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Abstract. We consider spatial databases that can be defined in terms
of polynomial inequalities, and we are interested in monotonic transfor-
mations of spatial databases.
We investigate a hierarchy of monotonicity classes of spatial transfor-
mations that is determined by the number of degrees of freedom of the
transformations. The result of a monotonic transformation with k degrees
of freedom on a spatial database is completely determined by its result
on subsets of cardinality at most k of the spatial database. The result of a
transformation in the largest class of the hierarchy on a spatial database
is determined by its result on arbitrary large subsets of the database.
The latter is the class of all the monotonic spatial transformations.
We give a sound and complete language for the monotonic spatial trans-
formations that can be expressed in the relational calculus augmented
with polynomial inequalities and that belong to a class with a finite
number of degrees of freedom. In particular, we show that these trans-
formations are finite unions of transformations that can be written in
a particular conjunctive form. We also address the problem of finding
sound and complete languages for monotonic transformations that are
expressible in the calculus and have an infinite number of degrees of free-
dom. We show that Lyndon’s theorem, which is known to fail in finite
model theory, also fails in this setting: monotonic spatial transformations
expressible in the calculus do not correspond to the transformations ex-
pressible by a positive formula.
We show that it is undecidable whether a query expressed in the rela-
tional calculus augmented with polynomial inequalities is a monotonic
spatial transformation of a certain degree. On the other hand, various in-
teresting properties (e.g., equivalence, genericity), which are undecidable
for general spatial transformations expressible in the calculus, become
decidable for monotonic spatial transformations of finite degree.

1 Introduction and summary

Spatial database systems [1, 7, 10, 11] are concerned with the representation and
manipulation of data that have a geometrical or topological interpretation. The
conceptual view of such a database is that of a possibly infinite set of points
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in the real space. The framework of constraint databases, introduced by Kanel-
lakis, Kuper, and Revesz [15], provides an elegant and powerful model of spatial
databases [20]. In this setting, a spatial database is represented as a Boolean
combination of polynomial equalities and inequalities. For example, the spatial
database consisting of the set of points on the northern hemisphere together
with the points on the equator of the unit sphere in the three-dimensional space
R3 can be represented by the formula x2 +y2 +z2 = 1 ∧ z ≥ 0. The set of points
in the real plane lying strictly above the parabola y = x2 and strictly below the
parabola y = x2 + 1/2 is another example of a spatial database. This database
is depicted in Figure 1.

Fig. 1. A spatial database that consists of the points lying strictly between the parabola
y = x2 and the translated one y = x2 + 1/2.

Several languages have been proposed to query and transform spatial data-
bases in the constraint model. If, e.g., the relational calculus is extended with
polynomial inequalities, a simple but effective query language is obtained [20].
The translation of a 2-dimensional spatial database S by the vector (1, 2), for
instance, can be expressed in this language by the formula

(∃x′)(∃y′)(S(x′, y′) ∧ x′ + 1 = x ∧ y′ + 2 = y). (∗)

The free variables x and y of this formula are the coordinates of the points in
the result of the transformation. Although their variables range over the real
numbers, such calculus expressions can be computed effectively [6, 8, 22].

Also, various extensions of this calculus with recursion have been introduced
and studied. In [15, 16, 17], a spatial version of Datalog has been studied. In [13],
computationally complete languages for spatial database queries and transfor-
mations were studied.

In this paper, we are especially interested in monotonic transformations of
spatial databases. A transformation is monotone if it yields increasing outputs on



increasing inputs. This interest is motivated by classes of transformations that
frequently occur in spatial database practice [1, 7, 10, 11]. The spatial transfor-
mation determined by the expression (∗) is monotone and it is exemplary for
such a class. It works pointwise on the spatial data, i.e., its result on a spa-
tial database is the union of the results of the transformation when applied to
the individual points of the spatial database. Many other transformations, like
rotations or projections, also satisfy this property. “Return the points within
distance 1 from the input database” is another example of a pointwise spatial
transformation. The result of these transformations is completely determined by
their result on single points.

By adding one extra degree of freedom, we obtain a larger class of monotonic
transformations whose results are determined by the results of the transforma-
tions on subsets with at most two elements. “Return the midpoints of each pair
of different points in the input database” is a transformation with two degrees
of freedom. It is not a pointwise transformation, however. The transformation of
a spatial database into itself if its diameter is larger than 1 and into the empty
set if it is not larger than 1 is another example.

Continuing in this way, every larger number of degrees of freedom gives rise
to a larger class of monotonic transformations. The monotonic transformations
with k degrees of freedom are exactly the transformations that are monotonic
and that are completely determined by their result on sets of cardinality at most
k. An example of a monotonic transformations with k degrees of freedom that
is of practical importance is the transformation of a (k − 1)-dimensional spatial
database into its convex hull.

