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Abstract

Document specification languages like for instance XML, model
documents using extended context-free grammars. These differ from
standard context-free grammars in that they allow arbitrary regular
expressions on the right-hand side of productions. To query such doc-
uments, we introduce a new form of attribute grammars (extended
AGs) that work directly over extended context-free grammars rather
than over standard context-free grammars. Viewed as a query lan-
guage, extended AGs are particularly relevant as they can take into
account the inherent order of the children of a node in a document.
We show that two key properties of standard attribute grammars
carry over to extended AGs: efficiency of evaluation and decidabil-
ity of well-definedness. We further characterize the expressiveness of
extended AGs in terms of monadic second-order logic and establish
the complexity of their non-emptiness and equivalence problem to be
complete for EXPTIME. As an application we show that the Region
Algebra expressions can be efficiently translated into extended AGs.
This translation drastically improves the known upper bound on the
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1 Introduction

Structured document databases can be seen as derivation trees of some gram-
mar which functions as the “schema” of the database [1, 2, 5, 23, 24, 27, 38,
43]. Document specification languages like, e.g., XML [15], model docu-
ments using extended context-free grammars. Extended context-free gram-
mars (ECFG) are context-free grammars (CFG) having regular expressions
over grammar symbols on the right-hand side of productions. It is known
that ECFGs generate the same class of string languages as CFGs. Hence,
from a formal language point of view, ECFGs are nothing but shorthands
for CFGs. However, when grammars are used to model documents, i.e.,
when also the derivation trees are taken into consideration, the difference
between CFGs and ECFGs becomes apparent. Indeed, compare Figure 1
and Figure 2. They both model a list of poems, but the CFG needs the
extra non-terminals PoemList, VerseList, WordList, and LetterList to allow
for an arbitrary number of poems, verses, words, and letters. These non-
terminals, however, have no meaning at the level of the logical specification
of the document.

A crucial difference between derivation trees of CFGs and derivation trees
of ECFGs is that the former are ranked while the latter are not. In other
words, nodes in a derivation tree of an ECFG need not have a fixed maximal
number of children. While ranked trees have been studied in depth [20, 45],
unranked trees only recently received new attention in the context of SGML
and XML. Based on work of Pair and Quere [39] and Takahashi [44], Murata
defined a bottom-up automaton model for unranked trees [32]. This required
describing transition functions for an arbitrary number of children. Murata’s
approach is the following: a node is assigned a state by checking the sequence
of states assigned to its children for membership in a regular language. In
this way, the “infinite” transition function is represented in a finite way. We
will extend this idea to attribute grammars. Briiggemann-Klein, Murata and
Wood initiated an extensive study of tree automata over unranked trees [11].

The classical formalism of attribute grammars, introduced by Knuth [30],
has always been a prominent framework for expressing computations on
derivation trees. Attribute grammars provide a mechanism for annotating
the nodes of a tree with so-called “attributes”, by means of so-called “se-
mantic rules” which can work either bottom-up (for so-called “synthesized”
attribute values) or top-down (for so-called “inherited” attribute values).
This formalism is successfully applied in such diverse fields of computer sci-



ence as compiler construction and software engineering (for a survey, see
[18]). In previous work, we approached attribute grammars from a different
direction, we investigated them as a query language for derivation trees of
CFGs [34, 37, 38].

Inspired by the above mentioned idea of representing transition functions
for automata on unranked trees as regular string languages, we introduce
extended attribute grammars (extended AGs) that work directly over ECFGs
rather than over standard CFGs. The main difficulty in achieving this is
that the right-hand sides of productions contain regular expressions that, in
general, specify infinite string languages. This gives rise to two problems for
the definition of extended AGs that are not present for standard AGs:

(7) in a production, there may be an unbounded number of grammar sym-
bols for which attributes should be defined; and

(77) the definition of an attribute should take into account that the number
of attributes it depends on may be unbounded.

We resolve these problems in the following way. For (i), we only consider un-
ambiguous regular expressions in the right-hand sides of productions.! This
means that every child of a node derived by the production p = X — r cor-
responds to exactly one position in . We then define attributes uniformly
for every position in r and for the left-hand side of p. For (ii), we only
allow a finite set D as the semantic domain of the attributes and we repre-
sent semantic rules as regular languages over D much in the same way tree
automata over unranked trees are defined.

By carefully tailoring the semantics of inherited attributes, extended AGs
can take into account the inherent order of the children of a node in a docu-
ment. This makes extended AGs particularly relevant as a query language.
Indeed, as argued by Suciu [43], achieving this capability is one of the ma-
jor challenges when applying the techniques developed for semi-structured
data [1] to XML-documents.

An important subclass of queries in the context of structured document
databases, are the queries that select those subtrees in a document that
satisfy a certain pattern [4, 3, 28, 29, 33, 40]. These are essentially unary
queries: they map a document to a set of its nodes. Extended AGs are

! This is no loss of generality, as any regular language can be denoted by an unambiguous
regular expression [9]. SGML is even more restrictive as it allows only one-unambiguous
regular languages [10, 47].



DB — PoemlList

PoemList — Poem PoemList
PoemList — Poem

Poem — VerseList,

VerseList — Verse VerseList
VerseList — Verse

Verse — WordList

WordList — Word WordList
WordList — Word
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LetterList — Letter LetterList
LetterList — Letter
Letter - a|... |z

Figure 1: A CFG modeling a list of poems.

DB — Poem™

Poem — Verse™

Verse — Word™
Word — (a+---+12)"

Figure 2: An ECFG modeling a list of poems.

especially tailored to express such unary queries: the result of an extended
AG consists of those nodes for which the value of a designated attribute
equals 1.2

The contributions of this paper can be summarized as follows:

1. We introduce extended attribute grammars as a query language for
structured document databases defined by ECFGs. Queries in this
query language can be evaluated in time quadratic in the number of
nodes of the tree. We show that non-circularity, the property that an
attribute grammar is well-defined for every tree, is in EXPTIME. Inter-
estingly, the naive reduction of the non-circularity problem of extended
AGs to the same problem for standard AGs gives rise to a double expo-
nential algorithm. We obtain an EXPTIME upper bound by reducing

2We always assume that D contains the values 0 and 1 (false and true).



the problem to the problem of deciding whether a tree-walking automa-
ton (over unranked trees) cycles. We then show the latter problem to
be complete for EXPTIME. The EXPTIME upper bound for the non-
circularity test of extended AGs is also a lower bound since deciding
non-circularity for standard attribute grammar is already known to be
hard for EXPTIME [26].

. We generalize our earlier results on standard attribute grammars [6, 38]
by showing that extended AGs express precisely the unary queries de-
finable in monadic second-order logic (MSO). The difficult case consists
of showing that extended AGs can compute the MSO-equivalence type
of the input tree [35]. The only complication, compared to the case of
standard attribute grammars, arises from the fact that derivation trees
are now unranked.

. We obtain the exact complexity of some relevant optimization problems
for extended AGs. Concretely, we establish the EXPTIME-complete-
ness of the non-emptiness (given an extended AG, does there exist a tree
of which a node is selected by this extended AG?) and of the equivalence
problem of extended AGs. Interestingly, in obtaining this result and the
previous complexity result, we make use of nondeterministic two-way
automata with a pebble to succinctly describe regular string languages.
The crucial property of those, is that they can be transformed into
nondeterministic one-way automata with only exponential size increase,
as opposed to the expected double exponential size increase. The latter
is a result due to Globerman and Harel [22].

. We show that Region Algebra expressions (introduced by Consens and
Milo [14]) can be simulated by extended AGs. Stated as such, the re-
sult is hardly surprising, since the former essentially corresponds to a
fragment of first-order logic over trees while the latter corresponds to
full MSO. We, however, exhibit an efficient translation, which gives rise
to a drastic improvement on the complexity of the equivalence problem
of Region Algebra expressions. To be precise, Consens and Milo first
translate each Region Algebra expression into an equivalent first-order
logic formula on trees and then invoke the known algorithm testing
decidability of such formulas. Unfortunately, the latter algorithm has
non-elementary complexity. That is, the complexity of this algorithm



cannot be bounded by an elementary function (i.e., an iterated expo-
nential 27(2"...(2")) where n is the size of the input). This approach
therefore conceals the real complexity of the equivalence test of Region
Algebra expressions. Our efficient translation of Region Algebra expres-
sions into extended AGs, however, gives an EXPTIME algorithm. The
thus obtained upper bound more closely matches the already known
coNP lower bound [14].

5. We define relational extended AGs. These are a generalization of rela-
tional BAGs studied in [34], which in turn are based upon of relational
attribute grammars as introduced by Courcelle and Deransart [16]. Re-
lational extended AGs can express queries in various ways. We consider
two of them and show that they do not increase the expressiveness of
the formalism.

This paper is further organized as follows. In Section 2, we recall some
basic definitions. In Section 3, we give an example introducing the important
ideas for the definition of extended AGs which are introduced in Section 4.
In Section 5, we obtain the exact complexity of the non-circularity test for
extended AGs. In Section 6, we characterize the expressiveness of extended
AGs in terms of monadic second-order logic. In Section 7, we establish
the exact complexity of the emptiness and equivalence problem of extended
AGs. We then use this result to improve the complexity of the emptiness
and equivalence problem of Region Algebra expressions in Section 8. Fi-
nally, in Section 9, we introduce relational extended AGs. We present some
concluding remarks in Section 10.

2 Basic definitions

We start by introducing the necessary notions to define extended AGs. More
concretely, we recall the definition of unambiguous regular expressions and
define tree automata over unranked trees on which extended AGs are in-
spired.

In all of the following, let ¥ be a finite alphabet. We denote the length
of a string w by |w| and its i-th letter by w;.



2.1 Unambiguous regular expressions

As is customary, we denote by L(r) the language defined by the regular
expression r. Further, we denote by Sym(r) the set of X-symbols occurring in
r. The marking 7 of r is obtained by subscripting in r the first occurrence of a
symbol of Sym(r) by 1, the second by 2, and so on. For example, a;(as+b%)*ay
is the marking of a(a+ 0*)*a. We let |r| denote the number of occurrences of
Y-symbols in r, while (i) denotes the X-symbol at the i-th occurrence in r for
eachi € {1,...,|r|}. Let © be the alphabet obtained from X by subscripting
every symbol by all natural numbers, i.e., & := {a; | a € ,i € N}. If w € &*
then w* denotes the string obtained from w by dropping the subscripts.

In the definition of extended AGs we shall restrict ourselves to unambigu-
ous regular expressions defined as follows:

Definition 2.1 A regular expression r over X is unambiguous if for all v, w €
L(7), v# = w* implies v = w.

That is, a regular expression r is unambiguous if every string in L(r) can
be matched to r in only one way. For example, the regular expression (a+b)*
is unambiguous while (aa + a)* is not. Indeed, it is easily checked that the
string aa can be matched to (aa + a)* in two different ways.

The following proposition, obtained by Book et al. [9], says that the
restriction to unambiguous regular expressions is no loss of generality.

Proposition 2.2 For every reqular language R there exists an unambiguous
regular expression v such that L(r) = R.

As usual, a nondeterministic finite automaton M (NFA) over X is a tuple
(S,%,6,1,F) where S is finite set of states, § : S x ¥ — 2% is the transition
function, I C S is the set of initial states, and F' C S'is the set of final states.
We denote the canonical extension of the transition function to strings by
d*. A string w € ¥* is accepted by M if 6*(sp,w) € F for an sy € I. The
language accepted by M, denoted by L(M), is defined as the set of all strings
accepted by M. The size of M is defined as |S| + |2

A state assignment p of M for a string w € X* is a mapping from
{1,...,Jw|} to S. A state assignment p for w is valid if there exists an
sp € I such that p(1) € d(so,w1), p(Jw|) € F, and for i = 1,...,|w| — 1,
p(i +1) € 0(p(i), w;y1). Clearly, w is accepted by M if and only if there
exists a valid state assignment for w.



For every unambiguous regular expression r there exists an NFA M, with
the property that can be informally stated as follows: if w € L(r) then there
exists only one path in M, that accepts w. That is, M, can accept w only
in one manner. We introduce some more notation to define this automaton
M,.

If w is a string and r is an unambiguous regular expression with w € L(r),
then @, denotes the unique string over  such that w# = w and W, € L(F).
For i =1,...,|w|, define pos, (i, w) as the subscript of the i-th letter in w,.
Intuitively, pos, (i, w) indicates the position in r matching the i-th letter of
w. For example, if r = a(b + a)* and w = abba, then 7 = a;(by + a3)* and
w, = a1babsas. Hence,

pos,(l,w) =1, pos,(2,w)=2, pos,(3,w)=2, and pos,(4,w) = 3.
The following lemma is obtained by Book et al. [9].

Lemma 2.3 For every unambiguous reqular expression r there exists an
NFA M, over the states {0,... ,|r|} with start state 0 such that

1. L(r) = L(M,);

2. for every string w € L(r) there exists only one valid state assignment
pw of M, for w; and

3. fori=1,...,n, py(i) = pos,(i,w).

