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Abstract
We investigate topological properties of subsets S of the real plane,

expressed by first-order logic sentences in the language of the reals aug-
mented with a binary relation symbol for S. Two sets are called topo-
logically elementary equivalent if they have the same such first-order
topological properties. The contribution of this paper is a natural
and effective characterization of topological elementary equivalence of
closed semi-algebraic sets.

1 Introduction and summary

By viewing subsets of the real plane R2 as binary relations over the real
numbers, we can use first-order logic in the language of the reals, augmented
with a binary relation symbol S, to express properties of such sets. For
example, to express that a set S contains a straight line one would write the
sentence

(∃a)(∃b)(∃c)(¬(a = 0∧b = 0)∧ ((∀x)(∀y)(S(x, y) ↔ ax+by+c = 0))), (∗)
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or to express that the set contains a disk as a subset, one would write

(∃x0)(∃y0)(∃r �= 0)(∀x)(∀y)((x − x0)
2 + (y − y0)

2 < r2 → S(x, y)). (†)

In this paper, we are interested in such first-order properties that are
topological, in the sense that they are invariant under homeomorphisms of
R2. The sentence (†) above gives an example of this; a semi-algebraic set
contains a disk if and only if its topological interior is non-empty, and this is
a purely topological property of the set. In contrast, the sentence (∗) is not
topological.

Often, one is only interested in a certain class C of sets; then a property
is called topological with respect to C if for any two sets A and B in C, if B
is the image of A under a homeomorphism of R2, then either A and B both
satisfy the property, or neither A nor B do.

There is not much understanding yet of the class of those first-order
sentences that are topological. One of the natural questions that arise in this
respect is that of understanding topological elementary equivalence. Two
sets from some class C are called topologically elementary equivalent (with
respect to C) if they satisfy precisely the same first-order properties that are
topological with respect to C.

In this paper, we focus on the class of semi-algebraic sets. A subset of
R2 is called semi-algebraic if it is first-order definable in the structure of the
reals as a binary relation over the reals. We moreover restrict attention to
semi-algebraic sets that are closed in the ordinary topological sense.

We have been able to find a natural characterization of topological ele-
mentary equivalence of closed semi-algebraic sets in R2. Our characterization
is based on a known topological property of semi-algebraic sets [6, 9], namely
that locally around each point they are “conical”. We partition the points
in the semi-algebraic set according to the types of their cones. Roughly, our
characterization then says that two closed semi-algebraic are topologically el-
ementary equivalent if and only if the cardinalities of the equivalence classes
of their partitions match.

A corollary of our characterization is that topological elementary equiva-
lence is a decidable property of closed semi-algebraic sets. Another corollary
is that topological elementary equivalence is the same as topological elemen-
tary equivalence with respect to first-order sentences in which no arithmetic,
but the order predicate, is allowed.
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Our proof of the characterization involves various techniques. For the
if-direction we show that there is a topological first-order sentence that ex-
presses that the cone around a point has some specific type. For the only-if
direction we show that two closed semi-algebraic sets with matching equiv-
alence classes can be transformed into one and the same “canonical” semi-
algebraic set. The transformation rules used in this transformation are shown
to produce topologically elementary equivalent semi-algebraic sets. The proof
of the latter uses a recent collapse theorem on the expressiveness of first-order
logic over the reals by Benedikt, Dong, Libkin and Wong [3], and involves
reduction techniques inspired by those introduced by Grumbach and Su [13].

Our work is concerned with the intrinsic topological properties of single
semi-algebraic sets and deals with a notion of equivalence (namely, elemen-
tary equivalence) which comes from model theory. Our work is therefore
related to the large body of work in the intersection of topology and model
theory (see, e.g., [12, 15, 18, 20]). In particular, it is in the spirit of the work
of Henson, Jockusch, Rubel, and Takeuti [15] who discuss a notion of elemen-
tary equivalence of topological spaces (which is also weaker than the classical
notion of equivalence of topological spaces by homeomorphisms) and related
invariants. These authors call two topological spaces elementary equivalent if
the lattices of their closed subsets have the same first-order properties. Their
notion of elementary equivalence is different from ours, however. Indeed, in
their context the property of being homeomorphic to the closed unit disc is
first-order expressible, while in our context there is no topological first-order
sentence that distinguishes between one closed disc and two separate closed
discs. In the context of Henson, Jockusch, Rubel, and Takeuti the open
unit disk and the complete real plane are not distinguishable because they
are homeomorphic toplogical spaces, while in our setting there clearly ex-
ists a topological first-order sentence that distinguishes between these spaces
(viewed as subspaces of the real plane).

This paper is organized as follows. Definitions are given in Section 2.
The partition of a closed semi-algebraic set according to the cone types of
its points is described in Section 3. The main results are formulated in
Section 4. The proof of the main result is given in Section 5. Two corollaries
are presented in Sections 6. Concluding remarks are given in Section 7.
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2 Preliminaries

In this section, we give the basic definitions we will be using concerning
semi-algebraic sets and topological first-order sentences.

Closed semi-algebraic sets. The standard structure (R, 0, 1, +,×, <) of
the real numbers will be denoted simply by R.1 A semi-algebraic set in R2 is
a subset of R2 that is definable by a first-order formula in R without param-
eters, viewed as a binary relation over the reals. Henceforth the adjective ‘in
R2’ will be implicitly understood and therefore omitted.

First-order logic. We will work in the language L = (0, 1, +,×, <, S),
being the expansion of the language of the reals with the binary relation
symbol S.2 A subset A of R2 can be naturally viewed as an L-structure,
namely the expansion (R, A) of R with A. Hence, the truth of an L-sentence
ϕ(S) in (R, A) will simply be denoted by A |= ϕ(S). The sentences (∗)
and (†) from the Introduction are examples of L-sentences. Note that, since
semi-algebraic sets are first-order definable in R, the question of A |= ϕ(S),
given ϕ(S) and a definition of a semi-algebraic set A, is effectively decidable,
because the first-order theory of R is decidable [7, 8, 19, 23].

Homeomorphism-invariance and equivalence. We call two subsets A
and B of R2 homeomorphic if there is a homeomorphism h of R2 such
that h(A) = B. A sentence ϕ(S) is called invariant under homeomor-
phisms (abbreviated as H-invariant) if for any two homeomorphic semi-
algebraic sets A and B, (A |= ϕ(S)) ⇔ (B |= ϕ(S)). Finally, two subsets A
and B of R2 are called H-equivalent if for each H-invariant sentence ϕ(S),
(A |= ϕ(S)) ⇔ (B |= ϕ(S)).

Of course, homeomorphic semi-algebraic sets are also H-equivalent, but
the converse does not hold. For example, we will see later that if A consists

1The main result of this paper remains valid if constants for all real numbers are added
to the language.

2In some proofs we also use formulas in the language of the reals expanded with two ad-
ditional unary relation symbols, as well as formulas in restrictions of the previous languages
where 0, 1,+, and × are not used. In all these cases, similar definitions and notations are
used.
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Figure 1: Two homeomorphic, but not isotopic semi-algebraic sets.

of a single closed disk, and B consists of two separate closed disks, then A
and B are H-equivalent.

Isotopy-invariance and equivalence. It is known (e.g., [10, 16, 21]) that
any orientation-preserving homeomorphism of R2 is isotopic to the identity
mapping of R2. We will therefore, for reasons of convenience, refer to an
orientation-preserving homeomorphism of R2 as an isotopy of R2. The pro-
totypical example of a homeomorphism that is not an isotopy is a reflection.
As a matter of fact, every homeomorphism of R2 either is an isotopy, or is
isotopic to a reflection.

