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ABSTRACT
Closed semi-algebraic sets in the plane form a powerful model
of planar spatial datasets. We establish a characterization
of the topological properties of such datasets expressible in
the relational calculus with real polynomial constraints. The
characterization is in the form of a query language that can
only talk about points in the set and the “cones” around
these points.

1. INTRODUCTION
A simple yet powerful way of modeling spatial data is us-
ing semi-algebraic sets. A (possibly infinite) subset of n-
dimensional Euclidean space Rn is called semi-algebraic if
it can be defined by a boolean combination of polynomial in-
equalities. The present paper is particularly concerned with
sets in the plane, R2. First-order logic over the reals with
arithmetic, order, and an extra binary predicate S, denoted
here by FO[R], then becomes a spatial query language, fit-
ting in the well-known framework of constraint query lan-
guages introduced by Kanellakis, Kuper, and Revesz [10,
12]. For example, ‘is the set S bounded?’ can be expressed
in FO[R] as ∃b∀x∀y(S(x, y)→ (−b < x < b ∧ −b < y < b)).
We will consider only sets that are closed in the ordinary
topology on R2. This assumption is of great help from a
technical point of view, and is harmless from a practical
point of view.

A property of spatial datasets is called topological if it is
invariant under topological transformations of the plane.
More precisely, whenever the property holds for some A, it
must also hold for any other A′ that is the image of A under
a homeomorphism of the plane (a bijection f : R2 → R2

such that both f and f−1 are continuous). For example,
the above-mentioned property ‘the set is bounded’ is topo-
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logical, as is ‘the set is a plane curve’, and ‘the set has
three connected components’. In contrast, properties like
‘the set contains a straight line segment’ and ‘the set is a
perfect circle’ are not topological. Apart from our interest
in topological properties as a natural and mathematically
well-motivated class of properties, they are also practically
motivated by geographical information systems [5, 6, 7, 13].

Given the above setup, a natural question is to understand
exactly which topological properties are first-order, i.e., ex-
pressible in FO[R]. For example, ‘the set is a plane curve’ is
first-order [20], but properties involving topological connec-
tivity are not [2, 9, 12]. It is undecidable whether a given
FO[R]-sentence is topological [20]. Yet, this leaves open the
possibility to syntactically capture topological FO[R]. In-
deed, a syntactic characterization has been a target of earlier
work on the topic [18, 19, 11]. This is what we will do in
the present paper.

Our starting point is the work by Kuijpers, Paredaens and
Van den Bussche [19], which considers the more basic ques-
tion of understanding topological elementary equivalence:
when are two sets indistinguishable by means of topologi-
cal FO[R]-sentences? A characterization was discovered in
terms of the cone types occurring in the two sets. Indeed,
semi-algebraic sets are topologically well-behaved in that lo-
cally around each point they are “conical” [3]. The cone of a
point consists of the lines and regions arriving in the point,
and can thus be represented as a (circular) string of L’s
(lines) and R’s (regions). The characterization states that
two sets are topologically elementary equivalent if and only
if they have the same number of occurrences of every cone.

This characterization immediately suggests “Cone Logic”
[11]: a topological query language that allows to express
boolean combinations of properties of the form ‘there are at
most k occurrences of cones satisfying property γ’. Here, γ
is any first-order property of cones viewed as circular strings.
The first-order properties of strings are well-known to be the
star-free regular languages [22]. It is tempting to conjecture
that Cone Logic exactly captures topological FO[R], but a
proof has remained elusive; until now we only knew it for the
special case of sets consisting of regions only, i.e., without
L’s in cones [11].



The main result of the present paper is that Cone Logic
indeed captures topological FO[R], over arbitrary closed
semi-algebraic sets in the plane. Our proof develops ex-
tensively the idea of coding planar sets by finite structures
[11]. This coding may well have other applications. Our
proof also introduces new invariance arguments. These ar-
guments show that first-order properties of structures en-
hanced with some form of “decoration”, but invariant under
the particular choice of decoration, are in fact expressible
without referring to the decoration at all. Compare this
to the famous example by Gurevich [1, Exercise 17.27], [4,
Proposition 2.5.6], where the decoration is a total order. In
that example the decoration is shown to be indispensable.
In contrast, we will encounter kinds of decorations that are
indeed dispensable. Of course, our final theorem can be
seen as stating that queries can be dramatically simplified
syntactically if they satisfy an invariance assumption. But
in the process we develop techniques for doing this kind of
elimination in the context of discrete structures. Finally,
our proof not surprisingly relies on the collapse theorems
for constraint queries on finite structures [16, 2]; as a mat-
ter of fact, the characterization we prove can be viewed as
a lifting of collapse from finite structures to infinite sets.