Moreover, M, can be constructed in time polynomial in the size of r.

Proviso 2.4 In the remaining, when we say reqular expression, we always
mean unambiguous regular expression.

2.2 Trees

In this paper we only consider trees where the children of a node are ordered
and carry a label from some finite alphabet 3. We refer to such trees as
Y-trees. We introduce some terminology.

Trees will be denoted by the boldface characters t, s, sy, ..., while nodes
of trees are denoted by n, m, ny, ... . We use the following convention: if n
is a node of a tree t, then ni denotes the i-th child of n. We denote the set of
nodes of t by Nodes(t) and the root of t by root(t). Further, the arity of a
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node n in a tree, denoted by arity(n), is the number of children of n. We say
that a tree t has rank m, for m € N, if arity(n) < m for every n € Nodes(t).
The subtree of t rooted at n is denoted by t,; the envelope of t at n, that
is, the tree obtained from t by deleting the subtrees rooted at the children
of n is denoted by t,;* and, for each o € X, the tree consisting of just one
node that is labeled with o is denoted by t(o). The depth of a node n is
the number of nodes on the path from n to the root (n included, root not
included). The height of n is the number of nodes on the longest path from
n to a leaf (n included, leaf not included). Hence, the depth of the root and
the height of a leaf are zero. We denote the label of n in t by labt(n).

We end by introducing the following notation. When ¢ is a symbol in
¥ and ty, ..., t, are X-trees, then o(ty,...,t,) is the ¥-tree graphically
represented by

o

N
t, t

n-

Note that in the above definitions there is no a priori bound on the number
of children that a node may have. We refer to them as unranked trees.

2.3 Extended context-free grammars

Extended AGs are defined over extended context-free grammars which are
defined as follows:

Definition 2.5 An eztended context-free grammar (ECFG) is a tuple G =
(N,T, P,U), where

e T and N are disjoint finite non-empty sets, called the set of terminals
and non-terminals, respectively;

e U € N is the start symbol; and

e P is a set of productions consisting of rules of the form X — r where
X € N and r is a regular expression over N U T such that ¢ ¢ L(r)
and L(r) # (0. Additionally, if X — r; and X — ry belong to P then
L(Tl) N L(Tg) §£ @

3Note that t,, and t, have n in common.




A derivation tree t over an ECFG G is a tree labeled with symbols from
N U T such that

e the root of t is labeled with U;

e for every interior node n with children ny,... ,n,, there exists a pro-
duction X — r such that n is labeled with X, for : = 1,... ,m, n; is
labeled with X;, and X;---X,, € L(r); we say that n is derived by
X — r;and

e every leaf node is labeled with a terminal.

Note that derivation trees of ECFGs are unranked. Throughout this chap-
ter we make the harmless technical assumption that the start symbol does
not occur on the right-hand side of a production. The only place we make
use of this convention is in the proof of Theorem 6.4.

2.4 Tree automata over unranked trees

We continue with the definition of nondeterministic bottom-up tree automata
over unranked trees [11] by which the mechanism of extended AGs is inspired.
Interestingly, these automata will also be used to obtain the exact complexity
of testing non-emptiness and equivalence of extended AGs in Section 7.

Definition 2.6 A nondeterministic bottom-up tree automaton (NBTA) is a
tuple B = (@, X, F,0), where @ is a finite set of states, FF C @ is the set of
final states, and ¢ is a function @ x ¥ — 29" such that §(q,a) is a regular
string language for every a € ¥ and ¢ € (). The semantics of B on a tree t,
denoted by §*(t), is defined inductively as follows: if t consists of only one
node labeled with a then 6*(t) = {q | £ € d(¢,a)}; if t is of the form

a

S\
tl tna

then
0" (t) ={q | 3q1 € 0"(t1), ... , Jgn € 0"(t) and g1 -+ - g € (g, a)}.

A tree t over ¥ is accepted by the automaton B if 6*(t) N F # (. The tree
language defined by B, denoted by L(B), consists of the trees accepted by
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B. A tree language 7T is recognizable if there exists an NBTA B such that
T = L(B).

Further, we say that B is deterministic when 6(q,a) N §(q',a) = () for
every a € ¥ and ¢,¢" € Q with ¢ # ¢’. We use the abbreviation DBTA to
refer to such automata.

We represent the string languages (¢, a) by NFAs. The size of B then is
the sum of the sizes of (), 3, and the NFAs defining the transition function.

We will use the following notion in Section 7. A state assignment of B
for a tree t is a mapping p from the nodes of t to (). A state assignment is
valid if for every node n of t of arity n, p(nl)--- p(nn) € §(p(n), X), where
n is labeled with X, and p(root(t)) € F. Clearly, a tree t is accepted by T
if and only if there exists a valid state assignment for ¢.

A detailed study of tree automata over unranked trees has been initiated
by Briiggemann-Klein, Murata and Wood [11, 32]. Among many things, they
show that DBTAs are as expressive as NBTAs and that the recognizable
languages are closed under the Boolean operations.

Tree automata are defined over an arbitrary alphabet, but we consider
derivation trees of ECFGs in this chapter. This seeming distinction can be
dispensed with since we can always restrict an NBTA to the derivation trees
of an ECFG as illustrated next. We point out that this lemma is well known
for the ranked case with respect to CFGs [20].

Lemma 2.7 Let G = (N, T, P,U) be an ECFG and let B be an NTBA over
Y C NUT. Then there exists an NBTA BY such that L(B®) = L(G)NL(B).

Proof. We define an NBTA M such that L(M) = L(G). Since recognizable
tree languages are closed under the Boolean operations, we can then define
B¢ as an automaton accepting L(M) N L(B).

Define M = (Q,NUT, F,§), where Q =TUP, F={U —r|U —re¢c
P}, and ¢ is defined as follows: for every oy € T and 0o € T U N,

5(o, o) = { (e} if oy = on;

0 otherwise,
and for every X - re PandY e NUT

L(r) it X =Y,

0(X = nY) = { 1] otherwise.
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The proof of the following lemma is a straightforward generalization of
the ranked case (see, e.g., the survey paper by Vardi [46]).

Lemma 2.8 Deciding whether the tree language accepted by an NBTA 1is
non-empty is in PTIME.

Proof. Let B = (Q,3, F,6) be an NBTA. We inductively compute the set
of reachable states R defined as follows: ¢ € R iff there exists a tree t with
q € 5*(t). Obviously, L(B) # () if and only if RN F # (). Define for all n > 0,

R == {q€Q|FaeX:c€i(qa)};
Roy1 = {¢€Q|3aeX:d(q,a)NR, #0}.
Note that for all n, R, C R, C Q. Hence, R|g] = R|g|+1. Thus, define R

as Rg).

C|le|arly, R, can be computed in time linear in the size of B. Since testing
non-emptiness of §(¢,a) N R can be done in time polynomial in the sum
of the sizes of these (see, e.g., [25]), each R,; can be computed in time
polynomial in the size of B. This concludes the proof of the lemma. [ |

2.5 Two-way automata with a pebble

We conclude by introducing the following important device. A two-way non-
deterministic finite automaton with one pebble is an NFA that can move in
two directions over the input string and that has one pebble which it can
lay down on the input string and pick back up later on. We refrain from
giving a formal definition of such automata as we will only use them infor-
mally to describe our algorithmic computation. Blum and Hewitt [8] showed
that such automata can only define regular languages. In the sequel, we
will need the following stronger result obtained by Globerman and Harel [22,
Proposition 3.2].

Proposition 2.9 FEvery two-way nondeterministic finite automaton M with
one pebble is equivalent to an NFA M' whose size is exponential in the size of
M. In fact, the size of M' can be uniformly bounded by a function |- 29050,
where q s a polynomial, ¥ is the alphabet, and S is the set of states of M.
Additionally, M' can be constructed in time exponential in the size of M.
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3 Example

We give a small example introducing the important ideas for the definition
of extended attribute grammars in the next section.

First, we briefly illustrate the mechanism of attribute grammars by giv-
ing an example of a Boolean-valued standard attribute grammar (BAG). The
latter are studied by Neven and Van den Bussche [34, 37, 38]. As mentioned
in the introduction, attribute grammars provide a mechanism for annotating
the nodes of a tree with so-called “attributes”, by means of so-called “seman-
tic rules”. A BAG assigns Boolean values by means of propositional logic
formulas to attributes of nodes of input trees. Consider the CFG consisting
of the productions U —+ AA, A — a, and A — b. The following BAG selects
the first A whenever the first A is expanded to an a and the second A is
expanded to a b:

U— AA select(1) = is_a(1) A —is_a(2);
A—=a is_a(0) = true
A—=b is-a(0) := false

Here, the 1 in select(1) indicates that the attribute select of the first A is being
defined. Moreover, this attribute is true whenever the first A is expanded to
an a (that is, is_.a(1) should be true) and the second A is expanded to a b
(that is, is_a(2) should be false). The other rules then define the attribute
1s_a in the obvious way. In the above, 0 refers to the left-hand side of the
rule.

Consider the ECFG consisting of the sole rule U — (A+B)*. Suppose, we
want to construct an attribute grammar selecting those A’s that are preceded
by an even number of A’s and succeeded by an odd number of B’s. Like above
we will use rules defining the attribute select. This gives rise to two problems
not present for BAGs : (i) U can have an unbounded number of children
labeled with A which implies that an unbounded number of attributes should
be defined; (ii) the definition of an attribute of an A depends on its siblings,
whose number is again unbounded.

We resolve this in the following way. For (i), we just define select uni-
formly for each node that corresponds to the first position in the regular
expression (A + B)*. For (ii), we use regular languages as semantic rules
rather than propositional formulas. The following extended AG expresses
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the above query:

U—= (A+B)*  select(1) := (o1 = lab, 05 = lab;
Ripe = (B*AB*AB*)*#A*BA*(A*BA*BA*)*,
Rfalse — (A + B+ #)* - Rtrue>-

The 1 in select(1) indicates that the attribute select is defined uniformly for
every node corresponding to the first position in (A + B)*. In the first part
of the semantic rule, each o; lists the attributes of position ¢ that will be
used. Here, both for position 1 and 2 this is only the attribute lab which is
a special attribute containing the label of the node. Consider the input tree
U(AAABBB). Then, to check, for instance, whether the third A is selected
we enumerate the attributes mentioned in the first part of the rule and insert
the symbol # before the node under consideration. This gives us the string

1 1 1 2 2 2 position in (A + B)*
A A #A B B B
1 2 3 4 5 6 position in AAABBB

The attribute select of the third child will be assigned the value true since
the above string belongs to ;... Note that

(B*AB*AB*)* and A*BA*(A*BA*BA*)*

define the set of strings with an even number of A’s and with an odd number
of B’s, respectively. The above will be defined formally in the next section.

4 Attribute grammars over extended context-
free grammars

We next define extended attribute grammars (extended AGs) over ECFGs
whose attributes can take only values from a finite set D.

Proviso 4.1 Unless explicitly stated otherwise, we always assume an ECFG
G = (N, T, P,U). When we say tree we always mean derivation tree of G.

Definition 4.2 An attribute grammar vocabulary is a tuple (D, A, Syn, Inh),
where
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e D is a finite set of values called the semantic domain. We assume that
D always contains the Boolean values 0 and 1;

e A is a finite set of symbols called attributes; we always assume that A
contains the attribute lab;

e Syn and Inh are functions from N UT to the powerset of A — {lab}
such that for every X € N, Syn(X) N Inh(X) = 0; for every X € T,
Syn(X) = 0; and Inh(U) = 0.

If @ € Syn(X), we say that a is a synthesized attribute of X. If a €
Inh(X), we say that a is an inherited attribute of X. We also agree that
lab is an attribute of every X (this is a predefined attribute; for each node
its value will be the label of that node). The above conditions express that
an attribute cannot be a synthesized and an inherited attribute of the same
grammar symbol, that terminal symbols do not have synthesized attributes,
and that the start symbol does not have inherited attributes.

We now formally define the semantic rules of extended AGs. For a pro-
duction p = X — r, define p(0) = X, and for ¢ € {1,...,|r|}, define
p(i) = r(i). We fix some attribute grammar vocabulary (A, D,Syn,Inh) in
the following definitions.

Definition 4.3 1. Let p = X — r be a production of G and let a be an
attribute of p(i) for some i € {0, ..., |r|}. The triple (p, a,i) is called a
context if a € Syn(p(7)) implies ¢ = 0, and a € Inh(p(7)) implies ¢ > 0.