If the number of degrees of freedom is uncountably infinite, we obtain, as
we will show, the set of all monotonic spatial transformations. We thus obtain a
hierarchy of monotonicity classes of spatial transformations that is indexed by
degrees of freedom (i.e., by cardinal numbers).

We syntactically describe sound and complete languages that capture the
monotonic spatial transformations that are expressible in the relational calculus
augmented with polynomial inequalities and that have a finite number of degrees
of freedom. We show, more precisely, that these transformations are finite unions
of transformations that can be written in a particular conjunctive form.

We also address the problem of finding sound and complete languages for
monotonic transformations that are expressible in the calculus and that have an
infinite (countable or uncountable) number of degrees of freedom. From model
theory, Lyndon’s theorem suggests that the set of transformations expressible by
a positive calculus formula is likely to capture the set of all monotonic transfor-
mations expressible in the calculus. We show, however, that Lyndon’s theorem,
which is known to fail in finite model theory, also fails in our setting.

Finally, we show that it is undecidable whether a calculus formula expresses
a monotonic spatial transformation of a certain degree. On the other hand,
various interesting properties (e.g., equivalence, genericity), that are undecidable
for general spatial database transformations, become decidable for monotonic
spatial transformations that are expressible in the calculus and that have a finite



number of degrees of freedom.
This paper is organized as follows. In Section 2, we give the definitions of

spatial databases, spatial transformations and of monotonic transformations
along with some basic properties of monotonic transformations. In Section 3,
we present sound and complete languages for monotonic transformations of fi-
nite degree. In Section 4, we discuss complete languages for monotonic trans-
formations of infinite degree. We give decidability and undecidability results in
Section 5. We end the paper with a discussion in Section 6. We discuss alterna-
tive hierarchies of monotonicity classes and state some open problems concerning
complete languages for monotonic transformations.

2 Definitions and preliminaries

In this section, we define spatial databases and spatial database transformations.
Also, the notion of monotonic spatial transformation of degree k is defined and
illustrated.

2.1 Spatial databases and spatial database transformations

R denotes the set of the real numbers. So, Rm is the corresponding m-dimensional
space, where m is arbitrarily fixed.

Definition 1. A spatial database is a geometrical figure in Rm that can be de-
fined as a Boolean combination of sets of the form {(x1, . . . , xm) | p(x1, . . . , xm) >
0}, where p(x1, . . . , xm) is a polynomial with integer coefficients in the real vari-
ables x1, . . . , xm.2

The set {(x, y, z) | x2 + y2 + z2 = 1 ∧ z ≥ 0}, mentioned in the Introduction,
is an example of a spatial database in R3. The polynomial equality p = 0 can
be seen as an abbreviation for ¬(p > 0) ∧ ¬(−p > 0). The set {(x, y) | (y −
x2)(x2 −y +1/2) > 0}, also mentioned in the Introduction, is a spatial database
in R2.

Definition 2. A spatial database transformation (or just transformation) is a
function that maps every spatial database to a spatial database.

In this paper, we will use the relational calculus augmented with polynomial
inequalities, the spatial calculus for short, as a language to express transforma-
tions. In this language, the result of a transformation Q on an input spatial
database S is of the form

Q(S) = {(x1, . . . , xm) | ϕ(x1, . . . , xm, S)},
2 Often, a spatial database is defined as a n-tuple of such geometrical figures (see,

e.g., [13, 20]). In order not to overload the notations further on, we have restricted
ourselves to n = 1. The results of this paper carry over straightforwardly to the more
general situation.



with ϕ a formula built from the atomic formulas S(y1, . . . , ym) and p(z1, . . . , zn) >
0, the logical connectives ¬, ∧, ∨ and the quantifiers ∀, ∃. Here, S is an m-ary
relation name that represents the input spatial database and p(z1, . . . , zn) is a
polynomial with integer coefficients and real variables z1, . . . , zn.

Formula (∗) in the Introduction is an example of a spatial calculus formula
that expresses a transformation in R2.

Further on, to economize on space and to improve readability, we will also use
the vector notation in expressions. We use bold characters to denote vectors x in
Rm. Also, if x ∈ Rm, then we abbreviate, e.g., (∃x1) · · · (∃xm)(ϕ(x1, . . . , xm))
by (∃x)(ϕ(x)).

2.2 Monotonic transformations of degree k

Let N denote the set of the natural numbers and let |S| denote the cardinality
of the set S.

Definition 3. A transformation Q is called monotone if for all spatial databases
S and S′, S ⊆ S′ implies Q(S) ⊆ Q(S′).

It can easily be verified that Q is monotone if and only if

Q(S) =
⋃

S′⊆S

Q(S′)

for all spatial databases S.

Definition 4. Let k be a cardinal number less than or equal to |R|. A monotonic
spatial database transformation of degree k is a spatial transformation that is
monotone and that is completely determined by its result on sets of cardinality
at most k.