Our proof also yields some variations and generalizations of
the main result. For example, if one is interested in semi-
linear sets only (i.e., sets definable using linear polynomials
only), then Cone Logic still captures the first-order topo-
logical properties. Also, the result generalizes to o-minimal
expansions of the reals [23].

In closing we should also mention previous work on topo-
logical properties not of single sets, but of entire collections
of sets [17, 21]. This also covers the case of sets not neces-
sarily closed, because such a general set can be represented
by two closed ones, namely, its closure, and the closure of
its complement. Even in the case of just two sets, Grohe
and Segoufin [8] showed that topological elementary equiv-
alence can no longer be characterized by looking at cones
only. Yet, they were able to provide a characterization in
the special case of collections of sets with “regular” points
only. It would be interesting to lift this characterization to
the level of queries, just like we have done here for the case
of single sets.

2. PRELIMINARIES
Spatial data
In this paper, a spatial dataset (or just dataset) is defined
as a semi-algebraic set in R2 that is closed in the ordinary
topological sense. More concretely, this is a set that can
be defined as a union of sets of the form {(x, y) ∈ R2 |
P1(x, y) > 0 ∧ · · · ∧ Pm(x, y) > 0}, where each Pi is a poly-
nomial in the variables x and y with integer coefficients.
When all Pi’s are linear, the set is called semi-linear.

First-order logic over the vocabulary (0, 1,+,×, <, S), with
S a binary relation symbol, is denoted by FO[R]. An FO[R]-
formula ϕ can be evaluated on a dataset A by letting vari-
ables range over R, interpreting the arithmetic symbols in
the obvious way, and interpreting S(x, y) to mean that the
point (x, y) is in A.

To formalize what it means for two datasets A and B to be
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Figure 1: A dataset and the cone of one of its points.

topologically the same, we use the notion of isotopy. The
intuition behind an isotopy is a continuous deformation of
the plane. A and B are called isotopic if there is an isotopy
h such that h(A) = B.1 An FO[R]-sentence ϕ is now called
topological if whenever datasets A and B are isotopic, then
ϕ(A) is true if and only if ϕ(B) is true.

Cones
A known topological property of semi-algebraic sets [3] is
that locally around each point they are conical. This is
illustrated in Figure 1. Formally, for a point p and a real
ε > 0, denote the closed disk with center p and radius ε by
D(p, ε), and denote its bordering circle by C(p, ε). Then for
every point p of a dataset A there exists an ε > 0 such that
D(p, ε)∩A is isotopic to the planar cone with top p and base
C(p, ε) ∩A. We thus refer to the cone of p in A.

Every dataset A is also conical around infinity. Formally,
there exists an ε > 0 such that {(x, y) | x2 + y2 > ε2} ∩A is
isotopic to {λ · (x, y) | (x, y) ∈ C((0, 0), ε) ∩A ∧ λ > 1}. We
can indeed view the latter set as the cone with top ∞ and
base C((0, 0), ε) ∩A, and call it the cone at ∞ in A.

We will identify cones with circular lists. The cone having a
full circle as its base (which appears around interior points)
is represented by the single letter F . Any other cone can be
represented by a circular list of L’s and R’s (for “line” and
“region”) which describes the cone in a complete clockwise
turn around the top. For example, the cone of Figure 1 is
represented by (LLRLR). The cone with empty base (which
appears around isolated points) is represented by the empty
list ( ).

There are only three cones that can occur infinitely often
in a dataset: F , (LL) (the cone around points on curves),

1Formally, an isotopy is a homeomorphism of the plane that
is isotopic to the identity. Two homeomorphisms f and g
are isotopic if there is a function F : R2 × [0, 1]→ R2 such
that

1. for each t ∈ [0, 1], the function Ft : R2 → R2 : p 7→
F (p, t) is a homeomorphism;

2. F0 is f and F1 is g; and

3. F (p, t) is continuous in t.

A more relaxed notion of “being topologically the same” is to
simply require that B is the image of A under a homeomor-
phism rather than an isotopy. The only difference between
the two notions is that the latter considers mirror images
to be the same, while the former does not. Indeed, every
homeomorphism either is an isotopy itself, or is isotopic to
a reflection [15]. All the results we will present under iso-
topies have close analogues under homeomorphisms.



and (R) (the cone around points on the smooth border of
a region). We call these the regular cones; all other cones
are called singular. The points with a singular cone are
called the singular points of the dataset. Because datasets
are semi-algebraic, they can have only a finite number of
singular points.

