries to circumvent these problems as follows:
(i) we specify vertices v by combining conditions
on the path from the root to v and conditions on
the subtree rooted at v; (7i) we allow, in the spirit
of FOREG*, the use of vertical and horizontal reg-
ular expressions over formulas; and (ii1) for the
specification of subtree properties we propose a
guarded fragment of MSO-logic which allows for
an efficient evaluation algorithm.

Putting these ingredients together we end up
with a logic which can express all MSO patterns
on trees and can be evaluated in linear time in the
tree-size and exponential time in the formula size.
Furthermore, its restricted syntax admits the con-
struction of an equally well-behaved pattern lan-
guage that allows the specification of queries with-
out explicit use of (first- or second-order) variables.

Related Work. Various topics have been stud-
ied w.r.t. vertical regular path expressions: impli-
cation of path constraints [5, 9], optimization [21],
and rewriting of queries [10]. To the best of
our knowledge, the issue of ezpressiveness of FO
extended with regular path expressions has not
been addressed before. Horizontal regular path

expressions are studied before by various authors
[12, 27, 23]. Neither of these consider expressibility
issues w.r.t. these patterns.

By employing the connection between logic on
trees and automata, MSO has been successfully
implemented in the MONA project [19]. One of
the goals in this paper, however, is not to imple-
ment all of MSO but rather to find an efficient
fragment of MSO which is, with respect to tree-
structured data, equivalent to MSO.

MSO was already considered as a pattern lan-
guage by Maneth and the first author [20] to en-
hance the expressiveness of DT L' an initial for-
mal model of XSL. They did not consider efficient
versions of MSO or connections with logics with
path expressions.

Guarded fragments of first-order and fixpoint
logic have been mainly investigated w.r.t. the
explanation of decidability questions of various
modal logics [17]. Very little work has been de-
voted to the complexity of their model checking
problem. We mention Alechina and Immerman [6],
who defined a guarded transitive closure logic ad-
mitting linear time model checking. A crucial dif-
ference with the above mentioned guarded logics
is that we consider trees where children of vertices
are ordered.

Overview. In Section 2, we define our basic no-
tation for trees and logics. In Section 3, we inves-
tigate the expressive power of first-order logic aug-
mented with regular expressions. Section 4 deals
with the efficiently evaluable MSO fragment that
we propose. In Section 5, we exemplify a prototyp-
ical pattern language. Finally, Section 6 discusses
our results and suggests some topics for further
research.

2 Preliminaries

Trees. In general, tree-structured data might con-
tain entries of arbitrary types at a single vertex.
E.g., in structured documents the content of a sin-
gle vertex could be a large piece of text. Never-
theless, for many queries against such data only a
fixed number of atomic properties of each vertex

(or edge) is important.! E.g., a query might ask
whether at some vertex the word “computer” oc-
curs. The evaluation of such queries can be divided
into two steps. First, all the atomic properties of
vertices and edges are evaluated. This step can
be understood as a reduction of the original tree
to a tree which carries only vertex labels and edge
labels for all properties that are mentioned in the
query. In the second step, the non-atomic part
of the query is evaluated against this new tree. In
this paper, we focus on the second step and assume
that the evaluation of atomic properties in the first
step is always efficient. Note that this means that
the same data might be viewed as a labeled tree in
different ways, depending on the actual query.

As each vertex in a tree has (at most) one in-
coming edge it does not make a difference whether
we represent edge labels at edges or at vertices.
For convenience, we will therefore assume that la-
bels occur only at vertices. We will denote the set
of vertex labels by Y. Formally, we define trees
as rooted, directed graphs, where the children of
a node are ordered. There is no restriction on the
number of children of a node. Therefore, we refer
to such trees as unranked. A tree domain 7 over N
is a subset of N*, such that if v-i € 7, where v € N*
and 7 € N, then v € 7. Here, N denotes the set of
natural numbers. If i > 1 then alsov- (i — 1) € 7.
The empty sequence, denoted by &, represents the
root. A X-tree is a pair t = (dom(t),labs), where
dom(t) is a tree domain over N, and labyg is a func-
tion from dom(t) to X. Most of the time we say
simply tree rather than Y¥-tree. The subtree of t
rooted at v is denoted by t,. If vy,...,v, are
vertices such that no v; is an ancestor of a v; with
1 # j, then the envelope of t at vq,... ,v,, denoted
by ty, . ., is the tree obtained from t by deleting
the subtrees rooted at vy, ... ,v,, but keeping the
vertices v1,...,v,. Note that t, and t, have v in
common.

Logic. A Y-tree t can be naturally viewed as a
finite structure (in the sense of mathematical logic
[14]) over the binary relation symbols E and <,
and the unary relation symbols (O,)ycx. E is the

!We do not address in this paper the important feature
of comparisons of values of different vertices. For a discus-
sion of this point we refer to Section 6.

edge relation and equals the set of pairs (v,v - 7)
for every v,v-i € dom(t). The relation < specifies
the ordering of the children of a node, and equals
the set of pairs (v -i,v - j), where i < j and v -
j € dom(t). By S we denote the corresponding
(partial) successor relation. For each o, O, is the
set of nodes that are labeled with a . We further
make use of the binary predicate < which is always
interpreted as the transitive closure of the edge
relation. We denote by u < v that u = v or u < v,
and by u < v that u =v or u < w.

As mentioned before, Monadic second-order
logic (MSO) allows the use of set variables rang-
ing over sets of nodes of a tree, in addition to the
individual variables ranging over the nodes them-
selves as provided by first-order logic. We refer the
unfamiliar reader to [14, 35].

Queries. As argued by Fernandez, Siméon, and
Wadler [15] for the case of XML, queries on tree-
structured data consist roughly of a pattern clause
and a constructor clause. The purpose of the pat-
tern language is to identify the different parts of
the document that have to be combined to obtain
the output document. The constructing part, on
the other hand, indicates how the selected parts
should be assembled. Such queries can, for in-
stance, be written as

WHERE ©1(Z1),.-. ,9n(Zyn), CONSTRUCT result(t),
where the ¢;’s are patterns selecting vertices and t
is a tree containing at leaves special constructs like
yield(z), lab(z), subtree(z) indicating that at this
position the yield, the label, or the subtree rooted
at the matched vertex for x should be plugged in.
In this paper, we restrict attention to pattern lan-
guages.

Path formulas. We describe next, the frame-
work for regular path expressions over formulas.
It should be noted here, and will be emphasized
again in Section 3, that existing query languages
for structured documents allow regular path ex-
pressions, sometimes even also over formulas. In
the definition of path formulas, we do not specify
the exact formulas over which the regular expres-
sions are defined; they will be specified later.

e If P is aregular expression (in the usual sense)
over formulas with (at least) two free variables
s,t then [P]i’t(:v, y) is a (vertical path) formula
with free variables z,y and those occurring in
formulas of P.

e If P is a regular expression over formulas with
(at least) one free variable s then [P];”(z) is
a (horizontal path) formula with free variable
z and those occurring in formulas of P.

The semantics of such formulas is defined as fol-
lows. Let ¢ = [P]i)t(x,y) be a vertical path for-
mula and let the semantics for all formulas that
are used in P be already defined. Let t be a tree
and let v, w be vertices of t. We assume interpre-
tations for the free variables occurring in formulas
in P. Then, t = ¢[v,w], iff v < w and there is
a labeling of the edges on the path from v to w
with formulas that are used in P, such that (1)
each edge (u,u’) is labeled with a formula 0(s,t)
such that t = 0[u,], and (2) the sequence of la-
bels along the path from v to w is matched by P.
Let ¢ = [P];7(x) be a horizontal path formula and
let again the semantics for all formulas in P be
already defined. Then t |= ¢[v], iff there is a la-
beling of the children of v with formulas that are
used in P, such that (1) each child w of v is la-
beled with a formula 6(s) such that t = #[w], and
(2) the sequence of labels is matched by P. The
formula

Fy32[(s = y)(Oa(s))"Ob(s) (2 =)] (x),

for instance, says that there are children y and z
of = such that the vertex labels between y and z
are matched by a*b.