We denote the set of all monotonic spatial database transformations of degree
k by Mk and the set of all monotonic transformations by M. Before giving
examples and counterexamples of monotonic transformations of degree k, we
give some of their basic properties, the proofs of which follow straightforwardly
from the above observation and the subsequent examples.

Proposition 5. Let k be a cardinal number less than or equal to |R|.
(a) A transformation Q belongs to Mk if and only if

Q(S) =
⋃

S′⊆S,|S′|≤k

Q(S′)

for every spatial database S.
(b) We have that

M0 � M1 � · · · � Ml � Ml+1 � · · · �
⋃

l∈N

Ml � M|N| � M|R| = M.



(c) If the transformations Q1 and Q2 belong to Mk, k ≥ 0, then so does Q1∪Q2.
(d) The projection on a subspace Rn ⊂ Rm belongs to M1. The selection of the

points of a spatial database that belong to a fixed set F ⊂ Rm belongs to M1.
(e) If Q1 and Q2 belong to M, then so does Q1 ◦ Q2. If Q1 belongs to M1 and

Q2 belongs to Mk, k ≥ 0, the Q1 ◦ Q2 belongs to Mk.
(f) There exist spatial transformations that are not monotone. �


Example 1. 1. M0 is the set of spatial transformations that map every spatial
database to some fixed figure in Rm. These transformations obviously also
belong to every Mk, k ≥ 0.

2. Translations, isometries, similarities, affinities of spatial databases belong to
M1, and hence to every Mk, k ≥ 1.

3. “Return Rm if the diameter of the database is larger than 1, else return the
empty set” belongs to M2 but not to M1.

4. The transformation that returns Rm on an input that contains at least k
points and the empty set in any other case, belongs to Mk but not to Mk−1.

5. The transformation that maps a spatial database to its convex hull belongs
to Mm+1. Remark that here the degree depends on the dimension of the
space Rm in which the database is embedded.

6. The transformation of a spatial database S into the empty set if |S| is finite
and into Rm if |S| is infinite belongs to M|N| but not to

⋃
k∈N Mk.

7. The transformation of a spatial database to its topological interior, is a
monotonic transformation, but not monotone of any finite degree nor of
infinitely countable degree.

8. The complement transformation Q(S) = Sc is not monotone of any degree.

3 Sound and complete languages for monotonic
transformations of finite degree

In this section, we give sound and complete languages for the monotonic transfor-
mations that have a finite number of degrees of freedom and that are expressible
in the spatial calculus.

Theorem 6. Let k be a natural number and let Q be a spatial database transfor-
mation that is expressible in the spatial calculus. The transformation Q belongs to
Mk if and only if Q is equivalent to a finite union of monotonic transformations
of degree k that are expressible by conjunctive formulas of the form

n∧

i=1

pi(y) θi 0,

or

(∃x1) · · · (∃xk)(
k∧

l=1

S(xl) ∧
n∧

i=1

pi(y,x1, · · · ,xk) θi 0),

where pi are polynomials with integer coefficients and θi ∈ {≥, >}.



Proof. (Sketch) It is an easy set-theoretical exercise to show that the given
conjunctive formulas express monotonic transformations of degree k. The if-
direction then follows immediately from (c) of Proposition 5.

For the only-if-direction, let Q be a transformation expressed by the spatial
calculus formula ϕ, i.e., Q(S) = {y | ϕ(y, S)}. We first remark that the equality

Q(S) =
⋃

S′⊆S,|S′|≤k

Q(S′)

implies that Q(S) = Q(∅) if k = 0 and

Q(S) = Q(∅) ∪ {y | (∃x1) · · · (∃xk)(
k∧

l=1

S(xl) ∧ ϕ(y, {x1, . . . ,xk}))}

if k > 0.
Q(∅) is a fixed m-dimensional spatial database and is therefore, as mentioned

in Section 2, a Boolean combination of sets of the form {y | p(y) > 0}. This
Boolean combination can be written as a union of intersections of the form

{y |
n∧

i=1

pi(y) θi 0},

with θi ∈ {≥, >}.
For what concerns the other set, ϕ(y, {x1, . . . ,xk}) is a spatial calculus for-

mula with free variables y,x1, . . . ,xk. Tarski’s quantifier elimination property
for the theory of the field of real numbers (see, e.g., [6, 8, 22]) guarantees the
existence of a quantifier-free spatial calculus formula ψ(y, {x1, . . . ,xk}) that is
equivalent to ϕ(y, {x1, . . . ,xk}). We can write ψ(y, {x1, . . . ,xk}) in disjunctive
normal form as

d∨

i=1

ci∧

j=1

pij(y,x1, . . . ,xk) θij 0,

with pij polynomials with integers coefficients and θij ∈ {≥, >}. Using some
well-known logical equivalences we then obtain that

Q(S) = Q(∅)∪{y |
d∨

i=1

((∃x1) · · · (∃xk)(
k∧

l=1

S(xl) ∧
ci∧

j=1

pij(y,x1, . . . ,xk) θij 0))}.