3. THE CHARACTERIZATION
We will characterize the properties of datasets expressible by
topological FO[R]-sentences. Our characterization will be in
terms of conditions on the cones occurring in the datasets,
as well as on the number of such cones.

Given that cones are circular strings over the alphabet {L,R}
(except for the special cone F ), it is convenient to use stan-
dard formal language theory to define properties of cones.
Specifically, recall that a star-free regular expression over a
finite alphabet Σ is an expression built up from the atoms
Σ∗, ε, and a, for a ∈ Σ, using the operations union, dif-
ference, and concatenation. Such expressions define string
languages, i.e., sets of strings over Σ, in the obvious way. If
a string s is in the language defined by e, we also say that s
satisfies e.

But these expressions can also be used to define sets of circu-
lar strings. It suffices to agree that a circular string satisfies
expression e if it equals the circularization of a normal string
satisfying e. For example, the expression LR∗L defines all
cones that have only two L’s, and these L’s must be consec-
utive.2

This leads us to a natural topological query language called
“Cone Logic” or CL for short. A CL-sentence is a boolean
combination of atomic conditions of the following possible
forms:

1. F , meaning that there exists a point in the dataset
with cone F (in which case there will automatically be
infinitely many such points).

2. F (∞), meaning that the cone at infinity is F .

3. |e| > n, with e a star-free regular expression over
{L,R} and n a natural number, meaning that there
are at least n points in the dataset whose cone satis-
fies e.

4. e(∞), meaning that the cone at infinity satisfies e.

Note that properties of datasets expressed in CL are al-
ways topological. Every CL-sentence can be equivalently
expressed in FO[R], i.e., for each CL-sentence ψ there ex-
ists an FO[R]-sentence ϕ such that ψ(A) = ϕ(A) for each
dataset A. Our main result is that CL actually characterizes
the topological FO[R]-sentences:

Main Theorem. For each topological FO[R]-sentence ϕ
there exists a CL-sentence ψ such that ϕ(A) = ψ(A) for
each dataset A.

2The subexpression R∗ can be viewed as a shorthand for
Σ∗ − Σ∗LΣ∗ with Σ = {L,R}.

Figure 2: A single flower and a flower pair.

4. FLOWER NORMAL FORM
For simplicity of presentation, in proving our characteriza-
tion we will restrict attention to bounded datasets, so that
the point at infinity can be ignored. Incorporating infin-
ity makes the proof technically more complicated, but it
involves no new insights.

A more drastic restriction is to datasets in what we call
flower normal form. Such a dataset, called a flower dataset
for short, consists of a number of connected components, of
two possible kinds: single flowers and flower pairs. Both
are illustrated in Figure 2.

• A single flower is a connected dataset with exactly one
singular point, where every R in the cone is a small
“lobe” emanating from the point but meeting no other
R’s. Necessarily, every line emanating from the point
also arrives somewhere else in the point, i.e., all lines
are self-lines. Note that a self-line is visible as two L’s
in the cone of the singular point, so a single flower has
an even number of L’s in the cone.

• A flower pair consists of two single flowers, except that
some of the lines cross between the two singular points.
These cross-lines must be consecutive: between two
emanating cross-lines there cannot be a self-line. Note
that a cross-line is visible as one L in the cone of each
of the two singular points. Paired flowers need not
have an even number of L’s in their cone.

The justification for flower normal form comes from the no-
tion of topologically elementary equivalence, or t.e.e. Two
datasets are t.e.e. if no topological FO[R]-sentence distin-
guishes between them. We recall:

Theorem 1 ([19]). Two datasets are t.e.e. if and only if
they have the same cone at ∞, and every other cone occurs
exactly the same number of times in both sets (a finite num-
ber for singular cones, or infinitely often for regular cones).

By this theorem, every bounded dataset is t.e.e. to a flower
dataset, provided the set does not have any connected com-
ponents consisting of regular points only. A simple argument
(omitted) shows, however, that if our characterization holds
over the datasets without such regular components, then it



holds over all datasets. So from now on we can focus on
flower datasets.

