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ABSTRACT 

During the last couple of years, point sets have emerged as a new standard for the representation of largely 

detailed models. This is partly due to the fact that range scanning devices are becoming a fast and economical 

way to capture dense point clouds. Traditional rendering systems are impractical when a single polygonal 

primitive contributes less than a pixel during rendering. We present a data distribution strategy for parallel point-

based rendering, using a cluster of PCs as target platform. We describe a data-structure and a system architecture, 

which allows for decoupling the point-data from the computational work. This strategy enables both a balanced 

workload as well as no full data replication on each node. We exploit frame-to-frame coherence to make our 

system scalable. The system renders high-resolution images from high complex data sets at interactive frame 

rates. To our knowledge parallel point-based rendering has not been investigated in the past. Our results indicate 

the feasibility of sort-first parallelization applied to point-based rendering. 
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1. INTRODUCTION 
A recent trend in computer graphics is the shift 

towards sample-based rendering. Today's range 

sensing devices are capable of producing highly 

detailed and massive point clouds, which do not fit in 

the main memory of a single commodity PC.  Point-

based rendering can be more efficient than traditional 

rendering for these complex models if triangles 

occupy a small screen region. Processing many small 

triangles leads to bandwidth bottlenecks and 

excessive floating point and rasterization 

requirements [DeeM93]. Because of the absence of 

topology and relative positions, point-clouds are well 

suited for spatial subdivision and distribution 

between different PC's. One way of visualizing these 

enormous data sets is the use of expensive 

multiprocessor graphics servers with a huge main 

memory. A reasonable less expensive alternative of 

these dedicated graphics machines is a cluster of 

commodity PC's, linked by a high bandwidth 

network. The main challenge is to develop efficient 

parallel rendering algorithms that scale well within 

the processing, storage and communication 

characteristics of a PC cluster. Using this system 

architecture has many advantages: price-performance 

ratio, modularity, flexibility, storage capacity and 

scalability. Processing power, storage and memory 

capacity grow linearly with the number of PCs.  A 

drawback to the traditional, tightly-integrated parallel 

computers is the fact that there is no fast access to a 

shared virtual memory space, and that the bandwidth 

and latencies of inter-processor communication are 

significantly higher. The challenge is to develop 

algorithms that evenly divide workload among PCs, 

do not introduce extra work due to parallelization and 

scale well as more PCs are added to the system.  

In this paper we propose a data and work distribution 

scheme for parallel point-based rendering on a PC 

cluster. 

This paper is organized as follows: first we discuss 

previous work in section 2. Next, we give a short 

system overview in section 3. In section 4 we present 

our implementation, data structures and system 

architecture. Finally, sections 5 and 6 discuss our 

results and conclusions. 
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2. PREVIOUS WORK 

Point-Based Rendering 
During the last couple of years, there has been an 

increased interest of the computer graphics 

community in point based rendering techniques. 

Point-based rendering dates back as far as 1985, the 

year in which Levoy and Whitted [LeMa85] 

proposed the use of points to model and render 3D 

continuous surfaces. In 1989, Westover [WeLe89], 

introduced splatting for interactive volume rendering. 

Splatting algorithms handle volume data as a set of 

particles that absorb and emit light. Westover’s basic 

splatting algorithm suffers from considerable artifacts 

due to inaccurate visibility determination when 

composing the splats from back to front. More 

recently, image-based rendering [McLe95] has 

become popular because the rendering time is 

proportional to the number of pixels (points) warped 

from the source to the output images. This contrasts 

with the scene-dependant time complexity for more 

traditional rendering techniques. Later on, the 

Lightfield [LeMa96] and Lumigraph [GoSt96] 

techniques were developed. These algorithms 

describe the radiance of a scene as a function of 

position and direction in a four-dimensional space, 

however, at the price of storage overhead.  

One of the first point based rendering systems was 

QSplat [RuSz00]. In QSplat, a multi-resolution 

hierarchy, based on bounding spheres, is employed 

for the representation and progressive visualization of 

large models. The system is able to handle large 

meshes at constant frame rate. Pfister and Zwicker 

introduced surfels [PfHa00], short for surface 

elements. Surfels are a powerful paradigm for 

efficiently rendering complex geometric objects at 

interactive frame rates. Surfels can handle complex 

shapes; introduce low rendering cost and high image 

quality. Three orthogonal LDI's [ShJo98] are used to 

sample objects and image space filters are employed 

to achieve hole-free rendering. Later Zwicker et al. 

presented a framework for direct volume rendering 

[ZwMA01] using a splatting approach based on 

elliptical Gaussian kernels, superior to the footprints 

of Westover [WeLe89]. This results in high-quality 

anti-aliased rendering without excessive blurring. 