This completes the proof. �

To illustrate this result, we return to the convex hull. The convex hull of a

spatial database S is the smallest convex database that contains S. Usually, the
convex hull of S ⊂ Rm is given as

{y | (∃x1) · · · (∃xm+1)(∃λ1) · · · (∃λm+1)(
m+1∧

i=1

S(xi) ∧
m+1∧

i=1

λi ≥ 0

∧ λ1 + · · · + λm+1 = 1 ∧ y = λ1x1 + · · · + λm+1xm+1)}.



However, as mentioned before, the m-dimensional convex hull belongs to
Mm+1. Hence, the theorem tells us that it must be possible to express this with
less quantifiers, namely by the quantifier prefix (∃x1) · · · (∃xm+1). Indeed, we
can express the convex hull as

{y | (∃x1) · · · (∃xm+1)(
m+1∧

i=1

S(xi) ∧ CH(x1, . . . ,xm+1,y))},

where CH(x1, . . . ,xm+1,y) abbreviates the formula that expresses that, for every
subset of m points from {x1, . . . ,xm+1}, the point y lies in the appropriate
halfspace determined by that subset. This formula can be expressed without the
use of quantifiers. The convex hull of a 1-dimensional database S is, e.g., given
by

{y | (∃x1)(∃x2)(S(x1) ∧ S(x2) ∧ x1 ≤ y ∧ y ≤ x2)}.
The previous example illustrates how Theorem 6 can be used to write certain

transformations in a more compact way. The main importance of Theorem 6,
however, is that it provides a syntactic framework, by means of a normal form
for calculus expressions, in which transformations are guaranteed to belong to
Mk. In other words, for every finite number k, Theorem 6 provides for a sound
and complete language in which only transformations that belong to Mk can be
written, but in which also all transformations of Mk expressible in the calculus,
can be written.

4 Monotonic transformations of infinite degree

In this section, we search for sound and complete languages for monotonic trans-
formations of infinite degree that are expressible in the spatial calculus.

It might seem that, since the spatial calculus is incapable of characterizing
infinitely countable sets, there are no differences between different infinite degrees
of monotonicity for transformations expressible in the calculus. The following
proposition shows that this is not the case.

Proposition 7. For transformations expressible in the spatial calculus, the fol-
lowing inclusions are strict:

⋃

k∈N

Mk � M|N| � M|R| = M.

Clearly, there exist also transformations expressible in the spatial calculus that
are not monotone.

Proof. The transformations in 6 and 7 of Example 1 are expressible in the
calculus (see [20]). This proves the strictness of the two inclusions. The last
transformation of Example 1 is expressible in the calculus. This proves the second
claim. �




Obviously, the union over N of the sound and complete languages for Mk,
as provided by Theorem 6, yields a sound and complete language for the spatial
calculus transformations that belong to

⋃
k∈N Mk. We therefore have

Theorem 8. Let Q be a transformation that is expressible in the spatial calculus.
The transformation Q belongs to

⋃
k∈N Mk if and only if Q is equivalent to a

finite union of monotonic transformations of finite degree that are expressible by
conjunctive formulas of the form

n∧

i=1

pi(y) θi 0,

or

(∃x1) · · · (∃xk)(
k∧

l=1

S(xl) ∧
n∧

i=1

pi(y,x1, · · · ,xk) θi 0),

for some k ∈ N \ {0} and with pi polynomials with integer coefficients and
θi ∈ {≥, >}. �


We now turn our attention to M|N| and M|R|. Here, the story is more
complicated. From model theory, we know that first-order logic sentences that
are preserved under homomorphisms, i.e., that are monotone, have a “positive”
equivalent. This property is usually referred to as Lyndon’s homomorphism the-
orem [3, 14]. Thus, it is a natural question to ask whether also every monotonic
spatial transformation is expressible by a spatial calculus formula that is posi-
tive. More technically, we call a spatial calculus formula positive if every atomic
subformula S(y1, . . . , ym) lies within the scope of an even number of negation
symbols. We can easily prove by induction on the length of formulas that

Proposition 9. A transformation that is expressed by a positive spatial calculus
formula is monotone. �


We can use the transformation of a spatial database into its topological in-
terior as an illustration. Indeed, for 2-dimensional databases, for example, this
transformation can be expressed by the positive formula

(∃ε)(∀x′)(∀y′)(ε > 0 ∧ ((x − x′)2 + (y − y′)2 ≥ ε ∨ S(x′, y′))).

Hence, it is monotone (as already observed before).
The converse of Proposition 9, on the other hand, is not obvious. Ajtai and

Gurevich have shown that Lyndon’s theorem fails when only finite models are
considered [2].