2. A rule in the context (p,a,i) is an expression of the form
a(l) = <007 - Ol (Rd)dED>7
where

e for j ={0,...,|r|}, o; is a sequence of attributes of p(j);

e if 1 = 0, then, for each d € D, R, is a regular language over the
alphabet D; and

e if 1 > 0, then, for each d € D, R, is a regular language over the
alphabet D U {#}.
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For all d,d' € D, if d # d’ then Ry N Ry = (0. Further, if i = 0 then
Ugep Ba = D*. If i > 0 then |J,.p, Ry should contain all strings over
D with exactly one occurrence of the symbol #. Note that a Ry is
allowed to contain strings with several occurrences of #. We always

assume that # & D.
An extended AG is then defined as follows:

Definition 4.4 An extended attribute grammar (extended AG) F consists
of an attribute grammar vocabulary, together with a mapping assigning to
each context a rule in that context.

It will always be understood which rule is associated to which context. We
illustrate the above definitions with an example.

Example 4.5 In Figure 3 an example of an extended AG F is depicted over
the ECFG of Figure 2. Recall that every grammar symbol has the attribute
lab; for each node this attribute has the label of that node as value. We
have Syn(Word) = {king, lord}, Syn(Verse) = {king_lord}, Syn(Poem) =
{result}, and Inh(Poem) = {first}. The grammar symbols DB, a, ..., z,
Verse, and Word have no attributes apart from lab. The semantics of this
extended AG will be explained below. Here,

D ={0,1,a,...,z DB, Poem, Verse, Word }.

We use regular expressions to define the languages R;; for the first rule, R,
is defined as (D U {#})* — Ry; for all other rules, Ry is defined as D* — Ry;
those R, that are not specified are empty; € stands for the empty sequence

of attributes. n
DB — Poem™ first(1) := (69 = lab, 01 = lab; Ry = DB#Poem™)
Poem — Verse™ result(0) := (o¢ = first,o1 = king_lord;
Ry =1(14+0)*+0(1(1 +0))*(1 +¢))
Verse — Word ™t king_lord(0) := (oo = €, 01 = (king, lord);

Ri=0+1*+1+4+(0+1)%)
lab, ... , 026 = lab; Ry = {king})
lab, ... 096 = lab; Ry = {lord})

Word = (a+...+2)"  king(0) := (oo
lord(0) := (o9

Figure 3: Example of an extended AG.
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The semantics of an extended AG is that it defines attributes of the nodes
of derivation trees of the underlying grammar G. This is formalized next.

Definition 4.6 If t is a derivation tree of G then a wvaluation v of t is a
function that maps each pair (n,a), where n is a node in t and a is an
attribute of the label of n, to an element of D, and that maps for every n,
v((lab,n)) to the label of n.

In the sequel, for a pair (n,a) as above we will use the more intuitive
notation a(n). To define the semantics of F we first need the following
definition. If 0 = a; - - - a;, is a sequence of attributes and n is a node of t, then
define o(n) as the sequence of attribute-node pairs o(n) = a;(n) - - - ag(n).

Definition 4.7 Let t be a derivation tree, n a node of t, and a an attribute
of the label of n.

Synthesized Let n be a node of arity n derived by p = X — r, and let
(00, ... ,04; (Ra)aep) be the rule associated to the context (p,a,0).
Define for [ € {1,... ,m}, j; = pos,(l,w), where w is the string formed
by the labels of the children of n. Then define W (a(n)) as the sequence

oo(n) - 0j,(nl) - - - 0, (nm).
For each d, we denote the language R, associated to a(n) by Rg(n).

Inherited Let n;,...,n; ; be the left siblings, n;.4,... ,n,, be the right
siblings, and ng be the parent of n. Let ny be derived by p = X — r,
and define for [ € {1,...,m}, j; = pos,(l,w), where w is the string
formed by the labels of the children of ng. Let (oo,... ,0p; (R4)acp)
be the rule associated to the context (p,a, ji). Now define W (a(n)) as
the sequence

oo(no) - 0y (1) - -+ 0, (Mp—1) - # - 05 () -+ - 0y, (D) 05, ().
For each d, we denote the language R, associated to a(n) by Rg(n).

If v is a valuation then define v(1W (a(n))) as the string obtained from W (a(n))
by replacing each b(m) in W(a(n)) by v(b(m)). Note that the empty se-
quence is just replaced by the empty string.
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We are now ready to define the semantics of an extended AG F on a
derivation tree.

Definition 4.8 Given an extended AG F and a derivation tree t, we define
a sequence of partial valuations (F;),>o as follows:

1. Fo(t) is the valuation that maps, for every node n, lab(n) to the label
of n and is undefined everywhere else;

2. for j > 0, if F;_1(t) is defined on all b(m) occurring in W (a(n)) then

where F;_1(W(a(n))) € RZ("). Note that this is well defined.

If for every t there is an [ such that F(t) is totally defined (this implies
that F;(t) = F;_1(t)) then we say that F is non-circular. Obviously, non-
circularity is an important property. In the next section we show that it is
decidable whether an extended AG is non-circular. Therefore, we can state
the following proviso.

Proviso 4.9 In the sequel we always assume an extended AG to be non-
circular.

Definition 4.10 The valuation F(t) equals F;(t) with [ such that F(t) =
Fria(t).

Proviso 4.11 Whenever we say query, we always mean unary query.

An extended AG F can be used in a simple way to express queries.
Among the attributes in the vocabulary of F, we designate some attribute
result, and define:

Definition 4.12 An extended AG F expresses the query Q defined by
Q(t) = {n | F(t)(result(n)) = 1},

for every tree t.
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Example 4.13 Recall the extended AG F of Figure 3. This extended AG
selects the first poem and every poem that has the strings king or lord in
every other verse starting from the first one. In Figure 4 an illustration is
given of the result of F on a derivation tree t. At each node n, we show
the values F(W (a(n))) and F(t)(a(n)). We abbreviate a(n) by a, king by
k, lord by [, and king_lord by k_L.

The definition of the inherited attribute first indicates how the use of
# can distinguish in a uniform way between different occurrences of the
grammar symbol Poem. This is only a simple example. In the next section
we show that extended AGs can express all queries definable in MSO. Hence,
they can also specify all relationships between siblings definable in MSO.

The language R; associated to result (cf. Figure 3), contains those strings
representing that the current Poem is the first one, or representing that for
every other verse starting at the first one the value of the attribute king_lord

is 1. [ |
DB
Poem Poem Poem
W(first) = DB#PoemPoemPoem W(first) = DBPoem#PoemPoem W(first) = DBPoemPoem#Poem
first=1 result =1 first=0 result =0 first=0 result =1
W(result) = 11 W(result) = 001 W(result) = 0111
Verse Verse Verse Verse Verse Verse
W(k_I) = 000001 W(k_I) =00 W(k_l) = 1000 W(k_1)=01 Wk I)=10 W(k_I) = 0010
k=1 k1=0 kl=1 k=1 kl=1 k=1
Word Word Word Word Word Word Word Word Word Word
k=0 k=0 k=0 k=0 k=1 k=0 k=0 k=1 k=0 k=1
=0 I=0 =1 =0 =0 1=0 =1 1=0 =0 1=0
horse kingdom lord queen king dagger lord king witch king

Figure 4: A derivation tree and its valuation as defined by the extended AG
in Figure 3.

The size of an extended AG is the sum of the sizes of the attribute
grammar vocabulary, the ECFG and the size of the semantic rules where we
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represent the regular languages R; by NFAs.

5 Non-circularity

In this section we show that it is decidable whether an extended AG is non-
circular. In particular, we show that deciding non-circularity is in EXPTIME.
As it is well known that deciding non-circularity of standard AGs is complete
for EXPTIME [26], this result indicates that going from ranked to unranked
trees does not increase the complexity of the non-circularity problem.

We first make the following remark indicating that testing non-circularity
for extended AGs is slightly more subtle than for standard AGs.

Remark 5.1 Not all the specified attributes in a semantic rule are always
used. Indeed, consider the grammar with productions C' - A+ B, A — ¢
and B — c¢. Let F be an extended AG where the inherited attribute a of A
and B is defined in the context (C'— A+ B,a,1) as

a(l) := (o9 =,01 = ¢,09 = a; Ry),
and in the context (C'— A+ B,a,?2) as
a(2) :== (o9 =€,01 = a,090 = ¢; Ry).

At first sight F seems circular. This is, however, not the case since A and
B never occur simultaneously in a derivation tree. Consider for example the
tree graphically represented as

C

O

If the label of n is A then W (a(n)) is the empty sequence and consequently
F(a(n)) =1 if and only if the empty string belongs to R;. |

A naive approach to testing non-circularity is to transform an extended
AG F into a standard AG F’ such that F is non-circular if and only if F’ is
non-circular and then use the known exponential algorithm on F'. We can
namely always find an integer N (polynomially depending on F) such that we
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only have to test non-circularity of F on trees of rank N. Unfortunately, this
approach can increases the size of the AG more than polynomially. Indeed,
a production X — (a + b)---(a + b) (n times), for instance, has to be
translated to the set of productions {X — w | w € {a,b}* A |w| = n}. So,
the complexity of the naive algorithm is double exponential time. Therefore,
we abandon this approach and give a different algorithm whose complexity
is in EXPTIME.

To this end, we first generalize the tree walking automata of Bloem and
Engelfriet [7] to unranked trees. In particular, we show that for each extended
AG F, there exists a tree walking automata W such that F is non-circular
if and only if Wz does not cycle on any input tree. Moreover, Wz can
be constructed in time polynomial in the size of F. We thus obtain our
result by showing that testing whether a tree walking automaton cycles is in
EXPTIME.

Definition 5.2 A nondeterministic tree walking automaton is a tuple W =
(Qa Ea 67 o, F) where

e () is a finite set of states,

e Y is an alphabet,

e ¢ € ( is the start state,

e F C (Q is the set of final states, and

e § C QXX XQ X {lfist, dast, =, ¢, T, stay} is the transition relation.

Intuitively, a tree walking automaton walks over the tree starting at the
root. To make sure that the automaton cannot fall off the tree, we augment
input trees with the boundary symbols <, —, |, and 1. For example, the
tree t := a(b, ¢) augmented with boundary symbols is defined as

bound(t) := | (—,a(—,b(1),c(T), ), <),

or more graphically:
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We use another auxiliary notion. We define b(t) as bound(t) without bound-
ary symbols for root(t). That is, b(t) is the tree graphically represented
by

—b c+ .

1

A perhaps more elegant solution is to have a separate transition function
for the root node, internal nodes and leaf nodes. But since this last approach
terribly complicates the proof of the next lemma we just stick to the tree
representation with boundary symbols.

We still have to explain the semantics of tree walking automaton. De-
pending on the current state and on the label at the current node, the tran-
sition relation determines in which direction the automaton can move and
into which states it can change. The possible directions w.r.t. the current
node are: go to the first child, the last child, the left sibling, the right sibling,
or the parent, or stay at the current node. Of course, we have the obvious
restrictions that W can only move to the left, right, down and up, when it
reads the symbols <—, —, |, and T, respectively.

The automaton accepts an input tree when there exists a walk started at
the root in the start state that again reaches the root node in a final state. We
make this more precise. A configuration of W on a tree t is a pair (n, ¢) where
n is a node of bound(t) and ¢ € Q. The start configuration is (root(t), go),
and each (root(t),q) with ¢ € F' is an accepting configuration. A walk of
W on t is a (possibly infinite) sequence of configurations ¢jcacs - -+ where ¢;
is the start configuration and each ¢;;; can be reached from ¢; by making
one transition. The latter is defined in the obvious way. A walk is accepting
when it is finite and the last configuration is an accepting one. Finally, W
accepts t when there exists an accepting walk of W on t. However, we will
not need this latter definition any further, as we are only interested in the
existence of infinite walks.

We need the following definition to state the next lemma.

Definition 5.3 A nondeterministic tree walking automaton cycles if there
is a tree on which it has an infinite walk.

Lemma 5.4 Deciding whether a nondeterministic walking tree automaton
cycles, is in EXPTIME.
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Proof. Let W = (Q, %, 0, qo, ) be a nondeterministic tree walking automa-
ton. For a tree t define the behavior relation of W on t as the relation
WV CQ x (QU{#}) as follows. For each ¢,¢' € Q,

1. f¥V(q,q) if there exists a walk of W starting at the root of t in state ¢
that again returns at the root in state ¢’ with the additional requirement
that W is not allowed to move to the left sibling, the right sibling or
the parent of the root (recall these are labeled with —, <, and |,
respectively) during this walk; in brief, W is only allowed to walk in

b(t);

2. f¥(q,#) if there is an infinite walk of W starting at the root in state
¢, again with the additional requirement that T is not allowed to move
to the left sibling, the right sibling or the parent of the root during this
walk.

The additional requirement mentioned in both of the above cases is needed
because we want to compute behavior relations of nodes in a tree, in terms of
the behavior relations at the children of those nodes. Therefore, the behavior
relations of the subtrees should only be defined by computations that do not
leave those subtrees.

