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Abstract

We study the query language BQL: the extension of the relational
algebra with for-loops. We also study FO(FOR): the extension of
first-order logic with a for-loop variant of the partial fixpoint opera-
tor. In contrast to the known situation with query languages which
include while-loops instead of for-loops, BQL and FO(FOR) are not
equivalent. Among the topics we investigate are: the precise relation-
ship between BQL and FO(FOR); inflationary versus non-inflationary
iteration; the relationship with logics that have the ability to count;
and nested versus unnested loops.

1 Introduction

Much attention in database theory (or finite model theory) has been devoted
to extensions of first-order logic as a query language [AHV95, EF95]. A sem-
inal paper in this context was that by Chandra in 1981 [Cha81], where he
added various programming constructs to the relational algebra and com-
pared the expressive power of the various extensions thus obtained. One

*A preliminary version of this paper was presented at the 7th International Conference
on Database Theory, Jerusalem, 1999.

tResearch Assistant of the Fund for Scientific Research, Flanders.

'Research begun at RWTH Aachen, supported by a German Research Council DFG
grant, continued at the University of Warsaw, supported by the Polish Research Council
KBN grant 8 T11C 002 11, and on leave at the University of New South Wales, supported
by the Australian Research Council ARC grant A 49800112 (1998-2000).



such extension is the language that we denote here by BQL: a programming-
language-like query language obtained from the relational algebra by adding
assignment statements, composition, and for-loops. Assignment statements
assign the result of a relational algebra expression to a relation variable; com-
position is obvious; and for-loops allow a subprogram to be iterated exactly
as many times as the cardinality of the relation stored in some variable.

For-loops of this kind have since received practically no attention in the
literature. In contrast, two other iteration constructs, namely least or in-
flationary fixpoints, and while-loops, have been studied extensively. In the
present, paper we take some steps towards the goal of understanding for-loops
in query languages as well as fixpoints and while-loops are understood.

The variant of BQL with while-loops instead of for-loops, called RQL,
was introduced by Chandra and Harel [CH82]. In the same paper these
authors also introduced, in the context of query languages, the extension of
first-order logic with the least fixpoint operator; we denote this logic here
by FO(LFP). One can also use a partial fixpoint operator to obtain a logic,
called FO(PFP), with the same expressive power as RQL [AVI1].

Here, we introduce the FOR operator, which iterates a formula (called the
“body formula”) precisely as many times as determined by the cardinality
of the relation defined by another formula (called the “head formula”). In
contrast to the equivalence of RQL and FO(PFP), FO(FOR) is not equivalent
to, but strictly stronger than, BQL. The reason for this turns out to be the
presence of free variables in the head formula, acting as parameters; the
restriction of FO(FOR) that disallows such parameters is equivalent to BQL.

The question whether FO(LFP) is strictly weaker than FO(PFP) is a fa-
mous open problem, since Abiteboul and Vianu showed that it is equivalent to
whether PTIME is strictly contained in PSPACE [AV95]. In FO(LFP) we can
equivalently replace the least fixpoint operator by the inflationary fixpoint
operator IFP. So the PTIME versus PSPACE question is one of inflationary
versus non-inflationary iteration. Since the FOR operator is non-inflationary
in nature, one may wonder about the expressive power of the inflationary
version of FOR, which we call IFOR. We show that FO(IFOR) lies strictly
between FO(IFP) and FO(FOR). Since in FO(FOR) we can define parity,
FO(FOR) is not subsumed by FO(PFP), and conversely FO(PFP) can only
be subsumed by FO(FOR) if PSPACE equals PTIME, since FO(PFP) equals
PSPACE on ordered structures and FO(FOR) is contained in PTIME.

A natural question is how FO(FOR) relates to FO(IFP, #), the extension
of FO(IFP) with counting. Actually, FO(FOR) is readily seen to be sub-
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sumed by FO(IFP, #). We show that this subsumption is strict, by showing
that one cannot express in FO(FOR) that two sets have the same cardinal-
ity.! We also show that the restriction of FO(IFP, #) that allows modular
counting only, is strictly subsumed by FO(FOR).

The main technical question we focus on in this paper is that of nesting
of for-loops. It is known that nested applications of while-loops in RQL, or of
the PFP operator in FO(PFP), do not yield extra expressive power; a single
while-loop or PFP operator suffices [EF95]. In the case of BQL, however,
we show that nesting does matter, albeit only in a limited way: one level
of nesting already suffices. In the case of FO(FOR), there are two kinds
of nesting of the FOR operator: in body formulas, and in head formulas.
Regarding bodies, we show that nested applications of the FOR operator
in body formulas again do matter, although here we do not know whether
nesting up to a certain level is sufficient. Regarding heads, we show that the
restriction of FO(FOR) that allows only head formulas that are “pure” first-
order, is weaker than full FO(FOR). By “pure” we mean that the formula
cannot mention relation variables from surrounding FOR operators; from the
moment this is allowed, we are back to full FO(FOR).

This paper is further organized as follows. After recalling the definitions
of pebble games and fixpoint logic in Section 2, we define BQL and FO(FOR)
and investigate their interrelationship and relationship with other logics in
Section 3. In Section 4, we examine the nesting of for-loops in both BQL
and FO(FOR). We end with a discussion in Section 5.

2 Preliminaries

Throughout the paper we use the terminology and notation of mathematical
logic [EFT94]. For background on database theory we refer to Abiteboul,
Hull, and Vianu [AHV95], and for finite model theory to Ebbinghaus and
Flum [EF95], Immerman [Imm98], and Otto [Ott97].

A relational vocabulary 7 is what in the field of databases is known as
a relational schema; a structure over 7 is what is known as an instance of
that schema with an explicit domain. (Structures are always assumed to be
finite in this paper.) We denote the domain of a 7-structure A by A, and
the interpretation of the relation symbol R in A by R4,

'The analogous result for BQL (which is weaker than FO(FOR)) was stated by Chandra
in the early eighties [Cha81, Cha88], but no proof has been published.



A k-ary query Q is a computable function that maps each 7-structure A
to a subset of A¥  such that if A and B are isomorphic via 7 then 7(Q(A)) =
Q(B). We also call a nullary query a Boolean query.

The query language of first-order logic (the relational calculus) is denoted
by FO. For any natural number k, FO* denotes the k-variable fragment of
FO, i.e., the set of FO formulas that use only the variables {xy,... ,z;}.

The logic £ is defined as follows: (i) it contains all FO* formulas; (i
if ¢ is an £ formula so are ~¢ and (Jz;)p for each i = 1,... , k; (iii) if ®
is a set of £%  formulas then \/ ® is an £F  formula.

The semantics of £ is a direct extension of the semantics of first-order
logic with \/ ® being interpreted as the disjunction over all formulas in ®;
hence, neglecting the interpretation of the free variables,

.A):\/q) & for some p € &, A = .

Let A and B be two structures, and let @ = a1,... ,ap and b= by, ..., b,
be sequences of elements of A and B respectively with ¢ < k. If for every
Lk, formula ¢(z), A |= ¢[a] if and only if B |= ¢[b], then we say that (A, @)
and (B,b) are k-equivalent. This k-equivalence can be nicely characterized
by pebble games. The k-pebble game is a game with infinitely many rounds
played by two players, the Spoiler and the Duplicator, on two structures A
and B in the following way. Each structure has k£ pebbles numbered from
1 to k. Initially, pebble ¢ is on element a; in A and on element b; in B for
i = 1,...,¢. In each round the Spoiler chooses a structure, say A, picks
up one of its k pebbles, say 7, and places it on an element a € A. The
Duplicator then answers by placing pebble i of B on an element b € B. The
Spoiler wins the game if the mapping @’ — o/, where @ and ' are the current
pebbled elements, is not a partial isomorphism between A and B. We say
that the Duplicator wins the k-pebble game on A and B if the Duplicator
has a strategy preventing the Spoiler from winning.

A proof of the next proposition can, e.g., be found in Ebbinghaus and
Flum’s book [EF95].

Proposition 2.1 Two structures (A,a) and (B,b) are k-equivalent if and
only if the Duplicator wins the k-pebble game on A and B.

Let us briefly recall the syntax and semantics of FO(PFP) and FO(IFP).
Let ¢(Z,7,X,Y) be an FO formula over 7 U {X,Y}, where X is an n-ary
relation variable, T is of length n, and Y is a tuple of relation variables.
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On any 7-structure A expanded with interpretations for the first-order and
relational parameters 3 and Y, ¢ defines the stages ¢°(A) := () and ¢?(A) :=
{a | A E gla, o *(A)]} for each i > 0. If there exists an 7y such that
e (A) = @t A), then we say that the partial fizpoint of ¢ on A exists,
and define it to be (. A); otherwise we define it as the empty set. We obtain
FO(PFP) by augmenting FO with the rule [PFPz x](f), which expresses
that ¢ belongs to the partial fixpoint of ¢. For FO(IFP) we consider the
stages @°(A) := 0 and ¢'(A) := ¢g"(A)U{a | A E pla, 8 (A)]}, for each
i > 0. Here, there always exists an iy such that ¢(A) = @gott(A4). We
call p(A) the inflationary firpoint of © on A. We obtain FO(IFP) by
augmenting FO with the rule [IFPz x](t), which expresses that ¢ belongs to
the inflationary fixpoint of (.

3 Query languages with for-loops

3.1 BQL

Let 7 be a vocabulary. The set of BQL programs over 7 is inductively defined
as follows:

(i) if X is a relation variable of arity n and @(z1,...,z,, X) is an FO
formula over the vocabulary 7 and the relation variables X, then the
assignment

X ={z|¢(z,X)}
is a BQL program;?
(ii) if P, and P, are BQL programs then the composition
Py Py
is a BQL program; and
(iii) if P is a BQL program and X is a relation variable, then the for-loop

for | X| do P od

is a BQL program.

2 Although Chandra’s BQL is an extension of the relational algebra, we use FO which
is known to be equivalent to the former [AHV95].
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The semantics of BQL programs of the form (i) or (ii) is defined in the obvious
way; for BQL programs of the form (iii) the subprogram P is iterated as
many times as the cardinality of the relation stored in variable X prior to
entering the loop. We now define this formally. Assume given an infinite set
X of relation variables. We denote the arity of a variable X by arity(X).
For a BQL program P, we denote the set of variables occurring in P by
var(P). Further, a valuation v on a structure A is a mapping from X to
relations over A such that v(X) € A for all X. Usually, we are only
interested in valuations w.r.t. the variables occurring in a specific program.
To emphasize this, we sometimes say P-valuation rather than just valuation.
Given an initial valuation n on A, the program P determines a final valuation
val[P, A, n] defined inductively as follows:

(i) If P is of the form Y := {Z | ¢(Z,Y)}, then define

val[P, A, n](X) = {7{7((‘1)|(;4):<P[aa77]} i)ft}i;vi)s(e;.

We abuse notation and let ¢[a, n] denote the formula where each rela-
tion variable Y’ in Y is interpreted by n(Y”).

(ii) If P is of the form P;; P,, then define

val[Pr; Py, A, n) := wal[Py, A, val[Py, A, n]].

(iii) If P is of the form for |X| do P’ od, then define
val[P, A, ) == val[P™, A, 7],
with m the number of tuples in the relation n(X) and where, for i > 0,

val[PO, A, ] =
val[PD, A n] == wal[P', A, val[P“D | A, n]].

A query Q is expressible in BQL if there exists a BQL program P and a vari-
able X € var(P) such that for every structure A, Q(A) = val[P, A, m](X),
where 7y denotes the valuation that maps each variable to the empty rela-
tion. We refer to X as the output variable of P. To express Boolean queries
in BQL, we adopt the convention that the result of the query is true if and
only if X is non-empty.



Example 3.1 Let 7o = {E'} be the vocabulary of graphs; so E is the binary
edge relation. Consider the following BQL programs:

X ={x|zx=xz}; Y:=0; for | X|do Y :={x | Y (z)} od,

X :=F; for |X|do X :={(z,y) | X(z,y) V (F2)(X(z,2) A E(z,y))} od.