We will show that Lyndon’s theorem also fails in our setting:

Theorem 10. There is a monotonic spatial transformation, expressible in the
spatial calculus, that is not expressible by a positive spatial calculus formula.

For a sketch of the proof we refer to the Appendix.
We conclude this section with one positive result:



Proposition 11. A monotonic spatial transformation that is expressible by a
quantifier-free spatial calculus formula is positively expressible in the spatial cal-
culus.

Proof. (Sketch) We first give the proof for 1-dimensional spatial transforma-
tions. Then we sketch how it can be generalized to higher dimensional transfor-
mations.

So, let Q(S) = {x | ϕ(x, S)} be a 1-dimensional spatial transformation.
ϕ(x, S) can be written in disjunctive normal form as

(S(x) ∧ π1(x)) ∨ (¬S(x) ∧ π2(x)),

where π1(x) and π2(x) are Boolean combinations of polynomial inequalities. We
can write this formula also as ϕ1(x, S) ∨ ϕ2(x, S) ∨ ϕ3(x, S), with

ϕ1(x, S) = S(x) ∧ π1(x) ∧ ¬π2(x),

ϕ2(x, S) = ¬S(x) ∧ π2(x) ∧ ¬π1(x), and

ϕ3(x, S) = π1(x) ∧ π2(x).

We now consider two cases. If ϕ2(x, S) is false for all x ∈ R and all spatial
databases S, then ϕ(x, S) is equivalent to ϕ1(x, S) ∨ ϕ3(x, S), and therefore
positively expressible.

If, on the other hand, there exists a spatial database S0 and x0 ∈ R, such that
ϕ2(x0, S0) is true, we can easily show that x0 ∈ Q(S0), but x0 �∈ Q(S0 ∪ {x0}).
Therefore, Q is not monotone. Thus the second case cannot occur. This completes
the proof for the 1-dimensional case.

For the m-dimensional case, we also can write any quantifier-free formula
ϕ(x1, . . . , xn, S) in disjunctive normal form with 2(mm) disjuncts, each of which is
a conjunction of mm conjuncts of the form S(y1, . . . , yn) or ¬S(y1, . . . , yn), with
yi ∈ {x1, . . . xn}, and of a conjunct π(x1, . . . xn), which is a Boolean combination
of polynomial inequalities. As in the 1-dimensional case, we can then split up
the polynomial parts which results in additional disjuncts consisting of mm,
mm − 1, . . . conjuncts that are disjoint with the longer disjuncts. We can then
apply an argumentation, similar to the 1-dimensional case, that shows that no
negation can occur. �


5 Undecidability and decidability results

In this section, we show that it is undecidable whether a spatial transformation
expressible in the spatial calculus belongs to Mk. We also show that many
interesting properties of spatial transformations that are undecidable in general
(see [20]) become decidable for monotonic transformations of finite degree, in
contrast to our first result.

Theorem 12. The following problems are undecidable:



(a) Given a spatial transformation Q, tell whether Q is monotone, and
(b) For k ∈ N and a given spatial transformation Q, tell whether Q belongs to

Mk.

Proof. (Sketch) Statement (a) follows directly from the fact that it is undecid-
able whether a first-order sentence ϕ(S) is monotone [12].

For (b) and k = 0, we observe that two spatial transformations Q1(S) =
{y | ϕ1(y, S)} and Q2(S) = {y | ϕ2(y, S)} are equivalent if and only if Q(S) =
{y | ϕ1(y, S) ∧ ¬ϕ2(y, S)} belongs to M0 and Q(∅) = ∅. The latter condition
is decidable. Since equivalence of spatial transformations is undecidable [20], it
follows that membership of M0 is undecidable.

To prove the theorem for k ∈ N \ {0}, we can use a reduction technique that
was introduced in [20]. We sketch the proof for k = 1 in dimension 1. Other
cases can be proved analogously.

It is well-known that the ∃∗-fragment of number theory is undecidable. En-
code a natural number n by the 1-dimensional spatial database

enc(n) = {0, 1, . . . , n}
and encode a vector of natural numbers (n1, . . . , nk) by the database

enc(n1, . . . , nk) = enc(n1)∪(enc(n2)+n1+2)∪· · ·∪(enc(nk)+n1+2+· · ·+nk−1+2).

The corresponding decoding is expressible in the spatial calculus. We can reduce
the decision of the truth of a ∃∗-sentence (∃x)ψ(x) of number theory to deciding
whether the transformation “if S encodes x and ψ(x), return R, else return the
empty set” belongs to M1. �


Many interesting properties of spatial transformations, such as equivalence
of transformations, containment, and genericity are undecidable for transforma-
tions expressed in the spatial calculus (see [20]). For monotonic transformations
of finite degree, many of these properties become decidable. As an illustration,
we give

Theorem 13. Let k be a natural number. Let Q, Q1 and Q2 be spatial transfor-
mations that are expressible in the spatial calculus and that belong to Mk. The
following properties are decidable:

– Q1 and Q2 are equivalent,
– Q1 is contained in Q2,
– Q is generic,
– for every S, Q(S) contains a line.