Let f C @ x (QU {#}) be a relation and let o € ¥. Then, we say that
(f,0) is satisfiable whenever there exists a tree t with fV = f and the label
of root(t) is 0. We refer to the tuples (f, o) as behavior tuples. It now suffices
to compute the set of all satisfiable behavior tuples to decide whether W is
cycling. To see this, we first introduce the following relations that determine
the behavior of W when it encounters the boundary of a tree at its root.
Define the relations 5”2, 5%, and 67, as follows: for each ¢,¢' € Q,

° 5<‘L_(q, ¢') iff there exists a ¢” such that 6(q, 0, ¢", =) and §(¢", <, ¢, +);
° 5":((], ¢') iff there exists a ¢” such that 6(q, 0, ¢", «) and §(¢", —, ¢, —);

® 67,(q,q") iff there exists a ¢" such that 6(q, 0, ¢", 1) and 6(¢", |, ¢', }arst);

We define States(f1,. .., fu, q¢) € QU{#} as the set of states reachable from ¢
by applying relations in f, ..., f,. Further, if the relations introduce cycling
then # also belongs to States(fi, ..., fa,q). Formally:

1. States(fi,..., fn,q) is the smallest set of states containing ¢ such that
if ¢ € States(f1,..., fn,q) and fi(¢',q") then ¢" € States(fi,..., fn,q)
(note that ¢" € Q U {#});
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2. additionally, if ¢1,...,qmy1 € States(fi,..., fnq), &4 = Gm+1, and
for i = 1,...,m, there is a j; with f;,(¢;, ¢i+1), then # € States(fi,
et 7fn7 q)'

So, W is cycling whenever there exists a satisfiable behavior tuple (f, o)
such that # € States(f, 5(‘1,_, 52, 67,,qo). This just says that an infinite walk
can be reached from the start state ¢q.

To reduce the complexity of our algorithm we make use of a weaker notion
of satisfiability. We say that a behavior tuple (f,o) is weakly satisfiable
whenever there exists a satisfiable behavior tuple (g,0) such that f C g.
Note that every satisfiable tuple is also weakly satisfiable. If g is witnessed
by t then we say that f is weakly witnessed by t. Further, let S be the set
of all weakly satisfiable behavior tuples. Then W is cycling whenever there
exists a behavior tuple (f,0) € S such that # € States(f, 0%,0%, 09, Q)-

In Figure 5, we give an algorithm computing S. In this algorithm, C
is initialized by the set of satisfiable behavior tuples witnessed by 1-node
trees. Hereafter, the algorithm tests for each behavior tuple (f, o) whether
it can be obtained by combining behavior tuples in C' and adds (f, o) to C
if this is the case. To this end, we use an automaton My, over the alphabet
consisting of all behavior tuples. In particular, if (f,01), ..., (fn,0,) are
weakly satisfiable and (fi,01) - (fn,00) € L(M;,) then (f,o0) is weakly
satisfiable. Moreover, if each (f;, 0;) is weakly witnessed by t;, then (f, o) is
weakly witnessed by o(t1, ... ,t,). From this it follows that all tuples in C' are
weakly satisfiable. The converse can be shown by induction on the minimal
height of the trees weakly witnessing the weakly satisfiable behavior tuples.
It follows that after completion of the algorithm C' = S. Since the size of
each M, will be exponential in the size of W, the test L(M;,)NC* # 0 can
be done in exponential time. As there are only exponentially many behavior
tuples, the REPEAT loop will iterate at most an exponential number of
times. Thus, the total execution time of the algorithm will be exponential in
the size of W.

It remains to explain the construction of M;,. First, we define a non-
deterministic two-way string automaton M },U with one pebble whose size is
polynomial in the size of W. By Proposition 2.9, M}yg is equivalent to a
one-way nondeterministic automaton whose size is only exponential in the
size of M} ;. We then define M, as the latter automaton and the proof is
finished.

On input (fi,01) - (fa,0n), M}, works as follows. We only have to
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Input: W
% Initialization
for each behavior tuple (f, o) do
construct My,
C:={(f,0) | f C fi{p) 0 €T}
% Main loop
repeat
for each (f,0) ¢ C do
if L(M;,)NC*#10
then C':=CU{(f,0)}

until no more changes occur

Figure 5: An algorithm computing the set S of weakly satisfiable behavior
tuples.

consider the case where each (f;, 0;) is weakly satisfiable. Therefore, let each
(fi,0:) be weakly witnessed by t;.

1. For each ¢,¢" € @ for which f(q,¢'), the automaton M}, has to check
whether there exists a walk starting at the root of o(ty,... ,t,) in state
q that again reaches the root in state ¢'. However, M} , does not need
to know the tree o(ty,...,t,): M}, just guesses this path using the
fi’s. That is, M}’U starts in state ¢ at the root. If W, for example,
decides to move to the last child in state ¢;, then M’,g walks to the
last position of the string (fi,01) - (fn, 0n) arriving there in state ¢;.
Further, if M}  arrives at a position labeled with (f;, 0;) and W decides
to enter the subtree below this position, then M}yg just examines the
relation f; to see in which states it can return. If W makes a move
to, say, the right sibling in state ¢y, then M J’c,g just makes a right move
to state go. If M}, succeeds in reaching the root in state ¢, then it
considers the next pair of states ¢; and ¢} for which f(qq,¢}). If all pairs
are checked, M}  moves to the next step. Clearly, M} only needs a
number of states that is polynomial in the size of W.

2. For every ¢ € @ such that f(q,#), M}, has to verify the existence
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of an infinite walk on o(ty,... ,t,) starting from state ¢ at the root.
This can happen in two ways. The first possibility is that W gets
into a cycle in one of the subtrees tq, ..., t,, say t;. This can be
detected, like in the previous case, by simply guessing a walk reaching
position ¢ of the input string (f1,01) -+ (fn,0,) in a state ¢’ such that
fi(¢',#). The second possibility is that W can walk forever on the
children of the root. We use the pebble to detect this: M} now
just guesses a walk of W using the relations fi,..., f, as explained
above and nondeterministically puts down its pebble on a position of
(fi,01)+ (fn,0n), memorizes the current state, and proceeds its walk.
When the automaton reaches the pebble again in the memorized state,
which means that W indeed has reached a cycle, M’,g checks the next
state ¢' € @ for which f(¢',#). If all pairs are checked, M} , accepts.
Clearly, M}’U only needs a number of states that is polynomial in the
size of W. [ |

We note that the idea of computing behavior functions (as opposed to
relations) in a bottom-up way was already used by Schwentick and the present
author [36] to obtain upper bounds on the complexity of various optimization
problems for query automata.

Next, we define a tree walking automaton W for an extended AG F
such that Wx cycles if and only if F is circular. The idea is that on input t,
W follows all possible paths in the dependency graph* of F for t. Hence,
W will terminate on t if and only if this dependency graph is acyclic. This
idea is similar in spirit to a result by Maneth and the present author [31]
where a standard attribute grammar is transformed to a DTL program such
that the latter terminates on every input if and only if the former is non-
circular. Here, the complication arises from the fact that we have to deal
with extended AGs over unranked trees rather than with standard AGs over
ranked trees.

Theorem 5.5 Deciding non-circularity of extended AGs is in EXPTIME.

“The dependency graph Dx(t) of F for a derivation tree t is defined as follows. Its nodes
are all a(n), such that n is a node of t and «a is an attribute of the label of n. Further, there
is an edge from a(n) to b(m) if and only if a(n) € W(b(m)) (cf. Definition 4.7). Clearly,
F is well-defined on t if and only if D(t) contains no cycle. Hence, F is non-circular if
and only if there does not exist a t such that Dz(t) is cyclic.
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Proof. Let F be an extended AG with attribute set A and semantic domain
D. For ease of exposition we assume that all grammar symbols have all
attributes, i.e., for every X € NUT, Inh(X) U Syn(X) = A.

We construct a tree walking automaton Wyx such that Wx cycles if and
only if F is circular. Rather than letting Wz work over derivation trees of
G, we let it work on the set of all trees over the alphabet (N UT) x (P U
T) x (PU{U}) x {1,...,m} where m = max{|r| | X — r € P}. That
is, m denotes the maximal number of positions of a regular expression in a
production of P.

The automaton Wx first checks the consistency of the labelings. That is,
for each node n of the input tree labeled with (o, p1, pa, i),

1. if p; € T then o0 = p; and n should be a leaf; if py = X — r € P then
o = X and n should be derived by py;

2. if po = U then n should be the root; if po € P then the parent of n
should be derived with ps; and

3. if the parent p of n is derived by X — r, w is the string formed by the
children of p, and n is the j-th child of p, then pos, (j, w) = i.

The automaton checks this in the following way. It makes a depth first
traversal of the tree. At each node n labeled with (o, py, po, 7) it can check (1)
by first checking whether the current node is a leaf, and if not, by simulating
the NFA for r on the children of n where p; = X — r. Only when the NFA
accepts it moves to the next node in the depth first traversal. To check (2),
W makes another depth first traversal of the tree. It first checks whether the
root is labeled with (U, p,U, 1). Next, for each internal node n labeled with
(0, p1,Dp2,1) it checks whether every child of n has p; in the third component
of its label. Finally, (3) is checked by making a third depth first traversal
through the tree. Arriving at a node n derived by X — r, the automaton
simulates the NFA M, of Lemma 2.3 to check the fourth component of every
label.

If all this succeeds then Wr nondeterministically walks to a node and
chooses an attribute a which it keeps in its state. Now, suppose Wz arrives
at a node n labeled with (X, p;,ps,j) with the attribute @ in its state. We
distinguish two cases.

1. a is a synthesized attribute of X: Let a(0) := (oo, ... ,0p; (Ra)deD)
be the rule in the context (pj,a,0). Then Wjx nondeterministically
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chooses an attribute b in a o; and replaces a in its state with b. If
t = 0 then W just stays at the current node. If © > 0 then Wx walks
nondeterministically to a child of the current node having ¢ as the last
component of its label.

2. a is an inherited attribute of X: Let a(j) := (00, ... ,0p; (Ra)dep) be
the rule in the context (ps, a, j). Then Wz nondeterministically chooses
an attribute b in a o; and replaces a in its state with b. If ¢ = 0 then W
walks to the parent of n. If ¢« > 0 then W walks nondeterministically
to a sibling of n having ¢ as the last component of its label (or possibly
stays at n if i = j).

Clearly, Wz is cycling if and only if F is circular. Moreover, Wx can be
constructed in time polynomial in the size of F. [ |

Since deciding non-circularity for standard attribute grammars is also
hard for EXPTIME, we obtain that testing whether a nondeterministic tree
walking automaton cycles is EXPTIME-complete.

6 Expressiveness of extended AGs

We characterize the expressiveness of extended AGs as the queries definable
in monadic second-order logic. Monadic second-order logic (MSO) allows the
use of set wariables ranging over sets of nodes of a tree, in addition to the
individual variables ranging over the nodes themselves as provided by first-
order logic. We will assume some familiarity with this logic and refer the
unfamiliar reader to the book of Ebbinghaus and Flum [19] or the chapter
by Thomas [45].

A derivation tree t can be viewed naturally as a finite relational structure
(in the sense of mathematical logic [19]) over the binary relation symbols
{F, <} and the unary relation symbols {O, | a € N UT}. The domain of t,
viewed as a structure, equals the set of nodes of t. The relation £ in t equals
the set of pairs (n,n’) such that n' is a child of n in t. The relation < in t
equals the set of pairs (n,n’) such that n’ # n, n’ and n are children of the
same parent and n’ is a child occurring after n. The set O, in t equals the
set of a-labeled nodes of t.

MSO can be used in the standard way to define queries. If ¢(x) is an
MSO-formula, then ¢ defines the query Q defined by Q(t) := {n | t = ¢[n]}.
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We start with the easy direction.
Lemma 6.1 FEvery query expressible by an extended AG is definable in MSO.

Proof. Let F be an extended AG. We say that an arbitrary total valuation
v of t satisfies F if for every node n of t and attribute a of the label of n,
v(W(a(n))) € RZEZ()H)). It follows immediately from the definitions that F(t)
satisfies F. Moreover, F(t) is the only valuation that satisfies F. Indeed,
suppose that v satisfies F. An easy induction on [, using non-circularity,
then shows that if a(n) is defined in F;(t) then F;(t)(a(n)) = v(a(n)).

In MSO we just guess the values of the attributes, verify our guesses
and select those nodes for which the result attribute is true. For ease of
exposition we assume that all grammar symbols have all attributes, i.e., for
every X € NUT, Inh(X) U Syn(X) = A. We use set variables to represent
the assignment of values: for each function oo : A — D, Z, will contain those
nodes n such that for every attribute a € A, F(t)(a(n)) = a(a). We then
only have to verify that all semantic rules are satisfied under this assignment.
This can easily be done as it is well known that every regular language can
be defined in MSO [45]. The result of the query expressed by F then consists
of the nodes in all the Z, where a(result) = 1. Since for every tree there is
only one assignment that satisfies F we can just existentially quantify over
the Z,.