3 Pattern languages based on
regular expressions

The logic FOREG* is obtained by augment-
ing first-order logic with formulas of the forms
[P]y7 (z,y) and [P]ﬁ(x), where the formulas in P
are again FOREG* formulas. The logic FOREG
is defined similarly, but here the formulas in P
are restricted to vertex label predicates only. For

convenience, we write in regular expressions, for
instance, a*b rather than (O, (z))" Op(z).

The definition of FOREG™* is motivated by the
pattern language of XSLT and XQL that allow to
express filters, enclosed between brackets, in their
patterns. For instance, the pattern ale] [b//d]
selects all a-labeled vertices that have both an
e-labeled child and a b-labeled child that has a
d-labeled ancestor. As filter expressions can be
nested, FOREG* embodies a powerful generaliza-
tion of this concept. FOREG on the other hand,
forms an abstraction of the pattern language of
most other document transformation languages.

If regular expressions are restricted to be star-
free,? it is readily shown by induction of the
structure of FOREG* formulas that FOREG* =
FOREG = FO (recall that < is available). How-
ever, without this restriction FOREG* is strictly
more powerful.

Theorem 1. FOREG* is strictly more expressive
than FOREG.

Proof. (sketch) We encode strings over the al-
phabet {a,b} by binary trees over the alphabet
{a,b,c}. For instance, the string aba is represented
by the binary tree c¢(a, c¢(b, c(a,c))). Let Q be the
query defining the trees representing strings with
an even number of alternations from a’s to b’s.
This query is readily definable in FOREG*.

By employing suitable Ehrenfeucht games, we
show that this query is not definable in FOREG.
The intuition is that the regular expressions issued
in FOREG formulas have, essentially, no access to
the a- and b-labeled vertices: they can only check
properties of strings consisting entirely of c-labeled
vertices. More details are given in the appendix.

O

Intuitively, FOREG* and FOREG, can only look
along paths of the input document. By formally
proving that FOREG* can not define the class of
trees representing Boolean circuits evaluating to
true, we confirm the intuition that FOREG* fails
to perceive the input document as a whole.

2Star-free regular expressions are regular expressions de-
fined from the alphabet symbols, the empty string, and
the empty set, by the operators concatenation, union, and
negation.

Theorem 2. FOREG* cannot define the class of
trees representing Boolean circuits evaluating to
true.

Proof. (sketch) It is difficult to define Ehren-
feucht games for FOREG* directly. We therefore
prove a more general result. We first observe that
FOREG* can be defined in chain logic (MSQ®hain),
This logic is the restriction of MSO that only al-
lows to quantify over sets that are horizontal or
vertical chains. We then show that MSO®a" (for
which Ehrenfeucht games are known) cannot de-
fine the wanted query. Details are given in the
Appendix. O

The above query was only chosen to facilitate
the separation proof. We next give a more real-
istic presentation of the same example. Suppose
in an enterprise we have the hierarchical structure
described by the following DTD:

<!ELEMENT group (manager, group+) | employee+>
<!ELEMENT manager employee >

<!ELEMENT employee (name, eval) >

<!ELEMENT eval (good | medium | bad) >

An enterprise consists of several groups, each
group consists of a manager and a number of sub-
groups or consists of a number of employees only.
Each employee gets an evaluation on a monthly
basis. The enterprise employs the following bonus
system. A group receives a bonus if one of the
following holds: (7) its manager got a good evalu-
ation and at least one of its subgroups received a
bonus; (i) its manager got a medium evaluation
but all of its subgroups received a bonus; or (i)
the group consists of employees only and they all
got a good evaluation.

FOREG* can not define the set of all groups
that receive a bonus, although it can be defined in
MSO.

4 Expressive and efficient frag-
ments of MSO-logic

We have seen in Section 3 that allowing only path
conditions falls short of capturing MSO logic. On
the other hand, allowing arbitrary MSO formulas

would yield a complexity wise unmanagable lan-
guage.

In the rest of this paper, we restrict attention
to unary patterns. (Non-unary patterns will be
discussed in Section 6.) Intuitively, a unary pat-
tern selects a set of vertices with a certain prop-
erty from a tree. We consider it natural to spec-
ify such properties by using path formulas p(z,y)
and subtree formulas (z).
strict path and subtree formulas in a way such
that whether t |= v¥[v] only depends on t, and
whether t |= ¢[u,w]| only depends on the sub-
structure (t,,w).> The purpose of this notion is
to modularize the formulation of unary patterns.
The idea is to formulate all conditions on the sub-
tree rooted at a vertex v in subtree formulas and
to collect the necessary information about the en-
velope of v (i.e., the rest of the tree) along the path
from the root to v.

Intuitively, we re-

In brief, for path formulas we will use formulas of
the form [P]i‘t(root, x). In subtree formulas we will
allow formulas of the form (3X)(z < X AY(z, X)).
Here, + < X indicates that X only contains ver-
tices that are descendants of x.

The advantage of this modularization is two-
fold: (7) it facilitates specification of unary pat-
terns (Section 5); (44) it allows the definition of an
efficient logic equivalent to full MSO.

In this section, we introduce a logic that has
the full expressive power of MSO logic but can be
evaluated rather efficiently: in time linear in the
tree size and exponential in the formula size. We
call this fragment efficient tree logic (ETL).

This logic combines a guarded fragment of MSO
logic with horizontal and vertical path expressions.
The guarding is such that quantifiers are only al-
lowed to bind sets or vertices that are below the
currently visited vertex. This will enable an effi-
cient bottom-up evaluation for formulas.

In a first step, we will introduce a subset of ETL
that is able to evaluate properties of vertices that
only depend on the subtrees rooted at them.

We assume a countable set of set variables
X,Y,Z,Xq,Xs,... and a countable set of vertex
variables x,y, z, 1,2, We associate with each

3(tu7 w) denotes the structure consisting of t, with w as
a distinguished constant.

formula ¢ a set free(yp) of its free first-order vari-
ables and a set Free(yp) of its free second-order vari-
ables. Here, the notion of free variables is as in
MSO logic, unless otherwise stated.

The following list summarizes the formation
rules for ETL formulas.

(i) Atomic formulas are ETL formulas (recall
tha’t E(l‘ay)a r < Y, X(:C) and (OO'(:C))O'EZ
are atomic formulas).

If ¢ is an ETL formula, free(¢) = {z,y}, and
 contains at most one free set variable, then
Jy(E(z,y) A ¢) is an ETL formula.

If ¢ is an ETL formula, and free(y) = {z,y},
and ¢ contains at most one free set variable,
then Jy(r < y A ¢) is an ETL formula.

If o is an ETL formula, free(p) = {z},
Free(yp) = {X} and ¢ does not contain subfor-
mulas constructed by rule (vi),then 3X(z <
X A) is an ETL formula.

If P is a regular expression over the set of ETL
formulas with only the free vertex variable s,
then ¢ = [P];7(x) is an ETL formula with
free(v)) = {z} and Free(y)) contains the free
set variables occurring in formulas of P.

If P is aregular expression over the set of ETL
formulas with only the free variables s and ¢
then [P]i)t(x,y) is an ETL formula with free
variables x, y.

Boolean combinations of ETL formulas are
ETL formulas.

(vir)

By x < X we express that all vertices in X are
descendants of z, i.e, Vy(X(y) — = < y). Addi-
tionally, we require that each subformula ¢ fulfills
|free(¢)| < 2 and |Free(¢)| < 1. Formulas that are
constructed by one of the rules (i)-(vi) are called
basic. We call formulas without free set variables
set-closed. Note, that we do not allow vertical path
expressions within the scope of set quantification.
The reason is that otherwise we would not be able
to evaluate ETL as efficiently as desired. We study
a variant of ETL, where the occurence of vertical

path expressions is unlimited at the end of the sec-
tion.

For convenience, we assume that no variable
is quantified twice in an ETL formula. As is
usual, we use conjunction, implication and univer-
sal quantification as abbreviations.