The first program computes, in variable Y, the parity of the domain, and the
second program computes the transitive closure of E. [ |

By a standard technique [CH82], one can simulate every FO(IFP) formula
by a BQL program. It is well known that it is not expressible in FO(PFP)
whether the cardinality of a set is even. Hence, since we just saw in the above
example that this is expressible in BQL, FO(PFP) does not subsume BQL
and BQL strictly subsumes FO(IFP). Furthermore, since all BQL queries are
clearly PTIME and FO(IFP) captures PTIME on ordered structures [Imm86,
Var82], BQL does the same.

For later use, we also briefly recall the syntax and semantics of RQL
[CH82]. An RQL program is inductively defined in the same way as a BQL
program with (iii) replaced by

(iii) if P"is an RQL program then P = while X # () do P’ od is an RQL

program.

For each natural number i, the mapping val[P®, A, 7] is as defined above.
The semantics of P is now defined as the mapping

val[P, A, n] == val[P(m), A, nl,

where m is the smallest natural number such that val[P™ A n](X) = 0. If
such an m does not exist then val[P, A, n| is defined as the empty set.

3.2 FO(FOR)

We next introduce the logic FO(FOR). The crucial construct in the for-
mation of FO(FOR) formulas is the following. Suppose ¢(Z,7, X,Y) and

Y(Z,4,y,Y) are formulas and Z, @ and X are of the same arity. Then the



following FO(FOR) formula ¢ is obtained from v and ¢ through the FOR-
constructor:

£(u,3.Y) = [FORIY¢(a).

The formula v is called the head formula, and ¢ is called the body formula of
&. For each 7-structure A expanded with interpretations for the parameters
y and Y, and for any tuple of elements a: A |= £[a] if and only if a € ¢™(A)
where m equals the cardinality of the set {¢ | A = ¢[¢,a]}. Here ¢ (A) is
as defined in Section 2.

Example 3.2 Consider the following FO(FOR) formulas over 7¢:
Gluv) = [FORESVB(r,y) v (32)(X(2,2) A B(z,)](,v)
and
Gr) = ~(F)FORIL-7(2))(2),

The formula & defines the transitive closure of F, and & expresses that
vertex x has even outdegree. [ |

We now define simultaneous FO(FOR) which allows the simultaneous
iteration of body formulas of for-loops. As is the case for fixpoint logic, this
does not increase the expressiveness of the formalism. If ¢1(Z1,7,Y, X4, ...,

Xn), ooy On(T0, 0, Y, X1, ..., X,) is a system of formulas where X; and z;
are of the same arity, for each 2 = 1,... ,n, then
f(ﬂ, Y, ?) = [S'FORﬁZ_,:;(/}I,...,:En,XnQOh T @n](ﬂ)
is an FO(S-FOR) formula. On a structure A expanded with interpretations
for the first-order and relational parameters y and Y, for j = 1,... ,n, con-
sider the stages defined by
Pi(A) = 0

Pi(A) = {a| Ak gila,ei(A),. .., oL (A}

Then A = £[a] if and only if @ € ¢*(A) where m equals the cardinality of
the set {¢| A = ¥[c,al}.

Each FO(S-FOR) formula can be transformed into an FO(FOR) formula
by applying the usual encoding of the variables X, ..., X,, into one relation
variable of larger arity [EF95].



Proposition 3.3 Each FO(S-FOR) formula is equivalent to an FO(FOR)
formula.

Proof. Consider the FO(S-FOR) formula ¢ defined above. Fori=1,... ,n,
let the arity of 7; be k; and let k = max{k; |7 € {1,... ,n}} +n.
Define ¢'(21,..., 2k, Z,9,Y) as

(O (21 s 200, 5, Y, Z) N1 (21, - o 20, 0, W0))

V(o (21, s Zhy 9, Y, Z) N o210, .o 2y vy w0
VPN BRI CTENNIENS VB S)

V(o (21, s 2k U, Y Z) AN G20, .oy 25y v, w0))

In the above, for each i, the formula ¢/ is obtained from ¢; by replacing any
occurrence of X, () by

k—k;—j times  j times
and 6;(21,...,2k,v,w) is the formula
Zhidl = oo T 2 = UN Zp—jp1 = ... = 2 = W.
Then £ is equivalent to
(Fv)(Fw) (U #w A [FOR??ww'] (@,v,...,v, w)) :

This simulation only works for structures that contain at least two elements.
One-element structures can be treated separately because, up to isomor-
phism, there are only a finite number of them. [ |

Clearly, all queries definable in FO(FOR) are in PTIME. We show in Sec-
tion 3.5 that there are PTIME queries that are not definable in FO(FOR).
However, for every PTIME query Q on graphs there is a formula ¢ €
FO(FOR) such that Q(G) # ¢(G) for a vanishingly small fraction of n ele-
ment graphs G. Indeed, Hella, Kolaitis and Luosto showed that a canonical
ordering is definable on almost all graphs in FO(IFP) plus the even quantifier
[HKL96]. For future reference we call the query that expresses this order-
ing the HKL query; it will be used extensively in Section 4.2. Since we saw
in the last example that the even quantifier is expressible in FO(FOR), the
HKL query is also expressible in FO(FOR). Since FO(FOR) can also easily
simulate FO(IFP), FO(FOR) thus captures PTIME on almost all graphs.
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3.3 BQL versus FO(FOR)
We now show that every BQL query is definable in FO(FOR).

Proposition 3.4 Every query expressible in BQL is definable in FO(FOR).

Proof. The proof proceeds by induction on the structure of BQL programs.
Let P be a BQL program. For each X € var(P) we construct an FO(FOR)
formula o (Z, X), such that for each 7-structure A and P-valuation 7,

vil[P, A n(X) = {al| Al okfan)}.

Here, X is an enumeration of var(P). This proves the proposition, since the
query expressed by P in output variable X equals {a | @ € val[P, A, ng](X)},
which by the above equals {a | A E pX]a,my]}. Note that substituting the
empty predicate for a relation symbol corresponds to making it false.

We can assume that a variable that appears in the head of a for-loop,
never appears in the left-hand side of an assignment in the body of this
for-loop. Indeed, consider the following program

where Py, P, and P3 are BQL programs. If Y occurs in the left-hand side of
an assignment in P, then we modify the above program into

Pr;

Z =Y,
for |Y| do
P,

od;
Y =7
P,

where Z is a variable not occurring in Py, P, or P3, and P, is obtained from
P by replacing each occurrence of Y by Z.
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1. If Pis of the form Y := {Z | ¢(Z, X )}, then define for each X € var(P)

vx X(z1,... , Tariry(x)) otherwise.

2. If P is of the form P;; P, then we can assume, w.l.o.g, that <p§1 and go?
have no first-order variables in common. For each X in var(P,) define
©% as the formula obtained from go? by replacing any occurrence of

an atomic formula Y'(7), where Y in war(P;), by the formula ¢} (7).

Define o} as ¢! for each X € var(P;) — var(P,).

3. If P is of the form for |Y| do P’ od, then we assume, w.l.o.g, that no
@& and o} have first-order variables in common, and that Y does not
appear in the left-hand side of an assignment in P’.

Define ¢ as Y (1, ... , Tariy(y)), and define for each X € var(P)—{Y}
px(T) = (Y =0AX(@) V(Y #0Apx(T)),

where the px are as follows. Let var(P) :={Y, Xy,... , X,}. For each
t=1,...,n, define

_ y:Y (g _
px; (T;) = (Elu)[S—FORiiivi(?q’(jjujvj7XJ,_)1S#Z_S“7'1~, (75)1<ii<n) (i, u, u),
where for / =1,...,n
Tg(:f‘g, Ugp, W,X’) = (Xé =0A (Ug = vy — (p;};(:f'g)))

\Y (X], #* A (U,g = Uy — Ozg)).

Here, oy is the formula obtained from gpf}; by replacing each occurrence
of an atomic formula Z(Z) by the formula (3v)Z’'(Z, v, v) for each vari-
able Z € {X1,...,X,}. We assume w.l.o.g. that no % contains the
variable v. The arity of each X is two more than the arity of X;. The
reason we do it like this, is that a for-loop in the logic always starts
with the empty relation for each relation variable, while the variables
in a for-loop in the algebra are initialized. Hence, in the simulation we
initialize each variable X with the value it has after one iteration of
P'. For this we use a tagging technique. The two extra columns make
sure that each X is empty only once, namely, in the first iteration.

This simulation only works for structures with at least two elements.
One-element structures can be treated separately because, up to iso-
morphism, there are only a finite number of them.
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The converse of Proposition 3.4 does not hold. For non-Boolean queries
this is readily seen. The relation variables in a BQL program always hold
relations that are closed under indistinguishability in first-order logic with
a fixed number of variables. To see this, let P be a BQL program. We
choose k£ to be the maximum of all arities of variables X in P and of the
number of distinct first-order variables used in assignment statements in P
(free or bound). W.l.o.g, we assume that all atoms X (yi,...,y,) are such
that y;, ..., y, are pairwise distinct. E.g., X (y1,y1,y3) can be replaced with
(Fys) (X (y1, y3, y2) Ays = y1). We introduce some more notationn. If ¢ is an
FOF formula and 7 : {1,... ,k} — {1,...,k} is a bijection, then ¢™ denotes
the formula obtained from ¢ by replacing, for each i, every occurrence of z;
(both free and bound) by 2.

Now, on any structure A, all the for-loops of P can be unfolded into a
sequence of assignment statements. This sequence can now be transformed
into an equivalent FO* formula defining the output variable by applying
iteratively the following operation: replace the subprogram

X=o@,...,¢2m,X); Y i=0(x1,...,70,X)
by the assignment, B
V=o' (... 20, X),

where 1) is obtained from 1) by replacing each occurrence of an atomic for-
mula X (z;,,...,2; ) by ¢"(zi,, ... ,2;, ). Here, w: {1,...  k} = {1,... k}
is an arbitrary bijection such that for each j =1,... ,m, 7(j) = i;.

The query defined by & in Example 3.2, however, is not closed under
FO*-indistinguishability for any k. Indeed, let G, be the graph depicted in
Figure 1. Clearly, the Duplicator can answer any move of the Spoiler in
the k-pebble game played on (G, p) and (G, p'). Hence, no FO* formula can
distinguish the node p from node p’. They are, however, clearly distinguished
by the formula & from Example 3.2 .

To separate BQL from FO(FOR) with a Boolean query, we need to do
more work. Let Q; be the query Is there a node with even outdegree? This
query is definable in FO(FOR) by the sentence (3x)&(z). However, we show
that this query is not expressible in BQL. To this end we introduce some
machinery that will prove to be useful in Section 3.5 as well.

One way to carry out separation or inexpressibility proofs w.r.t. FOR-
constructs is to use structures which are simple enough to have few definable
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Figure 1: The graph Gy.

predicates (finitely many in each arity), whose cardinalities moreover can be
succinctly described in terms of basic cardinality invariants.

A complete atomic k-type over a relational vocabulary 7 and in variables
x1,...,T is a maximally consistent collection of atoms and negated atoms
in the language 7 in the given variables. As all types to be considered here
will be atomic, we simply refer those as types. Such types correspond to
complete descriptions of the isomorphism type of a k-tuple of elements in a
T-structure. As 7 is always finite for our considerations, each type may be
identified with a single quantifier-free formula, namely the conjunction of all
members of that type. Thinking of 7 and £ as fixed, we let Atp stand for the
finite set of all atomic k-types.