We call two subsets A and B of R2 isotopic if there is an isotopy h of
R2 such that h(A) = B. Hence, when A and B are homeomorphic, either
A is actually isotopic to B, or A is isotopic to the mirror image of B. For
example, Figure 1 shows two (semi-algebraic) sets that are mirror-images of
each other but that are not isotopic. They can be thought of as a left hand
and a right hand, where the arm and the thumb have thickness and the wrist
and the other fingers have no thickness.

A sentence ϕ(S) is called invariant under isotopies (abbreviated as I-
invariant) if for any two isotopic semi-algebraic sets A and B, (A |= ϕ(S)) ⇔
(B |= ϕ(S)). Finally, two subsets A and B of R2 are called I-equivalent if
for each I-invariant sentence ϕ(S), (A |= ϕ(S)) ⇔ (B |= ϕ(S)).

Of course, isotopic semi-algebraic sets are I-equivalent, but, as mentioned
above, the converse is not true. Note that H-invariance implies I-invariance,
and that I-equivalence implies H-equivalence.

Examples. The sentence (∗) from the Introduction is a typical example of
a non-topological sentence: it is neither I-invariant nor H-invariant.
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The sentence (†) from the Introduction, expressing that the topological
interior is not empty, is H-invariant (and hence also I-invariant), and so is

(∃r)(∀x)(∀y)(S(x, y) → x2 + y2 ≤ r2),

expressing that the set is bounded, as well as

(∃x)(∃y)(S(x, y) ∧ (∃ε �= 0)

(∀x′)(∀y′)((x − x′)2 + (y − y′)2 < ε2 ∧ S(x′, y′)) → (x′ = x ∧ y′ = y)),

expressing that the set contains isolated points.
Consider a sentence expressing that for each point p in the set all suffi-

ciently small circles around p intersect the set in one or two points only. Such
a sentence is true in a semi-algebraic set exactly when the set consists exclu-
sively of lines that do not intersect. This is not true for arbitrary subsets of
R2; it is possible to homeomorphically distort a straight line segment so that
sufficiently small circles around a certain point intersect the set infinitely
often. However, since our definition of H-invariance restricts attention to
semi-algebraic sets, this sentence is H-invariant.

Another natural topological property of sets one might want to express
is topological connectivity; however, this property is not first-order, not even
when restricting attention to semi-algebraic sets [3, 13].

3 The point-structure of a closed semi-alge-

braic set in R2

In this section, we define the “point-structure” of a closed semi-algebraic set
in R2. This definition is based on a known topological property of semi-
algebraic sets, namely that locally around each point they are conical [6, 9].

More precisely, if we denote the closed ball in R2 with center p and
radius ε (ε > 0) by B2(p, ε) and its bordering sphere by S1(p, ε), Theorem
9.3.5 of [6], specialized to R2, reads:

Property 1 Let A be a semi-algebraic set in R2. For every non-isolated
point p of A there exists an ε > 0 and an homeomorphism h of B2(p, ε) such
that
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(i) d(h(q), p) = d(q, p) for each q ∈ B2(p, ε),3

(ii) h restricted to S1(p, ε) is the identity,

(iii) h(A ∩ B2(p, ε)) is a cone with top p and base A ∩ S1(p, ε).

Also, for every isolated point p of a semi-algebraic set, there exists an
ε > 0 such that B2(p, ε) ∩ A = {p}, so in this case we could regard it to be
locally homeomorphic to a cone with an empty base.

If A is a closed semi-algebraic subset of R2, the set A ∩ S1(p, ε) from
(iii) of Property 1 is a closed semi-algebraic subset of S1(p, ε). Since a semi-
algebraic set in R2 is the disjoint union of a finite number of semi-algebraic
sets that are homeomorphic to the open unit disk, to the open unit interval
or to a point (see Theorem 2.3.6 in [6]), A∩S1(p, ε) has one of the following
forms:

(1) the complete circle S1(p, ε),

(2) a finite number of closed arc segments and points on S1(p, ε), or

(3) empty.

Case (1) corresponds to interior points of A, Case (3) to isolated points
of A. We use the following finite representation for these subsets of circles.
A complete circle S1(p, ε) is represent by the letter F (for “full”). For (2),
we use a circular list over the alphabet {L,R} which describes the subset of
S1(p, ε) in a complete clockwise turn by using an L for a point (this point
corresponds to a “line” in the semi-algebraic set) and an R for a closed arc
segment (an arc segment corresponds to a “region” in the semi-algebraic set)
starting from an arbitrary point outside the subset to be described. For the
case of an empty set, we use the empty circular list ( ) to represent it.

Property 1 is illustrated in Figure 2. There, the cone of the point p in A
has the representation (LLRLR).

The above discussion gives rise to the following definition of “the cone”
of a point in closed semi-algebraic set in R2.

3The expression d(p, q) denotes the Euclidean distance between the points p and q.
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Figure 2: A closed semi-algebraic set A and the cone of its points p repre-
sented by the circular list (LLRLR).

Definition 1 Let A be a closed semi-algebraic set in R2 and let p be a
point of A. We define the cone of p in A to be the representation of any set
A ∩ S1(p, ε), where ε satisfies the conditions of Property 1.

A semi-algebraic set A in R2 also behaves conically towards infinity. To
see this, we embed R2 as the xy-plane in R3 and map A from this embedded
plane onto the sphere S2((0, 0, 1), 1), that rests on the xy-plane, in the direc-
tion of its north pole (0, 0, 2). If we then add the north pole to this set as the
point at infinity of the semi-algebraic set, rotate the sphere such that (0, 0, 2)
becomes the origin, and stereographically project back on the xy-plane, then
we can look at the cone of (0, 0) in the resulting semi-algebraic set as the
cone of the point at infinity in A.

This implies that for a semi-algebraic set A, there exists an ε > 0 such
that {(x, y) | x2 + y2 ≥ ε2} ∩ A is homeomorphic to {(λx, λy) | (x, y) ∈
S1((0, 0), ε)∩A∧λ ≥ 1}. We can indeed view the latter set as the cone with
top ∞ and base S1((0, 0), ε) ∩ A. Remark that the cone of ∞ in A is ( ) if
and only if A is a bounded subset of R2.

More formally, consider the embedding e of R2 in R3 that maps (x, y)
to (x, y, 0). Let σ be the reflection of R3 defined by (x, y, z) �→ (x, y, 2 − z).
Finally, let h : e(R2) ∪ {∞} → S2((0, 0, 1), 1) be the homeomorphism of
that maps the Alexandrov one-point compactification of e(R2) stereographi-

cally onto the sphere S2((0, 0, 1), 1), i.e., h(x, y, 0) = 4
4+x2+y2 (x, y, x2+y2

2
) and

h(∞) = (0, 0, 2).
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Definition 2 Let A be a closed semi-algebraic set in R2. We define the cone
of ∞ in A to be the cone of the point (0, 0) in the set e−1(h−1(σ({(0, 0, 2)}∪
h(e(A))) \ {∞})).

We now prove that Definitions 1 and 2 are sound.

Proposition 1 Let A be a closed semi-algebraic set in R2 and let p be a
point of A.

(a) The notion of the cone of p in A is well-defined.

(b) The notion of the cone of ∞ in A is well-defined.

Proof. (b) The mapping e, the reflection σ and the homeomorphism h are
semi-algebraic functions. e−1(h−1(σ({(0, 0, 2)}∪h(e(A)))\{∞})) is therefore
a semi-algebraic subset of R2 (see, e.g., [6]). It is also closed. This reduces
the proof of Case (b) to that of Case (a).