It should also be noted that all formulas that
can be constructed by the given rules have at least
one free vertex variable. Furthermore, it is easily
seen that for each such formula ¢, each tree t and
each vertex v, it holds t = ¢[v] iff t, | ¢[v].
Hence, intuitively, such formulas can only express
properties of subtrees. We show first that ETL
formulas can define all subtree properties that can
be defined by MSO formulas.

Proposition 1. For every MSO formula ¢(z)
there is an ETL formula 1(x) such that, for every
tree t and every vertex v of t, it holds t, |= p[v]

if and only if t, = ¥[v].

Proof. (sketch) Let ¢(z) be an MSO formula.
First, it is well-known [35, 22] that there is a de-
terministic bottom-up tree automaton M, with a
distinguished set A of states, which assumes in its
unique bottom-up traversal on t a state from A at
a vertex v iff t, = p[v]. It should be noted that,
in the context of unranked trees, this automaton
makes use of several string automata which com-
pute the state of M at a vertex v from the states
of the children of v (cf. the proof of Theorem 4).
The idea of our proof, therefore, is to construct an
ETL formula v such that t, = ¢[v] if and only if
M assumes a state from A at v.

It should be noted first that the obvious MSO
formula for such a simulation is not an ETL for-
mula. This formula would guess the state of the
automaton for each vertex of the tree, by existen-
tial quantification of some set variables. The num-
ber of set variables would depend on the number
of states of M. This can not be done directly in
ETL as ETL formulas can only make use of one
set at a time.*

“We remark that the evaluation algorithm would have
the same asymptotic behaviour, if we allowed existential
quantification of several set variables as long as there is no
interaction with other quantifiers. But we are interested in
getting rid of multiple set variables to simplify the structure
of queries.

However, M can be simulated by a formula
which only quantifies (existentially) over one set
variable. The proof technique is an adaptation of
the proof of Thomas that each regular string lan-
guage can be described by an existential MSO for-
mula which quantifies only one set variable [32, 28].
The basic idea is to guess states only for a sparse
subset of the set of all vertices which is distrib-
uted evenly over the tree and to bridge the gap
between these vertices in a first-order manner. Of
course, the computations of the string automata of
M can be simulated by horizontal regular expres-
sions. More details are given in the appendix. [

We note that the formula 1 constructed in
Proposition 1 do not use any vertical path expres-
sions.

As a second step, we show that the ETL formu-
las that we are allowed to construct so far can be
evaluated efficiently.

Proposition 2. There is an algorithm which
computes, given a tree t and an ETL formula p(z),
for each vertex v of t whether t, = ¢[v] in time

O(size(t))20(s12e(¢)) |

Proof. (sketch) If ¥ is a set of formulas then
a truth assignment for ¥ is a mapping o« : ¥ —
{0,1}. We write ® for the set of set-closed subfor-
mulas of ¢ of types (i)-(v). For each set variable
X, we denote by ®(X) the set of basic subformulas
of of types (7)-(#11) and (v) with free set variable
X.

We sketch an algorithm which tests whether
t, = [v]. The basic idea is to evaluate ¢ bottom-
up. We compute, for each vertex u of t, the fol-
lowing information.

(a) a tuple b(u) = (a, A), where « is a truth as-
signment for ® and A is a set of pairs (3, 0),
where (3 is a truth assignment for ® and o will
be described below;

for each set variable X and for each truth as-
signment n for ® U ®(X), a set B, (X, u) of
pairs (7, ¥) where « is a truth assignment for

all of ®(X) and ¥ is a set® of formulas of type
(#i2) which occur within the scope of X.

We have to spend some effort to deal with
vertical path expressions. To this end, we con-
struct, for each vertical regular expression P a non-
deterministic finite automaton, Mp, which accepts
the reversal of the language defined by P. We take
the reversal because, although the regular expres-
sions describe paths top-down, we have to evaluate
them bottom-up. The construction of Mp can be
done in time linear in the time of P. In particular,
the number of states of Mp is linear in the size
of P. The o-components of the pairs (3, 0) above
map each vertical regular expression P of ¢ to a
set of states of Mp.

Intuitively, for a formula 6 € ®, b(u).«(f) should
be 1iff t, = 0[u]. A pair (3, 0) should be in b(u).A,
if there is a vertex w such that

o U< w,

e for all formulas € &, 5(¢) = 1iff t,, = Ow],
and

e for each regular expression P occurring in a
vertical expression of ¢, o(P) is the set of
states that Mp can reach if it runs on the
path from w to u.

Finally, a pair (v, ¥) should be in B, (X, u) if there
is a set C on t, such that,

e for each formula # = Jy(z < y A) in ¥
there is a strict descendant w of w, such that
ty = ¢'[C,w], where ¢’ is the formula ob-
tained from ¢ by replacing each maximal ba-
sic subformula x(z) and x2(x, X) of ¢ by
n(x1) and n(x2), respectively, z < y by 1, and
all other atomic formulas containing both x
and y by 0.9

The definition of the sets B, (X, u) deserves some
explanation. The v parts of the elements in such a
set are sufficient to evaluate formulas of types (iv).

®We do not make use of a truth assignment here to em-
phasize the fact that we are interested in formulas which
can be made true.

SRecall that there are no subformulas of type (vi) inside

.

The V¥ parts are used inductively, for the evalua-
tion of subformulas of type ¢ = Jy(z < y A p).
Intuitively, such a formula is true at a vertex u, if
there is a vertex w below u such that ¢ evaluates
to true, if x is bound to u and y is bound to w.
Hence, we need information about possible truth
assignments to formulas in ®(X) at vertices be-
low u. This information depends on the choice of
the set of vertices for X. The straightforward ap-
proach would maintain a set D consisting of sets F'
of truth assignments, such that for each choice for
X there is a set in D which consists of all truth as-
signments for vertices under this choice. Unfortu-
nately, this approach would involve objects of dou-
ble exponential size. Instead, we make use of the
fact, that each time at which we need information
about vertices below u, there is only one truth as-
signment for the z-formulas of ¢, which we have to
consider, namely the one for w. Furthermore, this
is available at the time we evaluate ¢. Next, we
sketch how all this information can be computed.
We evaluate the vertices bottom-up. For each
vertex v, the information about the subformulas
of p is also computed in a bottom-up manner with
respect to the syntax tree of . The evaluation al-
gorithm is mainly straightforward. More details
on the evaluation algorithm are given in the appen-
dix. Altogether, we compute, for each vertex u an
object of size 20012¢(¢¥)) The computation of each
of these objects can be done in (amortized) time
20(size(¢)) - Therefore, we get an overall complexity
bound of O(size(t))20617(#)) as desired. O

With the means which we have introduced so
far, ETL formulas can only evaluate properties of
vertices that only depend on the subtrees rooted at
them. To get the full power of MSO logic we need
a bit more. We first introduce a new formation
rule for ETL formulas.

(viii) If P is a regular expression over the set of ETL
formulas with free variable s but without free
set variables (and possibly the formula s = y)
then ¢y = [P];7(z) is an ETL formula with
free(y)) = {z,y} and Free(¢)) = Free(yp).

Intuitively, this new rule allows to compare in
horizontal expressions the current child of z with

y.

In the proof of Proposition 2, it is implicitly
shown that the given algorithm also can check
whether t, |= 0[v,w], for a formula #(z,y), and
vertices v and w where w is a child of v. By adapt-
ing the algorithm a little bit for the new rules (vii7)
we obtain immediately the following corollary.

Corollary 1. There is an algorithm which com-
putes, given a tree t and an ETL formula ¢(x,y),
for each vertex v of t and each child w of v
whether t, = v, w] in time O(size(t))20(5%(¢)),

We are ready to state the main result of this
section.

Theorem 3. For each MSO formula o(x) there
1s an ETL formula v which is a Boolean combina-
tion of formulas 6(z) and formulas [P]i)t(root,:v)
such that, for all trees t and all vertices v of t, it
holds t |= ¢[v] if and only if t = [v]. Further-
more, there is an algorithm which, given a tree t
and such a formula v, computes in time at most
O(size(t))20067()) the set of all vertices v, for
which t = [v].