A partial atomic k-type corresponds to a partial description of an iso-
morphism type of an k-tuple. It may be formalized as an arbitrary subset
of Atp, or as an arbitrary quantifier-free formula. The translation between
these two formalizations is obvious: a formula corresponds to the set of
all complete types compatible (i.e., logically consistent) with it, and a set
of complete types corresponds to the disjunction over its members. E.g.,
for the language of one unary predicate P, the partial 2-type character-
ized by the formula x; = x5 corresponds to the set of complete 2-types
{{z1 = x9, Pz1, P2y}, {x1 = 29,7 Pxy,~Pxs}}, and is also characterized by
the formula (7 =29 A Pxy A Pxy) V (21 =29 A 2Pz A = Pxy) which is log-
ically equivalent to x; = x9. We want to admit the empty subset of Atp as
a partial type, corresponding to any unsatisfiable formula (e.g., -z = x7).
Let © = P(Atp) (power set of Atp) be the set of partial types. A tuple a
in A realizes a type 0 iff A = 0[a]. We write atp 4(a) for the complete type
realized by a@ in A. Over a particular structure A one often identifies a type
with the set of those tuples that realize it:

0lA] = {a | A = 0[a]}.
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The following is an ad-hoc definition for the purposes of our separation
proofs.

Definition 3.5 Call a 7-structure A simple if its automorphism group acts
transitively on its atomic types, i.e., if for any two a and a’ in A which realize
the same complete atomic type, there is an A-automorphism taking a to a’.

As definable predicates over any structure (definable in any reasonable
logic) are necessarily closed under automorphisms, it is obvious that any
definable predicate over a simple structure A must be a union of sets 0;[.A]
for some complete types 6;, i.e., a set 0[A] for some partial type # € ©.
Indeed, if R C A* is definable (in any logic), then

R=0[A] where 0=\/ patpy(a).

We now apply this to the study of the semantics of BQL programs over
simple structures. As the valuation transformation induced by a program
passes from definable predicates to definable predicates, its semantics can
actually be described as a mapping on partial types. But first we have to
normalize the given program so that all its effects can be described in one
and the same arity k. Given P we choose k to be the maximum of all
arities of variables X in P and of the number of distinct first-order variables
used in assignment statements in P (free or bound). It is checked that the
semantics of P remains essentially unchanged if we replace any variable X
of P whose arity is s < k by a padded version X' or arity k, whose intended
interpretation (during all stages of the evaluation of P) is

X' ={(x1, ... s, Tr1, - xp)| (X1, ,2s) € X Xy = Tg1 = ... = T}

In order to force this interpretation, we need merely replace any as-
signment X := {Z | ¢(Z)} in P by the modified assignment X' := {7 |
(T) A N\,y<jcr ¥s = 75}, and any X () in a formula by (3z;) ... (37 ) (X (2) A
Ne<i<k x5 = x;). Note in particular that the replacement of X by X' pre-
serves the cardinality of X, so that the use of X’ in place of X in FOR-
instructions is unproblematic.

From now on we assume that all variables in P are k-ary, and that no
assignment statement in P uses first-order variables other than xy,... , .
Let X = (X1,...,X;) list the variables of P, so that the semantics of P is
formalized over A as a mapping

P: (P(4")' = (P(4),

14



from an initial valuation to the final valuation for X.

Definition 3.6 Let A be simple. Then R C AF is admissible if it is closed
under automorphisms of A, i.e., if R = 0[A] for some partial type § € ©. A
valuation 7 on A is admissible if all 7(X) are admissible.

Note that any BQL program P can only produce admissible valuations
(final or intermediate) when initialized with an admissible valuation of its
variables. As the default valuation 7y in particular is admissible, we need
only consider admissible valuation throughout. For P as above, the semantics
on admissible valuations over simple A is thus faithfully described by the

mapping

r4: 0 — of
(91,...,91) — (91,...,9;),

defined by the requirement that
val[P, A,n)(X;) = 0,[A] fori=1,...,1,

where n(X;) = §;[A] for j =1,... L

For the following inductive definition of I'A we fix .4 and omit the super-
scripts where convenient. We first treat assignment statements (or first-order
formulas) in variables 1, ..., z), then composition and for-loops.® For the
first-order steps in (A)—(C) we may think of a program P consisting of just
the assignment X, := {Z|o(Z)}, and we merely specify the value of f;, as
trivially éz =0, for 1 > 1.

(A) Atomic formulas: if ¢ is a 7-atom or an equality-atom, put 0, = o; if
¢ is an X-atom, ¢ = X;(z,, ..., 7)), put 6y = 0;(zy, ... x;,).

(B) The Boolean connectives translate straightforwardly to Boolean set op-
erations on 0.

(C) Existential quantification: w.l.o.g., consider the case of ¢ = (Iz;)X;.
Then 6, is the set of all those complete types whose restrictions to vari-
ables xy,...,2; 1,T;11, 2 are compatible (logically consistent) with 6;.

3In Section 3.5, a very similar analysis will be applied to FO(FOR) formulas where,
in fact, only the way in which for-loops are treated has to be modified; (A)—(C) will be
unchanged.
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(D) Composition: if P = Pj; Py, and if I'; is as desired for P;, then clearly
['p =Ty o0l (functional composition) is good for P.

(E) For-loops: let P = for |X;| do Pyod. Then T'4 = (Fﬁo)u (v-fold itera-
tion) where v = |0;[A]|.

Note that there are only finitely many mappings I': ©/ — ©!, since ©
itself is finite. It follows that for any particular I, there is some constant gr
such that I'’*T9 = I'” for all sufficiently large v. Taking for ¢ the product of
all ¢r, we find that

[+ =T" for all I' and sufficiently large v, (1)

i.e., from some value of v onwards, the v-fold iteration of any I' merely
depends on ¥ mod ¢ rather than on v itself.

We exploit this behaviour over families of simple structures A which admit
a transparent description of the crucial values for the cardinalities of the sets
0] A] (the values for v in the semantics of for-loops). Here are two examples,
which we will both use for inexpressiblity proofs in the sequel. Both families
are indexed by a pair of parameters n, m and the crucial counting values turn
out to be polynomials in n and m.

Example 3.7 Let 7 = {U} for a unary predicate U. Let AM™™ have n
elements in U and m outside. Any complete atomic k-type 6 is uniquely
characterized by the following data:

e a partition of {zy,...,x;} in terms of membership in U and its com-
plement;

e for each part the equivalence relation which # induces on it in terms of
=; let k; and ks, be their indices.

Then the following polynomial describes the cardinality of the set #[.AM™™)],
provided n > k; and m > ko:

po(n,m)=nn—1)---(n—k +1)m(m—1)---(m — ks + 1).

For later use we note the following. Consider s < k and a fixed complete
s-type p. Then the number of extensions that any given s-tuple that realizes
p has to tuples that realize a given (partial) k-type 0, is also described by
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a polynomial with positive integer coefficients, which is either constant or
strictly monotone in at least one of n or m. More precisely,

|{bl(a,b) € OLA™™ 1} = pys, (n, m),
for any fixed @ with atp(a) = p, where

Do)y = Ponp
/p Dy

Note that p in the denominator is regarded as an s-type. We merely
need to consider the case of complete 6 which are consistent with p. But
this means that p is actually the restriction of # to variables xy,... ,x,. The
respective indices ki, ko for € and ki, ki for p clearly satisfy & < k;, whence
the quotient pg/, reduces to a polynomial by cancellation of common terms.

|

Example 3.8 Let 7 = {E}, E binary. Let A™™ be such that E is an
equivalence relation with precisely n equivalence classes each of which has
precisely m elements. Any complete atomic k-type 6, which is realizable in
A s uniquely characterized by the following data

e the equivalence relation which it induces on {xy,..., 2z} in terms of
E; let ay, ..., q; be its classes.

e for each o; the equivalence relation which 6 induces on «; in terms of
=; let k; be its index.

Then the following polynomial describes the cardinality of the set §[A™™)]
for n > ¢ and m > max; k;:

po(n,m) =n(n—1)-(n—i+1) [T (m(m—1)--(m - k; +1)).

Note that py(n,m) is a multiple of the product nm and strictly monotone

in both n and m, and this property remains true for all realizable partial 6.
|

We now use Example 3.8 to separate BQL from FO(FOR) by a Boolean
query. While clearly A™™ k= (31)& () if and only if m is even* (cf. Exam-
ple 3.2), we show that no BQL program draws this distinction.

4Note that E is an equivalence relation.
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In Section 3.5, we shall use similar techniques and Example 3.7 to show
that FO(FOR) cannot define the subclass of those A™™ with n = m (the
equicardinality query).

Theorem 3.9 BQL is strictly weaker than FO(FOR).

Proof. For the proof we use the A™™ of Example 3.8 and show that no
BQL program accepts exactly those A™™ for which m is even. Let P be any
BQL program in variables X, ..., X;, normalized so that the arity of every
X, is k and all assignments only use variables zy,... ,x;. We then show the
following.

Claim 3.10 There is a constant q and finitely many polynomials p(n,m),
all of them multiples of nm, such that for all A™™ with sufficiently large
n, m, the mapping Ff)‘("’m) only depends on the values p(n, m) mod q.

This proves the desired inexpressibility: choosing a sufficiently large mul-
tiple of ¢ for n, and m just sufficiently large, it follows that P cannot distin-
guish between A™™ and AMm+1),

For the proof of the claim, we use as polynomials p(n, m) all the py de-
scribing the cardinalities of sets 8[A™™)] for sufficiently large n, m, for those
6 that are realized in A™™ . Choose ¢ such that all I on ©' satisfy V"9 = 'V
for all sufficiently large v, cf. (1) above. We prove the claim for these choices,
by induction on P and the corresponding I'p, following (A)—(E) above. The
claim goes trivially through for (A)—(D), and it remains to discuss (E) con-
cerning for-loops. This is in fact the only place where a dependency on
certain py(n, m) mod ¢ comes up. Suppose then that our program is of the
form for | X|do P od, and that I'p only depends on the p(n, m) mod ¢ for all
sufficiently large n, m. We have to show that the same is true of (FP)V where
v = |0[AT™)]| = py(n, m) for some § € ©. We distinguish two cases, accord-
ing to whether or not 0[.A] is empty (# unsatisfiable). (Note that this is a
legitimate case distinction as f is one of the arguments 6, ... ,6, for [', and as
0[A] is empty for all A™™ or for none, provided n, m are sufficiently large.) If
0[.A] is empty, the claim is trivial. Otherwise |[A™™)]| = py(n, m) is strictly
monotone in both n and m. It follows that v = [#[A™™]| = py(n,m) is
sufficiently large for sufficiently large n, m, and therefore (FP)V will indeed
only depend on I'p and py(n, m)modgq. Using the inductive hypothesis on
['p, this proves the claim. [ |
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It is natural to ask whether there is a fragment of FO(FOR) which is
equivalent to BQL. The FO(FOR) formula & of Example 3.2 uses an in-
dividual parameter x in its head formula. Hence, to find a fragment of
FO(FOR) equivalent to BQL, one could try to exclude individual parame-
ters from head formulas. This, however, is not enough, since they can be
simulated by relational parameters in the head and individual parameters in
the body as is shown in the following proposition.

Proposition 3.11 For every FO(FOR) formula there exists an equivalent
FO(FOR) formula that does not use individual parameters in head formulas
(but can still use relational parameters in head formulas).

Proof. The proof proceeds by induction on the structure of FO(FOR) for-
mulas. We only consider the interesting case. Consider the formula

£(a,5,Y) = [FORFZVE oz, 4, X, V)] (u).

Define &' (u,7,Y) as follows,

Q
I
)
=~
-~
>

]|
Il

]

~—

~—

A [FORZFE)
(Q=0vVQ=al)NT=7)V
QF#DANQ# all Np(z,5,X,Y) J(w) ](q).

Here @ is a relation variable whose arity equals the width of 3. Further, ) =

all, @ = {(a,7)}, and @Q = 0 are abbreviations for (Vq)Q(q), (V7)(Q(q) «
qd=(a,79)), and (37)(Q(q)), respectively. Finally, a(Zz, Q) is the formula

(Fu) () (Q(u, ) AQ # all Ap(z,0,3,Y)) V (Q =0V Q = dll) Az = 2)).