Proof. (Sketch) As an example, we give the proof for containment. Suppose that
Q1 and Q2 are expressed by spatial calculus formulas ϕ1 and ϕ2. Q1 is contained
in Q2 if for all databases S, Q1(S) ⊆ Q2(S) holds. If Q1 and Q2 are in Mk, this
second-order condition is equivalent to Q1(∅) ⊆ Q2(∅) and

(∀x1) · · · (∀xk)(∀y)(ϕ1(y, {x1, . . .xk}) → ϕ2(y, {x1, . . .xk})).



Both are first-order sentences in the theory of the field of real numbers. From
Tarski’s quantifier elimination property it follows that this sentence can be de-
cided (see, e.g., [6, 8, 22]). �


6 Discussion

We end this paper with the discussion of two topics. First, we address the ques-
tion of how unique the hierarchy described in this paper is. Secondly, we state
some open problems concerning sound and complete languages for the class of
all monotonic transformations.

6.1 Alternative hierarchies of monotonicity classes.

In this paper, we have discussed a hierarchy of monotonicity classes of spatial
transformations that is indexed by the degrees of freedom of spatial transforma-
tions, i.e., that is indexed by cardinal numbers. In our opinion, this hierarchy is
a very natural one. It is, however, not the only possible one.

In the hierarchy proposed in this paper, the monotonic transformations have
the form

Q(S) =
⋃

S′⊆S,|S′|≤k

Q(S′)

where k is (in most cases) finite, i.e., the transformation is determined by its
images on certain finite subsets.

However, we can also consider a hierarchy of monotonic transformations that
are determined by their image on certain infinite subsets. We then obtain a
hierarchy indexed by classes of infinite figures. We give an example of this and
restrict our attention for a moment to the plane R2. Take, for instance, Pn to
be the class of figures that are the convex hull of regular polygons of i sides with
i ≤ n. Let Nn be the class of transformations of the form

Q(S) =
⋃

S′⊆S,S′∈Pn

Q(S′).

The elements of Nn are also monotone. They also form a hierarchy of mono-
tonicity classes for increasing n: N 0 � N 1 � N 2 � · · ·.

For each n ∈ N, we also obtain sound and complete languages, in the style of
Theorem 6, that express exactly the transformations in Nn that are expressible
in the spatial calculus. Indeed, in Theorem 6, we needed a finite number of
quantifiers to quantify over subsets of the database of some finite cardinality.
To quantify over polygonal subsets of the database, also a finite number of
quantifiers suffice.

More results in the style of Theorem 6 are possible. We give one more ex-
ample, interesting in its own. For transformations in Rm, consider the class of
monotonic spatial transformations that satisfy

Q(S) =
⋃

S′⊆S,S′∈Bm

Q(S′),



where Bm is the class of m-dimensional open spheres with a radius r ≥ 0. The
transformation of a spatial database into its topological interior belongs to this
class. Again, in the style of Theorem 6, we obtain that spatial transformations
expressible in the spatial calculus belong to this class if and only if they are
expressible as a finite union of spatial transformations expressible by formulas
of the form n∧

i=1

pi(y) θi 0,

or

(∃x)(∃ε > 0)((∀z)(dm(x, z) < ε → S(z)) ∧
n∧

i=1

pi(x,y, ε) θi 0),

where pi are polynomials with integer coefficients and θi ∈ {≥, >}, where dm(x, z)
abbreviates the quadratic polynomial

∑m
i=1(xi−zi)2, and where y are the result

vectors.
All the above formulas are positive in S. This proves, in an alternative way,

that the transformation of a spatial database into its topological interior is mono-
tone.

The examples given in this section show that other hierarchies are possible.
Depending on the applications one has in mind one may be preferred to the
other.

6.2 Is there a sound and complete language for all monotonic
spatial calculus transformations?

In Section 4, we have searched for a sound and complete language for all spatial
transformations expressible in the spatial calculus. The only likely candidate for
such a language seems to be the set of positive spatial calculus formulas. Since
Theorem 10 rules out this possibility, the search for a complete language seems
a very difficult, if not impossible task.

The same problem remains for M|N|. We therefore state the following:

Open problem 14. Is there a sound and complete language that captures the
transformations expressible in the spatial calculus

– that belong to M|R|?
– that belong to M|N|?

The only positive result we can show in this context is that Lyndoms’ theorem
holds when the attention is restricted to spatial transformations expressible by
a quantifier-free formula (see Proposition 11). Gurevich points out a number
of other classes of first-order sentences for which Lyndon’s theorem survives in
the case of finite structures [12]. He mentions existential sentences, universal
sentences, prenex sentences with prefix ∃n∀, and prenex sentences with prefix
∀n∃. Also in the context of the spatial calculus, these languages seem interesting
candidates for further research.