Proof. (sketch) It is well-known that each MSO
formula ¢(z) is equivalent to a Boolean combina-
tion of formulas y(z) in which all quantification
is restricted to vertices below z (informally, these
formulas are evaluated on t,) and formulas p(z)
in which all quantification is restricted to vertices
above z (talking about the envelope of z). We
have already shown in Proposition 1 that the for-
mulas of the former kind can be replaced by ETL
formulas. Given this, is it also easy to show that
formulas of the latter kind can be replaced by ETL
formulas [P]ﬁ’t(root,).

The evaluation algorithm can be obtained by
combining the algorithms from Proposition 2 and
Corollary 1 in the following way. We compute,
for all vertices v and all formulas f(xz) whether
t, = f[v]. Likewise, we compute, for all subfor-
mulas o(s,t) that are used in expressions P of
[P]i’t(root, x), and for all vertices v and children w
of v, whether t, |= o[v,w|. Finally, we compute,
in a top-down manner, for all vertices v the set of
expressions P, for which t |= [P]ivt(root,v). This
is done by simulating the top-down automata M},

for the expressions P inductively along all paths
from the root. O

For efficiency reasons we disallowed in ETL for-
mulas the use of vertical expressions within the
scope of second order quantification. The follow-
ing proposition shows that the complexity of eval-
uating formulas without this restriction is still fea-
sible. It is quadratic exponential in the size of the
formula unlike linear exponential as in the case of
ETL formulas.

Proposition 3. Formulas that are constructed by
the rules for ETL formulas with rule (iv) replaced

by

(v’) If ¢ is an ETL formula, free(p) = {z} and
Free(p) = {X} then 3X(x < X A p) is an
ETL formula.

can be evaluated in time O(size(t))QO(sm(‘P)Q).

Proof. (sketch) We only have to adapt the algo-
rithm of Proposition 2. It has to be extended for
the case of vertical expressions within the scope
of set quantification. The algorithm uses sets
B, (X, u) with extended entries as compared with
the algorithm of Proposition 2. Let X be a set
variable used in formula ¢ and let Py,..., P, be
the vertical path expressions inside the scope of
the quantification of X. The entries in B, (X, u)
are of the form (v, ¥), where v is as before and
U is a set of tuples (0, ¢y1,...,¢,S1,...,S;) where
each ¢; has value 0 or 1, each S; is a set of states
of the nondeterministic automaton associated with
P;, and 0 € ®(X) is of type (i17). Each 6 oc-
curs at most once in a tuple of a set ¥. An entry
(0,¢1,...,¢,S1,-..,S5;) should be in W if (for fixed
C, n and u) there is a strict descendant w of u such
that

o t, = ¢'[C,w], where § = Jy(z < y A1), ¥ is
the formula obtained from 1 by replacing each
maximal basic subformula y(x) and y»(z, X)
of ¥ by n(x1) and n(x2), respectively, each
maximal vertical path expression [Pi]ivt(x,y)
by ¢;, each x < y by 1, and all other atomic
formulas containing both x and y by 0, and

e for each ¢ <[, S; is the set of states that the
automaton associated with P; can reach after
traversing the path from w to u.

The maintenance of this additional information is
straightforward. For the complexity, it should be
pointed out that each set entry (0, ¢y,... ¢, St,
...,5;) in a set ¥ can be encoded by a string of
length O(size(y)). This is because the overall num-
ber of states in automata associated with path ex-
pressions is O(size(y)). As, furthermore, each 6
occurs at most once in ¥, a set ¥ can be encoded
by a string of length O(size(¢)?). Therefore, there
are at most 206i2e(#)*) different sets B, (X,u). O

5 Towards a powerful pattern
language for tree-structured
data

We have just seen in Section 4 that each unary
MSO pattern can be expressed by a formula which
is a Boolean combination of ETL subtree formulas
¢(z) and ETL path formulas 9 (z,y).
tioned before, we believe that this kind of modu-
larization simplifies the formulation of queries.

Nevertheless, it seems unlikely that a pattern
language will be considered usable if patterns have
to be formulated as logic formulas. However, the
very structure of ETL formulas suggests a further
step into the direction of a user-friendly pattern
language. The reader should verify that, infor-
mally, at each position in an ETL formula one can
talk about at most three objects, two vertices and
one set.

Although these syntactic restrictions where in-
troduced with the goal of efficient evaluation in
mind, they can also be exploited to simplify the
formulation of queries, in that they make it un-
necessary to talk in a pattern explicitly about vari-
ables.

To illustrate how a pattern language that uses
these concepts could look like we give here an ex-
ample of a pattern formulated in a style that is
reminiscent of SQL. Of course, a lot of work has
to be done to develop a real usable pattern lan-
guage from this initial idea.

As men-

The following example shows how the query de-
scribed in Section 3 which selects all “good” groups
in an enterprise could be formulated in such a lan-
guage. Recall that this query cannot be expressed

by using path expressions only. Furthermore, it
should be noted that it is almost a one-to-one
translation of the natural description of the query
given in Section 3.

SELECT ALL VERTICES WHERE
PATH IS (.* group)
AND
HAS TREE IN WHICH
ALL VERTICES FULFILL
IS NOT IN TREE
OR
(PATH IS (.* group)
AND
([(HAS VERTEX WHICH FULFILLS
PATH IS manager.employee
.eval.good)

€D

(2)

(%)

AND
(HAS VERTEX WHICH FULFILLS
PATH IS group
AND
IS IN TREE)]

(%)

OR
[(HAS VERTEX WHICH FULFILLS
PATH IS manager.employee
.eval.medium)

(%)

AND
(ALL VERTICES FULFILL
NOT PATH IS group

OR
IS IN TREE)]

(%)

OR
[ALL VERTICES FULFILL
PATH IS employee.*
AND
(NOT PATH is employee
OR
HAS VERTEX WHICH FULFILLS
PATH IS eval.good)]

(%)

The semantics of “PATH IS ... ” is relative to
its context: the start of the path is always the sec-
ond to last mentioned vertex, the end of the path
corresponds to the last vertex mentioned. For in-
stance, in (*) the start vertex is the one defined
by the ALL VERTICES FULFILL statement. In (1)
and (2), the start vertices are the root of the input
tree and the root of the quantified tree, respec-
tively. An expression .* stands for an arbitrary
sequence of labels.

It remains to explain the statement HAS
SUBTREE. Let v be a vertex of the input tree t. Note

that any set X containing v can be seen as a tree.
Indeed, there is an edge from u to w in this tree, if
u < w, both 4 and w belong to X, and no vertex
on the path from u to w is in X. Hence, with the
statement HAS SUBTREE, we we state the existence
of such a tree rooted at the vertex v quantified in
the SELECT ALL VERTICES statement.

We again emphasize that, although the state-
ment in the example clearly has a flavor of quan-
tification, it has a somewhat simple structure as
there are no interactions between variables that
are quantified at faraway places, as it might hap-
pen in a general MSO formula.

6 Discussion

Our results should be considered as first steps in a
whole research program whose goal it is to define
a pattern language for tree-structured data that
is (1) easy to use, (2) as expressive as MSO-logic,
and (3) efficiently evaluable.

Although we concentrated on unary queries in
this paper the results can be extended to other
kinds of queries. E.g., to allow queries with a k-
ary relation as result we could allow the use of
variables y,...,z; and evaluate formulas as fol-
lows. For each (k — 1)-tuple of vertices bound to
xa,...,x we could call the evaluation algorithm
for the free variable 1 while interpreting the ver-
tices of the (k — 1)-tuple as labeled with new spe-
cial labels. This readily results in an evaluation al-
gorithm with time bound (size(t))*20(7e(¥) To
specify such queries in the modular spirit we pro-
posed there is still some work to do. We expect
that queries should allow to take least common
ancestors of vertices into account.

We plan to consider the following two impor-
tant generalizations: (i) incorporating value com-
parisons (that is, joins); and (i7) extending ETL
to a language over directed graphs.