Botsch et al. proved that a pure software 

implementation could render up to 14 million Phong 

shaded samples per second by using a quantization of 

splat shapes [BoMa02]. However the models used to 

achieve these rendering times are not complex in 

terms of memory requirement. Their quantized 

hierarchical data representation is very compact with 

a memory consumption of less than 2 bits per point 

position. 

Software-based point-based rendering algorithms 

have proven to be superior to polygon-based 

rendering algorithms for highly complex scenes. High 

quality results can be achieved but their rendering 

speed is limited. Recent algorithms use graphical 

hardware to overcome this problem. This idea was 

first introduced in [RuSz00].  In [CoLi02] the authors 

avoid using the z-buffer by sorting an octree from 

back to front each frame similar to McMillan 

[McLe95]. In [BoMa03] the authors provide high 

quality as well as efficient rendering based on a two-

pass splatting technique with Gaussian filtering. 

Finally, in their most recent publication the authors 

propose to base the lighting of a splat on a linearly 

varying normal field associated with it, resulting in a 

visually high quality image [BoMa04]. Dachsbacher 

et al. [DaCa03] present a hierarchical LOD structure 

that is suitable for GPU implementation. They can 

process 50M low quality points per second 

A main drawback of all the GPU algorithms is that 

they only perform well on rather simple models with 

a low screen resolution. This is due to the fact that, 

although extremely fast, a GPU’s on-board memory 

is currently rather limited in terms of data storage. To 

overcome this limitation we use a PC cluster to speed 

up the rendering. Since PC clusters have a scalable 

memory capacity, they are well suited for the 

interactive rendering of high-resolution images of 

complex models. 

A short overview of parallel rendering is presented 

next. 

Parallel rendering 
Parallel rendering systems have long been used for 

ray tracing [WaIn01], radiosity and global 

illumination [FuTh96, ZaDa95, ReEr98]. These 

systems can often be classified by the stage in the 

graphics pipeline in which the primitives are 

partitioned: sort-first, sort-middle or sort-last 

[MoSt94]. In sort-first systems, screen space is 

partitioned in non-overlapping 2D tiles, each of 

which is rendered independently. The final image is 

obtained by composing all 2D tiles.  The main 

advantage of this method is the low communication 

cost. The efficiency of sort-first algorithms is limited 

by redundant rendering due to overlapping tiles 

[SaRu01]. In general, since the overlap factors grow 

with increasing numbers of processors, the scalability 

of sort first systems is limited  [MuCa95]. Sort-

middle, the most straightforward approach, is 

commonly used in traditional systems. Primitives are 

redistributed in the middle of the rendering pipeline, 

between geometry processing and rasterization. This 

approach is not well suited for a cluster of PC’s due 

to its high communication requirements. Finally sort-

last methods defer sorting until the end of the 

rendering pipeline. The main advantage of sort-last is 

its scalability [MoSt94]. 

In the last few years, there has been a growing 

interest in PC clusters for interactive rendering tasks. 

Humphreys and Hanrahan presented a sort-first 

system designed for 3D graphics called WireGL 

[HuGr99, HuGr00]. WireGL was used to achieve 



scalable display size with minimal impact to the 

application's performance. Unlike sort-middle, sort-

first can use retained-mode scene graphs to avoid 

most data transfers for graphics primitives between 

processors [MuCa95]. In [SaRu00] a hybrid sort-first 

sort-last approach for parallel polygon rendering is 

presented. A specific algorithm for dynamic, view-

dependent and coordinated partitioning is used of 

both the 3D model and the 2D image, which has 

positive results in terms of both performance and 

scalability. 

Continual growth in typical dataset size and network 

bandwidth has made stream-based analysis a hot 

topic for remotely stored 3D models [RuSz01]. 

Streams are appropriate computational primitives, 

because large amounts of data arrive continuously, 

and it is impractical or unnecessary to retain the 

entire dataset. Chromium [HuGr02] is another a 

stream-processing framework based on WireGL. Its 

stream filters can be arranged to create sort-first and 

sort-last parallel graphics architectures.  

Since we are interested in high-resolution images, we 

prefer a PC cluster method to the recently popular 

GPU methods because of its scalable memory 

capacity. High-resolution images require complex 

models with many point samples, which cannot be 

accommodated by the memory of the graphical 

hardware. We believe our sort-first parallelization is 

scalable because the overlap factor is negligible in 

point-based rendering. To the authors’ knowledge 

parallel point-based rendering has not been 

investigated in the past. 

3. SYSTEM OVERVIEW 
Our system operates in two stages: 

Preprocessing Stage: The first stage serves as an 

offline preprocessing stage and is only performed 

once per 3D model. Details are provided in section 

4.1. The input for the first stage is a point- cloud. The 

system creates a multi-resolution hierarchical spatial 

subdivision structure, optimized for fast data 

traversal.  

Rendering stage: The second stage is the render 

stage. We use four types of processes in our system 

architecture to decouple the data from the 

computation in order to achieve an optimal load 

balance. We briefly describe these processes of the 

rendering pipeline below (Details are provided in 

section 4.2 to 4.5): 

Display process: This process executes the first and 

last stage of the rendering pipeline. In the first stage, 

the display process divides the view frustum into a set 

of smaller mini view frusta, according to a box of 

interest, and sends them together with camera data to 

the data traverse processes. After computation in the 

final stage, the display process receives the images 

corresponding to these mini frusta and loads them 

into the framebuffer for display.(see figure 1 (a)). 

Data traverse process: A data traverse process 

requests a mini frustum from the display process. 

While traversing the octree data structure, the data 

traverse process clips the octree cells against the mini 

frustum, and decides which octree cells are suitable 

for rendering.  For each mini frustum the data 

traverse process maintains, together with the list of 

useful octree cells, a list of used top-level octree 

cells. These are hierarchically higher octree cells (see 

figure 3).  Depending on the workload and the 

available data on the render nodes (see section 4.5), 

the data traverse process can correctly determine the 

render node the data should be sent to. (see figure 

1(b)). 

Data send process: The data traverse processes 

inform the data send processes what point-data 

should be sent to which render node (see section 4.5). 

(see figure 1(c)). 

Render process: Render processes receive packets 

from data send processes (data packets) and from 

data traverse processes (render packets). Data packets 

contain point-data of a top-level octree cell. Render 

packets contain pointers to the data that has to be 
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Figure 1: System overview of the rendering pipeline: 

(a) Display process: Frustum subdivision according to 

a box of interest and display. (b) Data traverse 

processes: traversing data and gathering render 

information. (c) Data send processes: sending point-

data. (d) Render processes: Caching and rendering 

the incoming data and sending the rendered images 

back to the display node. 

 



rendered, camera and mini frustum data. Received 

data packets are temporarily stored on the render 

node (see section 4.5). A render node creates one 

image per received render packet, assuming all 

necessary data packets are available. This image is 

sent back to the display process. (see figure 1 (d)). 

4. IMPLEMENTATION 
In this section we describe the implementation of our 

distributed point-based-rendering system in detail, 

and comment on the applied data structures and 

algorithms. 

Preprocessing 
The preprocessing stage is the first stage in the 

algorithm and has to be executed only once for any 

given input point cloud. Like other point-based 

rendering algorithms [RuSz00, BoMa02], an octree 

based hierarchical spatial subdivision structure is 

created from an input point cloud. The advantages of 

this data structure are: (1) fast data traversal: frustum 

and backface-culling, optimal succession of octree 

cells cache coherence [ChTr99] (2) immediate access 

to all data in an octree cell (for data sending)  (3) 

multi-resolution. If no normals or splat sizes per 3D 

position are included in the point cloud, these data 

can be simply derived from sample neighborhoods. 

4.1.1 Octree 
We construct the octree data-structure using a two-

step procedure. First, we create an ordinary axis-

aligned octree. Since we are working with large 

datasets, special care has to be taken to limit the 

octree recursion, which could adversely affect the 

algorithms efficacy. Therefore we assume local 

neighborhoods to be planar. While subdividing the 

octree, the algorithm resizes each octree cell to the 

bounding box of points located in this cell (see figure 

2 (a) and (b)). Since this changes the proportions of 

the octree cells, these cells could be subdivided 

amongst there biggest edge(s) (see figure 2 (c)(d)) for 

an optimal spatial division. The leaf octree cells 

contain the actual point-data. 

In the second step the heavy loaded octree is 

rewritten to a fast, compact and memory-coherent 

octree. Initially, we split the point-data from the 

octree. The algorithm recursively creates the point-

array. This array is sorted in such a way that every 

octree cell has a start index and a size to access its 

point-data in this point-array (see figure 3). This is 

useful when we need fast data-access to a non-leaf 

octree cell. Besides a start index and size to its data, 

each octree cell contains location, normal, normal 

cone and bounding box information. Each octree cell 

has some structural information: a level (section 

4.1.2), an index to its sibling, and an index to its top-

level octree cell (see figure 3). All the data of the 

octree cell is aligned in 64 bytes for cache-

performance reasons. If an octree cell has no siblings 

it has a recursive index to its parent’s sibling (see 

figure 3: octree cell 10’s sibling). A top-level octree 

cell is a uniform parent at a low depth in the octree: it 

shares the same point-data as any octree cell beneath 

it. Each octree cell has an index to the top-level 

octree cell that contains its data (see figure 3). To 

align the data structure and avoid cache trashing 

[ChTr99] we write the octree down to an array, the 

octree-cell-array, by traversing the octree in depth-

first order (the same order as the data traverse 

processes use (see figure 3)) This way we do not need 

to save a pointer to the first child of an octree cell. 
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(d)  
Figure 2: the octree cell (a) shrinks to the bounding-

box of its points: (b). Subdividing a small edge (depth 

edge in (b)) should be avoided. Therefore (b) could 

be subdivided like (c). (d) Good solution for this case. 



4.1.2 Multi Resolution 
It is not necessary to use the full point-data for a 

model far from the camera. It is better to use a 

compact version of the data to save processing and 

network resources. Other algorithms, e.g. [RuSz00], 

use the information in their spacial subdivision 

scheme to create a multi-resolution model. Since we 

decouple the data structure from the point-data, we 

cannot introduce multi-resolution point-data in the 

data-structure. Therefore level-splats are introduced.   

As we mentioned in the previous section, every 

octree cell has a level (see figure 3). Data-points have 

level zero, leaf octree cells have level one, and the 

levels of all other octree cells is one more than the 

maximum level of their children (see figure 3). To 

create level(n) splats  we build for each level(n) 

octree cell a spatial subdivision data-structure on its 

level(n-1) splats. We use this data structure together 

with a covariance analysis [PaMa02] (Mahalanobis 

distance [JoIT]) to cluster level(n-1) splats to level(n) 

splats.  

Display process 
The system contains only one display process, which 

provides the user-interaction. The display process 

dynamically divides the view frustum into mini view 

frusta. This is a sort first approach [MoSt94]. The 

dimensions of these mini frusta are computed 

considering a box of interest. Typically this box is the 

bounding box of the point-data. The display process 

sends these mini frusta together with camera data and 

a timestamp to data traverse processes that reported 

to be idle. The display process keeps a queue of 

incoming images and sequentially displays these.  

Data traverse process 
A data traverse process only loads the octree-cell-

array (see section 4.1.1) into its main memory. This 

implies that the data traverse processes can work on 

the entire data set without loading the massive point-

data. This way the computational work can be 

decoupled from the data, resulting in a well-balanced 

workload. Each idle data traversing process asks the 

display process a new mini frustum and creates a 

render packet associated with it. This render packet is 

filled during the traversal of the octree as described 

below: 

 TraverseOctreeCellArray(){ 

      int index = 0;   

      do 

           if(whole array[index] in mini frustum) 

               AddToPacket(index); index = siblingindex 

           else if( part of array[index]  in mini frustum) 

                if(array[index] benefit of  subdivision is high)  

                       index++ 

                else 

                       AddToPacket(index); index = siblingindex 

           else if(array[index] out mini frustum) 

                index=siblingindex 

       while(index exists)  } 

Where array is the octree-cell-array, index is the 

position in this array of the octree cell that we are 

using and siblingIndex is the position of the sibling of 

this octree cell in the octree-cell-array. This function 

exploits the structure of the octree-cell-array and 

avoids cache trashing [ChTr99]. Furthermore it uses 

frustum culling and decides whether the benefit of 

examining the children of the octree cell is sufficient. 

The AddToPacket function works on the octree cell 

at position index in the octree-cell-array. First we try 

to backface cull the octree cell, considering its 

normal and normal cone. If the top-level octree cell 

of the octree cell does not exist, we are too high in 

the octree and need to examine the children of the 

octree cell. The algorithm decides which data 

resolution it should use depending on the screen 

resolution, the octree cells distance to the camera and 

the available data resolutions for this octree cell. The 

size and the start index of the octree cells data are 

added to the render packet. The added start index is 

the offset from the octree cells data to the top-level 

octree cells data (see figure 4). 

StartIndex(Toplevel(i)) 

StartIndex(i)

added start index

Point-Data-Array

offset 

 

Added Start index = StartIndex(i) - StartIndex(toplevel(i)). 

Where i is an octree cell. 

Figure 4: Added start index is the offset from the 

octree cells data to the top-level octree cells data. 

The indices of the used top-level octree cells are also 

added to the render packet. When the octree traversal 

is finished, the render packet is ready. Every data 

traverse process has information concerning the 

current workload and the available data on each 

render node (see section 4.5). The render node with 

the smallest cost is chosen to receive and render the 

render packet. The cost is computed as described 

next: 

Cost(i) = Render Cost(i)+Network Cost(i) 

Render Cost(i) = workload on render process(i)*Ts 

Network Cost(i) = unavailable data on render process(i) * Tn 

Where i is a render node, Ts is the time to render one 

splat and Tn is the inverse network speed. Finally the 

data traverse process informs all data send processes 

what unavailable point-data they need to send to the 

chosen render node. 

Data send process 
A data send process loads the point-array, or a part 

of it, grouped per top-level octree cell in its main 

memory (see figure 3).  

Data send processes receive their instructions from 

the data traverse processes; they inform the data send 

processes to which render node which top-level 

octree cells data should be sent (see figure 3). Data 

send processes always send the entire point-data of a 

top-level octree cell. 



Render process 
In [MoSt94], the authors state that a sort first 

approach is only scalable if the frame-to-frame 

coherence is exploited. Therefore, we introduce top-

level octree cells. These are regular octree cells at a 

low depth in the octree (depth three, four or five 

depending on the size of the model). Combined, all 

top-level octree cells mutually exclusive enclose the 

entire point-array (see figure 3). When using top-

level octree cells we avoid both redundant data in the 

cache of our render processes and high network 

traffic. Furthermore, we exploit the frame-to-frame 

coherence, by sending more data than directly 

needed. 

A render node is a separate workstation running four 

render processes that share the same memory place. 

A render node receives two kinds of data streams, 

one from the data traverse processes and one from the 

data send processes. Initially, each render node 

contains an empty array with all top-level octree 

cells. The point-data in this array is filled each time 

point-data of a top-level octree cell is received from a 

data send process. Render packets, sent by the data 

traverse processes, contain pointers to the point-data 

of the octree cells that lie in the mini frustum. Each 

pointer is an offset in the point-data of the top-level 

octree cell where the pointers octree cell belongs to 

(see figure 3 and 4). Render packets also indicate 

which top-level octree cells point-data should be 

available to render this packet. If all requested point-

data is available, an idle render process will render 

the packet. As long as the requested data is not 

available, the packet will be queued. To avoid 

running out of memory, a least recently used caching 

scheme is applied. The least recently used point-data 

of a top-level octree cell will be deleted after a time-

out period has expired. All data traverse processes 

will be informed about this, so they can recompute 

the cost of sending data to that render node. For the 

same reason, render nodes inform the data processes 

about their current workload, this is the amount of 

points they still need to render. The rendered image is 

sent back to the display process for composition and 

display. 

In our current framework we use a simplified EWA 

[ZwMA01] splatting algorithm that could be easily 

replaced by a more advanced splatting algorithm if 

required.  

5. RESULTS 
The PC cluster used for our experiments consist of 9 

workstations. Each node has two 2.4 Ghz Intel 

Pentium IV Xeon processors, 2 GB DDR Ram, and is 

running Suse Linux 9.1. The nodes communicate with 

the LAM MPI implementation through a gigabit 

network. Since we are using a purely software based 

implementation, we exploit the computational power 

of each workstation and run several processes 

simultaneously. In our test setup the system runs as 

many Data Traverse as Render Processes (please note 

that there is not a one-to-one mapping between these 

processes.) 

Scalability 

5.1.1 Model Complexity 
We first consider the scalability of our system with 

regards to the model complexity. We have two test 

cases: (1) three dragon point sets with 0.3M, 1,2M 

and 4,2M points. (2) Different models with different 

complexities: Dragon 4,2M points, Turbine Blade 

10M points, Hand 5M points and Venus 3M points. 

5.1.1.1 Splats Per Second 
Our experiments showed that if we use only one 

render node, we are able to splat an average of 1.5 
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Figure 6:(a)(b) If the model grows in complexity more point are needed each frame. Since the splat rate is 

rather constant, the frame rate will drop. For non-complex models we could render up to 210 fps while very 

complex models still result in 11 fps.(c) the frame rate is rather constant 
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Figure 5:(a)(b) We averagely splat 1.5 Million Splats per Second per render node. If the model grows in 

complexity the splat rate could drop a little because the cost of traversing the octree increases.  



Million Splats per Second, if all necessary data is 

available on the render node. Figure 5 shows the 

scalability of the splats per second. If the model 

grows in complexity, the global splat rate could drop 

a little because the cost of traversing the octree 

increases (the difference between figure 5 (a) Dragon 

0.3M and (b) Blade 10M).  

5.1.1.2 Frames per Second 
If the model grows in complexity, more points need 

to be rendered each frame. Since the splat rate is 

more or less constant (see figure 5), the frame rate 

will drop for these complex scenes (see figure 6 (a)). 

However, it is not necessary to render more points 

than dictated by the screen resolution. This means the 

frame rate does not entirely depend on the complexity 

of the model, it also depends on the screen resolution 

and the available model resolutions. We could speed 

up the frame rate by choosing the optimal model 

resolution for each octree cell, depending on its 

distance to the camera and the screen resolution (see 

figure 6(b)). This results in a scalable frame rate. 

Figure 6 (c) shows us that the frame rate is rather 

constant. If the frame rate drops, point-data packets 

are sent. 

5.1.2 High Resolution 
A small part of the computational power is spent on 

sending images to the display process that loads them 

to the graphics board. This implies that the 

performance of our system is not very sensitive to the 

screen resolution, if the number of splats stays 

constant. As we can see on figure 7(a) the frame rate 

only drops if the resolution becomes too high. This is 

a result of the high communication costs associated 

with sending high-resolution images. However, if the 

number of splats increases with the resolution, as we 

described section 5.1.1, the frame rate will drop faster 

(see figure 7(b)), because more points need to be 

rendered. However, the quality of these images will 

be higher. 

Load Balance 
Each render node has a cost to render a given render 

packet. The correct choice of the render node with 

the smallest cost (see section 4.3 data traverse node) 

is vital for good load balancing. In figure 7(c) the 

workload for 8 render nodes is depicted, during the 

rendering of the Turbine Blade point set (10M 

points). When our process starts, the workload is low 

because many point-data packets are sent to the 

render nodes. Figure 7(c) clearly indicates that our 

cost function and system architecture is well chosen, 

because all render nodes are almost equally loaded 

and the global workload does not drop too much. 

When the workload drops, point-data packets are 

sent. 

6. CONCLUSION 
This paper presents a scalable data distribution 

strategy for parallel point-based rendering on a PC 

cluster architecture. Since the used data-structure and 

the algorithm’s architecture decouple the data from 

the computational work, the system achieves a well  

balanced workload and each data traverse process can 

work on the entire data without a full replication of 

the data. The algorithm dynamically partitions the 

screen into smaller mini frusta (a sort-first approach). 

Our technique exploits the sort-first properties of the 

algorithm, by sending more data than is directly 

needed. Large data sets at high screen resolution can 

be rendered at interactive frame rates. Point-Based 

rendering is well suited for a sort-first parallel 

rendering approach because the overlap factor is 

negligible. 

Topics for further study include faster software point-

splatting algorithms with higher quality, using low-

level processor instructions. Also, combining 

clustered CPU and GPU rendering might be an 

interesting research venue. 
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Figure 8: test model: Dragon 4M points 

 
Figure9: test model: Hand 5M points 

 
Figure 10: test model: Turbine Blade 10M points

 