Another interesting question is the following: although for spatial databases
monotonic formulas cannot be translated into positive formulas, do the least
fixed points of these two classes coincide?
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Appendix

In the following pages we sketch the proof of Theorem 10. Our proof is inspired
by an alternative proof of the result of Ajtai and Gurevich that was given by
Stolboushkin [21]. It uses a characterization of definability by positive first-order
formulas by means of an Ehrenfeucht-Fräıssé-like game. This characterization
was developed by Stolboushkin [21] and, independently, by McColm [18].

The spatial transformation Q that witnesses Theorem 10 actually is a trans-
formation that works on two 2-dimensional spatial databases S and T . The
transformation Q is expressed by a spatial calculus sentence ϕ(S, T ). This means
that viewed as a spatial transformation, Q transforms the pair (S, T ) either into
∅ or into R2. We now give a detailed description of Q(S, T ).

Let ψ(S, T, y) be the formula (∀x)((T (x, y) ∨ x = y) → (∀z)(S(z, x) →
(∀u)((T (u, z) ∨ u = z) → (T (u, x) ∧ T (u, y))))).

Then ϕ(S, T ) is equivalent to the sentence

ϕ0(S, T ) ∨ ϕ1(S, T ) ∨ ϕ2(S, T ) ∨ ϕ3(S, T ) ∨ ϕ4(S, T ) ∨ (ϕ5(S, T ) ∧ ϕ6(S, T )),

with



ϕ0(S, T ) = “S is infinite” ∨ “T is infinite”;

ϕ1(S, T ) = (∃x)(∃y)(S(x, y) ∧ S(y, x));

ϕ2(S, T ) = (∃x)(∃y)(T (x, y) ∧ T (y, x));

ϕ3(S, T ) = (∃x)(∃y)((∀z)(¬S(z, y) ∧ T (x, y));

ϕ4(S, T ) = (∃x)(∃z)((∀y)(S(y, x) → ψ(S, T, y)) ∧ T (z, x) ∧ (∀y)(S(y, x) →
(¬(T (z, y) ∨ z = y))));

ϕ5(S, T ) = (∀x)(∀y)(S(x, y) → T (x, y)); and finally

ϕ6(S, T ) = (∀x)(∀y)(∀z)(T (x, y) ∧ T (y, z) → T (x, z)).

We remark that ϕ0(S, T ) is expressible in the spatial calculus. For instance,
“S is infinite” is expressed by the sentence ¬(∀x)(∀y)(S(x, y) → ((∃ε > 0)(∀x′)
(∀y′)(((x − x′)2 + (y − y)2 < ε ∧ S(x′, y′)) → (x = x′ ∧ y = y′))). For finite S
and T , ϕ1(S, T ) ∨ ϕ2(S, T ) ∨ ϕ3(S, T ) ∨ ϕ4(S, T ) ∨ (ϕ5(S, T ) ∧ ϕ6(S, T )) char-
acterizes a class of structures that contains what Stolboushkin calls grids [21].
This sentence, however returns false on incomplete grids.

We now first show that Q(S, T ) = {(x, y) ∈ R2 | ϕ(S, T )} is monotone in T ,
i.e., that T1 ⊆ T2 implies that Q(S, T1) ⊆ Q(S, T2).

Lemma 15. The transformation Q(S, T ) is monotone in T .

Proof. For finite S and T the lemma was proven in [21] (Lemma 4.4). For S or
T infinite, ϕ0(S, T ) guarantees monotonicity. �


In order to formulate the next results, we turn to some more precise termi-
nology from logic. The transformation Q(S, T ), as given above, is expressed by a
first-order sentence over the signature 〈S, T,+,×, <,0, 1〉. This sentence is, how-
ever, invariant under monotonic transformations of R. From a collapse theorem
on the expressiveness of first-order logic of the reals by Benedikt, Dong, Libkib,
and Wong [4] (see also [5]) it follows that

Lemma 16. The transformation Q(S, T ) can be expressed by a first-order sen-
tence ϕ̄(S, T,<) over the signature 〈S, T,<〉. �


We will now describe how a characterization of definability by positive first-
order sentences by means of an Ehrenfeucht-Fräıssé-like game will lead us to
the conclusion that Q(S, T ) is not expressible by a formula that is positive in
T.3 This characterization and these games are described in [18] and [21]. First,
we will describe the games specialized to our situation (i.e., specialized to the

3 A formula is positive in T if every subformula of the form T (u, v) is in the scope of
an even number of negation symbols.



signature 〈S, T,<〉). Next, we will specialize the characterization theorem of [18]
and [21] to our setting.