As a final remark, we mention that Thomas has
studied MSO®hain extensively on ranked trees [33,
34]. From his results it already follows that
MSO¢hain is strictly weaker than MSO (Theo-
rem 2). However, although the query he employs
(define those trees with an even number of a-
labeled leaves) suffices to separate MSO@® from

10

MSO, our separation result motivated us to look at
quantification over trees to be added to FOREG*
to capture MSO. Indeed, to define the query of
Theorem 2, it suffices to define a witness subtree
of the input tree that contains only vertices evalu-
ating to true and which contains the root. Define,
therefore, TFOY®" as the fragment of MSO allow-
ing only quantification restricted to, not necessar-
ily strict, but pure subtrees augmented with the
vertical regular path expressions of FOREG. Here,
a set of vertices is a pure pure tree when its in-
duced subgraph is a tree. Consider, for instance,
the tree a(bb(ccc)). Then {2,21,23} (the second
b together with the first and the last ¢) is a pure
tree, while {e,21,23} (the previous set with the b
replaced by the a) is not. We then obtain that FO
extended with these two more intuitive constructs
captures MSO. A proof of the following theorem is
outlined in the Appendix.

Theorem 4. For every MSO formula p(Z) there
exists an equivalent TFO" formula ().

We can define a variant of ETL only allowing
quantification over pure subtrees which would still
be equivalent to MSO but whose complexity would
be double exponential in the formula size.

Acknowledgement

We thank Francois Bry, Martin Otto, Jan Van den
Bussche, and Wolfgang Thomas for helpful discus-
sions. Helmut Seidl pointed us to filter expressions
in XSLT and Michael Benedict brought [15] to our
attention.

References

[1] S. Abiteboul. Querying semi-structured data. In Proc.
ICDT Conf., 1997.

S. Abiteboul, P. Buneman, and D. Suciu. Data on
the Web : From Relations to Semistructured Data and
XML. Morgan Kaufmann, 1999.

S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley, 1995.

S. Abiteboul, D. Quass, J. McHugh, J. Widom, and
J. L. Wiener. The lorel query language for semistruc-
tured data. International Journal on Digital Libraries,
1(1):68-88, 1997.

[2]

11

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]
[20]

[21]

[22]

23]

S. Abiteboul and V. Vianu. Regular path queries with
constraints. In Proc. PODS Conf., 1997.

N. Alechina and N. Immerman. Efficient fragment of
transitive closure logic. Unpublished, 1999.

P. Buneman. Semistructured data. In Proc. PODS

Conf., 1997.
P. Buneman, S. Davidson, G. G. Hillebrand, and

D.Suciu. A query language and optimization tech-
niques for unstructured data. In Proc. SIGMOD
Conf., 1996.

P. Buneman, W. Fan, and S. Weinstein. Path con-
straints on semistructured and structured data. In

Proc. PODS Conf., 1998.
D. Calvanese, D. G. Giacomo, M. Lenzerini, and M. Y.

Vardi. Rewriting of regular expressions and regular

path queries. In Proc. PODS Conf., 1999.

J. Clark. XSL transformations version 1.0.
http://www.w3.org/TR/WD-xslt, august 1999.

S. Cluet, C. Delobel, J. Siméon, and K. Smaga. Your
mediators need data conversion! In Proc. SIGMOD
Conf., 1998.

A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and
D. Suciu. XML-QL: a query language for XML. In
Proc. WWW8 Conf., 1999.

H.-D. Ebbinghaus and J. Flum. Finite Model Theory.
Springer, 1995.

M. Fernandez, and P. Wadler, edi-
tors. XML Query languages: Ezxperiences and
Ezemplars, 1999. http://www-db.research.bell-
labs.com/user/simeon/xquery.html.

M. F. Fernandez, D. Florescu, J. Kang, A. Y. Levy,
and D. Suciu. Catching the boat with strudel: Expe-
riences with a web-site management system. In Proc.

SIGMOD Conf., 1998.

E. Gradel. Why are modal logics so robustly decid-
able? Bulletin of the European Association for Theo-
retical Computer Science, 68:90-103, 1999.

J. Siméon,

N. Immerman.
1998.

N. Klarlund. Mona & Fido: The logic-automaton con-
nection in practice. In Proc. CSL Conf., 1998.

Descriptive Complezity. Springer,

S. Maneth and F. Neven. A formalization of tree trans-

formations in XSL. In Proc. DBPL Conf., 1999.

A. O. Mendelzon and P. T. Wood. Finding regular
simple paths in graph databases. STAM Journal on
Computing, 24(6):1235-1258, 1995.

F. Neven. Design and Analysis of Query Languages
for Structured Documents — A Formal and Logical
Approach. Doctor’s thesis, Limburgs Universitair Cen-
trum (LUC), 1999.

F. Neven. Extensions of attribute grammars for struc-
tured document queries. In Proc. DBPL Conf., 1999.

[24]

[25]

[26]
[27]

[28]

[29]

[33]
[34]

[35]

[36]

F. Neven and T. Schwentick. Query automata. In

Proc. PODS Conf., 1999.

F. Neven and J. Van den Bussche. Expressiveness
of structured document query languages based on at-

tribute grammars. In Proc. PODS Conf., 1998.

J. Nurmonen. Counting modulo quantifiers on finite

linearly ordered trees. In Proc. LICS Conf., 1996.

Y. Papakonstantinou and V. Vianu. DTD inference
for views of XML data. Submitted, 1999.

A. Potthoff. Logische Klassifizierung requlirer Baum-
sprachen. Doctor’s thesis, Institut f’ur Informatik u.
Prakt. Math., Universit”at Kiel, 1994.

A. Potthoff and W. Thomas. Regular tree languages
without unary symbols are star-free. In Proc. FCT
Conf., 1993.

J. Robie. The design of XQL.
http://www.texcel.no/whitepapers/xql-design.html,
1999.

D. Suciu. Semistructured data and XML. In Proc.
FODO Conf., 1998.

W. Thomas. Classifying regular events in symbolic
logic. Journal of Computer and System Sciences,
25(3):360-376, 1982.

W. Thomas. Logical aspects in the study of tree lan-
guages. In Proc. CAAP Conf., 1984.

W. Thomas. On chain logic, path logic, and first-order
logic over infinite trees. In Proc. LICS Conf., 1987.

W. Thomas. Languages, automata, and logic. In
G. Rozenberg and A. Salomaa, editors, Handbook of
Formal Languages, volume 3, chapter 7. Springer,
1997.

J. Ullman. Principles of Database and Knowledge-
Base Systems, volume I and II. Computer Science
Press, 1988.

12

Appendix

Ehrenfeucht games. In the the proofs of Theorem 1 and Theorem 2 we use variations of the k-round
MSO game which we will define next. For a sequence of vertices v of a tree t, and a sequence of sets
of vertices T of t, we write (t,7,7T) to denote the finite structure that consists of t, the sets T, and
the distinguished vertices v. Let t; and to be two trees, v; a sequence of vertices of t1, v a sequence
of vertices of to, T'; a sequence of sets of vertices of t;, T a sequence of sets of vertices of t», and &
a natural number. We write (t1,v,) =M59 (ta, 0, T2) and say that (t1,v1,7;) and (t2,02,T2) are
k-equivalent, if for each MSO sentence ¢ of quantifier depth at most & it holds

(t1,71,,T1) E o & (t2,72,T2) E .

That is, (t1,71,71) and (t2,72,T2) cannot be distinguished by MSO sentences of quantifier depth
(at most) k. It follows from the definition that =}5° is an equivalence relation. Moreover, k-
equivalence can be nicely characterized by Ehrenfeucht games. The k-round MSO game on two struc-
tures (t1,71,71) and (to, T2, T'3) is played by two players, the spoiler and the duplicator, in the following
way. In each of the k rounds the spoiler decides whether he makes a point move or a set move. If the
i-th move is a point move, then the spoiler selects a vertex u; € dom(t;) or w; € dom(ty), and the
duplicator answers with an element of the other structure. If the i-th move is a set move, then the
spoiler selects a subset P; C dom(t;) or @; C dom(ts), and the duplicator chooses a set of the other
structure. After k-rounds, there are elements uq,... ,u; and wy,...,w; that were chosen in the point
moves in dom(t;) and dom(t;), respectively, and there are sets Py,..., P, and Q1,... ,Q, that were
chosen in the set moves in dom(t;) and dom(ts), respectively. The duplicator wins the game if the
mapping which maps u; to w; is a partial isomorphism from (t,v;,71, P) to (t2, 02, T2, Q).