(a) Let p be a point of the closed semi-algebraic set A. If p is an isolated
point of A, well-definedness is trivial. Thus, assume that p is not an isolated
point of A. We have to prove that any two values ε1 and ε2 that satisfy the
conditions of Property 1 give rise to the same finite representation. Let ε1

and ε2 be such values and let h1 and h2 be corresponding homeomorphisms
of which Property 1 guarantees the existence. Assume ε1 < ε2. Because of
condition (i) of Property 1, h2(A∩S1(p, ε1)) is the intersection of S1(p, ε1) and
the cone h2(A∩B2(p, ε2)). The latter has A∩S1(p, ε2) as its base. Therefore,
the homothety with center p and factor ε2/ε1 maps h2(A ∩ S1(p, ε1)) to
A∩S1(p, ε2). Homothetic subsets of circles are clearly represented in the same
way. Condition (i) of Property 1 implies h2(S

1(p, ε1)) = S1(p, ε1). So, h2

induces an homeomorphism of S1(p, ε1). To complete the proof, it suffices to
show that h2 is orientation-preserving. This follows directly from a classical
result by J.W. Alexander (see, e.g., [16], page 81): A homeomorphism of
B2(p, ε2) that is the identity on S1(p, ε2) is isotopic to the identity mapping,
and therefore orientation-preserving.

Let C be the set of all possible cones. We define:

Definition 3 Let A be a closed semi-algebraic set in R2. The point-structure
of A is the function Π(A) from A ∪ {∞} to C that maps each element to its
cone.
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The following are topological properties of closed semi-algebraic sets.

Property 2 Let A be a closed semi-algebraic set in R2.

(i) Π(A)−1 is empty on all but a finite number of cones,

(ii) Π(A)−1 is infinite or empty for the cones (R), (LL), and F ,

(iii) the number of points in A with a cone different from (R), (LL), or F
is finite.

Proof. The semi-algebraic sets depicted in Figure 1 have infinitely many
points with cone (R), (LL), and F . This proves part of (ii). To prove the
remainder, we consider a Nash-stratification (see, e.g., Chapter 9 of [6]) A =
⋃n

i=1 Ai, where each Ai is diffeomorphic to a point, to ]0, 1[ or to ]0, 1[2, and
such that Ai∩Aj �= ∅ for i �= j implies that Ai ⊂ Aj and dim(Ai) < dim(Aj).

4

All points in a 1-dimensional Ai in this stratification therefore have

1. cone (LL) (if Ai is not adherent to a 2-dimensional stratum), or

2. cone (R) (if Ai is adherent to one 2-dimensional stratum), or

3. cone F (if Ai is adherent to two 2-dimensional strata).

Because the points in a 2-dimensional stratum also have cone F , removing
from A the points with cone F , (LL) and (R) results in a subset of the 0-
dimensional strata of A. There are finitely many 0-dimensional strata.

Further on, we will refer to the points with a cone different from (R),
(LL), or F as the singular points of the semi-algebraic set. Part (iii) of
Property 2 shows that a closed semi-algebraic set has only a finite number
of singular points. Non-singular points are also called regular points (for an
illustration see Figure 3). (ii) of Property 2 shows that there are infinitely
many regular points if there are any.

Definition 4 Let A and B be closed semi-algebraic sets in R2. We say that
Π(A) is isomorphic to Π(B) (denoted by Π(A) ∼= Π(B)) if there is a bijection
f from A ∪ {∞} to B ∪ {∞} with f(∞) = ∞, such that Π(A) = Π(B) ◦ f .

4The topological closure of A is denoted by A. The dimension of a set diffeomorphic
to ]0, 1[n is n (see [6]).
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Figure 3: Regular points of a closed semi-algebraic set.

4 The main results

The main result of this paper is a characterization of I-equivalence in terms
of point-structure isomorphism:

Theorem 1 Let A and B be closed semi-algebraic sets in R2. The sets A
and B are I-equivalent if and only if Π(A) ∼= Π(B).

The proof will be given in the next section. A corollary of the theorem is
a similar characterization of H-equivalence:

Theorem 2 Let A and B be closed semi-algebraic sets in R2 and let σ be
some fixed reflection of R2. The sets A and B are H-equivalent if and only
if Π(A) ∼= Π(B) or Π(A) ∼= Π(σ(B)).

Proof of Theorem 2. Assuming Theorem 1, we have to prove that A
and B are H-equivalent if and only if A and B are I-equivalent or A and
σ(B) are I-equivalent. The if-implication follows from the fact that every
homeomorphism of R2 is either an isotopy or isotopic to σ [10, 21].

For the only-if-implication, assume on the contrary that A and B are
H-equivalent and that there exist I-invariant sentences ϕ(S) and ϕ′(S) such
that A |= ϕ(S), B �|= ϕ(S), A |= ϕ′(S), and σ(B) �|= ϕ′(S). Consider the
sentence ϕ̄(S) defined by

ϕ̄(S) = (ϕ(S) ∨ ϕ′(σ(S))) ∧ (ϕ′(S) ∨ ϕ(σ(S))).

It can be easily shown that a sentence is H-invariant if and only if it is
invariant under σ and it is I-invariant. Clearly, ϕ̄(S) is invariant under σ.
It can also be easily verified that it is I-invariant. So, ϕ̄(S) is H-invariant,
and A |= ϕ̄(S) but B �|= ϕ̄(S). This contradicts the assumption.
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Figure 4: Two closed semi-algebraic sets that are H-equivalent but not I-
equivalent.

Corollary 1 Topological connectivity of 2-dimensional spatial databases is
not first-order expressible.

Proof. One closed disk and two separate closed disks have isomorphic point-
structures: the points on the border have (R) as cone, and the points in the
interior have F as cone. Both sets have infinitely many of both of these
types of points and both are empty towards infinity. As a consequence of
Theorem 1, they are I-equivalent, hence also H-equivalent.

Examples.

• Although all points on the unit circle and all points on the x-axis have
the same cone (namely, (LL)), these semi-algebraic sets do not have
isomorphic point-structures. Indeed, in the former set the cone of ∞
is ( ) (in other words, this semi-algebraic set is bounded), while in the
latter set the cone of ∞ is (LL).

• Figure 4 shows two semi-algebraic sets that are not I-equivalent. In-
deed, the cone of the center point in the left set is (LLLRLLRLR),
while that on the right is (LLLRLRLLR). The two semi-algebraic sets
are of course H-equivalent since they are mirror images of each other.
We point out that it is possible that two mirror images are still I-
equivalent; for instance, the two semi-algebraic sets shown in Figure 1
have isomorphic point-structures.

In classical logic, if A and A′ are elementary equivalent and B and B′ are
elementary equivalent, then the disjoint union of A and B and the disjoint
union of A′ and B′ are also elementary equivalent. The following corollary
shows that this property carries over to our setting only partially.
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Corollary 2 Let A, A′, B and B′ be closed semi-algebraic sets in R2 such
that A ∩ B = A′ ∩ B′ = ∅.

(i) If A and A′ are I-equivalent and B and B′ are I-equivalent, then A∪A′

and B ∪ B′ are I-equivalent.

(ii) If A and A′ are H-equivalent and B and B′ are H-equivalent then A∪A′

and B ∪ B′ are not necessarily H-equivalent.

Proof. Theorem 1 implies (i). For (ii), take A, A′, and B to be the semi-
algebraic set on the left of Figure 4, and take B′ to be the one on the right.

5 The proof

This section is devoted to the proof of Theorem 1. First, we give a number
of background results on finite-model theory that will play a major role in
our proofs.

5.1 Background on finite-model theory

In this section, we state a generic collapse result by Benedikt, Dong, Libkin,
and Wong [3] and some of its implications on the first-order definability of
properties of finite structures over the reals.

Consider the following decision problems on finite structures:

• The decision problem majority about two finite sets R1 and R2 is:
majority(R1, R2) is true if and only if R1 ⊆ R2 and |R1| ≤ 2|R2|;

• For any set V of integers, the decision problem cardV about two finite
sets R1 and R2 is: cardV (R1, R2) is true if and only if |R1|− |R2| ∈ V ;

• The decision problem parity about a finite set R is: parity(R) is
true if and only if |R| is even.