We omit the formal construction of the MSO formula simulating F which
is straightforward but tedious. [ |

To prove the other direction, we show that extended AGs can compute
the MSO-equivalence type of the input tree. Thereto, we introduce some
terminology. For a node n of a tree t, we write (t,n) to denote the finite
structure t expanded with n as a distinguished constant. Let t; and t, be
two trees, n; a node of t1, ny, a node of ty and k£ a natural number. We write
(t1,m1) = (t2,ny) and say that (t;,n;) and (t3, ny) are =M5°-equivalent, if
for each MSO sentence ¢ of quantifier depth at most k£,

(t1,n1) | o & (t2,102) F @,

i.e., (t1,n1) and (t2,ny) cannot be distinguished by MSO sentences of quan-
tifier depth (at most) k. It follows from the definition that =M5© is an equiv-
alence relation. Moreover, =M5-equivalence can be nicely characterized by

Ehrenfeucht games. The k-round MSO game on two structures (t;,n;) and
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(t2, ny), denoted by G}Y™5°(t,,n;; to, ny), is played by two players, the spoiler
and the duplicator, in the following way. In each of the k rounds the spoiler
decides whether he makes a point move or a set move. When the i-th move
is a point move, he selects one element p; € Nodes(t1) or q; € Nodes(tz)
and the duplicator answers by selecting one element of the other structure.
When the i-th move is a set move, the spoiler chooses a set P; C Nodes(t;)
or Q; C Nodes(ty) and the duplicator chooses a set in the other structure.
After k£ rounds there are elements py,...,p; and qq, ..., q; that were chosen
in the point moves in Nodes(t;) and Nodes(ts) respectively and there are sets
Py,... P, and Qq,...,Q, that were chosen in the set moves in Nodes(t;)
and Nodes(ts), respectively. The duplicator wins this play if the mapping
which maps p; to q; is a partial isomorphism from (t;,n;,Py,... ,P,) to
(t2,1n2,Qy,...,Qy,). That is, for all ¢ and j, p; € P; iff q; € Q;, and for
every atomic formula ¢(7), t E ¢[p] iff s = ¢[q].

We say that the duplicator has a winning strategy in GY5°(t1, ny; to, ny),
or shortly that he wins GY¥5°(t;, ny; t2, ny), if he can win each play no matter
which choices the spoiler makes.

See, e.g., the book by Ebbinghaus and Flum [19] for a proof of the next
proposition.

Proposition 6.2 The duplicator wins GY5°(t,,ny; to, ny) if and only if
(tl, 1’11) Ez/ISO (tz, 1’12).

The relation =}5° has only a finite number of equivalence classes (see,
e.g., [19]). We denote the set of these classes by ®;. We call the elements of
Oy =159 _equivalence types (or just =59-types). We denote by 7259(t, n)
the =M59_type of a tree t with a distinguished node n; thus, 715°(t,n)
is the equivalence class of (t,n) w.r.t. =%, By 7M59(t) we denote the
=MSO_type of the tree t without a distinguished node. It is often useful to
think of 7M59(t,n) as the set of MSO sentences of quantifier depth k that
hold in (t,n). We abuse notation and sometimes write 7M5°(t, root) for
M50 (¢, root(t)).

The next proposition contains the main ingredients of the proof of Theo-
rem 6.4. Let p(x) be an MSO formula of quantifier-depth k. The first item
of the next proposition says that t = ¢[n] only depends on the =M5°-type
of the subtree rooted at n, i.e., 7M5°(t,, n), and on the =M5-type of the
envelope of t at n, i.e., 72159 (t,, n). Hence, our original problem reduces to

the computation of 7159 (t,, n) and 7759 (t,, n) for each n. The second item
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(essentially) tells us that 759 (t,,n) can be computed in a bottom-up man-
ner and from left to right Wlthin the siblings of each node. Finally, it follows
(essentially) from the third item that 759 (t,,n) can be computed in a top-
down fashion once the =M3C-types of all the (tmy,, m) are known. The above
two pass strategy, first compute the types of all subtrees and then compute
the types of all envelopes, forms the core of the proof of Theorem 6.4.

Proposition 6.3 Let k be a natural number, o be a label, t and s be two
trees, n be a node of t with children ny,... ,n,, and m be a node of s with
children my, ... ,m,,.

1. If (tn,n) =159 (54, m) and (tn,n) =159 (s, m), then (t,n) =159
(s,m).

2. If (0(tny,--- tn,_,),r00t) =9 (0(Spmys - - -, Sm,,_,), r00t) and (ty,,n,)

EQASO (Sm M), then (tmn) :z/lso (Sm, m).

3. Let the label of n and m beo. Fori € {1,... ,n} andj € {1,... ,m},
if

* (tn,n) ="° (55, m),
—MsO
e (0(tn,,...,tn,_,),ro0t) = (0(Smys - - - ,smj_l), root),
® (0(tny,,,--- tn,),r00t) =N° (0(Smy,,s- - - 5 Sm,, ), TOOL), and
t

o the label of n; equals the label of m;,
then (tn,,1n;) =° (S, m;).

Proof. Consider the first item. By Proposition 6.2, it suffices to show
that the duplicator wins G}®°(t,n;s;m). We already know that he wins
the subgames G}™5°(ty, n;8m; m) and GM5°(t,, n;S; m). The duplicator,
therefore, combines these winning strategies as follows to obtain a winning
strategy in GY5°(t, n;s; m). If the spoiler makes a point move then the dupli-
cator answers corresponding to his winning strategy in the relevant subgame.
If the spoiler makes a set move in, say, t, choosing the sets P; C Nodes(t,,)
and Py C Nodes(ty), then the duplicator responds with the set Q; U Qo,
where Q is the answer to Py in the subgame G¥5°(t,, n;sm; m) and Q, is
the answer to Py in the subgame GY5°(t,, n;5,; m).

Note that this strategy is well-defined. Indeed, (t,, n) and (t,,n) ((Sm, m)
and (Sp,, m)) have only n (m) in common and due to the fact that n and m
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are distinguished constants in both subgames, the duplicator is forced to pick
n whenever the spoiler picks m, and vice versa. At the end of a game, the
selected vertices define partial isomorphisms for the two pairs of respective
substructures. As there is no relation in the vocabulary that can relate a
node from, say, t, to a node from t, (apart from n), these mappings are also
partial isomorphism for the whole structures. Hence, the above strategy is
also winning.

We next focus on the third case and leave the second case to the reader.
Here, there are altogether 4 subgames including the trivial game in which one
structure consists only of n; and the other of m;. The winning strategy in the
game on (tn,, n;) and (Sm,, m;) just combines the winning strategies in those
4 subgames (as explained for the first item). Again, at the end of a game,
the selected vertices define partial isomorphisms for all pairs of respective
substructures. To ensure that they also define a partial isomorphism between
the entire structures one only has to check the preservation of the relations
< and E between the chosen elements, and the distinguished constants n;
and m;. This immediately follows from the following observations. The
distinguished constants in the subgames make sure that (a) whenever in the
game on (t,,,n;) and (8m,,m;) a child of n (m) is chosen, the duplicator
has to reply with a child of m (n); and, (b) whenever n (m) is chosen, the
duplicator has to reply with m (n). Additionally, the position of the subtrees
in the whole tree make sure that < is preserved w.r.t. n; and m,;. [ |

We are ready to prove the main theorem of this section.

Theorem 6.4 A query is expressible by an extended AG if and only if it is
definable in MSO.

Proof. The only-if direction was already given in Lemma 6.1.

Let ¢(x) be an MSO formula of quantifier depth k. We define an extended
AG F expressing the query defined by . Define D = &, U {0,1} and
A = {env, sub, result,lab}, where env is inherited for all grammar symbols
except for the start symbol for which it is synthesized, and sub and result
are synthesized for all non-terminals and inherited for all terminals. The
intended meaning is the following: for a node n of a tree t,

o F(t)(sub(n)) = 7159 (ty, n),

e F(t)(env(n)) = 7M5°(t,,n), and
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e F(t)(result(n)) =1 if and only if t = ¢[n].

By Proposition 6.3(1), t = ¢[n] only depends on 759 (t,,, n) and 7M5°(t,,,

n). Hence, F(t)(result(n)) only depends on the attribute values F(t)(env(n))
and F(t)(sub(n)).

As already hinted upon above, the extended AG we construct, works in
two passes. In the first bottom-up pass all the sub attributes are computed
(using the regular languages SUB, defined below); in the subsequent top-
down pass all the env attributes are computed (using the regular languages
ENV, defined below). Recall our convention that the start symbol cannot
appear in the left-hand side of a production. Hence, whenever we encounter
a node labeled with the start symbol, we know it is the root and can initiate
our top-down pass.® During this second pass, there is enough information at
each node n to decide whether t = ¢[n].

We next define the regular languages SUB, which we use to compute
=MSO_types of subtrees in a bottom-up fashion. We again abbreviate 759 (t,
root(t)) by TM59(t,root). Define for # € ®, and X € N the language
SUB(X, ) over @ as follows:

0,---0, € SUB(X, 0)

if there exist trees ty, ..., t, such that fori = 1,... ,n, 7M59(t;,root) = 6;
and M5O (X (t4,...,t,),root) = 0. We show that SUB(X,0) is a regular
language.

Lemma 6.5 Let X € N and 0 € ®. There ezists a DFA M = (S, ®y, , so, F')
accepting SUB(X, 0).

Proof. Define M = (S, ®y, 0, so, F') as the DFA where S = &, U {sy} and
F = {0}. Define the transition function as follows: for all 6,6, 6, € Py,

e 0(s0,0) := M5O (X (t), root) with 759 (¢, root) = 6, and

e §(61,0) := 0y, whenever there exists a tree t with an X-labeled node n
of arity n (for some n) such that 7M5°(X (ty1,... ,tn, 1), T00t) = 0,
M50 (tn, nn) = 0, and 7759 (£, n) = 0s.

5As the sole purpose of this technical convention is to be able to identify the root of the
input tree, it can easily be dispensed with by adding so-called root rules to the attribute
grammar formalism (see, e.g., Giegerich for a definition of standard attribute grammars
with root rules [21]).
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By Proposition 6.3(2), it does not matter which trees in the equivalence
classes 0, 0, and 0y we take. [ |

Note that, §*(sg,0; ---0,) = ' if and only if there exist trees ti,... ,t,
such that fori = 1,... ,n, 7M59(t;, root) = 6; and TM5° (X (¢4, ... ,t,),r00t) =
.

Define for § € @, the language ENV () over &, U {#} as follows:

9 - 9091 v gi—l#gigi—l—l e en S ENV(Q)
iff
e 0 c @) for j=0,...,n,and

e there exists a tree t with a node n of arity n (for some n) such that
50 (t,,n) = Oy, M5O (tn, ni) = 6, and 7759 (t,,,n7) = 6; for j =

1,...,n.

By Proposition 6.3(3), € ENV(#) only depends on 7215° (%, n), 7M5° (X (1,

s tnio1),100t), TM5O(X (tpis1 -+ - tan), root), and the label of ni which in
turn only depends on 759 (t,;, n7). In terms of the automaton M of Lemma
6.5, § € ENV(6) only depends on y, 6*(sg, 01 -+ -0 1), 0*(s0, 0iy1- - -0,), and
6;. It is, hence, not difficult to construct an automaton accepting ENV(#).
Indeed, such an automaton stores ), in its state; then simulates M until
it reaches the symbol #; this gives the state §*(sg,6; - --6;_1); hereafter M
stores f; in its state and again simulates M until the end of the string which

gives the state §*(sg, 0;11---0,); M then accepts if
§X(90, 5*(80, 0 -- '9z>1), 0;, 5*(50, Oig1 -+ 9n)) =0.

Here, the function £y is defined as follows. For 6;, 0, 05, 04, 0 € ®, and
X € N, &x(01,05,05,0,) = 0 if there exists a tree t with an X-labeled node

n of arity n (for some n) and an i € {1,... ,n}, such that
° T,ivlso(tn, n) = 0y;
SO(X (tn1 .. .tni1), root) = By;
o M50 (¢, ni) = 05;
TS0 (X (fpig1 - - - tan), TOOt) = 045 and
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o 750 (%, ni) = 0.

By Proposition 6.3, for all X € N and 6,0, € P, if 6; # 6, then
SUB(X,0;) N SUB(X,6,) = () and ENV(6;) N ENV(6y) = 0. Also, for all
XeN, U0€<I>k SUB(X, #) = ®; and Uﬂe@k ENV(0) = ®;#2;.

We are finally ready to define the semantic rules of F. For every produc-
tion X — r, define in the context (X — r, sub,0) the rule

sub(0) := (09 = €,01 = sub, ... 0, = sub;

(Ry = SUB(X, 0))ocs,, Ro = {0, 1}%).