Let A be a structure with at least two elements, and let T, @, and b be
interpretations for Y, u, and g, respectively. We have to show that

AE€a,b,T) < AkEEa,bT].
Suppose A = £[a, b, T).
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1. In the first iteration of the outer for-loop, @ = (). The inner for-loop
will do |A|" iterations, with n the width of Z. The variable X then
gets the value A™, with m the width of Z, which of course contains
a. Furthermore, @ is set to {(a,b)}. Note that we introduced free
variables u and gy in the body of the inner for-loop.

2. In the second iteration, the inner for-loop will do |{¢ | A &= ¢[e, a, b, T|}|
iterations as does £&. By assumption, a belongs to the final value of X.
So after the second iteration of the outer for-loop, () = A", with r the
sum of the width of @ and 7.

3. For each further iteration, @ will belong to the final value of X, and @
will stay the full relation. Hence, A = &'[a, b, T].

Conversely, suppose A [~ ¢[a, T). Then the value of Q will alternate between
the empty relation and {(@,b)}. Hence, @ will never be the full relation, and
A = E'a, b, T).

|

Individual parameters occurring in body formulas can be eliminated, pos-
sibly at the expense of introducing extra individual parameters in head for-
mulas.

Proposition 3.12 For every FO(FOR) formula there exists an equivalent
FO(FOR) formula that does not use individual parameters in body formulas
(but can still have individual parameters in head formulas).

Proof. Consider an application of the FOR; x-operator to a formula ¢(Z, Z,
X) with individual parameters Z (relational parameters suppressed). We
wish to eliminate these individual parameters, and can do so at the expense
of a corresponding increase in the arity of X. Let the arity of X’ be the sum
of the arities of X and z. The intended interpretation of the iteration stages
for X" is X} = {(%,%) | € ¢"[z]}. This is achieved by renaming all bound
variables in ¢ so that they are different from those in z, and then replacing
any atom of the form X (y) by X'(y,z). Hence, if X () occurs in a head
formula we introduce the new individual parameters z. Call the resulting
formula ¢'(z, z, X'). The following equivalence is then immediate:

[FORZ% (2,2, X)|(z) = [FORZ!Y.¢' (7,2, X")|(%, 2).
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Disallowing individual parameters in both head and body formulas leads
to a fragment of FO(FOR) equivalent to BQL.

Proposition 3.13 The fragment of FO(FOR) that does neither allow indi-
vidual parameters in heads nor in bodies of for-loops is equivalent to BQL.

Proof. It follows from the proof of Proposition 3.4 that any BQL query can
be simulated in FO(FOR) without individual parameters in the head or in
the body.

We next show that for any FO(FOR) formula £(u,Y) without individual
parameters in the head or in the body, there exists a BQL program P, with
output variable X, ¢, such that for any Pe-valuation n and structure A,

val[Pg, A, 77](X0ut,§) = {d | A ): 6[(_1, 77]}

The proof proceeds by induction on the structure of £&. We only consider the
interesting case. Let & be of the form

£(@,Y) = [FORFZ oz, X, V) (@),

Then define P as the following BQL program

Pw;
X =0
for |X0ut7¢| do
P,;
X = Xout,p 0d;
Xout,§ = X.

3.4 Inflationary versus non-inflationary iteration

If, in the definition of the semantics of the FOR operator, we replace , the
stages ™ by @™ (cf. Section 2), we obtain the inflationary version of FOR
which we denote by [FOR.

It is routine to verify that FO(IFOR) collapses to FO on sets (i.e., over vo-
cabularies consisting of unary relation names only). Indeed, each FO(IFOR)-
definable relation is a union of automorphism classes and each automorphism
class is definable by a quantifier-free formula. Since there is a uniform bound
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on the number of quantifier-free definitions (up to logical equivalence) and
the bodies of for-loops iterate in an inflationary manner, each for-loop in
FO(IFOR) can only iterate a fixed number of times (independent of the in-
put structure). Hence, each for-loop is definable in first-order logic. Conse-
quently, it is not expressible in FO(IFOR) that the cardinality of a set is even
(since this is not expressible in FO [EF95]). This implies that FO(IFOR) is
strictly weaker than FO(FOR).

On the other hand, FO(IFOR) is strictly more expressive than FO(IFP).
Indeed, consider the vocabulary 7 = {U, R} with U unary and R binary,
and let Qy be the following Boolean query: Qs(A) is true if R is a chain,
i.e., a successor-structure, and |[U#| > |R*| (here |U#| denotes the cardi-
nality of the set U4). The query Q, is not definable in FO(IFP). Indeed,
if p is an FO(IFP) sentence, then, for some k, ¢ is equivalent to an £k
sentence [EF95]. Let A be a structure where |[U#| = k and R is a chain of
k+1 elements not occurring in U4, and let B be a structure where |UZ| = 2k
and R? is a chain of k + 1 elements not occurring in U#. The Duplicator can
win the k-pebble game on A and B by following the following strategy: when
the Spoiler picks an element of a chain, the Duplicator picks the correspond-
ing element on the other chain; and, when the Spoiler picks an unpebbled
element in U, then the Duplicator responds with an arbitrary unpebbled el-
ement in the set of the other structure (we may assume that no element ever
has two pebbles on it). This means that A4 and B are indistinguishable in
ﬁ’;ow. Hence, ¢ cannot define Qy because A satisfies Qo and B does not.
However, Q, can be defined in FO(IFOR) by the formula

chain A (V2) (last(z) — [IFORF 2V @¢irst(z) v (Jy)(X (y) A R(y, x))](z))

where chain is an FO(FOR) sentence saying that R is a chain, and first(z)
and last(z) define the first and the last element of the chain, respectively.
This yields the following proposition.

Proposition 3.14 FO(IFOR) lies strictly between FO(IFP) and FO(FOR).

3.5 A comparison with logics that count

Inflationary fixpoint logic with counting [GO93, Ott96, Ott97], here denoted
by FO(IFP, #), is a two-sorted logic. With any structure A with universe
A, we associate the two-sorted structure A* := AU ({0,...,n}; <) with
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n = |A| and where < is the canonical ordering on {0,... ,n}. The two sorts
are related by counting terms: if ¢(z,7) is a formula, then #,[¢] is a term
of the second sort. For any interpretation b for y, the value of this term
equals the number of elements a that satisfy ¢(a,b). The IFP operator can
be applied to relations of mixed sort. Counting terms can be extended to
apply to the counting of tuples and to yield tuples that correspond to the
|Al-adic expansion of numbers, without increasing the expressive power of
FO(IFP,#). We will assume some familiarity with this logic and refer the
reader to the sources just cited.
Every FO(FOR) formula can readily be simulated in FO(IFP, #).

Proposition 3.15 FO(IFP, #) is at least as powerful as FO(FOR).

Proof. We count the number of tuples in the relation defined by the head for-
mula and then iterate the body formula that number of times. The only prob-
lem is that FO(IFP, #) iterates in an inflationary manner while FO(FOR)
in general does not. We resolve this by tagging each stage by a different
number. If B

£(u,9.Y) = [FORIF" " V(2,5 X,V)]a,

where Z = 27 ... 2z, then £ is equivalent to
EN (X = #:0° A
[IFP;],:E,X’ (ﬂ = /\ 90* ("i.a ga ma Y))
v (30)@E0) (X' (7, @) A7 < AA =7+ 1A 7).

The cardinality of the relation defined by 1 is bounded by |A[* on an input
structure A. An (¢ 4 1)-ary tuple then represents a number between 0 and
|A|*! — 1 in |A]-adic notation. The formulas 1* and ¢* are the FO(IFP, #)
formulas equivalent to respectively ¢ and ¢; X' is a mixed relation of arity
(0+1, arity(X)); and @] is obtained from ¢* by replacing each occurrence of
X (v) by X'(7,0). ]

We next show that the subsumption of FO(FOR) by FO(IFP, #) is strict.
In fact, we show that the equicardinality query {(A,U) | U] = |[A\U|} is
not definable in FO(FOR).

As we did for BQL in Section 3.3, we analyze the semantics of FO(FOR)
formulas over simple structures in terms of mappings on partial types. It is
useful to put formulas into a restricted normal form, w.r.t. arities of relation
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variables, the number of distinct first-order variables used, and w.r.t. to the
role of first-order (individual) parameters in for-loops.

By Proposition 3.12, we can assume no body formula contains individual
parameters. Normalization of all relation variables to some common arity,
which is larger than the number of different first-order variables used, is
straightforward just as for BQL. So we can assume from now on that every
FO(FOR) formula uses no other first-order variables than z1, ... , zj, that all
occurring relation variables are of arity k, and that FOR-applications are of
the form FOR; x where z = (x,...,x;). By trivial renamings of variables
we may also assume that the heads in FOR~applications always are of the
form #7 : (%) where § = (xs41,...,2,) for some 0 < s < k (relational
parameters may occur but are suppressed for clarity).

Let o(X1,..., X, x1,... ,2,) be an FO(FOR) formula. Just as for BQL
it is easy to see that over simple structures, the semantics of such ¢ for
admissible valuations is faithfully represented by a mapping

F:;‘:@l — O
(91,...,9[) |—>é

such that
0[A] = {a € A" A= ol0i[A],... 0[A]d]}.

Again there are only finitely many such mappings, whence their iterations
in for-loops will eventually have to be periodic. The type of iteration we
encounter here — for a FOR-application FOR; x, to a body formula ¢ whose
semantics is represented by I' say — is of the form (F(i))y for

ro.e — e
g — (91,... ,92',1,{‘(97),97;+1,... ,9[).

Just as in the treatment of BQL, therefore, we find some modulus ¢ such
that for all sufficiently large v and all I" and i

(P®)"™ = (1", (2)

The inductive generation of the I';, follows the steps (A)—(C) outlined for
BQL. We concentrate on the FOR-step and consider the formula

o(X,7) = [FOR¥EP Doy (X, 2))(2),
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where § = (Z541,...,xx) for some 0 < s < k, and T = (x1,... ,x%). As-
sume that [y and I'; represent the semantics of ¢y and ¢, over some simple
A. Recall how the number of pg-iterations to be performed to determine
whether A = ¢[a] depends on (ay,...,as), the parameters in the counting
expression #jz : ¢1. Over simple A this dependence reduces to a dependence
on atpy(ai, ... ,as). Clearly o(Z) =V ,(p(Z) A p(Z)) where p ranges over all
complete s-types (regarded as partial k-types). Since Boolean operations are
trivial, we may treat just one particular disjunct, or actually assume w.l.o.g.
that we are dealing with ¢ := ¢ A p for some fixed p. Then the following
mapping is adequate for :

L5(0) = ((rgH )" (@),
where 6 = (0, 0,, ... ,0,) (initialization X; := ()), and

v = () = |{b e A%~ | (a,b) € TA@D)[A]}] 5
for any fixed @ = (ay, ... ,as) with atp(a) = p.

We use the family of structures A™™ of Example 3.7, consisting of a
set A of size n +m and a subset U C A of size n, to show the following
separation.

Theorem 3.16 FO(FOR) is strictly weaker than FO(IFP,#), in fact the
equicadinality query {(A,U) | U] = |A\U|} is not definable in FO(FOR).

Proof. We show that no sentence ¢ of FO(FOR) is satisfied by exactly those
Amm) of Example 3.7 where n = m.

Claim 3.17 Let ¢ be an FO(FOR) sentence. There are a constant q and
finitely many polynomials p(n, m) with positive integer coefficients, such that
for all A™™) with sufficiently large n,m, the mapping F:}("’m) only depends
on the values p(n, m) modq.

This implies that ¢ cannot distinguish between A™™ and AM™"+9) for
sufficiently large n. It remains to argue for the claim. We use as polynomials
the py/,(n, m) already considered in Example 3.7, and for ¢ the modulus of (2)
above. Note that the py/, exactly correspond to the counting values v needed
in (3). With these choices, the inductive proof of the claim is obvious for
first-order steps. FOR-steps are treated according to the above preparation,

25



always relative to some fixed p. We inductively assume that the I'; are
determined by the values p(n,m) modq. Then so are (Ty)") and 6 = T',(6),
and hence also ¥ mod ¢ = pg/,(n, m) mod ¢q. Note that v = py/,(n, m) is either
constant or sufficiently large for all sufficiently large n, m. In either case we
find that indeed ((I'p)®)" is determined by the p(n,m)modgq as claimed.

|

Although FO(FOR) is strictly weaker than fixpoint logic with counting,
it is strictly more expressive than fixpoint logic with modular counting only.
The latter logic is defined as the extension of FO(IFP) with generalized
quantifiers D,z¢(x,7), for each natural number n > 2, meaning that A |
Dyxp(z,a) if and only if [{b | A = ¢(b,a)}| =0 (mod n).