Proposition 4. The duplicator has a winning strategy in the k-round MSO game on (t1,01,T1) and
(t2)627T2) Zﬁ (tl,i_)l,Tl) E]];JSO (t27527T2)-

The k-round FO game is the k-round MSO game restricted to point moves only.

Proof of Theorem 1. (continued) The query Q can be expressed in FOREG* as follows. Let ¢, ()
and gy (z) be FO formulas saying that the first child of x is labeled by a and b, respectively. Then, the
formula

(Fy)(3z)(root(y) A 2ndlast(z) A vert,.(y, z)),
defines Q, where 7 is the regular expression’

(PaPaPbPs PaPatPr),

and root(y) and 2ndlast(z) define y and z as the root and the second to last c-labeled vertex, respec-
tively.

It remains to show, that Q cannot be defined in FOREG. Suppose £ is an FOREG sentence defining
Q. Let k be its quantifier depth and let R be the (finite) set of regular expressions mentioned in £. We
can make some simplifying assumptions on &:

1. & contains no horizontal path formula: we only consider binary trees; and

2. all regular expressions used in & are of the form (c?)*: (i) due to the labeling of the trees we can
get rid of all a’s and b’s in regular expressions and (7i) regular expressions over unary alphabets
are ultimately periodic.

"For clarity we suppressed (z) in g ().

13

Therefore, suppose R = {(c%)*,... (c%)*}. Now define d := d; x dy x --- x d,,. It can be shown
that for all FOREG formulas ¢ of quantifier-dept at most & which use only regular expressions from
R, t = ¢ iff s = ¢, whenever the spoiler has a winning strategy in the k-round FO game on t and s
that satisfies the additional requirements:

1. The spoiler can only pick vertices labeled with ¢’s. However, if the spoiler picks such a vertex
whose first child is labeled with, say, an a, then the duplicator is forced to answer with a vertex
whose first child is labeled with an a.

2. After the play, the picked vertices should induce a partial isomorphism from t to s (also taking <
into account), and, for all picked vertices u; and usy in t, and the corresponding vertices v; and v
in s it holds that: if u; < uy then |path(ui,us)| = |path(vy,vs)| (mod d).2

We will play the just mentioned game on the trees t and s representing the strings
(azbe)zk ‘bl and (aebe)zk a”b”,

respectively, where ¢ = 2¢d**!. Note that t satisfies Q, while s does not. We divide t and s into
components as follows: we write t as oy ... a9k 5 and s as 3 ... By Where each q; is a'b’ and

8, = a'd® ifie{1,...,2"}; and
Tl a2t otherwise.

We now have enough terminology to outline the main idea of the winning strategy of the duplicator.
Suppose the spoiler picks a vertex in some «;. The duplicator then first determines in which compo-
nent 3; he will pick a vertex. Therefore, we consider the ordinary k-round FO game on the strings
ap - ageyq and [Bor o, where we view each « and 3 as the same symbol. As the length of both
strings is larger than 2F, it is well-known that the spoiler cannot distinguish both strings [18]. So
the duplicator has a winning strategy in the latter game. Let 3; be the component with which the
duplicator answers the choice of ;. We still have to determine which vertex in 3; has to be picked.
We have to distinguish two cases:

1. If both «; and 3; are a’b’, then the duplicator answers with exactly the same vertex in Bj.

2. If a; is a®b? and Bj is a’d’, then the duplicator plays according to a strategy developed by
Nurmonen [26] for FO with modular counting.

A bit of care is required by putting all pieces together as (i) t and s consist of a different number
of components; and (i7) the query Q is definable in FO with modular counting (indeed, just check
whether the set of b’s preceded by an a is even). O

Proof of Theorem 2. (continued) The syntax of MSO®? is the same as for MSO. The only difference
is that quantified set variables can only be interpreted by chains which are defined as follows. For a tree
t and a set of nodes T', we say that T' is a chain when one of the following holds: (7) for all u,v € T,
u=<vorv=u;or (i) for all u,v € T, u < v or v < u. We call the former a vertical chain, and the
latter a horizontal chain.

Using the known fact that regular string languages are definable in MSO (and hence in MSO¢h#in),
one can show by an easy induction on the structure of FOREG* formulas that FOREG*C MSQ¢chain

8 path(u1, us)| denotes the length of the path from w1 to us (both vertices included).

14

We now show that the wanted query cannot be defined in MSO®™ We use the alphabet ¥ =
{AND, OR,0,1} and only consider trees where inner vertices are labeled with AND and OR, and
leaves are labeled with 0 and 1. W.l.o.g, we can reduce the vocabulary to F, <, and (Oy),cx. Assume
towards a contradiction that there is an MSO®®" formula ¢ of quantifier depth & defining the set
of trees representing Boolean circuits evaluating to true. We will use the k-round MSOa® game.
This game is defined as the k-round MSO game where set moves are restricted to horizontal and
vertical chains only. We play the game on the trees AND(0, r, h) and AND(1,r, k), and OR(0,r, h) and
OR(1,7,h) defined as follows. For all » > 0 and 7 € {0, 1}, define AND(¢,7,0) = OR(4,7,0) = 4. For all
r >0 and h > 1, define

AND(0,r,h) = AND(OR(L,rh—1)",0R(0,r,h — 1),0R(1,r,h — 1)),
OR(0,r,h) := OR(AND(0,r,h — 1)*2r+1)]

AND(L,7,h) = AND(OR(1,rh— 1)*2"+1), and

OR(1,r,h) = OR(AND(0,r,h —1)*",AND(1,7,h — 1), AND(0,, h — 1)*7).

Here, for a tree t, t** denotes the sequence t,... ,t (i times). We start with some observations
concerning these trees. All internal vertices have exactly 2r + 1 children; all vertices of the same height
are labeled with the same label; and the labels of the levels alternate between AND and OR. The root
of each AND(i,r,h) is labeled with AND, while the root of each OR(i,r, h) is labeled with OR. All
trees AND(0, ¢, h) and OR(0, ¢, h) evaluate to 0, while all trees AND(1, ¢, h) and OR(1, ¢, h) evaluate
to 1. We refer to the former as 0-trees and to the latter as 1-trees.

Clearly, for all » and h, the trees AND(0,r,h) and AND(1,r,h), and the trees OR(0,r, h) and
OR(1,r,h) are isomorphic if the labels of vertices are not taken into account. Let m denote this
isomorphism (it will always be clear from the context whether we consider AND or OR trees and
what the values of r and h are). We can say even more: the trees OR(0,r,h) and OR(1,r,h), and
AND(0,r,h) and AND(1,r, h) are identical apart from the label of one leaf. That is, there is only one
vertex that distinguishes these trees. We introduce a special name for the vertices on the path from
the root to this leaf: we call them special vertices. We invite the reader to check that subtrees rooted
at special vertices in OR(0,r, h) and AND(0, ¢, h) are O-trees while they are 1-trees in OR(1,r, h) and
AND(1,r,h).

Before we prove the main lemma, we state, without proof, a helpful lemma on strings for which we
use the vocabulary consisting of the linear ordering < and the symbol O, only.

Lemma 1. 1. Let o be an arbitrary symbol. For each k > 0, there are ki,ky > 1 with ko > k1 such
that o1 E}CMSO okz,

2. Further, let f == ky — k1. Then
(0% 24k + 1+ ko + 1+ f, {ka +13) =0 (024 by + 1,y + 1, {k +1}).

The result now follows from the next lemma. Stated as such, the lemma is too strong as we only
need to show, for instance, that OR(0, k2, h) =318 OR(1, k2, h). However, we need the distinguished
constant and the distinguished set in the inductive proof.