The R;’s that are not mentioned are defined as the empty set. For every ¢
such that r(i) = o is a terminal define in the context (X — r, sub, ) the rule

sub(i) :=(op =€,01 =¢,... 04 =& Ry, = {¢}, Ry = DD").

The above rule just assigns the type 6, = 7.59(t(0), root) to every non-

terminal 0. For ¢ = 1,...,|r|, define in the context (X — r, env,i) the
rule
env(i) := (09 = env,o, = sub, ... , 0, = sub;

(Ryg = ENV(0))pea,, Ro = {0, 1, #}7).
For the start symbol, define in the context (U — r, env,0) the rule

env(0) :=(og = €,01 =¢€,... 04 = €; Ryy = {e}, Ry = DD"),

where 0(U) = 7"59(¢(U), root(t(U))). Finally, add in the context (X —
r, result, 0) the rule

result(0) := (o9 = (env, sub),0y =€,... 0, = &; R, Ry = D* — Ry),

and for every i such that r(i) is a terminal, add in the context (X —
r, result, i) the rule

result(i) := (og = ¢,01 =¢,... ,0i_1 = &,0; = (env, sub),

Oit1 = &,..., 0 =& R, Ro = (DU{#})" — i),

where R consists of those two letter strings 6,6, € (Pz for which there exists
a tree t with a node n, with 75°(t,,n) = 60;, 7M5°(t,, root) = 6, and

t = ¢[n]. |
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7 Optimization

An important research topic in the theory of query languages is that of op-
timization of queries. This comprises, for example, the detection and elimi-
nation of subqueries that always return the empty relation, or more general,
the rewriting of queries, stated in a certain formalism, into equivalent ones
that can be evaluated more efficiently. The central problem in the case of
the latter is, hence, to decide whether the rewritten queries are indeed equiv-
alent to the original ones. In this section we study the complexity of the
emptiness and equivalence test of extended AGs. Interestingly, these results
will be applied in the next section to obtain a new upper bound for decid-
ing equivalence of Region Algebra expressions introduced by Consens and
Milo [14].
We consider the following problems:

e Non-emptiness: Given an extended AG F, does there exists a tree t
and a node n of t such that F(t)(result(n)) = 17

e Equivalence: Given two extended AGs F; and F; over the same gram-
mar, do F; and F, express the same query?

To show the EXPTIME-hardness for the above decision problems we use
a reduction from TWO PERSON CORRIDOR TILING which is known to
be complete for EXPTIME [12]. The matching upper bound is obtained
by a reduction to the emptiness problem of NBTAs which are defined in
Section 2.4.

We start with the lower bound. For natural numbers n and m we view

{1,...,n}x{1,... ,m} as a rectangle consisting of m rows of width n. Let T
be a finite set of tiles, let H, V' C T'XT" be horizontal and vertical constraints,
and let b =by,... ,by,t =t,... ,t, € T™ be the bottom and the top row. A

corridor tiling from b to ¢ is a mapping A : {1,... ,n} x{1,...,m} = T, for
some natural number m, such that

e the first row is b, that is, A(1,1) = by, ..., A(1,n) = by;
e the m-th row is ¢, that is, A\(m, 1) =t, ..., A(m,n) = ty;
e fori=1,...,n—landj=1,...,m, (A(4,7),A(i+1,7)) € H; and

e fori=1,... , nandj=1,... , m—1, (A(474),A(i,j+1)) V.
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In a two person corridor tiling game from b to £, two players, on turn, place
tiles row wise from bottom to top, and from left to right in each row. The
first player starts and each newly placed tile should be consistent with the
tiles already placed. The first player tries to make a corridor tiling from b to
t, whereas the second player tries to prevent this. If the first player always
can achieve such a tiling no matter how the second player plays, then we say
that player one wins the corridor game. A player that puts down a tile not
consistent with the tiles already placed, immediately looses.

TWO PERSON CORRIDOR. TILING is the problem to decide, given
a set of tiles T, H,V C T x T, a sequence of tiles b = by,... ,b, and t =
ty,...,t, € T™, whether player one wins the corridor game.

Lemma 7.1 Deciding non-emptiness of extended AGs is hard for EXP-
TIME.

Proof. The proofis a reduction from TWO PERSON CORRIDOR TILING
to non-emptiness of extended AGs. A strategy for player one can be repre-
sented by a tree where the nodes are labeled with tiles. Indeed, if we put
the rows of a tiling next to each other rather than on top of each other, then
every branch, i.e., the sequence of labels from the root to a leaf, of a tree
represents a possible tiling. If we forget about the start row b for a moment,
then the odd depth nodes have no siblings and represent moves of player one
and the even depth nodes do have siblings and represent all the choices of
player two. A strategy is then winning when every branch is either a corridor
tiling or is a tiling where player two made a false move.

The extended AG we construct will only accept trees, by selecting the
root, that correspond to winning strategies for player one. The AG essentially
only has to check the horizontal and vertical constraints. Since n, the width
of the corridor, is constant, the vertical constraints can be checked by storing
at each node the tile carried by its n-th ancestor. The horizontal constraints
can be checked for each node by looking at the tile carried by its parent.

Let (T, H,V,by,... by, t1,...,t,) bean instance of TWO PERSON COR-
RIDOR TILING where T' = {¢y, ... , ¢ }. Define

Gcorr — (Ncorra Tcorra Pcorra Ucorr)

as the ECFG, where the set of terminals 7., contains only the symbol =,
and the set of non-terminals N, consists of all triples {(¢,7,j) | c € T,i €
{1,2},7 € {1,...,n}} together with the set {by,... ,b,,t1,... ,t,}. If anode
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is labeled with (¢, 4, j) then this means that player i has put tile ¢ on the j-th
square of the current row. The terminal = functions as an end delimiter,
indicating that either the end row ¢ has been reached or that player two has
put a tile on the board that is inconsistent with the tiles already present.
The set of productions of G, now consists of the following rules:

L. Ucorr_>b1;
2. b, — (e, 1, 1)+ -+ (e, 1,1) + ¢, and b; — by fori=1,... ,n—1;

3. t, >=Zand t; > t;y; fori=1,... ,n—1;

(Calaj) — (Cla2aj+1)"'(0ka27j+1)a

and
(0727]) % (01717]+1)+...+(Ck717]+1)+E7

for each ¢ € P and j € {1,... ,n—1}; and

(e, 1,n) = (c1,2,1) -~ (¢x, 2, 1) + tq,

and
(c,2,n) = (c1,1,1) + -+ (e, 1,1) + E+ 1,

for each ¢ € P.

If t is a derivation tree and n is a node of t, then we call the j-th node
on the path from the parent of n to the root, the j-th ancestor of n. If n is
labeled with (¢, 14, j) then we say that n is admissible if (¢/,c) € V where the
n-th ancestor of n contains the tile ¢ in its label, and, additionally, if j > 1,
then (¢",c) € H where (¢”,i",j — 1) is the label of the parent of n.

The extended AG F has attributes A = {1,... ,n,local, result,lab} and
semantic domain {0,1,¢,...,¢}, and works in three passes. In the first
top-down pass it defines the inherited attributes 1, ..., n such that for
j=1,...,n, F(t)(j(n)) equals the tile in the label of the j-th ancestor of n
for each node n of t. Next, F uses these attributes to check local consistency
of the tiling. More precisely, the attribute local is defined true for a node n
labeled with (¢, 1, j) iff n is admissible; and the attribute local is defined true
for a node n labeled with (¢, 2, ) iff n is admissible or n is not admissible and
the only child of n is labeled with = (the latter captures the case where player
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one wins when player two uses a wrong tile). Finally, F checks whether all
attributes local are true by making a bottom-up pass through the tree. If the
latter is the case then F selects the root. Clearly, F can be constructed in
polynomial time and is non-empty if and only if player one wins the corridor
tiling game. We omit the formal description of F. [ |

Non-emptiness of extended AGs can in fact also be decided in EXPTIME.
The proof essentially works as follows. For each extended AG F we construct
an NBTA T guessing the attribute values at each node; it then accepts when
the result attribute of at least one node is true. Since the size of T will be
exponential in the size of F and non-emptiness of NBTAs can be checked
in polynomial time (see Lemma 2.8), we obtain an EXPTIME algorithm for
testing non-emptiness of extended AGs.

Bloem and Engelfriet [6] already showed that tree automata can guess
attribute values of nodes defined by standard finite-valued attribute gram-
mars on ranked trees. We must extend this technique to unranked trees and
automata, and must control the sizes of the NFAs involved in the transition
function of the automaton. In particular, we control these sizes by first de-
scribing the transition function by nondeterministic two-way automata with
a pebble which can be transformed into equivalent one-way nondeterministic
automata with only an exponential size increase.

Theorem 7.2 Deciding non-emptiness of extended AGs is EXPTIME-com-
plete.

Proof. EXPTIME-hardness has just been shown in Lemma, 7.1, so it remains
to show that non-emptiness is in EXPTIME.

Let F be an extended AG over the grammar G = (N, T, P,U). Recall that
all regular languages R, are represented by NFAs. W.l.o.g., we assume that
every grammar symbol has all attributes, i.e., for all X € NUT, Inh(X) U
Syn(X) = A. As mentioned above, we construct an NBTA T such that
L(Tx) # 0 if and only if F is non-empty. The size of T'r will be exponential
in the size of F. That is, the set of states of T and the NFAs representing
transition functions will be exponential in the size of 7. By Lemma 2.8,
non-emptiness of Tx can be checked in time exponential in the size of F.
Hence, the theorem follows.

The automaton T'r essentially guesses the values of the attributes and
then verifies whether they satisfy all semantic rules. Therefore, we use as
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states tuples (o, 0,p, i) where o : A — D is a function, o € {0,1},p € PUT
and i € {1,...,s}, where s = max{|r| | X — r € P}.

The intended meaning of the states is as follows. If a valid state assign-
ment (cf. Section 2.4) of Tk, assigns the state ¢ = (o, 0,p, i) to a node n of
an input tree, then

e « represents the values of the attributes of n; i.e., for all a € A,

F(t)(a(n)) = a(a);
e 0 =1 if and only if a node in the subtree rooted at n has been selected;

e if n is an internal node then p € P and n is derived by p; if n is a leaf
then p € T and n is labeled by p; and

e if n is the root then i = 1; otherwise, if the parent p of n is derived
by p' — r, n is the j-th child of p, and w is the string formed by the
children of p, then pos,(j, w) = i.

For a tuple ¢ = (v, 0,p, 1) € @, we denote o by g.0, a by g.«, p by ¢.p, and i by

q.i. If ¢p =X — r € P then we denote X by ¢.X and r by ¢.r, and if p € T

then we denote p also by ¢.X. If « : A — D is a function and 0 = a; - - - a,

is a sequence of attributes then we denote the string a(a,) - - - a(a,) by a(o).
The set of final states F'is defined as

{¢eQ|qo=1, ¢ X =U and ¢q.i = 1}.

We define the transition function. Foralla € A — D, 01,00 € T, 0 € {0, 1},
and ¢ € {1,...,s}, define

{e} if oy = 0y and 0 = a(result) ;

5((04707 Ulai)702) a { 1] otherwise.

For all X € N and ¢ € @, if ¢ X # X then 0(¢, X) = 0; otherwise, if
q.X = X then ¢ ---¢q, € §(¢, X) iff

L. ¢1.X - q,.X € L(q.r);
2. forall j=1,...,n,pos,.(j,q1.X - ¢,.X) = q;.5;
3. for every synthesized attribute a of X, defined by the rule

(00, - O1grfs (Ra)aeD),
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we must have:

Q'a(UU) ' q1-a(0q1.i) ot Qn-a(o—qn.i) € Rq.a(a);

4. for all j = 1,... ,n, for every inherited attribute a of ¢;.X, defined by
the rule

(00, - O1grfs (Ra)aeD),

we must have:

q-a(00) - 1-0(0g,) -+ gj1-0(0; 1) H#Gj-(04,.0)

Qj+1'a(aq]‘+1-i) e qn.a(aqn,i) € RQ-Oé(a);
and

5. q.o = 1 if and only if g.«(result) = 1 or there exists a j € {1,... ,n}
such that gj.0 = 1.