The pebble game is played by two players, the Spoiler and the Duplicator, on
two 〈S, T,<〉-structures A = (SA, TA, <A) and B = (SB , TB , <B). The under-
lying domain of these structures is R. As usual, the Spoiler tries to distinguish
between these structures, while the Duplicator tries to show that they are equiv-
alent.

The game, which we will call the positive game from A to B of depth n,
consists of n rounds in which n pebbles will be placed on elements a1, . . . , an in
A and n pebbles will be placed on elements b1, . . . , bn in B. The ith round of
the game consists of the Spoiler choosing one of the structures A and B, placing
a pebble on the domain of that structure, and the Duplicator placing a pebble
in the domain of the other structure. After n rounds, for each round i (i ≤ n),
there are pebbles on ai in A and on bi in B respectively.

We say that the Duplicator wins the positive game from A to B of depth n
if and only if after the n moves of the game the following four conditions are
fulfilled

1. for all i, j ≤ n, ai = aj if and only if bi = bj ;
2. for all i, j ≤ n, ai < aj if and only if bi < bj ;
3. for all i, j ≤ n, S(ai, aj) if and only if S(bi, bj);
4. for all i, j ≤ n, T (ai, aj) implies T (bi, bj).

The following lemma is due to Stolboushkin [21] and McColm [18]. The con-
verse is also in [21].

Lemma17. Let χ(S, T,<) be a first-order sentence of quantifier depth n over
the signature 〈S, T,<〉 that is positive in T . If the Duplicator has a winning
strategy for the positive game from structure A = (SA, TA, <A) to structure
B = (SB , TB , <B) of depth n, then A |= χ(S, T,<) implies that B |= χ(S, T,<).

�

We will now describe two 〈S, T,<〉-structures A = (SA, TA, <A) and B =

(SB , TB , <B) such that the Duplicator has a winning strategy for the positive
n-round game from A to B. These structures are inspired by the finite grid
structures described by Stolboushkin [21]. As mentioned before, the domain of
both structures is R. Both <A and <B are the natural order on the real line.
SA is the finite relation

{(i · 2n+2 + j, i · 2n+2 + j + 1) | 0 ≤ i < 2n+1 and 1 ≤ j < 2n+2}∪
{(i · 2n+2 + j, (i + 1) · 2n+2 + j) | 0 ≤ i < 2n+1 − 1 and 1 ≤ j ≤ 2n+2}

and TA is the transitive closure of SA. SB is the same finite relation as SA and
TB =TA \ {(2n+1, 2n+1 · (2n+2 − 1))}.

We have the following lemma:

Lemma18. The Duplicator has a winning strategy for the positive n-round
game from A to B.



Proof. (Sketch) We omit the details of the proof, but point out that the struc-
tures A = (SA, TA, <A) and B = (SB , TB , <B) correspond for what concerns
their S and T components to what Stolboushkin calls a grid and a reduced grid.
However, these grids are placed in a particular way on the real line: the differ-
ent rows of Stolboushkin’s grids are placed one after the other on R. The game
strategy outlined in [21] can then be adapted to fit this situation. An additional
complication is that the game in [21] is played on finite structures while our
game is played on an infinite structure. �


The next lemma follows directly from [21].

Lemma 19. Let A and B be the structures described above. Let ϕ̄(S, T,<) be
the first-order sentence that expresses Q(S, T ). Then A |= ϕ̄(S, T,<) and B �|=
ϕ̄(S, T,<). �


This proves that ϕ̄(S, T,<) is not positively expressible in T over the signa-
ture 〈S, T,<〉. Indeed, if ϕ̄(S, T,<) would be positively expressible in T , then, by
Lemma 17, it should also evaluate to true on B, which, according to Lemma 19,
it does not.

To complete the proof of Theorem 10, it suffices to prove that

Lemma 20. The formula ϕ̄(S, T,<) is not positively expressible in T over the
signature 〈S, T,+,×, <, 0, 1〉.

Proof. (Sketch) Suppose that ϕ̄(S, T,<) is positively expressible in T over
〈S, T,+,×, <, 0, 1〉, say by ψ(S, T,+,×, <, 0, 1). The formula ψ(S, T,+,×, <, 0, 1)
is equivalent to “S is infinite” ∨ “T is infinite” ∨ ψ̄(S, T,+,×, <, 0, 1), where the
sentence ψ̄(S, T,+,×, <, 0, 1) is ψ(S, T,+,×, <, 0, 1) but considered to work on
finite databases. ψ̄(S, T,+,×, <, 0, 1) is generic and therefore expressible over
the signature 〈S, T,<〉 [5]. Libkin [19] has shown that it follows from results
in [5] that ψ̄(0, 1,+,×, <, 0, 1) is also positively expressible in T over the signa-
ture 〈S, T,<〉. Since “S is infinite” ∨ “T is infinite” can also be expressed in a
positive way over 〈S, T,<〉, we obtain a contradiction. �



