
Made available by Hasselt University Library in https://documentserver.uhasselt.be

A data distribution strategy for parallel point-based rendering

Peer-reviewed author version

HUBO, Erik & BEKAERT, Philippe (2005) A data distribution strategy for parallel

point-based rendering. In: Proceedings of the International Conference in Central

Europe on Computer Graphics, Visualization and Computer Vision (WSCG2005). p. 1-8..

Handle: http://hdl.handle.net/1942/6468

A Data Distribution Strategy for Parallel Point-Based
Rendering

Erik Hubo
Expertise Center for Digital Media

 Limburgs Universitair Centrum
Universitaire Campus

B-3590 Diepenbeek Belgium
erik.hubo@luc.ac.be

Philippe Bekaert
Expertise Center for Digital Media

 Limburgs Universitair Centrum
Universitaire Campus

B-3590 Diepenbeek Belgium
philippe.bekaert@luc.ac.be

ABSTRACT

During the last couple of years, point sets have emerged as a new standard for the representation of largely

detailed models. This is partly due to the fact that range scanning devices are becoming a fast and economical

way to capture dense point clouds. Traditional rendering systems are impractical when a single polygonal

primitive contributes less than a pixel during rendering. We present a data distribution strategy for parallel point-

based rendering, using a cluster of PCs as target platform. We describe a data-structure and a system architecture,

which allows for decoupling the point-data from the computational work. This strategy enables both a balanced

workload as well as no full data replication on each node. We exploit frame-to-frame coherence to make our

system scalable. The system renders high-resolution images from high complex data sets at interactive frame

rates. To our knowledge parallel point-based rendering has not been investigated in the past. Our results indicate

the feasibility of sort-first parallelization applied to point-based rendering.

Keywords

Cluster Computing, Parallel Rendering, Point-Based Rendering

1. INTRODUCTION
A recent trend in computer graphics is the shift

towards sample-based rendering. Today's range

sensing devices are capable of producing highly

detailed and massive point clouds, which do not fit in

the main memory of a single commodity PC. Point-

based rendering can be more efficient than traditional

rendering for these complex models if triangles

occupy a small screen region. Processing many small

triangles leads to bandwidth bottlenecks and

excessive floating point and rasterization

requirements [DeeM93]. Because of the absence of

topology and relative positions, point-clouds are well

suited for spatial subdivision and distribution

between different PC's. One way of visualizing these

enormous data sets is the use of expensive

multiprocessor graphics servers with a huge main

memory. A reasonable less expensive alternative of

these dedicated graphics machines is a cluster of

commodity PC's, linked by a high bandwidth

network. The main challenge is to develop efficient

parallel rendering algorithms that scale well within

the processing, storage and communication

characteristics of a PC cluster. Using this system

architecture has many advantages: price-performance

ratio, modularity, flexibility, storage capacity and

scalability. Processing power, storage and memory

capacity grow linearly with the number of PCs. A

drawback to the traditional, tightly-integrated parallel

computers is the fact that there is no fast access to a

shared virtual memory space, and that the bandwidth

and latencies of inter-processor communication are

significantly higher. The challenge is to develop

algorithms that evenly divide workload among PCs,

do not introduce extra work due to parallelization and

scale well as more PCs are added to the system.

In this paper we propose a data and work distribution

scheme for parallel point-based rendering on a PC

cluster.

This paper is organized as follows: first we discuss

previous work in section 2. Next, we give a short

system overview in section 3. In section 4 we present

our implementation, data structures and system

architecture. Finally, sections 5 and 6 discuss our

results and conclusions.

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

WSCG 2005 Conference proceedings ISBN 80-903100-7-9

WSCG’2005, January 31-February 4, 2005

Plzen, Czech Republic.

Copyright UNION Agency – Science Press

2. PREVIOUS WORK

Point-Based Rendering
During the last couple of years, there has been an

increased interest of the computer graphics

community in point based rendering techniques.

Point-based rendering dates back as far as 1985, the

year in which Levoy and Whitted [LeMa85]

proposed the use of points to model and render 3D

continuous surfaces. In 1989, Westover [WeLe89],

introduced splatting for interactive volume rendering.

Splatting algorithms handle volume data as a set of

particles that absorb and emit light. Westover’s basic

splatting algorithm suffers from considerable artifacts

due to inaccurate visibility determination when

composing the splats from back to front. More

recently, image-based rendering [McLe95] has

become popular because the rendering time is

proportional to the number of pixels (points) warped

from the source to the output images. This contrasts

with the scene-dependant time complexity for more

traditional rendering techniques. Later on, the

Lightfield [LeMa96] and Lumigraph [GoSt96]

techniques were developed. These algorithms

describe the radiance of a scene as a function of

position and direction in a four-dimensional space,

however, at the price of storage overhead.

One of the first point based rendering systems was

QSplat [RuSz00]. In QSplat, a multi-resolution

hierarchy, based on bounding spheres, is employed

for the representation and progressive visualization of

large models. The system is able to handle large

meshes at constant frame rate. Pfister and Zwicker

introduced surfels [PfHa00], short for surface

elements. Surfels are a powerful paradigm for

efficiently rendering complex geometric objects at

interactive frame rates. Surfels can handle complex

shapes; introduce low rendering cost and high image

quality. Three orthogonal LDI's [ShJo98] are used to

sample objects and image space filters are employed

to achieve hole-free rendering. Later Zwicker et al.

presented a framework for direct volume rendering

[ZwMA01] using a splatting approach based on

elliptical Gaussian kernels, superior to the footprints

of Westover [WeLe89]. This results in high-quality

anti-aliased rendering without excessive blurring.

Botsch et al. proved that a pure software

implementation could render up to 14 million Phong

shaded samples per second by using a quantization of

splat shapes [BoMa02]. However the models used to

achieve these rendering times are not complex in

terms of memory requirement. Their quantized

hierarchical data representation is very compact with

a memory consumption of less than 2 bits per point

position.

Software-based point-based rendering algorithms

have proven to be superior to polygon-based

rendering algorithms for highly complex scenes. High

quality results can be achieved but their rendering

speed is limited. Recent algorithms use graphical

hardware to overcome this problem. This idea was

first introduced in [RuSz00]. In [CoLi02] the authors

avoid using the z-buffer by sorting an octree from

back to front each frame similar to McMillan

[McLe95]. In [BoMa03] the authors provide high

quality as well as efficient rendering based on a two-

pass splatting technique with Gaussian filtering.

Finally, in their most recent publication the authors

propose to base the lighting of a splat on a linearly

varying normal field associated with it, resulting in a

visually high quality image [BoMa04]. Dachsbacher

et al. [DaCa03] present a hierarchical LOD structure

that is suitable for GPU implementation. They can

process 50M low quality points per second

A main drawback of all the GPU algorithms is that

they only perform well on rather simple models with

a low screen resolution. This is due to the fact that,

although extremely fast, a GPU’s on-board memory

is currently rather limited in terms of data storage. To

overcome this limitation we use a PC cluster to speed

up the rendering. Since PC clusters have a scalable

memory capacity, they are well suited for the

interactive rendering of high-resolution images of

complex models.

A short overview of parallel rendering is presented

next.

Parallel rendering
Parallel rendering systems have long been used for

ray tracing [WaIn01], radiosity and global

illumination [FuTh96, ZaDa95, ReEr98]. These

systems can often be classified by the stage in the

graphics pipeline in which the primitives are

partitioned: sort-first, sort-middle or sort-last

[MoSt94]. In sort-first systems, screen space is

partitioned in non-overlapping 2D tiles, each of

which is rendered independently. The final image is

obtained by composing all 2D tiles. The main

advantage of this method is the low communication

cost. The efficiency of sort-first algorithms is limited

by redundant rendering due to overlapping tiles

[SaRu01]. In general, since the overlap factors grow

with increasing numbers of processors, the scalability

of sort first systems is limited [MuCa95]. Sort-

middle, the most straightforward approach, is

commonly used in traditional systems. Primitives are

redistributed in the middle of the rendering pipeline,

between geometry processing and rasterization. This

approach is not well suited for a cluster of PC’s due

to its high communication requirements. Finally sort-

last methods defer sorting until the end of the

rendering pipeline. The main advantage of sort-last is

its scalability [MoSt94].

In the last few years, there has been a growing

interest in PC clusters for interactive rendering tasks.

Humphreys and Hanrahan presented a sort-first

system designed for 3D graphics called WireGL

[HuGr99, HuGr00]. WireGL was used to achieve

scalable display size with minimal impact to the

application's performance. Unlike sort-middle, sort-

first can use retained-mode scene graphs to avoid

most data transfers for graphics primitives between

processors [MuCa95]. In [SaRu00] a hybrid sort-first

sort-last approach for parallel polygon rendering is

presented. A specific algorithm for dynamic, view-

dependent and coordinated partitioning is used of

both the 3D model and the 2D image, which has

positive results in terms of both performance and

scalability.

Continual growth in typical dataset size and network

bandwidth has made stream-based analysis a hot

topic for remotely stored 3D models [RuSz01].

Streams are appropriate computational primitives,

because large amounts of data arrive continuously,

and it is impractical or unnecessary to retain the

entire dataset. Chromium [HuGr02] is another a

stream-processing framework based on WireGL. Its

stream filters can be arranged to create sort-first and

sort-last parallel graphics architectures.

Since we are interested in high-resolution images, we

prefer a PC cluster method to the recently popular

GPU methods because of its scalable memory

capacity. High-resolution images require complex

models with many point samples, which cannot be

accommodated by the memory of the graphical

hardware. We believe our sort-first parallelization is

scalable because the overlap factor is negligible in

point-based rendering. To the authors’ knowledge

parallel point-based rendering has not been

investigated in the past.

3. SYSTEM OVERVIEW
Our system operates in two stages:

Preprocessing Stage: The first stage serves as an

offline preprocessing stage and is only performed

once per 3D model. Details are provided in section

4.1. The input for the first stage is a point- cloud. The

system creates a multi-resolution hierarchical spatial

subdivision structure, optimized for fast data

traversal.

Rendering stage: The second stage is the render

stage. We use four types of processes in our system

architecture to decouple the data from the

computation in order to achieve an optimal load

balance. We briefly describe these processes of the

rendering pipeline below (Details are provided in

section 4.2 to 4.5):

Display process: This process executes the first and

last stage of the rendering pipeline. In the first stage,

the display process divides the view frustum into a set

of smaller mini view frusta, according to a box of

interest, and sends them together with camera data to

the data traverse processes. After computation in the

final stage, the display process receives the images

corresponding to these mini frusta and loads them

into the framebuffer for display.(see figure 1 (a)).

Data traverse process: A data traverse process

requests a mini frustum from the display process.

While traversing the octree data structure, the data

traverse process clips the octree cells against the mini

frustum, and decides which octree cells are suitable

for rendering. For each mini frustum the data

traverse process maintains, together with the list of

useful octree cells, a list of used top-level octree

cells. These are hierarchically higher octree cells (see

figure 3). Depending on the workload and the

available data on the render nodes (see section 4.5),

the data traverse process can correctly determine the

render node the data should be sent to. (see figure

1(b)).

Data send process: The data traverse processes

inform the data send processes what point-data

should be sent to which render node (see section 4.5).

(see figure 1(c)).

Render process: Render processes receive packets

from data send processes (data packets) and from

data traverse processes (render packets). Data packets

contain point-data of a top-level octree cell. Render

packets contain pointers to the data that has to be

Display Process

Data Traverse

 Processes

Data Send

 Processes

Render

Processes

Render packet

Top-level info packet

10011010110110101011
00001010101001001011

10111010101010110010

10101101010100101001

01000101001010001001

00101000100001010010

10011010110110101011
00001010101001001011

10111010101010110010

10101101010100101001

01000101001010001001

00101000100001010010

Data Packet

1100010

1100010
1100010

1100010

1100010

image packet

Box of intrest

Mini frusta

N
etw

o
rk

N
et

w
o

rk

workload packet

Network

(a)

(b)

(c)

(d)

Figure 1: System overview of the rendering pipeline:

(a) Display process: Frustum subdivision according to

a box of interest and display. (b) Data traverse

processes: traversing data and gathering render

information. (c) Data send processes: sending point-

data. (d) Render processes: Caching and rendering

the incoming data and sending the rendered images

back to the display node.

rendered, camera and mini frustum data. Received

data packets are temporarily stored on the render

node (see section 4.5). A render node creates one

image per received render packet, assuming all

necessary data packets are available. This image is

sent back to the display process. (see figure 1 (d)).

4. IMPLEMENTATION
In this section we describe the implementation of our

distributed point-based-rendering system in detail,

and comment on the applied data structures and

algorithms.

Preprocessing
The preprocessing stage is the first stage in the

algorithm and has to be executed only once for any

given input point cloud. Like other point-based

rendering algorithms [RuSz00, BoMa02], an octree

based hierarchical spatial subdivision structure is

created from an input point cloud. The advantages of

this data structure are: (1) fast data traversal: frustum

and backface-culling, optimal succession of octree

cells cache coherence [ChTr99] (2) immediate access

to all data in an octree cell (for data sending) (3)

multi-resolution. If no normals or splat sizes per 3D

position are included in the point cloud, these data

can be simply derived from sample neighborhoods.

4.1.1 Octree
We construct the octree data-structure using a two-

step procedure. First, we create an ordinary axis-

aligned octree. Since we are working with large

datasets, special care has to be taken to limit the

octree recursion, which could adversely affect the

algorithms efficacy. Therefore we assume local

neighborhoods to be planar. While subdividing the

octree, the algorithm resizes each octree cell to the

bounding box of points located in this cell (see figure

2 (a) and (b)). Since this changes the proportions of

the octree cells, these cells could be subdivided

amongst there biggest edge(s) (see figure 2 (c)(d)) for

an optimal spatial division. The leaf octree cells

contain the actual point-data.

In the second step the heavy loaded octree is

rewritten to a fast, compact and memory-coherent

octree. Initially, we split the point-data from the

octree. The algorithm recursively creates the point-

array. This array is sorted in such a way that every

octree cell has a start index and a size to access its

point-data in this point-array (see figure 3). This is

useful when we need fast data-access to a non-leaf

octree cell. Besides a start index and size to its data,

each octree cell contains location, normal, normal

cone and bounding box information. Each octree cell

has some structural information: a level (section

4.1.2), an index to its sibling, and an index to its top-

level octree cell (see figure 3). All the data of the

octree cell is aligned in 64 bytes for cache-

performance reasons. If an octree cell has no siblings

it has a recursive index to its parent’s sibling (see

figure 3: octree cell 10’s sibling). A top-level octree

cell is a uniform parent at a low depth in the octree: it

shares the same point-data as any octree cell beneath

it. Each octree cell has an index to the top-level

octree cell that contains its data (see figure 3). To

align the data structure and avoid cache trashing

[ChTr99] we write the octree down to an array, the

octree-cell-array, by traversing the octree in depth-

first order (the same order as the data traverse

processes use (see figure 3)) This way we do not need

to save a pointer to the first child of an octree cell.

0

1 5 11

2 3 4 6 12 13

8 9 10 14 15 16

7

DATA SEND PROCESS

Top-level octree cell 1 data Top-level octree cell 5 data Top-level octree cell 11 data

Data
level0

 1

1 5 11

next sibling

DATA TRAVERSE PROCESS

Top-Level Octree Cell Array

i
Top-Level Octree CellsOctree cell at index i

in the octree-cell-array
X Y

X: top-level octree cell

Y: level

 4

 1 1 1 1 1

 1 1 1 1 1 2 2

 2 3 3

 1 1 1 5 5

 5 5 5

 11 11

 11 11 11

 1 5 11

 -1
First Child

Data

RENDER PROCESS

1 5 11 Top-Level Octree Cell Array

Top-level octree cell 3 data

Data Stream

Render Stream

Top level to

Render Node Stream

Control Stream

Render

Packet

Data Packet

 11,S 15

Top-level octree cell 5 data

 5, S 7

 i ,S j

i : top-level octree cell

j : Start index to octree cells data

 in top- level octree cell i

 i , S j

Content of a Render Packet

Point-Array

Octree-Cell-Array

Figure 3: The octree data structure: Data Traverse Process: octree written down to an array, all information

available except the point-data. Data Send Process: Top-level octree cell array pointing to point-array. Render

Process: Top- level octree cell array pointing to received data packets. Render packets show what has to be

rendered.

(a) (b) (c)

(d)
Figure 2: the octree cell (a) shrinks to the bounding-

box of its points: (b). Subdividing a small edge (depth

edge in (b)) should be avoided. Therefore (b) could

be subdivided like (c). (d) Good solution for this case.

4.1.2 Multi Resolution
It is not necessary to use the full point-data for a

model far from the camera. It is better to use a

compact version of the data to save processing and

network resources. Other algorithms, e.g. [RuSz00],

use the information in their spacial subdivision

scheme to create a multi-resolution model. Since we

decouple the data structure from the point-data, we

cannot introduce multi-resolution point-data in the

data-structure. Therefore level-splats are introduced.

As we mentioned in the previous section, every

octree cell has a level (see figure 3). Data-points have

level zero, leaf octree cells have level one, and the

levels of all other octree cells is one more than the

maximum level of their children (see figure 3). To

create level(n) splats we build for each level(n)

octree cell a spatial subdivision data-structure on its

level(n-1) splats. We use this data structure together

with a covariance analysis [PaMa02] (Mahalanobis

distance [JoIT]) to cluster level(n-1) splats to level(n)

splats.

Display process
The system contains only one display process, which

provides the user-interaction. The display process

dynamically divides the view frustum into mini view

frusta. This is a sort first approach [MoSt94]. The

dimensions of these mini frusta are computed

considering a box of interest. Typically this box is the

bounding box of the point-data. The display process

sends these mini frusta together with camera data and

a timestamp to data traverse processes that reported

to be idle. The display process keeps a queue of

incoming images and sequentially displays these.

Data traverse process
A data traverse process only loads the octree-cell-

array (see section 4.1.1) into its main memory. This

implies that the data traverse processes can work on

the entire data set without loading the massive point-

data. This way the computational work can be

decoupled from the data, resulting in a well-balanced

workload. Each idle data traversing process asks the

display process a new mini frustum and creates a

render packet associated with it. This render packet is

filled during the traversal of the octree as described

below:

 TraverseOctreeCellArray(){

 int index = 0;

 do

 if(whole array[index] in mini frustum)

 AddToPacket(index); index = siblingindex

 else if(part of array[index] in mini frustum)

 if(array[index] benefit of subdivision is high)

 index++

 else

 AddToPacket(index); index = siblingindex

 else if(array[index] out mini frustum)

 index=siblingindex

 while(index exists) }

Where array is the octree-cell-array, index is the

position in this array of the octree cell that we are

using and siblingIndex is the position of the sibling of

this octree cell in the octree-cell-array. This function

exploits the structure of the octree-cell-array and

avoids cache trashing [ChTr99]. Furthermore it uses

frustum culling and decides whether the benefit of

examining the children of the octree cell is sufficient.

The AddToPacket function works on the octree cell

at position index in the octree-cell-array. First we try

to backface cull the octree cell, considering its

normal and normal cone. If the top-level octree cell

of the octree cell does not exist, we are too high in

the octree and need to examine the children of the

octree cell. The algorithm decides which data

resolution it should use depending on the screen

resolution, the octree cells distance to the camera and

the available data resolutions for this octree cell. The

size and the start index of the octree cells data are

added to the render packet. The added start index is

the offset from the octree cells data to the top-level

octree cells data (see figure 4).

StartIndex(Toplevel(i))

StartIndex(i)

added start index

Point-Data-Array

offset

Added Start index = StartIndex(i) - StartIndex(toplevel(i)).

Where i is an octree cell.

Figure 4: Added start index is the offset from the

octree cells data to the top-level octree cells data.

The indices of the used top-level octree cells are also

added to the render packet. When the octree traversal

is finished, the render packet is ready. Every data

traverse process has information concerning the

current workload and the available data on each

render node (see section 4.5). The render node with

the smallest cost is chosen to receive and render the

render packet. The cost is computed as described

next:

Cost(i) = Render Cost(i)+Network Cost(i)

Render Cost(i) = workload on render process(i)*Ts

Network Cost(i) = unavailable data on render process(i) * Tn

Where i is a render node, Ts is the time to render one

splat and Tn is the inverse network speed. Finally the

data traverse process informs all data send processes

what unavailable point-data they need to send to the

chosen render node.

Data send process
A data send process loads the point-array, or a part

of it, grouped per top-level octree cell in its main

memory (see figure 3).

Data send processes receive their instructions from

the data traverse processes; they inform the data send

processes to which render node which top-level

octree cells data should be sent (see figure 3). Data

send processes always send the entire point-data of a

top-level octree cell.

Render process
In [MoSt94], the authors state that a sort first

approach is only scalable if the frame-to-frame

coherence is exploited. Therefore, we introduce top-

level octree cells. These are regular octree cells at a

low depth in the octree (depth three, four or five

depending on the size of the model). Combined, all

top-level octree cells mutually exclusive enclose the

entire point-array (see figure 3). When using top-

level octree cells we avoid both redundant data in the

cache of our render processes and high network

traffic. Furthermore, we exploit the frame-to-frame

coherence, by sending more data than directly

needed.

A render node is a separate workstation running four

render processes that share the same memory place.

A render node receives two kinds of data streams,

one from the data traverse processes and one from the

data send processes. Initially, each render node

contains an empty array with all top-level octree

cells. The point-data in this array is filled each time

point-data of a top-level octree cell is received from a

data send process. Render packets, sent by the data

traverse processes, contain pointers to the point-data

of the octree cells that lie in the mini frustum. Each

pointer is an offset in the point-data of the top-level

octree cell where the pointers octree cell belongs to

(see figure 3 and 4). Render packets also indicate

which top-level octree cells point-data should be

available to render this packet. If all requested point-

data is available, an idle render process will render

the packet. As long as the requested data is not

available, the packet will be queued. To avoid

running out of memory, a least recently used caching

scheme is applied. The least recently used point-data

of a top-level octree cell will be deleted after a time-

out period has expired. All data traverse processes

will be informed about this, so they can recompute

the cost of sending data to that render node. For the

same reason, render nodes inform the data processes

about their current workload, this is the amount of

points they still need to render. The rendered image is

sent back to the display process for composition and

display.

In our current framework we use a simplified EWA

[ZwMA01] splatting algorithm that could be easily

replaced by a more advanced splatting algorithm if

required.

5. RESULTS
The PC cluster used for our experiments consist of 9

workstations. Each node has two 2.4 Ghz Intel

Pentium IV Xeon processors, 2 GB DDR Ram, and is

running Suse Linux 9.1. The nodes communicate with

the LAM MPI implementation through a gigabit

network. Since we are using a purely software based

implementation, we exploit the computational power

of each workstation and run several processes

simultaneously. In our test setup the system runs as

many Data Traverse as Render Processes (please note

that there is not a one-to-one mapping between these

processes.)

Scalability

5.1.1 Model Complexity
We first consider the scalability of our system with

regards to the model complexity. We have two test

cases: (1) three dragon point sets with 0.3M, 1,2M

and 4,2M points. (2) Different models with different

complexities: Dragon 4,2M points, Turbine Blade

10M points, Hand 5M points and Venus 3M points.

5.1.1.1 Splats Per Second
Our experiments showed that if we use only one

render node, we are able to splat an average of 1.5

0

50

100

150

200

250

1 2 3 4 5 6 7 8

(a) Render Nodes

FPS

Dragon 0.3M

Dragon 1,2M

Dragon 4,2M

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8

(b) Render Nodes

FPS

Venus 3.3M

Dragon 4.2M

Hand 5M

Blade 10M

0

5

10

15

20

25

30

(c) Time

FPS

Fps

Avg

Figure 6:(a)(b) If the model grows in complexity more point are needed each frame. Since the splat rate is

rather constant, the frame rate will drop. For non-complex models we could render up to 210 fps while very

complex models still result in 11 fps.(c) the frame rate is rather constant

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8

(a) Render Nodes

Msps

Dragon 0.3M

Dragon 1,2M

Dragon 4,2M

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8

(b) Render Nodes

Msps

Venus 3.3M

Dragon 4.2M

Hand 5M

Blade 10M

Figure 5:(a)(b) We averagely splat 1.5 Million Splats per Second per render node. If the model grows in

complexity the splat rate could drop a little because the cost of traversing the octree increases.

Million Splats per Second, if all necessary data is

available on the render node. Figure 5 shows the

scalability of the splats per second. If the model

grows in complexity, the global splat rate could drop

a little because the cost of traversing the octree

increases (the difference between figure 5 (a) Dragon

0.3M and (b) Blade 10M).

5.1.1.2 Frames per Second
If the model grows in complexity, more points need

to be rendered each frame. Since the splat rate is

more or less constant (see figure 5), the frame rate

will drop for these complex scenes (see figure 6 (a)).

However, it is not necessary to render more points

than dictated by the screen resolution. This means the

frame rate does not entirely depend on the complexity

of the model, it also depends on the screen resolution

and the available model resolutions. We could speed

up the frame rate by choosing the optimal model

resolution for each octree cell, depending on its

distance to the camera and the screen resolution (see

figure 6(b)). This results in a scalable frame rate.

Figure 6 (c) shows us that the frame rate is rather

constant. If the frame rate drops, point-data packets

are sent.

5.1.2 High Resolution
A small part of the computational power is spent on

sending images to the display process that loads them

to the graphics board. This implies that the

performance of our system is not very sensitive to the

screen resolution, if the number of splats stays

constant. As we can see on figure 7(a) the frame rate

only drops if the resolution becomes too high. This is

a result of the high communication costs associated

with sending high-resolution images. However, if the

number of splats increases with the resolution, as we

described section 5.1.1, the frame rate will drop faster

(see figure 7(b)), because more points need to be

rendered. However, the quality of these images will

be higher.

Load Balance
Each render node has a cost to render a given render

packet. The correct choice of the render node with

the smallest cost (see section 4.3 data traverse node)

is vital for good load balancing. In figure 7(c) the

workload for 8 render nodes is depicted, during the

rendering of the Turbine Blade point set (10M

points). When our process starts, the workload is low

because many point-data packets are sent to the

render nodes. Figure 7(c) clearly indicates that our

cost function and system architecture is well chosen,

because all render nodes are almost equally loaded

and the global workload does not drop too much.

When the workload drops, point-data packets are

sent.

6. CONCLUSION
This paper presents a scalable data distribution

strategy for parallel point-based rendering on a PC

cluster architecture. Since the used data-structure and

the algorithm’s architecture decouple the data from

the computational work, the system achieves a well

balanced workload and each data traverse process can

work on the entire data without a full replication of

the data. The algorithm dynamically partitions the

screen into smaller mini frusta (a sort-first approach).

Our technique exploits the sort-first properties of the

algorithm, by sending more data than is directly

needed. Large data sets at high screen resolution can

be rendered at interactive frame rates. Point-Based

rendering is well suited for a sort-first parallel

rendering approach because the overlap factor is

negligible.

Topics for further study include faster software point-

splatting algorithms with higher quality, using low-

level processor instructions. Also, combining

clustered CPU and GPU rendering might be an

interesting research venue.

7. ACKNOWLEDGEMENTS
We would like to thank everybody who helped us

with this publication and the Stanford Computer

Graphics Laboratory for sharing the models used in

our experiments.

8. REFERENCES
[BoMa02] M. Botsch, A. Wiratanaya L. Kobbelt, Efficient

high quality rendering of point sampled geometry, 13th

Eurographics workshop on Rendering, pp 53-64, 2002.

[BoMa03] M.Botsch, L.Kobbelt,High-Quality Point-Based

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8

(a) Render Nodes

FPS

640*480

1248*1024

1920*1440

4000*3000

0

5

10

15

20

25

1 2 3 4 5 6 7 8
(b) Render Nodes

FPS

640*480

1248*1024

1920*1440

4000*3000

Load Balance

0

100

200

300

400

500

600

700

800

(c) Time

CPU

Figure 7:(a) Tests are done with the dragon 4M point set. The system is, if the number of splats stays

constant, only sensitive to the screen resolution if the overhead of sending the images back to the display

node is too high (b) the frame rate drops faster because the number of splats increases with the resolution

(c) the workload for 8 render nodes, during the rendering of the Blade point set (10M points).

Rendering on Modern GPUs, 11th Pacific Conference

on Computer Graphics and Applications, pp 335,2003.

[BoMa04] M.Botsch,M.Spernat,L.Kobbelt,Phong Splat-

ting, pp 25-32, Symp.on Point-Based Graphics,2004.

[CaEd74] E. E. Catmull, A subdivision algorithm for

computer display of curved surfaces.1974.

[ChTr99] T.M. Chilimbi, M. D. Hill, J. R. Larus, Cache-

Conscious Structure Layout, Programming language

design and Implementation SIGPLAN99, pp 1 –12,

1999.

[CoLi02] L. Coconu, H Hege, Hardware-accelerated point-

based rendering of complex scenes, 13th Eurographics

workshop on Rendering, pp 43- 52,2002.

[DaCa03] C. Dachsbacher, C Vogelgsang and Marc

Stamminger, Sequential point trees, Trans. Graph.,pp

657-662, 2003.

[DeeM93] Data Complexity for virtual reality: where do all

the triangles go?, IEEE Virtual Reality Annual

International Symposium, pp 357-363, 1993

[FuTh96] T. A. Funkhouser, Coarse-Grained Parallelism

for Hierarchical Radiosity Using Group Iterative

Methods, Computer Graphics,pp 343-352, 1996.