We show that the query Q, from Section 3.4 is not expressible in FO(IFP)
plus modular counting:

Theorem 3.18 FO(FOR) is strictly stronger than FO(IFP) plus modular
counting.

Proof. We first outline how modular counting can be simulated in FO(FOR).
The formula D,z¢(x, ) is simulated by

(Va) (~p(w, ) V (F20)[S-FOREZEED g, thuci] (o),

where wo = Xn,I(ZU[)) VAN _|X0(ZUO);

P =((Xo=0AX,=0) > 2, =11)
AN (Xo # 0= Xo(w)) AN(Xy #0 = 1 #21),

and for i =2,... ,;n—1, ¢ ;== X; 1(z;) A =X;(x;). After i iterations of the
body of the for-loop, if i > 0 then X; # 0 if and only if i = j (mod n).

For the separation, we use the following modicification of the pebble game
defined in Section 2, which we call the (k, D,,) pebble game. In a round of
the (k, D,,) pebble game on two structures A and B, the Spoiler chooses a
structure (say A), one of the k pebbles (say i), a natural number m smaller
than or equal to n, and a set X C A. The Duplicator then answers by
choosing a set Y C B such that |X| = |Y]| (mod m). The Spoiler now puts
pebble 7 on an element b € B, whereafter the Duplicator puts pebble 7 on an
element a € A such that a € X if and only if b € Y. The winning conditions
are defined just as for the ordinary pebble game.
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It follows from the work of Kolaitis and Vadnanen [KV95] that if the Du-
plicator wins the (k, D,,) pebble game on A and B with the pebbles initially
placed on @ and b, then for any FO(IFP) formula ¢ with at most k different
variables and that uses only quantifiers D,, with m < n:

AEp@ & BEgpD).

Suppose towards a contradiction that Qs is defined by the formula ¢ that
uses at most k different variables and where n is a natural number such that
for every quantifier D,, that occurs in ¢, m < n and n! > k. Let A be a
structure with |[U4| = 2k - n! and where R is a chain of 3k - n! elements not
occurring in U#, and let B be a structure with |U®| = 3k-n! and where R? is
a chain of 3k -n! elements not occurring in UA. We now describe the winning
strategy of the Duplicator in the (k, D,) pebble game on A and B. On the
chain R, the Duplicator picks exactly the same elements in A (respectively
B) as the Spoiler does in B (respectively A). Therefore, we restrict attention
to moves in U. Since U is a simple set disjoint from R, the response of the
Duplicator is obvious once the sets X and Y are chosen. Hence, we only
discuss the choice of the latter.

Assume the elements @ and b are pebbled and @ — b is a partial isomor-
phism of A and B. We denote the value of the ith pebble in A and B by
m4(i) and 7m5(i), respectively.

1. The Spoiler chooses a subset X of U# and a natural number 2 < m < n.

(a) If |X| = |UA| — j, for some j € {0,...,k}, then the Duplicator
takes a subset Y in U” of size |[U®|—j such that for every pebble i,
ma(i) € X if and only if 75(i) € Y. We have, |X| = |V]| (mod m)
since |[U#| = |U®] (mod m).

(b) If | X| < |UA| — k then the Duplicator takes a subset Y in U

of size | X| such that for every pebble i, m4(7) € X if and only if
m5(i) € Y. We trivially have |X| = |Y| (mod m).

2. The Spoiler chooses a subset Y of U? and a natural number m < n.

(a) If |Y]| = |UB| — j, for some j € {0,...,k}, then the Duplicator
takes a subset X in U of size [U|—j such that for every pebble 4,
m4(i) € X if and only if m5(i) € Y. We have, | X| = |Y| (mod m)
as |[U4| = |UB| (mod m).
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(b) If |Y] < |[UA| — k then the Duplicator takes a subset X in U#
of size |Y'| such that for every pebble i, m4(i) € X if and only if
Tg(i) eyY.

(c) If [UA| — k < |Y| < |UB| — k then the Duplicator takes a subset
X in U4 of size k- n! + (]Y| mod n!) such that for every pebble i,
7w4(i) € X if and only if 75(i) € Y.

|
We end this section with the following observation. FO(IFP, #) formulas
are not evaluated on the 7-structures themselves but on the expansion of
these 7-structures with an initial fragment of the natural numbers. Hence,
it is interesting to ask how FO(FOR) compares to FO(IFP) when we make
these natural numbers also available to FO(FOR) formulas (as is the case
for FO(IFP, #) but without the counting terms). It turns out that under
these conditions, FO(FOR) becomes equally powerful as FO(IFP, #). For
example, we can easily simulate p = #,[¢] as [FORﬁf,u = p+1](n), where
i := p+ 1 is an abbreviation of the FO formula that defines p as 1 in the
first iteration and then subsequently increases p in M by 1.

4 Nesting of for-loops

In this section we study the nesting of for-loops in both BQL and FO(FOR).

4.1 Nesting in BQL

The nesting depth of a BQL program P, denoted by depth(P), is inductively
defined as follows:

(i) the depth of an assignment statement is 0;
(i) depth(Py; Py) := max{depth(P,), depth(Ps)}; and
(iii) depth(for |X| do P od) := depth(P) + 1.

For i > 0, let BQL; be the fragment of BQL consisting of BQL programs
of nesting depth at most i. We refer to BQL, as unnested BQL. Note that
BQL, programs do not have any for-loops at all.

Theorem 4.1 Unnested BQL is strictly weaker than BQL.
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Proof. Take the vocabulary 7 = {F,C}, with E binary and C' unary. We
consider graphs (with edge relation F) of the form of a chain, where to each
node of the chain is attached a separate non-empty set of nodes. The chain
is distinguished in the structure by the unary relation C. The attached sets
are of various sizes bounded above by the length of the chain. If n is the
length of the chain and a; is the size of the ¢th set, then this structure is
denoted by a = (aq,...,a,); this is an element of {1,... ,n}". We denote
the graph associated to a by G,. In Figure 2, an example of such a structure

is depicted.
\“1/ \“/ \a’“i \ Ny
1 2 n—1 n

Figure 2: a = (aq,...,ay)

Now, let Q3 be the binary query defined by
Q?’(GO&) = {(Zaaz) | L € {17 s 7”}}

By the numbers ¢ and a; we mean respectively the ¢-th and «;-th element
of the chain. Observe that this query is injective. l.e., if o and g are two
different n-tuples then Q3(G,) # Q3(Gp). We can express Qs by the BQL
program in Figure 3.

Suppose that P is an unnested BQL program that computes Q3. Let k£ be
the maximum number of first-order variables used in P, let d be the number
of (unnested!) for-loops in P, and let ¢ be the maximum arity of the relation
variables that appear as heads of for-loops in P.

For any k£ > 2 and any n large enough there always exist two nonisomor-
phic graphs G, and Gg with a, 8 € {k,...,n}" in which the cardinalities
of the relations occurring in the heads of all the for-loops in P are equal.
Indeed, the number of possible sequences of cardinalities of heads in P is
bounded by the polynomial (n(n+ 1) +1)%, because n(n+1) is the maximal
number of elements in such graphs, and there are d heads of arity at most /¢,
while there are exponentially many elements in {k, ... n}".

These G, and G are also indistinguishable in FO*, because oy, 5; >
k. Indeed, if the Spoiler pebbles the i-th element of the chain, then the
Duplicator pebbles the i-th element of the other structure; if the Spoiler
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for |V| do
Z={x | Qy)(Y(y) A E(y,z) A =C(x))}
W = 0;
for |Z| do
) W= {z| (W =0Afirst(z)) vV (Ty)(W(y) A E(y,z) A C(z))};
X :: XU(Y x W),
N Vi=A{z| @)Y (y) AE(y,z) AC(2))};
XOl’lt = X;

Figure 3: A BQL, program that computes Qz, where first(z) is an abbre-
viation for C'(x) A =(Jy)(E(y, z)).

pebbles an element in the i-th set, then the Duplicator pebbles an element
in the ¢-th set of the other structure. Moreover, the result of P on input
G, denoted by P(a), is indistinguishable in FO* from the result of P on
input G, denoted by P(f3), since in both structures P is evaluated as the
same sequence of FOF-definable substitutions. Indeed, recall that we chose
G, and Gg such that every for-loop iterates the same number of times on
both structures.

Now, P(a) and P(f) are indistinguishable subsets of chains of equal
length, so they must in fact be equal, because every element of a chain is
distinguishable from all others in FO? [Ott97]. Hence, the query expressed
by P is not injective. This leads to the desired contradiction, because we
noted that Qs is injective. [ |

Note that the query Qs used in the above proof is not a Boolean query.
It remains open whether there exists a Boolean query that separates BQL
from unnested BQL.

We next show that the nesting hierarchy is not strict.

Theorem 4.2 BQL is equivalent to BQLs,.

Proof. We show that every BQL program is equivalent to a program in a
normal form that contains both for- and while-loops. This program can then
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easily be transformed into an equivalent BQL, program. More precisely, we
show that every BQL program is equivalent to a program of the form

P;; while Y # () do P, od, (%)

where P; does not contain a for-loop nor a while-loop; P, is an unnested
BQL program; and the variable Y becomes empty on any structure after at
most a polynomial number of iterations.

If on any input structure A the variable Y becomes empty after at most
|A|¢ iterations then we say that Y is bounded by ¢. We say that Y is poly-
nomially bounded if it is bounded for some /. A program that contains both
while-loops and for-loops is a mixed program; such a program is in mized
normal form if it is of the form (x).

Let us show that any program in mixed normal is in fact equivalent to
a BQL, program. We first need some terminology. Let 1 be a first-order
sentence over the vocabulary 7 expanded with the relation variables. We
define a mapping p, from BQL programs to BQL programs inductively as
follows:®

L pp(X :={z | p@)}) = (X :=if ¢ then {7 | p(z)} else X);
2. py(Pr; Po) = (py(Pr); pu(P2));
3. py(for | X| do P od) := (for |X| do p,(P) od).

The mapping py, is defined for RQL programs in a similar manner. (Recall
that RQL is the extension of the relational calculus with while-loops defined
at the end of Section 3.1.)

By the following lemma, it suffices to show that every BQL program can
be brought into mixed normal form.

Lemma 4.3 Fach mized program P in mized normal form is equivalent to
a BQL, program.

Proof. If P is of the form
Py; while Y # () do P; od,
where Y is bounded by ¢, then P is equivalent to

Pi; X := A% for | X| do py4(P) od,
Here, if ¢ then {Z | p(Z)} else X is a shorthand for {Z | (¥ A p(Z)) V (=) A X (Z))}.
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where X does not occur in P, and P, and X := A’ is an abbreviation for
X ={(x,...,20) | T =T} ]

Programs in mixed normal form can easily be manipulated as shown in
the next lemma.

Lemma 4.4 If )1 and Q2 are two programs in mized normal form, then
Q1; Q2 and while X # () do @, od are also equivalent to programs in mized
normal form, provided X is polynomially bounded. If Q) is an unnested BQL
program then Q1;Q and Q; Q1 are equivalent to programs in mized normal
form.

Proof. If () is in mixed normal form

P,; while X; # () do P, od,
and (), is in mixed normal form

P,; while X5 # () do P; od,

X, is bounded by ¢ and X3 is bounded by ¢, then Qi; Q> is equivalent to
the program in Figure 4. In this program phasel, phase2, phase3 and stop
are nullary program variables not occurring in (); or (Js. They are used as
Booleans in the standard way. The variable stop is bounded by ¢ + ¢'.

The program while X # () do ), od is equivalent to the program in Fig-
ure 5, where stop, outerloop, and innerloop are nullary variables representing
Booleans not occurring in ();. The variable stop is bounded by ¢ + ¢'.

The cases Q1; @ and ;@)1 reduce to the first case by noticing that @ is
equivalent to the following program in mixed normal form:

ok := true; while ok do ok := false; () od.
|

We now show that every BQL program is equivalent to a program in
mixed normal form. The proof proceeds by induction on the structure of
BQL programs. The theorem then follows from Lemma 4.3.

The cases where P is of the form X := {7 | ¢(z, X)} or where P is of the
form P;; P, with P, and P, in mixed normal form, follow from Lemma 4.4.
Therefore, let P be of the form for | X | do P’ od, where P’ is in mixed normal
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Po;

phasel := X; # 0;

phase2 := —phasel;

phase3 := false;

stop := false;

while —stop do
Pphasel (Pl)
Pphase2 (P2)
Pphase3 (PS)
phasel := phasel and X; # 0);
phase2 := —phasel and —phase2 and —phase3;
phase3 := —phasel and —phase2 and X3 # 0);
stop := —phasel and —phase2 and —phase3;

I
I
J

od;
Figure 4: The program in mixed normal form equivalent to (Q1; Q5.

form. We choose k to be the maximum of all arities of variables in P and of
the number of distinct first-order variables used in assignment statements in
P (free or bound). Let v be the number of distinct variables used in P. As
explained in Section 3.3, we can assume that all relation variables are k-ary.

Now, to simulate P, we first compute the k-variable Abiteboul-Vianu
invariant 7 (A) [AV95] of the input structure A by an RQL program P<k
in mixed normal form (note that this program does not use for-loops). The
elements of m;(A) are the FOF-equivalence classes of A. Moreover, ;(.A)
provides us with a total order on the FO*-equivalence classes. We will exploit
this ordering to simulate some for-loops by while-loops whereafter we merge
some of these while-loops together. Some care has to be taken, however,
since this ordering is in general not a total ordering on A. Since on any
given structure every BQL program is equivalent to an FO* formula (recall
Section 3.3), every relation definable by a BQL program is a union of FO-
equivalence classes on the input structure. In the following we refer to these

classes by the natural numbers 1, ..., N, where N = |1;(A)| and A is the
input structure under consideration. So, the output of a BQL program can
be seen as a relation over {1,... ,N}.

In a relation variable D, we can now encode any number between 0 and
2N — 1. Indeed, D represents the number zero if D = () and the num-
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stop := X = {);
outerloop := true;
while —stop do
pouterloop(PO);
innerloop := X; # 0;
pinnerloop(Pl);
outerloop := X; = {);
stop := X; =0AX = 0;
od;

Figure 5: The program in mixed normal form equivalent to the program
while X # () do @), od.

ber >, p 27" otherwise. If D; and Dy are two sets then the operations
min{ Dy, Dy}, ‘if Dy < D, then Dy + 1 else 0, and D; — 1 are expressible by
single assignment statements. A tuple of ¢ sets (Dy, ..., D) can now encode
any number between 0 and 2¢N —1. The operations described above can also
be expressed for such tuples.

We now start with the simulation of P. Consider the input A with initial
valuation . We make a distinction between two cases: |n(X)| < 2vN and
In(X)] > 2°N. In case |n(X)| < 2N, using relations as counters, we can
simulate the for-loop of P by a while-loop of the desired form. If, on the
other hand, |p(X)| > 2°N, then we know that the execution of the loop will
repeat a configuration because there are only 2°N assignments of values to
v relation variables, and we can “shortcut” the computation of the for-loop.
We now explain this in more detail.

In outline, the program equivalent to P that we are going to describe is
of the form

Pk,
if [n(X)| < 2vN then 6,(P)
else d5(P)

where 01 (P) is the program in mixed normal form equivalent to P on struc-
tures A with initial valuation n where |n(X)| < 2UN and d5(P) is the pro-
gram in mixed normal form equivalent to P on structures A with initial
valuation n where |n(X)| > 2°N. Using the ordering <, the cardinality test
can be performed by the following program P, q_test:
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XNeard_test *= 0;
for |X| do Xcard_test = min{Xcard_test + 17 2U.N} Od;
condition := Xcard test 7# 2",

Here, X .rq.test Stands for a v-tuple of relation variables, as explained above.
The if-test can by replaced by while-loops in the standard way; see Figure 6.
By applying Lemma 4.4 several times, this program can be transformed into

<k-.
P<k;
Pcard_test;
ok := true;

stopl := false;
stop2 := false;
while ok do
ok := false;
while condition and —stopl do
stopl := false;
5.(P)
od;
while —condition and —stop2 do
stop2 := false;
b,(P)
od
od;

Figure 6: Outline of the mixed program equivalent to P.

mixed normal form. It now only remains to define §(P;) and 6(P,).

(1) The program §; (P) is defined as follows:

counter := Xcard_test]
while counter # 0 do
counter := counter — 1;
/.
P
od.

Note that this while-loop is bounded by arity(X). By applying Lemma 4.4
this program can be brought into mixed normal form.
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(44) The definition of d5(P) is based on the observation mentioned above
that, if |p(X)| > 2°N, the execution of the loop will repeat a configura-
tion. Formally, let ¢ be minimal such that for all n > 2°N, val[P™, A, 7] =
val[P™+9, A, n]. We say that c is the cycle size of P on A and 5. Note
that the cycle size is less than 2UN. The program d,(P) is depicted in
Figure 7. It simulates P by iterating its body first 2N times and then
(Jn(X)| — 2°N) mod ¢ times. The former can be done by a single while loop
as in case (7). In the figure, P, is a program in mixed normal form that
computes the cycle size, described below. We assume that the variables X',
counter and rest do not appear in P’. Note that this is the only place, apart
from the program P4 es;, Where a real for-loop appears. The while-loops
in the program are bounded by arity(X). Hence, the program can be put in
mixed normal form by applying Lemma 4.4 several times.

P;

counter := 2N:

while counter # 0 do
counter := counter — 1;
P,

od;

counter := 0;

for | X| do
counter := if counter < cycle_size then counter 4+ 1 else 0

od;

while counter # 0 do
counter := counter — 1;
P’

od;

Figure 7: The program d,(P).

We complete the proof by describing the program P, computing the cycle
size. This program is shown in Figure 8. Here, Pjiore_initial_values 15 the program
that copies the initial values of the variables into some help variables, and
Ptore_current_values_s 1S the program that stores the current values in some help
variables to which we refer as S. Finally, Piestore_initialvalues 1S the program that
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Pstore_initia.l_values;

counter := 2N:

while counter # 0 do
counter := counter — 1;
P,

Y

od;

P, store_current_values_S ;

cycle_size := 0;

same_config := false;

while —same_config do
P,
same_config := current_config = S;
cycle_size := cycle_size + 1;

od;

P, restore_initial_values;

Figure 8: The program F..

restores the initial values. Note that these programs are just sequences of as-
signments and consequently contain no while- or for-loop. Now, we know that
after 2N iterations the body of P repeats a configuration. Hence, we iterate
P’ that many times and then store the value of all its variables in S. Starting
from these values we iterate P’ until we obtain the same configuration (this
happens after at most 2N iterations) and we count the steps. This gives us
the cycle size. The statement same_config := current_config = S is an abbre-
viation for the assignment that assigns true to the variable same_config if the
current values of the variables of P equal those stored in S, and assigns false
to same_config otherwise. Again the while-loops are bounded by arity(X).

|

4.2 Nesting in FO(FOR)

There are two ways of nesting for-loops in FO(FOR): nesting in the head
formulas and nesting in the body formulas. We show that nesting in the
head does not give additional power, while nesting in the body does. It
remains open whether nesting in the body up to a certain level is sufficient.
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4.2.1 Nesting in the head

Let FH-FO(FOR) be the fragment of FO(FOR) that does not allow for-loops
in its head formulas. That is, only first-order heads are allowed. We show
that nesting in the head is dispensable.

Proposition 4.5 FO(FOR) is equivalent to FH-FO(FOR).
Proof. The proof proceeds by induction on the structure of FO(FOR) for-

mulas. We only treat the interesting case. Let £(@, 7,Y") be the formula
[FORFZYEPY) oz, 4, X, V)] (1)

We can assume that both ¢ and ¢ are FH-FO(FOR) formulas. On structures
with at least two elements £ is equivalent to the formula

[S-FORZ % 701, 02)(7),
where o is the formula [FOR?,;Z(E)(;)(:E,ZJ,X, Y)|(@), o, is the formula 1,
and U and Z do not occur in £. Since the translation of FO(S-FOR) to
FO(FOR) does not introduce additional nesting in the head formula (cf.
Proposition 3.3), the above formula is equivalent to one in FH-FO(FOR).

|

The construction described above, however, introduces relational param-
eters in head formulas. We next show that in general one cannot get rid
of these parameters. Let PFH-FO(FOR), FO(FOR) with pure first-order
heads, be the fragment of FH-FO(FOR) that forbids relation variables in
head formulas of for-loops.

To prove inexpressibility results for PFH-FO(FOR), we introduce an ex-
tended version of the k-pebble game defined in Section 2. First, the Du-
plicator has to preserve partial isomorphisms between the pebbles as in the
ordinary k-pebble game. But on top of that, he must also make sure that for
any FOF formula ¢(Z, 7), if we fill in some pebbled elements @ from the first
structure A and take the corresponding pebbled elements b in the second
structure B (or vice versa) then |{a’' | A = o[a,a'}| = |{b' | B = ¢[b, V']}|.
This game provides us with the following tool.

Lemma 4.6 Let Q be a Boolean query. If for every k, there exist structures
Ay and By such that Q(Ag) # Q(By), and the Duplicator has a winning
strategy in the extended k-pebble game on A; and By, then Q is not definable
in PFH-FO(FOR).
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Proof. Let DX be the logic £F  extended with counting quantifiers 3=z

(meaning that there are exactly ¢ elements x; such that ... ), for all natural
numbers ¢ and for all j = 1,... , k, where the counting quantifiers are applied
to FO* formulas only. Note that D%  is a fragment of C¥ . that is, £F

with counting quantifiers (see, e.g., [Ott97]).

In close analogy with the Immerman-Lander pebble game for £ with
counting [IL90], one can show that if the Duplicator has a winning strategy
in the extended k-pebble game on the structures A and B with the pebbles
placed initially on @ and b in A and B, respectively, then for every D%
formula ¢ (7)

AEvla & Byl

Every PFH-FO(FOR) formula is equivalent to a D¥  formula, for some
k. Since PFH-FO(FOR) formulas can have free relation variables, these can
also occur in the corresponding DF  formulas. However, no such relation
variable will occur in the scope of a counting quantifier.

We proceed by induction on the structure of PFH-FO(FOR) formulas.

The only interesting case is a formula &(@, 7,Y") of the form
[FORY " (a5, X, V))(w),

with ¢y an FO* formula for some k;. We can assume that ¢ is a D2
formula for some k9, where no relation variable occurs in the scope of a
counting quantifier. Then £ is equivalent to the formula

\ (@ 2)0(z,u.9) A ¢'(7,5.Y)) .
i=1
Here, ¢' is defined inductively as follows. For i = 0, define ¢° as any false

formula. For i > 0, ¢' is the formula obtained from ¢ by replacing any
occurrence of an X-atom X (vy,... ,vs) by

(Fz1)...(3z) (v=2A(Fx1)...(Fzs) (T =2 A ' (2,7,Y))) .

Here, z; = xy4; for j = 1,...,s. Note that ¢’ is a Dk2+5_formula, where s is
the arity of X. Hence, £ is equivalent to a DFi+k2+5_formula.

The lemma now follows. Indeed, let Q be a Boolean query that satisfies
the conditions of the lemma. Take any PFH-FO(FOR) sentence £. By the
above there exists an equivalent DX sentence ¢ for some k. By assumption
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the Duplicator wins the extended k-pebble game on A, and Bj. Hence, ¢,
and thus &, cannot express Q. [ |

Using the above lemma we can show the following.
Theorem 4.7 PFH-FO(FOR) is strictly weaker than FO(FOR).

Proof. Consider the following Boolean query over the vocabulary of graphs.

Q4(9) is true if

(i) every connected component of G is ordered by the HKL query (cf. the
paragraph before Section 3.3);

(ii) the number of elements in each connected component is larger than the
number of connected components; and

(iii) there are exactly two isomorphism types of connected components and
they appear in equal numbers.

We first show that this query is definable in FO(FOR):

(i) Let n(z,y) be the FO(FOR) formula that defines the HKL query. We
can easily relativize it in the standard way to each connected compo-
nent: replace each (Jv)... by (Jv)(path(z,v) A ... and each (Vv)...
by (Vv)(path(z,v) — ..., where z is a variable not occurring in ¢ and
path(z,v) is the FO(FOR) formula expressing that there is a path in
the graph between z and v. This gives us the formula 7'(z,z,y). We
now only have to check whether for each node z the formula n'(z, x, y)
defines a linear order.

(ii) The next sentence checks requirement (ii):
(Vx)(first(x) —
(Vy) ([FORFFF™* )y = o v (3y') (Y (') A suce(y/, 1)) (y)
— ﬂlast(y)))

Here, first (last) is a formula defining the first (last) elements of
all components, and succ(y’,y) is a formula expressing that y is the
successor of ¢ in the ordering of a component.

40



(iii) Let x = y be the FO(FOR) formula saying that x and y are the first
elements of different but isomorphic components. We can express this
using the orderings, because if the two components are isomorphic, the
isomorphism must respect the ordering and is thus unique. Expressing
that the isomorphism between the orderings is an automorphism of the
graph can be done in first-order logic.

Now the formula

(Fz)(Jy)(first(z) Afirst(y) Az #FyAz Ey
A(Vz)(first(z) >z = 2z Vy = 2))

states that there are exactly two isomorphism types. The next sen-
tence expresses that the two isomorphism types have to occur in equal
numbers;

(Vz)(first(z) —
(Vy)([FOR/ "=y =z v (Iy) (Y (') A suce(y',y))](y)
<>
[FORJ M= @y — oy (Fy') (V (') A suce(y/, 1)) (1))

Using Lemma 4.6, however, we can prove that Q, is not definable in
PFH-FO(FOR). We first observe that for any k, there are arbitrary large
non-isomorphic connected graphs Gy and Hj, such that:

e every FOF formula is equivalent to a quantifier free one over G, and
Hy;

o {31 Gr Fvlgl}l = {g | Hi = ¢lg]}] for every FO" formula ¢;

e () and Hy are ordered by the HKL query.

Indeed, recall that every FOF-formula is equivalent to a quantifier-free one
on almost all graphs; this follows from the satisfaction by almost all graphs
of the extension axioms for k variables [EF95]. Hence, the first item is clear.
We do not have to worry about the third item because the HKL query orders
almost all graphs.

Up to logical equivalence there are only a constant number of quantifier-
free formulas in k variables (say N) and in a graph of n vertices a relation
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definable by such a formula must have cardinality between 0 and n*. Hence,
there are only (n* + 1)V possible sequences of cardinalities of the definable
relations. There are at least 2 /n! nonisomorphic directed graphs on n
vertices. (Indeed, there are exactly 27* directed graphs on a fixed set of n
vertices, and no isomorphism class among them has more than n! elements,
hence there are at least 2" /n! isomorphism classes.) Consequently, there
must be two nonisomorphic directed graphs on n vertices, say G and Hy,
such that for every FO* formula ¢:

{g1Gr = elgl} = {g | He = ¢lgl}]

We have choices of G, and Hj for all large enough n, so we can use an
n > 2k + 2.

Let Ay be the disjoint union of k& + 1 copies of G, and k + 1 copies of Hy,
and let By be the disjoint union of k£ copies of Gy and k + 2 copies of H;,. We
show that the Duplicator has a winning strategy in the extended k-pebble
game on A and By. The theorem then follows by Lemma 4.6 because Ay
satisfies query Q4 but By does not.

In the game, for pebbled elements @ and b, we only have to show that

{a' | A | ela,aT} = {0 | By = o[b, U]}, (4)

for all FO* formulas ¢. To simplify the proof, we add the relation ~ to
the vocabulary. In both A, and Bj this relation holds for two nodes if they
appear in the same connected component. The following lemma now says
that in (4) we only have to consider quantifier-free formulas.

Lemma 4.8 On Ay and By, each FOF formula is equivalent to a quantifier-
free one.

Proof. This follows by an Ehrenfeucht-Fraissé game argument. First note
that if @ — b is a partial isomorphism in the presence of ~, then the Du-
plicator wins the ordinary k-pebble game on (A, a) and (By,b). Indeed,
he just plays independently in each component. Because all of them satisfy
the extension axioms for k variables, and @ — b is a partial isomorphism,
he can always find vertices to answer all the moves of the Spoiler. It fol-
lows that (Ay,a) and (B, b) satisfy the same FOF formulas if they have the
same atomic type in the edge relation and ~. Hence, every FO* formula is

equivalent to a union of atomic types. |
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In the extended game on A, and By, the Duplicator uses an “exact mirror
strategy”: play to win the standard game, plus always respond in isomorphic
components and according to an isomorphism. That is, he ensures that the
partial isomorphism required for the game can always be extended to a partial
isomorphism defined for all the members of the connected components in
which the pebbles are located. Because, initially, there are no pebbles on
the board and there are enough copies of the graphs H; and Gy in both
structures, the Duplicator can easily maintain this strategy.

It remains to show that under this strategy the conditions of the ex-
tended k-pebble game are always satisfied. The key observation is that the
cardinalities of FO* definable relations (even if ~ can be used) are functions
of cardinalities of certain quantifier-free definable relations over the compo-
nents. In the absence of pebbles these cardinalities are equal in components
isomorphic to G and Hy, and the components which contain parameters are
isomorphic.

Let @ (b) be a sequence of pebbled elements in A (By). We show a
one-to-one correspondence between o = {a@’ | Ay = p[a,a']} and 3 = {b' |
By = o[b, ']}, where ¢ is a quantifier-free FO* formula using ~. The partial
isomorphism of the pebbled elements extends to a partial isomorphism of the
components and can be further extended to a partial isomorphism defined for
all the elements except those of one connected component isomorphic to Gy,
in Ay, and one isomorphic to Hy in By. Call these components ezceptional.

Take @' € a and split it into the exceptional subtuple e(a'), which consists
of the elements coming from the exceptional component, and the rest called
the normal subtuple n(a'). Assume for convenience that a' = n(a’),e(a’).
The normal subtuple n(a') is put into correspondence according to the above
mentioned partial isomorphism into a subtuple we denote n(b'). Moreover,
the sets

v := {¢ € exceptional-component-of(A;) | Ax | pla, n(a), |}
and
§ := {d € exceptional-component-of(By) | By = ¢[b, n(t'), d|}

are described by the same parameter-free FOF formula evaluated over the ex-
ceptional component, only. Indeed, consider p[a, n(a')] and ¢[b, n(b')] (with
unsubstituted variables to be filled in by elements of the exceptional subtu-
ples), and replace atoms (built with equality, ~ and the edge relation) by
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their truth values wherever possible. For all atoms concerning subtuples of
a,n(a') and b,n(b’) we get the same truth values in both formulas, because
the arguments in atoms are taken from isomorphic fragments of structures A
and B. For positive atoms consisting of one argument from a,n(a’) or b, n(')
and one variable to be filled in by an element of the exceptional subtuple, we
always get false. This is so because the two arguments are taken from distinct
connected components, so there can be neither edge, ~ nor equality between
them. Finally, we replace the atoms = ~ y to be filled in by elements com-
ing from exceptional components by their logical value, which is true. After
this replacement we get two identical quantifier- and parameter-free formulas
consisting entirely of atoms concerning elements of the exceptional subtuples,
as desired.

Since we already had a one-to-one correspondence between the non-ex-
ceptional subtuples of o and 3, we thus get a full bijection between « and [,
as had to be shown. [ |

4.2.2 Nesting in the body

Let FB-FO(FOR) be the fragment of FO(FOR) that does not allow for-loops
in body formulas. That is, only first-order bodies are allowed.

For a graph G, let nx G denote the disjoint union of n copies of G. Let O
be the following query on graphs. Qs(#) is true if there exists a connected
graph G such that

(i) G is ordered by the HKL query;
(ii) H = n*G; and
(iii) n <G|

This query is definable in FO(FOR): as in the proof of Theorem 4.7 we can
check whether each connected component can be ordered by the HKL query,
whether all connected components are of the same isomorphism type, and
using the ordering of a connected component we can check whether n < |G].

We next show in a sequence of lemmas that Qs is not definable in FB-
FO(FOR) thus proving the following.

Theorem 4.9 FB-FO(FOR) is strictly weaker than FO(FOR).
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The key idea towards the proof of this theorem will be that if G satisfies
the k-variable extension axioms for sufficiently large k,[EF95] then first-order
bodies of for-loops start to cycle after a bounded number of iterations, while
Qs requires counting up to |G|.

In the following we fix a connected graph G that is ordered by the HKL
query. This implies that G is rigid.

Definition 4.10 For natural numbers n < m, a formula ¢(Z) is called
(n, m)-embedding preserved if for every embedding e : nx G — m % G and
every tuple a of elements of n * G, we have

nxGEylal & mxgEple(a)

Note that the just introduced notion depends on the graph G. Intuitively, if
@ is (n, m)-embedding preserved, then its interpretation in n * G completely
determines its interpretation in m * G because the latter can be completely
covered by embeddings of the former. Also note that since G is rigid each
embedding is completely determined by which connected component of nx G
is mapped onto which connected component of m * G.

Obviously, atomic formulas are (n, m)-embedding preserved for all n < m.
In a sequence of lemmas we prove bounds on the values of n and m for which
FB-FO(FOR) formulas are (n, m)-embedding preserved.

Lemma 4.11 (First-order case) Let n > k. If ¢ and ¢ are formulas with
at most k variables which are (n,m)-embedding preserved, then so are —,

eV and (Fz)p.

Proof. The cases of negation and disjunction are straightforward, so let us
focus on (Fz)p(x,y). If n* G | (Fz)p[r,al, then there exists a b such that
nxG | ¢[b,al. Let e be an embedding. By the induction hypothesis we get
that m x G = ple(b),e(a)]. Hence, m x G = (Jx)p[x, e(a)].

Conversely, suppose that m x G = (Jz)¢[z,e(a)] for an embedding e.
Then there exists a ¢ such that m x G = ¢[c, e(a)]. We distinguish two cases:

(i) There exists a b such that e(b) = ¢. Then by the induction hypothesis,
we get nx G E p[b, al.

(ii) If ¢ does not belong to the image of e, then it must belong to a connected
component of m * G which is disjoint from the image of e. Since a is of
length at most k — 1, there is a connected component of n G, denoted
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by C, that does not contain elements from a. Now define ¢’ as the
embedding that maps C to the connected component of m x G that
contains ¢ and that is equal to e on the other connected components of
n * G. This brings us to case (i).

The next lemma says that the cardinality of the relations defined by
head-formulas can be expressed by polynomials.

Lemma 4.12 For any FO(FOR) formula ¢(Z,3y) and interpretations a for
T in nx* G, there exists a polynomial p(m) such that for every m for which ¢
is (n, m)-embedding preserved and for every embedding e : nxG — mx G

p(m) = [{¢ | m =G k= ¢le(a),cl}|.

Proof. Fix n, e and a as in the statement of the lemma. Observe that

{c|mx*G = ¢lea),d}t =
{e'(b) ‘ benxG,nxGE ¢la,b }
e :nxG — mx G embedding with €'(a) =e(a) [~
Indeed, the inclusion D holds because ¢ is (n, m)-embedding preserved, and
C because ¢ is (n, m)-embedding preserved and the whole of m x G can be
covered by embeddings of n x G.

We are going to limit the choice of €/ and b on the r.h.s. above so that
every ¢ on the Lh.s. above will be equal to e'(b) for exactly one pair (¢/,b).
Then the cardinality we are going to compute will be equal to the number of
the chosen pairs.

First, for tuples b, of elements of n x G we write b ~ b’ iff there is
an automorphism f of n x G with f(a) = @ and f(b) = b'. The relation ~
is clearly an equivalence relation. Let () be a set of representatives of the
equivalence classes of ~ . We claim that

(el meg b glearel) = -
{a@‘ 6 en«Gn+G F oladlbeQ }

":nxG — mx* G embedding with €'(a) = e(a)

The inclusion 2 is obvious. To prove C, note that for any b satisfying nxG =
pla, b] there exists ' € @ and an automorphism f of m % G which is the
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identity on @ and such that b = f(b'). Then, for any embedding €' as above,
e'(b) = (' o f)(V') and ¢’ o f is an embedding with (¢’ o f)(a@) = e(a).

Now, for every b we introduce an equivalence relation a2 on embeddings
¢ satisfying €’(a) = e(a). It is defined by ¢’ =~ " iff €/(b) = €”(b). Because
G is rigid it is equivalent to the statement that ¢ and €” are equal on the
components in which elements of @ and b are located. Let Rj be a set of
representatives of all the equivalence classes of ~; .

Certainly,

e :nxG — mx G embedding with €'(a) = e(a)
{'(b) | benxG,nxG E=yla,b,beQ,echRy }.

{6,(b) ‘ benxG.nxG EplabbeqQ }:

Moreover, for b,b' € Q and €' € Ry, e" € Ry, if €/(b) = " (V') then b = b’ and
¢’ = €". Indeed, ¢'o(e”)~! is a partial automorphism of nxG sending b’ to b and
a to a. By rigidity of G it is defined at least for the whole components in which
a and b are located, and hence it can be extended to a total automorphism.
Consequently b = b', because they are members of ). It follows that ¢/ = ¢,
because they are members of Rj.

We have

{e [ m*G = lea),cl} = {(be') | be Q, nxG = la,b], and ¢ € Rz}|.

Let £ be the number of components in which elements from a are located. Let
k(b) denote the number of components in which elements of b are located,
excluding those in which elements from @ are located. Note that k(b) is
equal for ~-equivalent tuples b. For every b € (), the number of equivalence
classes of a7 is (m — £)(m — ¢ —1)...(m — £ — k(b) + 1). Indeed, G is rigid
and all our freedom in constructing an embedding is restricted to the choice
which component should be mapped onto which. Moreover, the choice for the
components in which a is located has been already done, and all the choices
for components in which there are no elements from b do not count, because
all embeddings which differ only on those components are in the same =;
equivalence class. Counting the number of pairs, for the first component with
elements from b and no elements from @ we have m — ¢ choices, for the second

m—{—1, ..., and for the last, k(b)-th component we have m — ¢ — k(b) + 1
choices.
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Consequently, the cardinality from the thesis of the lemma, is

Y m—=0)...(m—l—k((D)+1),

beQ,nxG=p[a,b]

a polynomial in m. [ |

Analyzing the formula for p in the above proof we get the following.

Corollary 4.13 If p is non-zero then p(m) > m — k, with k the number of
variables in ©.

Lemma 4.14 (FOR case) Let k, n, d be natural numbers such that n >
d+ k, and let (z,u,7) in FB-FO(FOR) and ¢(Z, X) in FO, both using at

most k variables, be such that
e ¢ is (n,n(d! + 1))-embedding preserved;
e there are at most d different stages of ¢ in nxG; and

e cach stage formula ¢' is (n,n(d! + 1))-embedding preserved.
Then [FOR§§¢¢] (@) is (n,n(d! + 1))-embedding preserved.

Proof. Let m = n(d!+1). The stages of ¢ in nx G and m x G are in one-to-
one correspondence because m G can be completely covered by embeddings
and the stages are (n, m)-embedding preserved. Consequently, the sequences
of stages require the same number of steps to arrive to the first cyclic state
and have the same cycle size.

Since 1 is (n, m)-embedding preserved, for every choice of parameters a
to be substituted for y, u, according to Lemma 4.12 there exists a polynomial
p(n) such that [{b | n*G = ¢[b,al}| = p(n) and [{¢ | m+ G = v[e, e(a)]}] =
p(m) for any embedding e (for the former we use that ¢ is (n,n)-embedding
preserved). Because n = m (mod c) for any ¢ < d we have that p(n) = p(m)
(mod ¢). Consequently because there are at most d different stages, the for-
loop halts in both structures in the same stage, irrespective of the chosen
parameters in the head formula. Note that the condition n > d + k ensures
by Corollary 4.13 that p(n) > d, so the cycles in the sequence of stages
must be achieved in both structures, unless the numbers of iterations to be
performed in both structures are the same, because the polynomial is the
constant zero. [ |
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Lemma 4.15 Query Qs is not expressible in FB-FO(FOR).

Proof. Towards a contradiction, suppose that the FB-FO(FOR) formula £
defines Q5. Let £ have no more than k& > 2 first-order variables. As in the
proof of Theorem 4.7, we know that for sufficiently large N there exists a
graph on N vertices that satisfies the extension axioms for k variables and
is ordered by the HKL query. Moreover, we may assume that the graph is
rigid because almost all graphs are rigid [EF95]. So, we fix one such graph of
cardinality N > d+k+1, where d is the maximal number of stages a formula
of FO* can induce in a disjoint union of graphs satisfying extension axioms
with k variables (this number is finite as each FO* formula is equivalent to
a quantifier-free one using ~, see Lemma 4.8).

By a straightforward induction using using Lemma 4.11 and Lemma 4.14,
we see that € is (n, n(d!41))-embedding preserved (with respect to G) for each
n > d + k. Moreover, each formula that is (n, m)-embedding preserved and
(m, p)-embedding preserved is also (n,p)-embedding preserved. Therefore
the sentence £ is (n,n(d! + 1)°)-embedding preserved for any s, and, because
(d+k)xG =& we have (d+k)(d'+1)°xG | £ for all s. However, the query
Qj is false in n * G for n > N, which leads to the desired contradiction. ®

The method we have used to distinguish FB-FO(FOR) and FO(FOR) is
much stronger than necessary to do just that. We illustrate this now.

Let us call a first-order query (X, ) polynomial if its number of stages
is bounded by a polynomial in the cardinality of the structure. The question
whether PFP with polynomial first order bodies is equivalent to the whole
of PFP is equivalent to the question whether PTIME=PSPACE. Indeed,
PFP with polynomial bodies is sandwiched between IFP and PFP, which
are equal iff PTIME=PSPACE [AV95]. So when the latter equality holds,
then PFP collapses to IFP (and thus to a fragment of PFP with polynomial
bodies). On the other hand, if the equality does not hold, then in the ordered
world PFP=PSPACE D PTIME, while PFP with polynomial bodies consists
entirely of queries computable in PTIME, and thus strictly contained in PFP.

So the question of equivalence between two forms of first-order bodies in
PFP, unrestricted and polynomial, is wide open. In the FOR world, however,
the fragment with first-order polynomial bodies is weaker than the logic with
arbitrary first-order bodies. Furthermore, this result does not depend on any
complexity theoretic assumptions.
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Theorem 4.16 FOR(FOR) with polynomial FO formulas as bodies is strictly
weaker than FO(FOR) with unrestricted FO bodies.

Proof. Let G be an ordered set, i.e., a structure with no other relations
besides the order. Define Qg as the following query: Qg(H) is true iff H is
isomorphic to n % G and n < 2/9/. Le., H should be a partial order consisting
of incomparable chains of equal lengths and the number of chains should be
smaller than 2 to the length of the chain. Qg can be expressed in FO(FOR)
with unrestricted FO bodies as a conjunction of:

e a first order formula saying that the structure is a poset which is a
union of chains, i.e., for every element ¢, all elements smaller than ¢
and all elements bigger than ¢ are linearly ordered;

e a straightforward FO(FOR) formula saying that all chains are equally
long; and

e the following formula
=((30) first(t) A (Vy) (t < y — [FORFZ™ Suce(X, 2,1)](y))),

where Succ computes the successor of the current relation X viewed
as a binary expansion of length equal to the length of the chain with
first element ¢. Further, if the successor cannot be represented, then no
increment is made. By selecting the first element of each chain in the
head of the for-loop, the body of the for-loop iterates exactly n times.
The output relation is not the whole chain exactly when the number of
minimal elements z is smaller than 2 to the length of the chain minus
1.

Now we prove that Qg cannot be defined in FO(FOR) with polynomial
FO bodies.

Suppose Qg is defined by an FO(FOR) formula £ with k variables and
polynomial FO formulas as bodies of all its for-loops. Let these polynomials
be uniformly bounded by the polynomial p(n).

By a straightforward structural induction ¢ is (n, n(p(|G|)!4+1))-embedding
preserved for each n > p(|G|) + k, and therefore it is (by transitivity)
(n,n(p(|G|)!+1)%)-embedding preserved for every s. Since (p(|G|)+k)*G = &
for G of sufficiently large cardinality, (p(|G|) + k)(p(|G])!+1)° * G = £ for all
s. But Qg does not have this property, a contradiction. [ |
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5 Discussion

We studied two languages based on for-loops: BQL and FO(FOR). BQL is
a programming like language while FO(FOR) is based on a partial fixpoint
operator. Actually, BQL and FO(FOR) can be considered as the for-loop
variants of the loop languages RQL and FO(PFP). In contrast to the equiv-
alence of the latter, the former are not equally expressive. In brief, this is
because the use of parameters turns out to play a much more powerful role
in for-loops than in while loops. One striking consequence of the strength of
parameters in for-loops is that, unlike BQL, FO(FOR) can actually define
queries whose output relation is not locally closed under k-variable equiva-
lence for any k. ©
We summarize the results obtained and mention some open problems:

BQL and FO(FOR). BQL is strictly subsumed by FO(FOR). The frag-
ment of FO(FOR) in which individual parameters are admitted neither in
heads nor in bodies, however, is equivalent to BQL.

Comparison with other logics. We compared FO(FOR) with other known
logics. FO(FOR) and FO(PFP) are incomparable if PTIME # PSPACE and
FO(FOR) lies strictly between inflationary fixpoint-logic with modular count-
ing and partial fixpoint-logic with (proper) counting. For the last separation,
we showed that FO(FOR) cannot check whether two sets have the same
cardinality. This result is a generalization of the same result for BQL an-
nounced by Chandra [Cha81, Cha88]. The inflationary variant of FO(FOR)
lies strictly between inflationary fixed point logic and full FO(FOR). This
separation should be contrasted with the corresponding issue in the case of
while-loops. Recall that with while-loops, a separation of inflationary from

full partial fixed-point logic would amount to no less than a separation of
PTIME from PSPACE.

Nesting. Finally, we considered nesting of for-loops.

e Unnested BQL is strictly weaker than BQL, but one level of nesting suf-
fices to simulate all of BQL. For the separation we used a non-Boolean

6Here, “local closure” would mean for some fixed %k that the output relation is closed
under k-variable equivalence within each individual structure; of course not even BQL is
closed under ”global” finite-variable equivalence as it allows modular counting.
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query. It remains open whether there is a Boolean query definable in
BQL but not in unnested BQL.

e In the case of FO(FOR), we have two kinds of nesting: nesting in
the head and nesting in the body of FOR-operators. Nesting in body
formulas matters although it remains open whether nesting up to a
certain level is sufficient. Nesting in heads is essential when relational
parameters are not admitted.

Some of the separations obtained are technically rather involved, using
quite some of the machinery developed in finite model theory and descriptive
complexity for the study of fixed-point logics, plus specially adapted game
techniques and counting arguments, some of them based on random graphs.
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