5. OVERVIEW OF THE PROOF
The global outline of our proof is that for any topological
FO[R]-sentence ϕ we can find two natural numbers k and
` such that any two flower datasets that are “(k, `) equiv-
alent” are indistinguishable by ϕ. Hence, ϕ is a union of
(k, `)-equivalence classes. Now (k, `)-equivalence will have
two good properties: it will be of finite index, and every
equivalence class can be defined in CL. As a consequence, ϕ
can be written as a finite disjunction of CL-sentences, and
we will have proven our characterization.

To define (k, `)-equivalence, we need the notion of a cone
structure. Up to isomorphism, this is a finite structure with
domain {1, . . . , n}, for some natural number n. Every el-
ement is labeled with L or R. Moreover, the structure in-
cludes a ternary relation B (for “between”). B(x, y, z) holds
if y comes before z in the following sequence: x, x+ 1, . . . ,
n, 1, 2, . . . , x− 1. We say that y is between x and z. So, a
cone structure is an explicit representation of a cone. Note
that a cone structure is the circular version of what is known
as a word structure over the alphabet {L,R}; in word struc-
tures we have the total order on {1, . . . , n} instead of the
betweenness relation.

Cone structures allow us to use first-order logic sentences
over the vocabulary (L,R,B) to express properties of cones.
In particular, a k-type is a maximally consistent conjunc-
tion of first-order sentences of quantifier rank k, over the
vocabulary (L,R,B) of cone structures. Now two datasets
are called (k, `)-equivalent if for every k-type τ , they either
have precisely the same number of singular cones of type
τ , or the two numbers are both at least 3`. That (k, `)-
equivalence classes are indeed definable in CL follows easily
from the well-known translation of first-order sentences over
word structures to star-free regular expressions [22].

The proof that two (k, `)-equivalent flower datasets are in-
distinguishable by ϕ proceeds by transforming one dataset
into the other, using a repertoire of transformations that are
indistinguishable by ϕ. They are the following:

Marrying and divorcing: Two single flowers can be mar-
ried to become a flower pair with the same cones (with,
e.g., all lines going across). The inverse of this trans-
formation is allowed as well.

Spouse swapping: Two flower pairs {f1, f2} and {f3, f4}
can be replaced by two other flower pairs {g1, g3} and
{g2, g4}, such that the cones of fi and gi are identical
for i = 1, 2, 3, 4.

Substitution: A single flower can be replaced by any other
single flower whose cone has the same k-type. A flower
pair can be replaced by any other flower pair, as long
as the pair of cone k-types is the same.

Stretching: For any k-type with at least ` occurrences of
single flowers of that cone type, we can add any num-
ber of additional single flowers of the type. For any
pair of k-types with at least ` occurrences of a flower
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Figure 3: The single flower of Figure 2 is a drawing
of the single cycle shown here.

pair with that pair of cone types, we can add any num-
ber of additional such flower pairs.

Formally, we will prove:

Lemma 1. For any topological FO[R]-sentence ϕ there ex-
ist k and ` such that the above transformations are indistin-
guishable by ϕ.

Lemma 2. Any two (k, `)-equivalent flower datasets can be
transformed into each other by the above transformations.

Lemma 2 is shown by marrying the cone types in a canonical
way, after first stretching their numbers to match; the details
are omitted. Proving Lemma 1 is a large enterprise which is
taken up in the next two sections. Note that the legitimacy
of Marrying, Divorcing, and Spouse Swapping, which do not
mention k and ` anyway, already follows from Theorem 1.

6. CODES AND DRAWINGS
We are going to represent flower datasets by abstract finite
structures, which we call codes. A code is a disjoint union of
components, of two possible forms: single cycles and cycle
pairs. A single cycle represents a single flower, and a cycle
pair represents a flower pair.

Single cycles
A single cycle is a word structure over the alphabet {L,R},
with two modifications. First, the number of L’s must be
even. Second, the structure includes a matching3 G on the
L-labeled nodes that is planar in the following sense: if i <
j < k < `, then it is forbidden that G(i, k) and G(j, `) both
hold.

Note that a cycle is not cyclic at all, but we still use the name
because cycles will always have a circular interpretation: we
will never need to distinguish two cycles that are the same
up to rotation. In particular, there is an obvious notion of
a single flower Y being a drawing of a single cycle C, which
we do not define formally, but illustrate in Figure 3. When
Y is a drawing of C, then Y is a drawing of every rotation
of C as well.