[GoSt96] S.J.Gortler, R. Grzeszczuk,R. Szeliski,M. F.

Cohen, The Lumigraph,SIGGRAPH96, pp 253–262,

1996

 [HuGr99]G. Humphreys, P. Hanrahan, A distributed

graphics system for large tiled displays, Proceedings of

the conference on Visualization '99,pp 215-224,1999.

 [HuGr00]G. Humphreys, I. Buck, M. Eldridge,P.

Hanrahan, Distributed rendering for scalable displays,

ACM/IEEE conference on upercomputing,pp.30,2000.

 [HuGr02]G. Humphreys, M. Houston, R. Ng,R Frank, S.

Ahern,P. D. Kirchner,J. T. Klosowski, Chromium: a

stream-processing framework for interactive rendering

on clusters, Computer graphics and interactive

techniques,pp 693-702 ,2002.

[JoIT]I.T. Jolliffe, Springers Series in Statistics, Principal

Component Analyse, second edition, pp 92- 93. ISBN

0-387-95442-2

[LeMa85] M. Levoy, T. Whitted, The use of points as

display primitive. Tech. Rep. TR 85-022, University of

North Carolina at Chapel Hill.

[LeMa96] M. Levoy, P. Hanrahan, Light Field

Rendering,SIGGRAPH96,pp 31 – 42,1996

[McLe95] L. McMillan, G. Bishop, Plenoptic Modeling:

An Image-Based Rendering System, pp 39-46, 1995.

[MoSt94] S. Molnar,M. Cox, D. Ellsworth,H. Fuchs, A

Sorting Classification of Parallel Rendering, IEEE

Computer Graphics and Algorithms, p23-32, 1994.

[MuCa95] C. Mueller, The sort-first rendering architecture

for high-performance graphics, symposium on

Interactive 3D graphics, pp 75 - end, 1995.

[PaMa02] M. Pauly, M. Gross, L.P. Kobbelt, Efficient

simplification of point-sampled surfaces, IEEE

Visualization pp 136- 170,2002.

[PfHa00] H. Pfister, M. Zwicker,J.v. Baar, M. Gross,

Surfels: Surface Elements as Rendering Primitives,

SIGGRAPH00, pp 335-342,2000

[ReEr98] E. Reinhard, A. Chalmers,F. W. Jansen,

Overview of Parallel Photo-realistic Graphics, nr CS-

EXT-1998-147, 1998.

[RuSz00] S. Rusinkiewicz, M. Levoy, QSplat: A

Multiresolution Point Rendering System for Large

Meshes, pp 343-352, Siggraph00, 2000.

[RuSz01] S. Rusinkiewicz, M. Levoy,Streaming QSplat: a

viewer for networked visualization of large, dense

models, symposium on Interactive 3D graphics,pp 63-

68, 2001.

[SaRu00] R. Samanta,T. Funkhouser,K. Li, J. Pal Singh,

Hybrid sort-first and sort-last parallel rendering with a

cluster of PCs, Eurographics workshop on Graphics

hardware, pp 97-108, 2000.

[SaRu01] R. Samanta,T. Funkhouser,K., Parallel

Rendering with K-way Replication, IEEE 2001

symposium on parallel and large-data visualization and

graphics, pp 75 –84, 2001

[ShJo98] J.Shade, S. Gortler,L. He R. Szeliski, Layered

depth images, Computer graphics and interactive

techniques, pp 231 –242, 1998.

[WaIn01] I. Wald, P. Slusallek, C. Benthin, Interactive

Distributed Ray Tracing of Highly Complex Models,

EUROGRAPHICS, Workshop on Rendering, pp 277-

288, 2001,

[WeLe89] L. Westover, Interactive volume rendering,

Chapel Hill workshop on Volume visualization pp 9-

16, 1989.

[ZaDa95] D. Zareski, B.Wade, P. Hubbard,P. Shirley,

Efficient Parallel Global Illumination Using Density

Estimation,IEEE/ACM 1995 Parallel Rendering

Symposium (PRS '95),pp 47- 54, 1995.

[ZwMA01] M. Zwicker, H. Pfister, J.v.Baar, M.Gross,

Ewa volume splatting, IEEE Visualization 2001, pp

29-36, 2001.

Figure 8: test model: Dragon 4M points

Figure9: test model: Hand 5M points

Figure 10: test model: Turbine Blade 10M points