The following lemma is a routine exercise in finite-model theory (it can,
e.g., be proven using Ehrenfeucht-Fräıssé games) [11].
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Lemma 1 On finite ordered structures in the language (<,R1, R2), the de-
cision problems majority(R1, R2) and cardV (R1, R2) (where V is not the
empty set or the set of all integers) are not uniformly first-order expressible.
On finite ordered structures in the language (<,R), the decision problem
parity(R) is not uniformly first-order expressible.

Benedikt, Dong, Libkin, and Wong proved that any first-order formula
over the reals that is invariant under monotone bijections from R to R is
equivalently expressible on finite semi-algebraic sets in the restriction of this
logic that only uses order constraints. This result was a breakthrough in the
line of research towards understanding of the expressive power of first-order
logic over the reals and related structures [2, 4, 5, 13, 14, 17, 22].

Consider structures in the language (0, 1, +,×, <, S1, . . . , Sk) that are ex-
pansions of R with k finite relations on R. We call such structures “finite
structures over the reals”. A first-order formula in the language (0, 1, +,×,
<, S1, . . . , Sk) is called order-generic if on such structures, it is invariant un-
der monotone bijections f : R → R. Benedikt, Dong, Libkin, and Wong
showed the following [3]:

Theorem 3 For each order-generic first-order formula in the language (0, 1,
+,×, <, S1, . . . , Sk), there exists a first-order formula in the language (<,S1,
. . . , Sk), that is equivalent to it on finite structures over the reals. Further-
more, in the latter formula the quantifiers may be assumed to range only over
the elements actually occurring in the relations S1, . . . , Sk.

The following lemma, which specializes Lemma 1 from general finite or-
dered structures to finite structures over the reals, now follows directly from
Theorem 3 and Lemma 1.

Lemma 2 On finite structures over the reals, the decision problems
parity(R), majority(R1, R2), and cardV (R1, R2) (where V is not the
empty set or the set of all integers) are not first-order expressible.

5.2 The proof of Theorem 1

Transformation rules. The crucial tool in the proof consists of the fol-
lowing three transformations rules that locally change closed semi-algebraic
sets:
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Figure 5: The transformation rules: (a) strip-cut, (b) strip-paste, (c) line-
cut&paste.

Strip-cut: The strip-cut transformation, shown in Figure 5(a), locally cuts
a strip in the semi-algebraic set in two.

Strip-paste: The strip-paste transformation, shown in Figure 5(b), is the
inverse of strip-cut.

Line-cut&paste: The line-cut&paste transformation, shown in Figure 5(c),
locally cuts two lines in the semi-algebraic set and connects the corre-
sponding loose ends. An isolated part D of the semi-algebraic set may
be present between the lines, which will come free after the cut&paste.

Note that the line-cut&paste transformation is its own inverse.
A fundamental property of the transformation rules is:

Proposition 2 Let A and B be closed semi-algebraic sets in R2. If B is
obtained from A by a strip-cut, a strip-paste, or a line-cut&paste transfor-
mation, then A and B are I-equivalent.

Proposition 2 is proven in a number of steps:

1. First, a variation of Proposition 2 is proven for weak versions of the
three transformation rules (Lemma 3). These weak transformations are
illustrated in Figure 6. The difference between the weak strip-cut and
weak strip-paste (arrows (a) and (b) in Figure 6) and the strip-cut and
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(a)

(b)

(c)

(d)

D D

D D

Figure 6: Weak forms of the three transformation rules: (a) weak strip-cut,
(b) weak strip-paste, (c) weak line-cut, (d) weak line-paste.

strip-paste is a hole in one of the strips. Line-cut&paste is split in a
weak line-cut (arrow (c) in Figure 6) and a weak line-paste (arrow (d)
in Figure 6). Here the difference is an additional circle.

2. The gap between the weak rules and the original rules is then closed
via the notions of 2-regular and 1-regular semi-algebraic set (Lemmas 4
and 5).

Lemma 3 Let A and B be closed semi-algebraic sets in R2. If B is obtained
from A by a weak transformation rule, then A and B are I-equivalent.

Proof. We first prove the lemma for weak strip-cut and its inverse, weak
strip-paste.

Assume, for the sake of contradiction, that there exist closed semi-algebraic
sets A and B that differ by one weak strip-cut transformation but that are
not I-equivalent. So there exists an I-invariant first-order sentence ϕ(S)
such that A |= ϕ(S) and B �|= ϕ(S). Consider the decision problem major-
ity about two finite sets of reals R1 and R2 (see Section 5.1). We will prove
the existence of a formula ψA(x, y, R1, R2) in the language of the reals with
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α′
α

s0

b0

Figure 7: Construction of D(R1, R2) for R1 = {1, 3, 5, 6, 7, 9} and R2 =
{1, 3, 6, 7} in the rectangular area α.

two unary relation symbols, R1 and R2, and two free variables, x and y, that
defines a subset DA(R1, R2) = {(x, y) | ψA(x, y, R1, R2)} of R2 such that
DA(R1, R2) |= ϕ(S) if and only if majority(R1, R2) is false. By Lemma 2,
this then yields the desired contradiction. The reduction technique we thus
use is inspired by work of Grumbach and Su [13].

Obviously, the part R1 ⊆ R2 can be tested in first-order logic. For given
R1 = {r1, . . . , rn} and R2 = {a1, . . . , am} with 0 < r1 < · · · < rn and
0 < a1 < · · · < am, we construct within the fixed rectangular part α of R2,
where the weak strip-cut takes place, a closed semi-algebraic set D(R1, R2)
consisting of interconnected strips.

This construction is similar to constructions by Grumbach and Su (in [13])
and is illustrated in Figure 7 for n = 6 and m = 4. The construction is as
follows. Take a rectangular subarea α′ of α. Let (b0, s0) be the left bottom
corner of α′ and let h and w be its height and width. Then sets R′

1 =
{s0, . . . , sn} and R′

2 = {b0, b1, . . . , bm, bm+1, . . . , b2m}, with si = s0 + rih/rn
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(0 < i ≤ n), bi = b0 + aiw/2am and bm+i = bi + w/2 (0 < i ≤ m) are
constructed. Then, the following closed strips of D(R1, R2) are constructed:

1. the filled convex quadrangle with corners (bi, sj), ((bi + bi+1)/2, sj),
(bi+1, sj+1), ((bi+1 + bi+2)/2, sj+1) for 0 < i < 2m − 1 and 0 ≤ j < n
and for i = j = 0,

2. the filled convex quadrangle with corners (b2m−1, sj), ((b2m−1+b2m)/2, sj),
(b2m, sj+1), (b2m, (sj + sj+1)/2) for 0 ≤ j < n,

3. the filled convex quadrangle with corners (b0, (sj+1 + sj+2)/2), ((b1 +
b2)/2, sj+2), (b1, sj+2), (b0, sj+1) for 0 ≤ j < n − 1.

Finally, a number of additional closed strips are added in the area α\α′ (as
illustrated in Figure 7) to complete the construction of D(R1, R2). Remark
that the complete construction of D(R1, R2), as described above, starting
from R1 and R2 can be expressed by a formula in the language of the reals
with two unary relation symbols to represent the sets R1 and R2.

We then glue D(R1, R2) to the part of A outside the strip-cut area α.
In this part A and B are identical. We thus obtain a semi-algebraic set
DA(R1, R2), which can be described by a formula over R1 and R2. The
construction is such that D(R1, R2) is isotopic to the right part of Figure 6(a)
if majority(R1, R2) is true, and isotopic to the left part of Figure 6(a)
otherwise. Hence, in case of majority DA(R1, R2) is isotopic to B, and in
the other case it is isotopic to A. Since ϕ(S) is I-invariant and distinguishes
between A and B, can use ϕ(S) to express majority.

For the weak line-cut and the weak line-paste the lemma can be proven
with the same technique. The border of D(R1, R2) is used, rather then
D(R1, R2) itself.

Definition 5 A bounded semi-algebraic set in R2 is called 2-regular if it is
not empty and all of its points have either F or (R) as cone. A bounded
semi-algebraic set in R2 is called 1-regular if it is not empty and all of its
points have (LL) as cone.

Lemma 4 Let A and B be closed semi-algebraic sets in R2 and let O be an
open disk in R2.
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(a)

(b)

Figure 8: Transformation of (a) a set with γ = 1 to a disk, and (b) a set
with γ = −1 to a disk with two holes.

1. If A∩O is 2-regular, then replacing A∩O in O by any other 2-regular
semi-algebraic set, yields a semi-algebraic set that is I-equivalent to A.

2. If A∩O is 1-regular, then replacing A∩O in O by any other 1-regular
semi-algebraic set, yields a semi-algebraic set that is I-equivalent to A.

Proof. We only give the proof for the 2-regular case; the 1-regular case is
analogous.

For any 2-regular semi-algebraic set B, define γ(B) to be the number of
connected components of B minus the number of holes in B. It can be easily
shown that B can be transformed by a finite number of applications of weak
strip-cut and weak strip-paste either to the disjoint union of γ(B) disks, if
γ(B) > 0, or to one disk with 1− γ(B) holes, if γ(B) ≤ 0. This is illustrated
in Figure 8 (a) for γ = 1 and in Figure 8 (b) for γ = −1.

Since weak strip-cut and weak strip-paste preserve γ, the lemma thus
follows from Lemma 3, when we restrict attention to replacing A ∩ O by a
set with the same value for γ.
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Now suppose, for the sake of contradiction, there are 2-regular semi-
algebraic sets B1 and B2 with different values for γ for which the lemma
does not hold. In other words, there exists an I-invariant sentence ϕ(S)
such that A(B1) |= ϕ(S) and A(B2) �|= ϕ(S), where A(B) denotes the semi-
algebraic set obtained from A by replacing A∩O by B. Define the following
subset of Z (the integers):

ZA
ϕ = {γ(B) | (R, A(B)) |= ϕ(S)}.

If we can show that ZA
ϕ = ∅ or ZA

ϕ = Z, this will contradict the assumption
that γ(B1) ∈ ZA

ϕ and γ(B2) �∈ ZA
ϕ and complete the proof.

Thereto, for any set V of integers, consider the decision problem cardV

about two finite sets of reals R1 and R2 (see Section 5.1). From Lemma 2
it follows that if cardV is first-order expressible in the language (0, 1, +,
×, <,R1, R2), then V = ∅ or V = Z. Hence, to complete the proof of this
lemma, it remains to show that cardZA

ϕ
is so expressible. This can be proven

by a reduction (similar to the one of the proof of Lemma 3) of cardZA
ϕ

to
ϕ(S). Given R1 = {r0, r1, . . . , rn} and R2 = {s0, s1, . . . , sm} (without loss
of generality we can assume that r0 < r1 < · · · < rn, s0 < s1 < · · · < sm,
and that the points (s0 − 1, r0 − 1) and (sm + 1, rn + 1) are located in the
disk O), we construct within O a 2-regular semi-algebraic set D(R1, R2) as
follows (this construction is illustrated in Figure 9 for R1 = {0, 1, 2, 3, 4, 5}
and R2 = {0, 1, 2, 3, 4}).

Within the rectangle with left bottom corner (s0, r0) and right upper
corner (sm, rn) (the dotted rectangle α in Figure 9) the set D(R1, R2) consists
of the the following filled quadrangles:

1. the filled convex quadrangle with corners (si, rj), ((si + si+1)/2, rj),
(si+1, rj+1), ((si+1 + si+2)/2, rj+1) for 0 < i < m− 1 and 0 ≤ j < n and
for i = j = 0,

2. the filled convex quadrangle with corners (sm−1, rj), ((sm−1+sm)/2, rj),
(sm, rj+1), (sm, (rj + rj+1)/2) for 0 ≤ j < n,

3. the filled convex quadrangle with corners (s0, (rj+1 + rj+2)/2), ((s1 +
s2)/2, rj+2), (s1, rj+2), (s0, rj+1) for 0 ≤ j < n − 1.

Then, two filled horizontal rectangular strips ({(x, y) | (r0 − 1/2 ≤ y ≤
r0 ∨ rn ≤ y ≤ rn + 1/2) ∧ s0 ≤ x ≤ sm + 1/2}) and one filled vertical
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Figure 9: Construction of D(R1, R2) in O for R1 = {0, 1, 2, 3, 4, 5} and R2 =
{0, 1, 2, 3, 4}.

rectangular strip ({(x, y) | (rn−2 + rn−1)/2 ≤ y ≤ rn ∧ sm ≤ x ≤ sm + 1/2})
are added to D(R1, R2) outside α but inside the rectangle with left bottom
corner (s0 − 1, r0 − 1) and right upper corner (sm + 1, rn + 1), as shown in
Figure 9.

The closed semi-algebraic set A(D(R1, R2)) can be described by a formula
over R1 and R2. The construction is such that γ(D(R1, R2)) = |R1| − |R2|.
Hence, since we already know that A(D(R1, R2)) is I-equivalent to A(B)
for any other 2-regular set B with γ(B) = |R1| − |R2|, we can use ϕ(S) on
A(D(R1, R2)) to decide cardZA

ϕ
(R1, R2).

Lemma 5 Let A be a closed semi-algebraic set and O be an open disk in R2.
If A∩O consists of a part D surrounded by a circle, then replacing A∩O in
O by a circle and D outside this circle, yields a set that is I-equivalent to A.

Proof. Suppose, for the sake of contradiction, that there is a set A violating
the lemma. Let A′ be the set obtained from A by moving D outside the circle.
Denote this circle by C. Since A violates the lemma there is an I-invariant
sentence ϕ(S) such that A |= ϕ(S) and A′ �|= ϕ(S).
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Figure 10: Illustration of the proof of Lemma 5.

Consider the decision problem parity about a finite set of reals R (see
Section 5.1). We will prove the existence of a formula ψA(x, y, R) in the lan-
guage of the reals with one unary relation symbol, R, and two free variables,
x and y, that defines a subset DA(R) = {(x, y) | ψA(x, y, R1, R2)} of R2 such
that DA(R) |= ϕ(S) if and only if parity(R) is false. This yields the desired
contradiction, since Lemma 2 says that parity is not first-order expressible
in this language. The construction here is quite different from the ones used
in the proofs of Lemmas 3 and 4. It is illustrated in Figure 10.

Let R = {r1, . . . , rn}, with 1/4 = r1 < · · · < rn < 1 (without loss of
generality). Let p be a point in O and let ε be such that B2(p, ε) ⊂ O. We
construct a closed semi-algebraic set DA(R) which is the disjoint union of
the following parts:

• for each i = 1, . . . , n, the circle with center p and radius ri/ε;

• a semi-algebraic isotopic deformation of A such that D fits in the inner
circle and the part of A outside O is outside B2(p, ε), from which we
remove the image of the circle C.

This semi-algebraic set can be described by a first-order formula over R.
Obviously, within the disk B2(p, ε) in DA(R), D is surrounded by n circles.

By going from the outside to the inside, we can repeatedly cut pairs of
circles using the weak line-cut transformation. Every cut produces a pair of
nested circles. By an isotopy we can bring these nested circles into one open
disk O′ in R2. We distinguish two possibilities:
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Figure 11: The proof of the line-cut&paste transformation.

• If n is even, this cutting process eventually leaves D unsurrounded. By
Lemma 4 we can replace the nested circles in O′ by a single circle and
we obtain a semi-algebraic set isotopic to A′.

• If n is odd, this leaves D surrounded by a single circle. We now replace
the nested circles in O′ by one single pair of nested circles, and apply one
final weak line-paste operation to obtain a semi-algebraic set isotopic
to A.

We have thus shown that if n is even, DA(R) is I-equivalent to A′, and if n
is odd, DA(R) is I-equivalent to A. Hence, ϕ(S) can be used on DA(R) to
decide parity(R).

We can now give the

Proof of Proposition 2. We only give the proof for the line-cut&paste
transformation. The proof for the strip-cut and the strip-paste transforma-
tion is similar. The proof is illustrated in Figure 11. First, the semi-algebraic
set is isotopically deformed. The weak line-cut&past is applied (second ar-
row). Then Lemma 5 is applied (third arrow). Next, Lemma 4 is applied
(fourth arrow). The last arrow in the figure comprises three applications of
weak line-cut&paste.

The transformation process. Having our tools, as furnished by Propo-
sition 2, in place, we now show:
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Proposition 3 Let A and B be closed semi-algebraic sets in R2 such that
Π(A) ∼= Π(B). Then A and B can be transformed, by a finite sequence of
strip-cut, strip-paste and line-cut&paste transformations and isotopies, into
one and the same semi-algebraic set.

Proof. Since Π(A) ∼= Π(B), there is a bijection f from A∪{∞} to B∪{∞}
that maps points to points with the same cone. In particular, f maps the
singular points in A to the singular points in B with matching cones.

Let Sing(A) be the set of singular points of A together with the point at
infinity, ∞. For each p in Sing(A) and its corresponding point f(p) in Sing(B)
we proceed as follows. From each R, i.e., each region, in the cone of p we cut
out a bounded lobe coming out of p, using the strip-cut transformation. If
at least one L appears in the cone of p, we choose one such L in the cone of
p, i.e. a line l ending in p, and then use line-cut&paste to connect l and the
next line (in the clockwise order around p) into a loop starting and ending
in p. We continue this process in the clockwise order around p until all lines,
or all lines but one (in case their number is odd), form loops. We hereby
make sure that no isolated parts of the semi-algebraic set become trapped in
these loops. We perform the same transformations around f(p) in B, starting
from a line l′ that corresponds to the same L in the cone of f(p) in B. If the
number of lines in the point p, and thus in f(p), is even, we obtain a “flower”
around p and f(p). If the number is odd, we obtain a “flower with a stem”.
This stem is necessarily connected to another flower.

As “residual material” of the process we get isolated, bounded, regular
parts. This material can be transformed to a single closed disk, a single
circle, or the disjoint union of a closed disk and a circle, depending on which
cones appear in the residue. If a flower with points of type (LL) is present,
the circle can even be absorbed by this flower, and similarly for the disk.
In case no L appears in the cone of all singular points, the circle cannot be
absorbed. In this case, we can make sure that no part of the semi-algebraic
set is located in the interior of the circle (using Lemma 5).

After this process, all connected components are situated in the same
area of R2.

The only way in which the resulting semi-algebraic sets can still differ
is that stems can connect different flowers. We can interchange stems by
isotopically bringing them into a parallel position (this is possible since all
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stems are in the same area) and by then using a line-cut&paste transforma-
tion. This finally yields isotopic semi-algebraic sets.

An illustration of the transformation process is given in Figure 12.

We are finally ready for:

Proof of Theorem 1. The if-implication (Π(A) ∼= Π(B) implies that A
and B are I-equivalent) is immediate from Propositions 2 and 3.

For the only-if implication, assume Π(A) �∼= Π(B). Then there exists at
least one cone for which A has a different number of points than B, or the
cone of ∞ in A is different from the cone of ∞ in B. It is therefore sufficient
to show that there exists a first-order sentence that expresses that a closed
semi-algebraic set has exactly n points having some fixed cone c, and that
there exists a sentence that expresses that the cone of ∞ is some fixed cone c.
Since the cone of a point in a semi-algebraic set is invariant under isotopies
(this can be shown using the techniques used in the proof of Proposition 1),
such a sentence is certainly I-invariant. It clearly suffices to show that there
exists a formula ψc(x, y, S) that expresses that the point (x, y) has cone c in
S and that there exists a sentence ψc(S) that expresses that ∞ has cone c
in S.

For points in R2, if c = F , the wanted sentence is (∃ε �= 0)(∀x′)(∀y′)((x′−
x)2 + (y′ − y)2 < ε2 → S(x′, y′)), and if c = (), this sentence is (∃ε �=
0)(∀x′)(∀y′)(0 < (x′ − x)2 + (y′ − y)2 < ε2 → ¬S(x′, y′)). For ∞, there are
similar sentences.

For other cones, the definition of the desired formula is based on the
following topological property of semi-algebraic sets in R2. This property
is a consequence of the property that semi-algebraic sets are locally conical
around each point, including ∞. The proof of the lemma follows directly
from Property 1 and the proof of Proposition 1.

Lemma 6 Let p be a point of a closed semi-algebraic set in R2. There exists
an ε0 > 0 such that for every ε, with 0 < ε < ε0, the cone with top p and base
S1(p, ε) ∩ A is isotopic to the one with base S1(p, ε0) ∩ A. There also exists
an ε0 > 0 such that for every ε, with ε > ε0, the cone with top (0, 0) and
base S1((0, 0), ε) ∩ A is isotopic to the one with base S1((0, 0), ε0) ∩ A.

By this lemma, it is sufficient to show that there is a sentence ψ′
c(x, y, ε, S)

that expresses that the circle with radius ε and center (x, y) has an intersec-
tion with the semi-algebraic set that corresponds to the cone c. The desired
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Figure 12: Two semi-algebraic sets with isomorphic point-structures and
their transformation into the same set. After the first step, lobes have been
cut out. After the second step, loops have been formed. In the third step,
stems are interchanged in the bottom-right set to obtain a semi-algebraic set
isotopic to the bottom-left one.
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Figure 13: The intersection of a closed semi-algebraic set with a circle.

formula is then, as a consequence of the previous lemma, (∃ε0)(∀ε)(0 < ε ≤
ε0 → ψ′

c(x, y, ε, S)) for a point (x, y) and (∃ε0)(∀ε)(ε > ε0 → ψ′
c(0, 0, ε, S))

for ∞.
If the intersection is not empty or the complete circle it is a finite union

of points and closed arc segments, as already explained in Section 3. Such
an intersection is illustrated in Figure 13. The intersection corresponds to
a non-empty circular list (α1 · · ·αn) with αi ∈ {L,R}. The case αi = R
corresponds to an arc-segment on the circle that is completely determined
by its end points ai and bi (bi comes after ai in a clockwise sense). If αi = L,
then ai = bi is a single point on the circle.

The following sentence then describes the intersection of the set S, with
the circle S1((x, y), ε) up to an isotopy of S1((x, y), ε):

(∃a1x)(∃a1y)(∃b1x)(∃b1y) · · · (∃anx)(∃any)(∃bnx)(∃bny)

((∀x′)(∀y′)((x′ − x)2 + (y′ − y)2 = ε2 →
(((

∨n
i=1 Between(x,y),ε(x

′, y′, aix, aiy, bix, biy)) ↔ S(x′, y′))∧
(
∨n

i=1 Between(x,y),ε(x
′, y′, bix, biy, a((i+1) mod n)x, a((i+1) mod n)y))

↔ ¬S(x′, y′))))),

where Between(x,y),ε(x
′, y′, x1, y1, x2, y2) abbreviates the formula that expresses

for points (x′, y′), (x1, y1) and (x2, y2) on S1((x, y), ε) that (x′, y′) is equal
to (x1, y1) or to (x2, y2) or is located between the clockwise ordered pair
of points ((x1, y1), (x2, y2)) of S1((x, y), ε). The formula Between(x,y),ε(x

′, y′,
x1, y1, x2, y2) can be written as a disjunction over all possible positions of
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(x1, y1) and (x2, y2) in the four quadrants of S1((x, y), ε).
The disjunct for the case where both (x1, y1) and (x2, y2) are in the first

quadrant of S1((x, y), ε) is

(x ≤ x1 ≤ x′ ≤ x2 ∧ y ≤ y2 ≤ y′ ≤ y1)∨
(x ≤ x2 ≤ x1 ≤ x′ ∧ y ≤ y′ ≤ y1 ≤ y2)∨
(x ≤ x′ ≤ x2 ≤ x1 ∧ y ≤ y1 ≤ y2 ≤ y′).

In this formula, the first disjunct takes care of the case where (x2, y2) comes
after (x1, y1) in the first quadrant (in the clockwise sense). The two other
disjuncts cover the other case.

This completes the proof.

6 Two corollaries

Theorems 1 and 2 have two interesting corollaries. The first one is the fol-
lowing:

Theorem 4 I- and H-equivalence are decidable properties of closed semi-
algebraic sets in R2.

Proof. Theorems 1 and 2 show that a decision algorithm for I-equivalence
implies a decision algorithm for H-equivalence.

A decision algorithm for I-equivalence is as follows:

VA := ∅; VB := ∅;
for each cone c do

Ac := {p ∈ A ∪ {∞} | Π(A)(p) = c};
Bc := {p ∈ B ∪ {∞} | Π(B)(p) = c};
if ¬(|Ac| = |Bc| ∧ (∞ ∈ Ac ↔ ∞ ∈ Bc)) then return false;
VA := VA ∪ Ac; VB := VB ∪ Bc;
if VA = A ∪ {∞} ∧ VB = B ∪ {∞} then return true

od.

The algorithm tests whether Π(A) ∼= Π(B).
It should first be noted that all possible cones can be effectively enumer-

ated, e.g., by starting with the cone F , and then enumerating all circular
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lists over the set {L,R} in some order. The sets Ac and Bc can be first-order
defined over the semi-algebraic sets A and B (see the only-if direction in the
proof of Theorem 1) and hence are themselves semi-algebraic.

The test |Ac| = |Bc| can be performed as follows. Either c is F , (R),
or (LL), in which case the test amounts to testing that Ac and Bc are both
empty or both not empty. This is a test obviously expressible in first-order
logic and therefore decidable for semi-algebraic sets by Tarski’s theorem [23].
If c is another kind of cone, then both Ac and Bc are finite and symbolic
algorithms for the first-order theory of the reals [1, 7, 19, 8] can effectively
enumerate them. The for-loop always terminates since in each closed semi-
algebraic set only a finite number of cones can appear (see (i) of Property 2).

In order to formulate the second corollary, we call two semi-algebraic
sets I-equivalent under < if they cannot be distinguished by a I-invariant
sentence in the restricted language (<,S) (i.e., not using the symbols 0, 1, +
and ×).

We have the following result:

Theorem 5 Two closed semi-algebraic sets in R2 are I-equivalent if and
only if they are I-equivalent under <. The same holds for H-equivalence.

To prove this corollary we need an analogue of Lemma 6 in terms of rect-
angles instead of circles. This analogue is not straightforward since the num-
ber of degrees of freedom is higher in the case of rectangles. Let Rectx,y,x′,y′

denote the rectangle that has (x, y) and (x′, y′) as diagonally opposite corner
points.

Lemma 7 Let A be a closed semi-algebraic set in R2.

(a) Let p be a point with coordinates (xp, yp) of A. There exist x0, y0, x1, y1

such that x0 < xp < x1 and y0 < yp < y1 and such that for every
x′

0, y
′
0, x

′
1, y

′
1 with x0 < x′

0 < xp < x′
1 < x1 and y0 < y′

0 < yp < y′
1 < y1,

the cone with base Rectx0,y0,x1,y1 ∩ A and top p is isotopic to that with
base Rectx′

0,y′
0,x′

1,y′
1
∩ A.

(b) There also exist x0, y0, x1, y1 such that x0 < x1 and y0 < y1 and such
that for every x′

0, y
′
0, x

′
1, y

′
1 with x′

0 < x0 < x1 < x′
1 and y′

0 < y0 < y1 <
y′

1 the cone with base Rectx0,y0,x1,y1 ∩A and top the origin is isotopic to
the one with base Rectx′

0,y′
0,x′

1,y′
1
∩ A.
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Proof of Lemma 7. Let A be a closed semi-algebraic set in R2. The desired
rectangles will be derived from a refinement of Collins’s Cylindrical Algebraic
Decomposition (CAD) of R2 with respect to A. Collins proves that, given
some first-order definition of A, there exists a CAD C of R2 such that each
cell in C entirely belongs to A or to the complement of A [1, 7, 8].

More technically, Collins shows that given a quantifier-free formula ϕ(x, y)
over the reals that describes A (i.e., A = {(x, y) | (x, y) ∈ R2 ∧ ϕ(x, y)}),
there exists a partition Cx = (S1, S2, . . . , S2ν+1) of the x-axis of R2, where
either ν = 0 and S1 = R, or ν > 0 and there exist real algebraic numbers
α1 < α2 < · · · < αν such that S2i = {αi} for 1 ≤ i ≤ ν, S2i+1 is the open
interval (αi, αi+1) for 1 ≤ i < ν, S1 = (−∞, α1), and S2ν+1 = (αν ,∞) and
there exists a partition C = (S1,1, . . . , S1,2ν1+1, . . . , Sν,1, . . . , S2ν+1,2ν2ν+1+1) of
R2 (each Si,j is called a cell of the CAD) such that for 1 ≤ i ≤ 2ν + 1, there
exist continuous real-valued algebraic functions fi,1 < fi,2 < · · · < fi,νi

on Si

such that if νi = 0, Si,1 = Si × R, if νi > 0, Si,2j = {(x, y) | x ∈ Si ∧ y =
fi,j(x)} for 1 ≤ j ≤ νi, Si,2j+1 = {(x, y) | x ∈ Si ∧ fi,j(x) < y < fi,j+1(x)}
for 1 ≤ j < νi, Si,1 = {(x, y) | x ∈ Si ∧ y < fi,1(x)}, and Si,2νi+1 = {(x, y) |
x ∈ Si ∧ fi,νi

(x) < y} for 1 ≤ j < νi, and such that all polynomials p(x, y)
appearing in the quantifier-free formula ϕ(x, y) that describes A, are sign
invariant (i.e., > 0, < 0, or = 0) on each of the cells of C. Therefore, each of
the cells of C entirely belongs to A or to the complement of A, and A is the
disjoint union of a finite number of cells of C.

We can refine this CAD by first refining Cx in the x-coordinates of all
extremal points and points of inflection of the functions fi,j, and then refin-
ing the CAD C by building the appropriate stacks on these new singleton
elements of Cx and on the split intervals of Cx. We can therefore assume
that the functions fi,j are constant, (strictly) monotone concave, or (strictly)
monotone convex functions of x on the intervals of Cx.

As an illustration, in Figure 14, the twenty five cells c1, . . . , c25 of C for the
semi-algebraic set {(x, y) | x2 + y2 ≤ 1∨ (y = 0∧ x ≥ 1)} are indicated. The
partition Cx consists of seven elements. The cells of a CAD of A are either
0-dimensional, 1-dimensional, or 2-dimensional (defined in the obvious way).
The cells c3, c11, c13 and c21 are the 0-dimensional cells of C of Figure 14.
Of these only the cell c21 contains a singular point of the set. The cells
c6, c8, c16, c18, and c24 are the 1-dimensional cells and the remaining cells are
2-dimensional.
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c24

c22

c12 c17c1 c3

Figure 14: An example of a CAD of R2 for the set described by the formula
x2 + y2 ≤ 1 ∨ (y = 0 ∧ x ≥ 1).

We now proceed to the prove of (a). We show how the values of x0,
x1, y0, and y1 can be chosen, given the CAD C of A, for a singular point
p = (xp, yp) of A. For regular points of A the proof is similar. The singular
point p belongs to the stack of C that is built on {xp} ∈ Cx. Let d0 be
the distance between xp and the next smaller single point cell in Cx, if such
element of Cx exists, or else let d0 be 1. Similarly, let d1 be the distance
between xp and the next larger single point cell in Cx if such element of Cx

exists or else let d1 be 1. Take x0 = xp − d0/2 and x1 = xp + d1/2. Let e0

be the distance in the y-direction between p and the 0-dimensional cell of C
with next smaller y-coordinate if such a cell exists or let e0 be 1 otherwise.
Let e1 be the distance in the y-direction between p and the 0-dimensional
cell of C with next larger y-coordinate or 1 if such a cell does not exist. Take
y0 = yp − e0/2 and y1 = yp + e1/2.

In Figure 14, Rectx0,y0,x1,y1 is shown in dashed lines for {p} = c21.
For all x′

0, y
′
0, x

′
1, y

′
1 with x0 ≤ x′

0 < xp < x′
1 ≤ x1 and y0 ≤ y′

0 <
yp < y′

1 ≤ y1, the interior of the rectangle Rectx′
0,y′

0,x′
1,y′

1
contains no other

0-dimensional cell of C except for the cell {p}. Every vertical 1-dimensional
cell with endpoint in p intersects Rectx′

0,y′
0,x′

1,y′
1

exactly once. For every non-
vertical 1-dimensional cell the same is true because these cells are the graphs
of constant or monotonic concave or convex functions fi,j on the open in-
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tervals of Cx that start or end in xp. The 2-dimensional cells of C that are
adherent to p are wrapped between 1-dimensional cells that arrive in p. Let
p1, . . . , pk be the intersection points of Rectx′

0,y′
0,x′

1,y′
1

with the 1-dimensional
cells of C (given in clockwise order). Let q1, . . . , qk be the corresponding
intersection points of the 1-dimensional cells with Rectx0,y0,x1,y1 . It is now
clear that there exists an isotopy h of R2 that maps the line segment ppi to
the line segment pqi for i = 1, . . . , k and that maps the rectangle segment
pip(i+1) mod k of Rectx′

0,y′
0,x′

1,y′
1

to the segment qiq(i+1) mod k of Rectx0,y0,x1,y1 for
i = 1, . . . , k. The isotopy h therefore maps the cone with top p and base
Rectx′

0,y′
0,x′

1,y′
1
∩ A to the one with top p and base Rectx0,y0,x1,y1 ∩ A.

To prove (b), we show how the values of x0, x1, y0, and y1 can be chosen,
given the CAD C of A. Let d0 and d1 be 0 if ν = 0 (i.e., if Cx = {S1}) and d0

be α1 and d1 be αν if ν > 0 (the elements S2 and S2ν of Cx are respectively
{α1} and {αν}). Let e0 and e1 be 0 if C has no 0-dimensional cell, else let e0

be the y-coordinate of the 0-dimensional cell of C with minimal y-coordinate
and let e1 be the y-coordinate of the 0-dimensional cell of C with maximal
y-coordinate. Take x0 = d0 − 1, x1 = d1 + 1, y0 = e0 − 1 and y1 = e1 + 1.
With these values of x0, x1, y0, and y1 a similar reasoning as in Case (a) can
be made to complete the proof for Case (b).

Proof of Theorem 5. The only-if implication is trivial. For the if-implica-
tion, assume A and B are not I-equivalent. Then ΠA and ΠB are not iso-
morphic, and thus there exists at least one cone for which A has a different
number of points than B or the cone of ∞ in A is different from the cone of
∞ in B. We follow the same argumentation as in in the proof of Theorem 1:
we show that there is a sentence in the language (<,S) that expresses that
a point p has a certain cone c in S, and that there exists a sentence that
expresses that the cone of ∞ in S is c.

The intersections of the rectangles Rectx′
0,y′

0,x′
1,y′

1
around p = (xp, yp) (or

around ∞) with A, as they appear in Lemma 7, are empty, the complete
rectangle, or they consist of a finite number of closed rectangle segments and
points. Clearly, the two former cases correspond to the empty and the full
cone respectively. We will now show that, for the third case, a description
of this intersection by means of a circular list of R’s (for closed rectangle
segments) and L’s (for points) following one clockwise turn exactly coincides
with the cone of p (or ∞) as defined in Section 3.
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Indeed, let h by an isotopy of R2 that maps all small enough squares
with center p to circles with center h(p). For h(p) in h(A) there exists a
ε0 > 0 satisfying the conditions of Property 1. For each ε with 0 < ε < ε0,
the description of h−1(S1(h(p), ε)) ∩ A in terms of R’s and L’s is the cone
of h(p) in h(A). Since cones are preserved by isotopies, it also the cone of
p in A. From Lemma 7, it follows that therefore the description of every
Rectx′

0,y′
0,x′

1,y′
1
∩ A is the cone of p.

To deal with the point at infinity, let h by an isotopy of R2 that maps all
large enough squares with center (0, 0) to circles with center h((0, 0)) = (0, 0).
For the origin in h(A) there exists a ε0 > 0 satisfying the conditions of
Property 1. For each ε with ε0 < ε, the description of h−1(S1(h((0, 0)), ε))∩A
in terms of R’s and L’s is the cone of ∞ in h(A). Since cones are preserved
by isotopies, it also the cone of ∞ in A. From Lemma 7, it follows that
therefore the description of every Rectx′

0,y′
0,x′

1,y′
1
∩ A is the cone of ∞.

To complete the proof it therefore is sufficient to show that there is a
sentence ψc(x, y, x′, y′, S) over (<,S) that expresses that Rectx,y,x′,y′ has an
intersection with S that corresponds to the cone c. Indeed, the sentence

(∃x0)(∃x1)(∃y0)(∃y1)(∀x′
0)(∀x′

1)(∀y′
0)(∀y′

1)

(x0 < x′
0 < xp < x′

1 < x1 ∧ y0 < y′
0 < yp < y′

1 < y1 → ψc(x
′
0, y

′
0, x

′
1, y

′
1, S))

then expresses that the point p has cone c in S, and the sentence

(∃x0)(∃x1)(∃y0)(∃y1)(∀x′
0)(∀x′

1)(∀y′
0)(∀y′

1)

(x′
0 < x0 < x1 < x′

1 ∧ y′
0 < y0 < y1 < y′

1 → ψc(x
′
0, y

′
0, x

′
1, y

′
1, S))

then expresses that the cone of ∞ in S is c.
Clearly, the intersection of a closed semi-algebraic set S with a line seg-

ment parallel to the x- or y-axis can be described by a sentence in the re-
stricted language (<,S). The desired sentence ψc(x, y, x′, y′, S) is a conjunc-
tion of four such sentences.

7 Concluding remarks

In this paper, we have focused on closed semi-algebraic sets. However, the no-
tion of point-structure, fundamental to our development, can also be defined
for general semi-algebraic sets in R2. Unfortunately, due to the possible pres-
ence of components of the interior of semi-algebraic sets with mixed borders
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(open and closed), our transformation-based proof (in particular Proposi-
tion 3) does not carry over to this more general setting in a straightforward
way.

We are also looking at other dimensions. In dimension one, the notions of
I-equivalence and H-equivalence coincide with isotopic and homeomorphic.
Generalizations to higher dimensions seem feasible. Indeed, the local cone
structure around points in a semi-algebraic set, which provided the main
inspiration for our work, also holds there.
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