We show that conditions (1-5) are regular. Moreover, they can be defined
by NFAs whose size is exponential in the size of F. The result then follows
since the size of the NFA computing the intersection of a constant number
of NFAs is polynomial in the sizes of those NFAs.

e (1) and (2) are checked by the the NFA M,, obtained from ¢.r as
described in Lemma 2.3 whose size is linear in 7.

e For (3), we describe a two-way nondeterministic automaton M;. By
Proposition 2.9, M; can be transformed into an equivalent one-way
NFA whose size is exponential in M;. M; makes one pass through the
input string for every synthesized attribute a of X simulating the NFA
for Ryae. If the latter accepts then M; walks back to the beginning
of the input string and treats the next synthesized attribute or accepts
if all synthesized attributes have been accounted for; M, rejects if the
NFA for R,q(a) rejects. This needs only a linear number of states in
the sizes of the NFAs representing transition functions and the set of
attributes.
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e For (4), we describe a two-way nondeterministic automaton M, with a
pebble. By Proposition 2.9, M, can be transformed into an equivalent
one-way NFA whose size is exponential in M. M, successively puts
its pebble on each position of the input string. Suppose M, has just
put the pebble on position j, then, for every inherited attribute a of
q;-X, M, walks back to the beginning of the input string and simulates
the NFA for Ry, 4(,), pretending to read # the moment it encounters
the pebble. If the NFA for Ry, 4., accepts, then M, walks back to the
beginning of the input string and treats the next inherited attribute of
¢;.X, or, if all inherited attributes of ¢;.X have been considered, moves
the pebble to position j 4+ 1 and repeats the same procedure. If M, has
put its pebble on all positions it accepts. This needs only a number of
states linear in the size of the NFAs representing transition functions
and the set of attributes.

e (5) can be done by making one pass over the input string using a
constant number of states.

This concludes the proof of the theorem. [ |

Let us now turn to the equivalence problem. This problem is actually
polynomial-time equivalent to the complement of the non-emptiness prob-
lem (i.e., the emptiness problem), and hence it is also EXPTIME-complete.
Indeed, F expresses the constant empty query if and only if it is equivalent
to a trivial extended AG that expresses this query, and conversely, we can
easily test if F; and F, express the same query by constructing an extended
AG that first runs F; and F, independently, and then defines the value of
result of a node to be 0 iff the values of result for 7, and F» on that node
agree. This gives the following theorem.

Theorem 7.3 Deciding equivalence of extended AGs is EXPTIME-complete.

8 Application: optimization of Region Alge-
bra expressions

The region algebra introduced by Consens and Milo [14, 13] is a set-at-a-time
algebra, based on the PAT algebra [42], for manipulating text regions. In
this section we show that any Region Algebra expression can be simulated
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by an extended AG of polynomial size. This then leads to an EXPTIME
algorithm for the equivalence and emptiness test of Region Algebra expres-
sions. The algorithm of Consens and Milo is based on the equivalence test for
first-order logic formulas over trees which has a non-elementary lower bound
and, therefore, conceals the real upper bound of the former problem. Our
algorithm drastically improves the complexity of the equivalence test for the
Region Algebra and matches more closely the coNP lower bound [14].

It should be pointed out that our definition differs slightly from the one
in [14]. Indeed, we restrict ourselves to regular languages as patterns, while
Consens and Milo do not use a particular pattern language. This is no loss
of generality since

e on the one hand, regular languages are the most commonly used pattern
language in the context of document databases; and,

e on the other hand, the huge complexity of the algorithm of [14] is not
due to the pattern language at hand, but is due to quantifier alternation
of the resulting first-order logic formula, induced by combinations of
the operators ‘—’ (difference) and <, >, C, and D.

Definition 8.1 A region index schema T = (Sy,... ,Sp, ) consists of a set
of region names Sy,...,S, and a finite alphabet .

If N is a natural number, then a region over N is a pair (i,7) with i < j
and 4,5 € {1,... ,N}.

An instance I of a region index schema Z consists of a string I(w) =
ap...ay, € X* with N; > 0, and a mapping (also denoted by I) associating
to each region name S a set of regions over Nj.

We abbreviate r € |J;_, I(S;) by r € I. We use the notation L(r) (respec-
tively R(r)) to denote the location of the left (respectively right) endpoint
of a region 7 and denote by w(r) the string apg) ... ag().

Example 8.2 Consider the region index schema Z = (Proc, Func, Var, ).
In Figure 6, an example of an instance over Z is depicted. Here, N; = 16,
I(w) = abcdefghijklmnop, I(Proc) = {(1, 16), (6,10)}, I(Func) = {(12,16)}
and I(Var) = {(2,3),(6,7), (12,13)}. |

For two regions r and s in [ define:

o r <sif R(r) < L(s) (r precedes s); and
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Proc

Proc Func

Var Var Var

al|blc|d]e|f|g|h|i|j |k]|]l |m|n]o]|p

Figure 6: An instance I over the region index schema of Example 8.2
e r Csif L(s) < L(r) and R(r) < R(s), or L(s) < L(r) and R(r) < R(s)
(r is included in s).

We also allow the dual operators » > s and r D s which have the obvious
meaning.

Definition 8.3 An instance [ is hierarchical if
e I(S)NI(S") =0 for all region names S and S’ in Z, and
e for all ;s € I, one of the following holds: »r < s, s<r,r Csors Cr.

The last condition simply says that if two regions overlap then one is strictly
contained in the other.

The instance in Figure 6 is hierarchical. Like in [14], we only consider
hierarchical instances. We now define the Region Algebra.

Definition 8.4 Region Algebra expressions over T = (Sy,..., Sy, ) are in-
ductively defined as follows:

e every region name of 7 is a Region Algebra expression;

e if e; and e, are Region Algebra expressions then e; Ues, €1 —es, €1 C eg,
e1 < eg, 1 D ey, and e; > ey are also Region Algebra expressions;

e if ¢ is a Region Algebra expression and R is a regular language then
or(e) is a Region Algebra expression.
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The semantics of a Region Algebra expression on an instance [ is defined as
follows:

[S) = Arlrel§k
[or(e)]' = {r|re[e andw(r) € R};
[er Ues]’ = [ea]" U [ea]';
[er — es]’ = [ea]" = [ea];
and for x € {<,>,C,D}:
[ex xes]” = {r|re[e]" and 3s € [ey]) such that r s}.

Example 8.5 The Region Algebra expression Proc D os-garis- (Proc) de-
fines all the Proc regions which contain a Proc region that contains the
string start. ]

An important observation is that for any region index schema Z = (5,
, Sn, X) there exists an ECFG G7 such that any hierarchical instance of
7 ‘corresponds’ to a derivation tree of Gz. This ECFG is defined as follows:
Gz = (N,T,P,U), with N = {S;,...,S,}, T =X, and where P consists of
the rules
p =U — (S1+...+S5,+2)F;
=S5 = (S1+...+S,+2)

=S, = (Si+...+S,+5)T.

For example, the derivation tree t; of Gz representing the instance I of
Figure 6 is depicted in Figure 7. Regions in [ then correspond to nodes in t;
in the obvious way. We denote the node in t; that corresponds to the region
r by n,.

Since extended AGs can store results of subcomputations in their at-
tributes, they are naturally closed under composition. It is, hence, no sur-
prise that the translation of Region Algebra expressions into extended AGs
proceeds by induction on the structure of the former.

Lemma 8.6 For every Region Algebra expression e over I there exists an
extended AG F. over Gz such that for every hierarchical instance I and
region v € I, r € [e]" if and only if F.(t;)(result,(n,)) = 1. Moreover, F,
can be constructed in time polynomial in the size of e.
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U

Proc
a Var d e Proc Func
bAC /\ /\
Var Var n
/\ /\
f g I m

Figure 7: The tree t; corresponding to the instance I of Figure 6.

Proof. The proof proceeds by induction on the structure of Region Algebra
expressions. We represent the regular languages occurring as patterns in Re-
gion Algebra expressions by DFAs. The extended AG F, will always contain
the attribute result, which is synthesized for all region names. As before
the Ry’s that are not specified are assumed to be empty. Region Algebra
expressions can only select regions, therefore, no attributes are defined for
terminals.

e = S;: A, = {result,,lab}; D, = {0,1,5,...,S,} UX; for i =
1,...,n, define in the context (p;, resulte, 0) the rule

result.(0) := (o9 =lab,01 =¢,... ;0441 = ; Ry = {S;}, Ry = D;—Ry).

2. e = og(er): Let M = (S,%,0, s, F) be the DFA accepting R with
S = {so,---,Sm}. Define A, = A,, US and D, = D,, US. W.lo.g,
we assume SN A,, =0 and SN D, = (. We define the semantic rules
of F. as the semantic rules of F,, extended with the ones we describe
next.

Each non-terminal has the synthesized attributes sg,...,s;,. They
are defined in F, such that for a region instance I and region r € I,
Fe(tr)(s(n,)) = ¢ if and only if 6*(s,w(r)) = ¢'. So, fori=1,...,n
and j =1,...,m, define in the context (p;, s;,0) the rule

$;(0) ;== (00 =¢,01 = (S0 -+ ,Sm)s -+ ,0n = (S0y--- ,5m),

Ont1 = lab; (R )seS>
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It remains to define the regular languages (R’).cs. Note that the input
strings for each RJ are of the form @ = wy - - - wy, where forl = 1,... | k,
w; € S™ or w; € ¥*. The DFA M, ; accepting R’ then works as
follows: it starts in state s;, if w; € S™! then M;; continues in
state s’ where s’ occurs on the (j + 1)-th position of w; (this is the
value of the attribute s;); otherwise; if w; € ¥* then M; ; continues in
state 0*(s;,w;). Formally, M, ; accepts w if there exists ji,...,Jx €
{0,...,m} such that

o ifw; € S™ ! then s;, = wy(j+1);% if wy € E* then s;, = 0*(s5, w1);
o for i =2,... k, if w, € S™ then s;, = wy(j;—1 + 1); if w, € &*
then s;, = 0*(s;,_,,w;); and
® 5 =Ss.
Clearly, M, ; can be defined using a number of states polynomial in the
size of S. The attribute result, then becomes true for a node n, when

Fe(tr)(so(n)) € F and F.(tr)(result,,(n)) = 1. So, fori =1,... ,n,
define in the context (p;, result.,0) the rule

resulte(0) 1= (o9 = (o, resulte, ), 01 = €,... ,Opt1 = &

R12{81|S€F},R0:DZ—R1>.

In the following e will always depend on subexpressions e; and e;. Hence,
F. always consist of F,, and F,, extended with rules for the new attributes.
We, therefore, only specify the new rules. We will always assume that (apart
from the attribute lab) A.,, A., and the set of new attributes are disjoint.

3. e =¢e; Uesy: A node n is selected when
Fe(tr)(resulte, (n)) =1 or F.(t;)(result.,(n)) = 1.

Define A, = A., U A, U {result.} and D, = D,, U D,,. So, for i =
1,...,n, define in the context (p;, result.,0) the rule

resulte(0) 1= (¢ = (resulte,, resulte,), 01 = €,... ,0pt1 = €;

R, = {01,10}, Ry = D! — R,).

5By w1 (j + 1), we denote the (j + 1)-th position of the string w;.
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4. e = e; — eg: A node n is selected when
Fe(tr)(result,, (n)) = 1 and F.(t;)(result.,(n)) = 0.

Define A, = A., U A, U {result,} and D, = D,, U D,,. So, for i =
1,...,n, define in the context (p;, result,,0) the rule

result.(0) := (o9 = (resulte,, resulte,), 01 = €,... ,0n41 =€
R, = {10}, Ry = D — R)).

5. e =e; < eg: Define A, = A, UA,,U{right, result.} and D, = D, UD,,.
Each non-terminal has the inherited attribute right such that for a
region instance I and a region r, F.(t;)(right(n,)) = 1 if there exists a
region s such that r < s and s € [[62]]1. Thus, for j = 1,...,n, define
in the context (py, right, j) the rule

right(j) := (0g = €, 01 = resulte,, ... ,0, = resulte,, 0pp1 = €;
Rl, RO — (De U {#})* - R1>7

where R, is the regular language that contains a string wi#aw,y, with
wy,ws € {0,1}* and a € {0,1}, if wy contains a 1. Fori =1,... ,n
and j = 1,...,n, define in the context (p;, right,j) the rule

right(j) := (og = right, oy = resulte,, ... ,0p = resulte,, Opi1 = €;

Rla RO = (De U {#})* - R1>7

where R, is the regular language that contains a string aw;#bws,, with
wy, we € {0,1}* and a,b € {0,1}, if wy containsa 1 ora = 1. A node n
is then selected when F,(t;)(result., (n)) = 1 and F.(t;)(right(n)) = 1.
So, for i = 1,... ,n, define in the context (p;, result.,0) the rule

resulte(0) 1= (o¢ = (resulte,, right), o1 = €,... ,0p11 = £;

R1 = {11},R0 = DZ - R1>

6. e = e; > ey: Similar to the previous case;

7. e =e; D ey: Define A, = A, UA,,U{down, result,} and D, = D, UD.,,.
Each region name has the synthesized attribute down such that for a
region instance I and a region r, F.(t;)(down(n,)) = 1 if there exists
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a region s such that r O s and s € [es]”. So, fori =1,...,n, define in
the context (p;, down,0) the rule

down(0) := (og = &, 01 = (resulte,, down), ... ,o, = (result.,, down),
Opt+1 = &, Rl,RO = D: — R1>,

where I, is the regular language that contains all strings containing at
least one 1. A node n is then selected when

Fo(tr)(resulte, (n)) =1

and
F.(t7)(down(n)) = 1.