Lemma 2. Forallk > 1, h > 2k, and k1 and ks satisfying the conditions of Lemma 1(1), the duplicator
wins the k-round MSO™™ game on

(OR(0, ko, h),e,{c}) and (OR(1, ko, h),e,{c}),
and on

(AND(0, ko, h),e,{c}) and (AND(1, ko, h),e,{c}).

15

Proof. (sketch) The proof proceeds by induction on k and clearly holds for k£ = 1. Therefore, assume
k > 1. We only discuss moves of the spoiler in t. We start with point moves. Suppose the spoiler picks
a vertex u in t. We denote the special vertex in t of height 2k — 1 by ¢ and 7(c) by d. We distinguish
two cases.

e u does not occur in t.. Then define v as m(u). It suffices to show that the duplicator wins the
(k — 1)-round MSO®@" games on (t., ¢, u, {¢}) and (8,d,v,{c}), and on (t.,e) and (sq4,). The
duplicator wins the first game as both structures are isomorphic; he wins the latter game by
induction.

e Suppose u occurs in the subtree t.. We abuse notation. When we say (t.,u) then we mean the
tree t. with the distinguished vertex in t. that corresponds to u in t. Let f := ko — k1. Observe
that the trees rooted at ¢ and ¢+ f are both AND(0, k2, 2k — 1) trees, and that the trees rooted
at d — f and at d are an AND(0, ko,2k — 1) and an AND(1, ko, 2k — 1) tree, respectively. We are
going to fool the spoiler by mapping t. to s;_y and t.y s to sq. Define v as the vertex in s;_g
occurring in sy on the same position as u occurs in t.. It suffices to show that the duplicator
wins the (k—1)-round MSO® games on (t.,,u) and (S4_f,€,v), on (teif,€) and (s4,), and on
(teetr,c e+ f,{e}) and (84=7.q,d— f,d, {e}). The duplicator wins the first game as both structures
are isomorphic; he wins the second game by induction. By using Lemma 1 it can be shown that
the duplicator wins the last game.

We briefly discuss set moves. Suppose the spoiler picks a horizontal chain 7" in t. Then we have to
distinguish two cases: (i) T occurs in t.; and (i) T occurs in t.. In the first case we color 87 with 7(T")
and continue playing on the parts above ¢ and d, and below ¢ and d. In the second case we again apply
the above mentioned switching trick. If the spoiler picks a vertical chain 7 in t, then we essentially
have to make the same case distinction. O

This concludes the proof of the theorem. O

Proof of Proposition 1.

(continued) Let ¢i,...,q be the states of M, let A denote the set of accepting states, and set
k:=2l+ 1. The ETL formula which we construct is of the form 3X (z < X A). Intuitively, a set W
which makes ¥[W, v] true should serve two purposes.

First, it should distinguish all vertices of t that have a depth which is a multiple of k. This is done
by putting the right most child of each such vertex into W. Second, it should encode the states of M
(of these vertices). This is done in two ways, depending on the degree of a vertex v. If v has large
degree (> [) then the state g; of M at v is indicated by putting the i-th child (from left-to-right) of v
into W. If v has small degree then its state is only encoded into W if its depth is a multiple of k. In
this case, to encode state ¢;, all right most children of vertices which are i levels below v are put into
W. If v has small height then the state is not encoded at all.

We call W the correct set for the computation of M of ¢ if it has these two properties. We say that
W accepts v if, for some accepting state g; of M, either the i-th child of v is in W or the right most
child of every vertex ¢ levels below v is in W. If ¢ is a tree of depth greater or equal to [then t is
accepted by M iff it has an accepting set W. Trees of smaller depth are handled separately, in a similar
way.

It remains to show that there is an ETL formula #(X) which checks that a set W is correct and
accepts v. The construction of 6 is straightforward but tedious.

Basically, 6 is the conjunction of three subformulas.

e The first subformula #; checks that the “syntax” of W is ok. lL.e.,

16

— all right most children of vertices at levels that are multiples of k£ are in W

— if w is a vertex at a level kj of small degree then, for some j < [, all right most children of
the vertices ¢ levels below of w are in W; Between w and the vertices k levels below w there
are no other vertices the right most child of which is in W

— If w is a vertex of large degree then exactly one of its first [children is in W.

e The second subformula 5 checks that W is consistent; Note that, if W is syntactically correct
then on each path which goes down from a vertex w there exists a vertex which is at most k levels
below w the state of which is indicated by W (or the length of the path is at most 2[); For each
state ¢ of M, we construct a subformula 1, () which computes the state of a vertex v from the
states of vertices below w that are encoded into WW. The formula 6> checks whether, for each w
the truth values 1),(v) are consistent with the encoded state for w.

e Finally, 03 checks that the state at v is accepting.

Note that we use horizontal expressions to express that, e.g., the right most child of a vertex is in W.
Further, horizontal expressions are needed in 5 to check the consistency of states for vertices of large
degree. O

Proof of Proposition 2. (continued) Let u be a vertex of t, let wy,... ,w, be the children
of v and assume that we already have evaluated all vertices below u. We compute the information
corresponding to u in a bottom-up manner w.r.t. the syntax tree of ¢. Whenever we evaluate the
information corresponding to a subformula 6 of ¢ we may assume that the information about its set-
closed subformulas has already been collected in b(u). For a set variable X, we compute the sets
B, (X,u) just before we need them to evaluate the corresponding formula of type (iv). Let us first
consider a formula # € ®. In particular, Free(f) = (. To determine b(u).a(f), we distinguish the
following cases.

(i) If 6 is atomic, then b(u).«(f) can be immediately obtained from the label of u.

(i) If 0 is of the form Jy(E(x,y) A ¢), then ¢ is a Boolean combination of basic formulas with
free variable z, basic formulas with free variable y, atomic formulas with free variables z,y, and
vertical path expressions with free variables x,y. We refer to these top-level subformulas of 6 as
the marimal subformulas. We set b(u).a(f) to 1 iff there is a child w of w such that the formula
that results from ¢ by replacing

— each maximal basic subformula x(z) of ¢ by b(u).a(x);
— each maximal basic subformula x(y) of ¥ by b(w).a(x);

— each occurrence of F(z,y) and x < y by 1 and, each other atomic formula with free variables
z,y by 0;

— each occurrence of a vertical path expression [P]i’t(:v, y) by 1 iff there is a formula £(s,t) in
the language defined by P such that t = &[u,w]. Note that £ is a Boolean combination of
formulas with free variable s, formulas with free variable ¢, atomic formulas with free variables
s,t, and path expressions with free variables s,¢. All these have already been evaluated (at
u and w, respectively);

evaluates to true.

17

(iid)

(w0)

If 0 is of the form Jy(z < y A 1) then ¢ can be of the same form, as before. There are now two
possibilities: y is interpreted by a child of w of u, or by a strict descendant of the children of w.
Therefore, we set b(u).a(f) = 1 iff

1. there is a child w of u such that the formula obtained from 1) in the same way as in (i)
evaluates to true; or

2. there is a child w of v and a truth assignment (3,0) € b(w).A such that the formula that
results from ¢ by replacing
— each maximal basic subformula x(z) of ¢ by b(u).a(x);
— each maximal basic subformula x(y) of ¥ by 3(x);

— each occurrence of z < y by 1 and and all other occurrence of atomic formulas containing
both variables x and y by 0;

— each occurrence of a vertical path expression [P]i)t(:v, y) by 1 just in case there is a state
q € o(P) and a formula £(s,t) in P such that t, |= &[u,w] and Mp can get from state ¢
into an accepting state via a ¢-transition (t, = [u,w] is tested as in case (i7)).

evaluates to true.

If 6 is of the form 3X (xz < X A) then ¢ consists of a Boolean combination of formulas with free
variable z, which may also use the free set variable X. We set b(u).«(f) to 1, iff there is a (partial)
entry (v,¥) € B,(X,u) (for some?) such that the formula ¢’ that results from ¢ by replacing

— each maximal basic subformula x(x) of ¥ by b(u).a(x),
— each maximal basic subformula x (X, z) of ¢ by v(x),

becomes true.

If 0 is of the form [P];7(x) then P contains only formulas with a single free variable s. So, we
set b(u).a(f) to 1 iff the truth assignments b(wy).«, ..., b(w,,).a can be matched with P. This

|P])

can essentially be tested in time m20(by simulating the behaviour of the nondeterministic

automaton corresponding to P.

Next, we describe the computation of b(u).A. An entry (5, 0) is put into b(u).A if

1.

2.

it holds # = b(u).« and, for each P, o(P) exactly contains the initial state of Mp, or

there is a child w of u and an entry (3,0') in b(w).A such that, for each P, o(P) is the set of
states that Mp can reach from states in o'(P) by one transition according to a formula (s, t) for
which t,, = €[u,w] holds. The truth of such formulas £ can be tested as above in the evaluation
of formulas of type (7).

It remains to explain, how the sets B, (X, u) can be computed. Let X be a set variable that occurs
in ¢ and let 1,1’ be truth assignments for ® U ®(X), where 7' coincides with b(u).« on all set-closed
subformulas that occur inside a formula with free X. Here, ' can be viewed as a guess for the formulas
which hold at u. We do the following, for each choice of X, n,n'. We already said in Section 4 that a
pair (v, ¥) should be in B, (X,u) if there is a set C' on t,, such that,

e for each formula 6 € ®(X), v(0) is 1 iff t,, = 0[C, u]; and

9Equivalently, we could require for all here.

18

e for each formula # € U there is a strict descendant w of u, such that t,, | ¢'[C,w], where ¢’ is
the formula obtained from 1 by replacing each maximal basic subformula x;(z) and x3(z, X) of
1 by n(x1) and n(x2), respectively, z < y by 1, and all other atomic formulas containing both x
and y by 0.

First, we compute, for each child w;, i < m, of u a set D; of pairs (¢, Z), where (is a truth assignment
to ®(X) and Z is a set of subformulas of ¢ of types (ii) and (7ii) with free variable X. A pair (¢, Z)
is put into D;, if there is a pair (¢,I') € B,/ (X, w;) such that for each # € ®(X) one of the following
holds.

e 0 is of the form y(F(z,y) A1) and 6 € = iff the formula ¢’ that results from ¢ by replacing

) of ¥ by b(u).a(x),
) of ¢ by b(w;).c(x),
)

— each maximal basic subformula x(X,z) of ¢ by n/(x
— each maximal basic subformula x(X,y) of ¥ by ((x),

— each maximal basic subformula y(z

(
— each maximal basic subformula x(y
(

J

— each occurrence of F(z,y) and x < y by 1 and, each other atomic formula with free variables
x,y by 0

evaluates to true.
e 0 is of the form Jy(z < y Av) and § € ¥ iff

—0eTl,or

— the formula ¢’ that results from) as in the case before evaluates to true.
Intuitively, a pair (¢,T"), tells us that there is a coloring of the tree at u such that
e the formulas ®(X) at w; behave according to ¢, and
e the formulas # € I" hold at u, in the subtree of t which consists of u, w; and all vertices below w;.

Now we describe how the information of the sets D; can be collected to derive B, (X, u). First, we
associate with every horizontal expression P which uses X a nondeterministic automaton M p equivalent
to P. Note that these automata can be chosen such they all together contain at most O(size(y)) many
states.

We use a dynamic programming approach and compute, for ¢ < m a set C; consisting of tuples
(0©,0',0), where O is a set of formulas of types (i) and (i1) with free variable X, ©’ is a set of
formulas of type (ii1) with free X and o assigns a set of states to all horizontal expressions P which
use X. A tuple (©,0',0) is in C;, iff there is a choice of tuples (¢1,Z1),...,((,Z;), where each
(¢j,=;) € D;, such that the following hold.

2
e O = U:j.
=1

e O =0U U{9|1/)§m- evaluates to true}, where is of the form Jy(y < = A¢) and 1, ; results from
=1
1 by replacing all subformulas with free x according to n, all subformulas with free y according to
¢j, <y by 1, and all other atomic formulas by 0.

19

e For all horizontal expressions P which use X, o(P) contains a state ¢ of the automaton Mp, iff
Mp can reach ¢ from the initial state by evaluating the “string” (i,---(;.

As each tuple (©,0’,0) is of linear size in size(yp), it is not hard to see that the computation of all
sets C; can be done in time m20ize(¥))

From C,, we can now obtain B, (X, u) as follows. A pair (v, ¥) is in B, (X,u) if and only if there is
a tuple (0,0’,0) € C,, such that the following hold.

e v and 7 agree on all formulas in ®(X).

e For each formula 0 of types (i) and (i77) with free X, v(f) = 1 iff € O.

—
S

e For each formula 0 of type [P];”(z) with free X, v(f) = 1 iff o(P) contains an accepting state of

Mp.
o U =0

This completes the description of the algorithm.
Altogether, we compute at most 296i2e(¥)) bits of information per vertex and each bit can be com-
puted in essentially at most 2012¢(#)) many steps. This yields the stated time bound. O

Proof of Theorem 4. (sketch) Clearly, TFOY®" C MSO. We outline the proof of the other direction.
Let ¢(x,y) be an MSO formula and assume for expository purposes that x and y can never be inter-
preted by vertices that are related by the ancestor relation. It is known that t = ¢[u, v] only depends
on the (finite) sets of MSO sentences of quantifier depth & that hold in (&, ,,u,v), (t,,u), and (t,,v).
Further, these sets can be computed by bottom-up tree automata working on (t, ,,u,v), t,, and t,,
respectively [22]. In particular, (t,,,u,v) is the tree where the vertices u and v are labeled by special
symbols. Hence, the result follows if we can define the operation of a bottom-up tree automaton.

We first recall the definition of such automata. A bottom-up tree automaton is a tuple B =
(Q,%, F,0), where @ is a finite set of states, FF C @ is the set of final states, and § is a func-
tion @ x ¥ — 29 such that &(¢,a) is a regular language for every a € ¥ and ¢ € Q. The se-
mantics of B on a tree t, denoted by 0*(t), is defined inductively as follows: if t consists of only
one vertex labeled with a then 0*(t) = {¢ | ¢ € d(q,a)}; if t is of the form a(ty,...,t,), then
0*(t) = {q | g1 € 6*(t1),... ,3q, € 6*(t,) and ¢ --- ¢, € 6(q,a)}. A tree t over ¥ is accepted by the
automaton B if §*(t) N F # (.

In MSO we would simulate such an automaton by existentially quantifying over the variables
21y Zm (with @ = {q1,...,qm}) such that for all vertices v and i € {1,... ,m}: v € Z; iff
0*(t,) = ¢;. In TFOY®", however, we cannot quantify over arbitrary sets, only over trees. There-
fore, we will encode some internal vertices by leaf vertices. We say that a vertex is rich if it has at
least two children. For each tree there is an injective mapping from the set of rich vertices to the
set of leaves (this was first observed by Potthoff and Thomas [29]). Take, for instance, the mapping
C(v) := v21* Nleaves(t), where leaves(t) denotes the set of leaves of t. Observe that this mapping can
readily be defined in TFOY®". Further, note that we can quantify over all sets of leaves (just quantify
over a tree, then all leaves in the tree are in the set). Hence, we can guess states for all leaves and
rich vertices. But, given these states, the state of every poor (i.e., non-rich) vertex can be determined
by a vertical path expression, as a tree automaton behaves like a string automaton on parts of the
tree consisting of a sequence of poor vertices. So, the guessing of states for leaves and rich vertices
determines the states for poor vertices. It remains to check the consistency of these guesses. To this
end, we have to check that each leaf is assigned the correct state (easy). Additionally, we have to

20

check all transitions. Therefore, suppose a vertex v labeled with a is assigned state ¢ and its n children
are assigned states ¢i,...,q,. Then we have to check whether ¢, ---¢, € §(q,a). Assume 6(q,a) is
defined by an NFA M. Then we just guess the states M assumes at the children of v. We can only
do this directly for the rich vertices among the children of v. If vi is a poor child of v, then we use
the first descendant of vi that is rich. The verification of these guesses can be done in the usual way.
Both described verification steps can be defined in a uniform way. This concludes the proof of the
theorem. O

21