So, for j =1,...,n, define in the context (p;, result.,0) the rule

resulte(0) := (o9 = (resulte,, down), o1 =¢€,... 0,11 = €;

R1 — {11},R0 — DZ - R1>

. e=-e C ey Define A, = A, UA,, U{up, result,} and D, = D,, UD,,.
Each region name has the inherited attribute up such that for a region
instance I and a region r, F.(t;)(up(n,)) = 1 if there exists a region
s such that » C s and s € [[62111. So, for j = 1,...,n, define in the
context (po, up, j) the rule

up(j) :=(og=¢€,00 =¢,... ,0n41 =¢; R =0, Ry = (D. U {#})").

Fori=1,...,nand j =1,...,n, define in the context (p;, up,j) the
rule

up(j) := (o9 = (up, resulte,), 01 =&,... ,0p41 = &

Ry = {114#,104#,01#}, Ry = (D. U {#})* — Ry).
A node n is then selected when F,(t;)(result.,(n)) = 1 and
Fe(tr)(up(n)) = L.
So, for i = 1,... ,n, define in the context (p;, result.,0) the rule

resulte(0) := (o9 = (resulte,, up),01 =€,... ,0n11 = £;

Rl — {]-]-},RO — DZ - R1>

49



We need the following definition to state the main result of this section.

Definition 8.7 A Region Algebra expression e over Z is empty if for every
hierarchical instance I over Z, [[e]]l = (). Two Region Algebra expressions
e; and ey over Z are equivalent if for every hierarchical instance I over Z,

[[el]ll = [[GZ]II-

Theorem 8.8 Testing emptiness and equivalence of Region Algebra expres-
stons is 1 EXPTIME.

Proof. Although every hierarchical instance of Z = (Si,...,S,,X) can be
represented as a derivation tree of Gz, not every derivation tree of Gz is an
hierarchical instance. Indeed, if an internal node has no siblings then it rep-
resents the same region as it parent. For example, the instance corresponding

to the derivation tree
U

!

Proc

i
Func

!

a

is not hierarchical because Proc and Func represent the same region. An
extended AG can easily check this condition by making one bottom-up pass
through the tree. Another top-down pass then informs all nodes in the tree
whether the tree represents an hierarchical instance.

If e is a Region Algebra expression, then we define F(e) as the extended
AG F,, given by Lemma 8.6, that first checks whether the input tree is an
hierarchical instance and if so, simulates e; otherwise it assigns false to the
result attribute of any node. Hence, F(e) is empty if and only if e is empty.
Further, if e; and ey are Region Algebra expressions, then, obviously, F(e;)
and F(ey) are equivalent if and only if e; and ey are equivalent. Hence, the
result follows by Lemma 7.2.

We describe the construction of F(e) in more detail. Define A = A, U
{subhier, hier, result} and D = D,, where A, and D, are the attribute set
and the semantic domain of F,, respectively. The semantic rules of F(e)
consists of those of F, extended with the rules defining subhier, hier, and
result.
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Each region name has the synthesized attribute subhier such that for
a region instance I and a region r, F.(t;)(subhier(n,)) = 1 if t,, repre-
sents an hierarchical instance. So, for ¢ = 1,... ,n, define in the context
(ps, subhier,0) the rule

subhier(0) := {0y = &, 01 = (lab, subhier), ... , o, = (lab, subhier),
Opg1 = lab; Ry, Ry = D* — Ry, >7

where Ry is the regular language consisting of all strings containing at least
one 0 and all the strings {Si1,...,S,1}. This rule is correct, since t,, does
not represent an hierarchical instance only when at least one of its subtrees
does not represent an hierarchical instance, or when n, has just one child
that, additionally, is labeled with a region name.

Each region name has the inherited attribute hier such that for a region
instance I and a region r, F.(t7)(hier(n,)) = 1 if t; represents an hierarchical
instance. So, for j = 1,...,n, define in the context (po, hier, j) the rule

hier(j) := (0o = &, 01 = subhier, ... o, = subhier, o, = ¢;

Ry =1",Ry= (D U{#})" — Ry).
Fori=1,... ,nand j=1,...,n, define in the context (p;, hier, j) the rule

hier(j) := (og = hier,o1 =¢&,... ,0p41 = &;

Ry = {13}, Bo = (D U{#})" — Ry).

A node n is then selected when F,(t;)(result.(n)) = 1 and F,(t;)(hier(n)) =
1. So, for j =1,... ,n, define in the context (p;, result,0) the rule

result (0) := (oo = (resulte, hier), o1 =¢,... ,0, =&
Rl - {]-]-},RO - D)k - R1>

9 Relational extended AGs

In this section we define relational extended AGs which can be viewed as
extensions of relational BAGs [34]. The main difference with the extended
AGs studied before (to which we refer by functional extended AGs) is that we
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now associate one regular language R with each production, rather than with
each position in a production and for each attribute. Specifically, we show
that relational extended AGs express the same class of queries as extended
AGs.

An attribute grammar vocabulary is now just a tuple (D, A, Att), where
D is a finite semantic domain, A is a finite set of attributes, and Att is
a function from N U T to the powerset of A assigning to each grammar
symbol a set of attributes. A relational extended AG F now associates to
each production p = X — r a semantic rule (og,...,0p; Rp), where for
i € {0,...,|r|}, o; is a sequence of attributes of p(i) and R, is a regular
language over D. Let t be a derivation tree, n a node of t with children
ni,...,n, derived by p, and let for [ € {1,... ,m}, j, = pos, (I, w), where w
is the string formed by the labels of the children of n. Then define W (n) as
the sequence og(n) - 0j, (ny) - - - 05, (0y,). A valuation of t is again a function
that maps each pair (n,a), where n is a node in t and «a is an attribute of
the label of n, to an element of D, and that maps for every n, v((lab,n)) to
the label of n. A valuation v of t is said to satisfy F if v(W(n)) € R, for
every p € P and every internal node n derived by p.

A relational extended AG F can express queries in various ways. We
consider two natural ones.

Definition 9.1 (i) A query Q is expressed ezistentially by a relational
extended AG F if for every t

Q(t) = {n | there exists a valuation v that satisfies F such that
v(result(n)) = 1};

(ii) A query Q is expressed universally by a relational extended AG F if
for every t

Q(t) = {n | for every valuation v that satisfies F, v(result(n)) = 1}.

We give an example of the just introduced notions.

Example 9.2 Consider the ECFG of Example 4.5. Let Q be the query that
selects every other poem. The following relational extended AG expresses
Q existentially and universally. If p is the production DB — Poem™, then
define its associated rule as

(09 = ¢€,01 = result; R, = (10)*(1 + ¢)),
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here A = {result,lab}, D = {0,1} and result is an attribute of Poem.

Note that this query Q is also expressed by a functional extended AG
with A = {result,lab}, D = {0, 1, Poem, DB}, Inh(Poem) = {result}, and
Syn(Poem) = (). Define in the context (p, result, 1) the semantic rule

result(1) := (o9p = €, 01 = lab; Ry = (PoemPoem)*#Poem™).
|

Functional and relational extended AGs are equally expressive as is shown
in the next theorem. We just show that every query expressed existentially
or universally by a relational extended AG can be defined in MSO and that
every MSO definable query can be expressed both by an existential and a
universal AG. The result then follows from Theorem 6.4.

Theorem 9.3 The class of queries expressed existentially (universally) by

relational extended AGs coincides with the class of queries expressed by ex-
tended AGs.

Proof. The semantics of a relational extended AG can readily be defined in
MSO. For ease of exposition we assume that all grammar symbols have all
attributes, i.e., for every X € NUT, Inh(X) U Syn(X) = A. We again use
set variables Z,, with a a function from A to D, to represent assignments
of values to attributes. As in the proof of Lemma 6.1, we can construct an
MSO formula ¢ ((Z4)aca—p) such that whenever t = ¢((Zs)acap) then

e the sets (Z4)acap are pairwise disjoint,
e |J,Z, = Nodes(t), and
e the valuation v defined as, v(a(n)) = a(a) with n € Z,, satisfies F.

The formula ¢ just verifies the semantic rules of F; and, since these are
regular languages, this can be easily done in MSO. The following formulas
then define the query expressed existentially respectively universally by F

(Za)acasp (V((Zadacasn) A\ {Zala) | alresult) = 1}),

(VZa)acsn (V((Za)acasn) = \ {Zalw) | alresult) = 1}) .
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By Theorem 6.4, these MSO formulas can be transformed into an equivalent
extended AG.

For the other direction, by Theorem 6.4, it suffices to show that any MSO
definable query can be expressed by a relational extended AG under both
the existential and the universal semantics. Let p(z) be an MSO formula of
quantifier depth k. We now define a relational extended AG F that expresses
¢ under both the existential and the universal semantics. This relational
extended AG just computes the =M5-type for every node of the input tree.
We write 72159 (t, root) for 7M€ (¢, root(t)).

Define A = {env, sub, result, lab} and D = &, U {0,1}. To every produc-
tion p = X — r we associate the rule

(00 = (enw, sub, result, lab), ... , 0, = (env, sub, result); R,),

where the string language 2, is defined as follows: 00000000 - + - 0,0,0,0,, € R,
if

1. 0;,0; € &, 0, € {0,1},and f; e NUT fori=1,...,n;
2. fori=1,...,n,if ¢; € T then 0; = 759 (¢(;), root);
3. if X = U then 6, = 7M5°(t(U), root);

4. there exists a tree t with a node n with children n;, ..., n, such
that 7M59(t,,root) = 6y, 759 (tn,n) = 6, and for i = 1,... n,

M50 (%, root) = 0; and TM5C(,,,,n) = 0;

5. for 1 =0,...,n, 0, =1 if and only if there exists a tree t with a node
n such that 7M59(t,, n) = 6;, 7M5°(t,, root) = 6;, and t | o[n;

We construct a two-way deterministic string automaton B with one peb-
ble accepting R,. By Proposition 2.9, R, is regular. For steps (1-3,5), B
just makes one pass through the input string. Recall, for instance, that,
by Proposition 6.3(1), o; only depends on 6; and ;. For step (4), B first
simulates the automaton M = (Q, Py, 0, s, F') for SUB(lp, 6y) of Lemma 6.5
on ;- --6,. Hereafter it checks the consistency of 6, and @y,... ,0,. Note
that for every i = 1,...,n, by Proposition 6.3(3), #; depends only on 6y, 6;,
d*(s0,01---0; 1) and §*(sg, 011 ---0,), where 0 is the transition function of

M. Hence, B remembers 6, in its state and then successively puts its pebble
on each input tuple. If the pebble lays on the i-th tuple then M computes
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0*(s0,61---0; 1) and 0*(sp, 0,41 - - -0,), whereafter it returns to the pebble
and checks whether &, (0y, 0% (50,01 -+ 0; 1), 0:,0% (50, 01+ -0,)) = 0; (&, is
the function defined in the proof of Theorem 6.4).

It remains to show that for each tree only one valuation exists satisfying
F. Using Proposition 6.3(2), a simple induction on the height of nodes in
the tree shows that 759 (t,,n) = 6 whenever v(sub(n)) = 6 for a valuation
v satisfying F. An induction on the depth of nodes in the tree, using the
above and Proposition 6.3(3), then shows that 7M5°(t,,n) = 6 whenever
v(env(n)) = @ for a valuation v satisfying F.

This concludes the proof of the theorem. [ |

10 Discussion

In other work [36], Schwentick and the present author defined query au-
tomata to query structured documents. Query automata are two-way au-
tomata over (un)ranked trees that can select nodes depending on the current
state and on the label at these nodes. Query automata can express pre-
cisely the unary MSO definable queries and have an EXPTIME-complete
equivalence problem. This makes them look rather similar to extended AGs.
The two formalisms are, however, very different in nature. Indeed, query
automata constitute a procedural formalism that has only local memory (in
the state of the automaton), but which can visit each node more than a
constant number of times. Attribute grammars, on the other hand, are a
declarative formalism, whose evaluation visits each node of the input tree
only a constant number of times (once for each attribute). In addition, they
have a distributed memory (in the attributes at each node). It is precisely
this distributed memory which makes extended AGs particularly well-suited
for an efficient simulation of Region Algebra expressions. It is, therefore,
not clear whether there exists an efficient translation from Region Algebra
expressions into query automata.

Extended AGs can only express queries that retrieve subtrees from a
document. It would be interesting to see whether the present formalism can
be extended to also take restructuring of documents into account. A related
paper in this respect is that of Crescenzi and Mecca [17]. They define an
interesting formalism for the definition of wrappers that map derivation trees
of regular grammars to relational databases. Their formalism, however, is
only defined for regular grammars and the correspondence between actions

%)



(i.e., semantic rules) and grammar symbols occurring in regular expressions is
not so flexible as for extended AGs. Other work that uses attribute grammars
in the context of databases includes work of Abiteboul, Cluet, and Milo [2]
and Kilpeldinen et al. [27].
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