Cycle pairs
A cycle pair is a disjoint union of two single cycles, with two
modifications. First, the number of L’s in each cycle need
not be even. Second, instead of G being a planar matching
on the L’s of each single cycle separately, a subsequence

3A matching on a set X is the symmetric closure of a bijec-
tion from one half of X to the other half.
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Figure 4: The flower pair of Figure 2 is a drawing
of the cycle pair shown here.

of consecutive L’s in one cycle is now matched by G to a
subsequence of consecutive L’s in the other cycle. Here, we
call two L’s consecutive if there is no other L in between
(there may be R’s), where “between” has its meaning as in
cone structures.

Clearly, the cross-matches by G model the cross-lines in a
paired flower, and again there is an obvious notion of a flower
pair being a drawing of a cycle pair, illustrated in Figure 4.

Codes
A code is now defined as a disjoint union of single cycles and
paired cycles. We denote the vocabulary of codes, consisting
of <, L, R, and G by Γ.

A flower dataset A is called a drawing of a code C if A has a
separate drawing for every single cycle and every cycle pair
of C, and nothing more. In that case we also say that C is
a representation of A.

The following proposition demonstrates the utility of codes.

Proposition 1. For any topological FO[R]-sentence ϕ there
exists a first-order sentence ψ over Γ such that for every
flower dataset A, and every representation C of A, we have
ϕ(A) = ψ(C).

Proof. An embedded code is a code embedded in R, so the
abstract nodes happen to be real numbers. An embedded
code is called well embedded if within each component, the
ordering on the nodes as real numbers agrees with the order
given by the cycles. Moreover, all nodes belonging to one
component must be either all smaller or all larger (in the
real order) than all nodes belonging to another component,
and in a cycle pair all nodes of one of the cycle are all smaller
than all nodes of the other cycle.

Until now, FO[R]-formulas were always understood to be
over the vocabulary of R (0, 1,+,×, <) expanded with a bi-
nary relation S to address the spatial dataset to be queried.
But in the following lemma we use FO[R]-formulas on em-
bedded codes, where we expand R not with S but with Γ.
We refer to such formulas as FO[R]-formulas over Γ.

Lemma 3. There exists an FO[R]-formula draw(x, y) over
Γ such that for any well-embedded code C, the set {(x, y) ∈

Figure 5: “Proof by picture” of Lemma 3. The fig-
ure shows a systematic drawing of an embedded cy-
cle pair (involving only L’s).

R2 | (x, y) ∈ draw(C)} is t.e.e. to a drawing of C. If C is
not a well-embedded code, then draw(C) is empty.

We omit the proof, but Figure 5 gives an idea of the con-
struction.

Consider now the composed query ϕ◦draw . By the natural-
active collapse theorem [2], we can equivalently express ϕ ◦
draw by an FO[R]-sentence χ over Γ in which the quanti-
fiers range over the nodes of C only. Moreover, the query
is order-generic: for any embedded Γ-structure C, and for
any monotone bijection ρ of R, we have ϕ(draw(C)) =
ϕ(draw(ρ(C))). Hence, by the generic collapse theorem [16,
2], we can further reduce χ to a first-order sentence ψ just
over Γ. In other words, ψ sees just the abstract code, not
the actual embedding, were it not that it still sees a total
order on all nodes, instead of just the partial orders given
within the cycles.

Fortunately, we can get rid of the order among cycles using
a model-theoretic argument which we just sketch. Observe
that ψ is actually invariant under the particular way the
different cycles compare to each other. Hence, if r is the
quantifier rank of ψ, we may fix an arbitrary order on r-
types and assume that the order among the components is
according to their r-types. This leaves us only with the order
among components of the same r-type, and the order among
the two cycles in a cycle pair. These can be dispensed with
by an Ehrenfeucht-Fräıssé game argument.

As we will see in the next section, Proposition 1 opens the
door towards proving the remaining Lemma 1. But the
proposition is also interesting in itself: it shows that topo-
logical FO[R]-queries can be supported by a standard finite
relational database representation of the spatial dataset.

7. INVARIANCE ARGUMENTS
Fix a topological FO[R]-sentence ϕ, and let ψ be obtained
from Proposition 1. Now observe that ψ must be invariant
under rearrangement of the planar matching G in any of the
components of a code C. Indeed, in a drawing A of C, this
yields a rearrangement of self-lines (and possibly cross-links
in a flower pair), and ϕ cannot notice such rearrangements
by t.e.e. Hence, ψ cannot notice them in C either. We say



in short that ψ is planar invariant. Moreover, ψ is invari-
ant under rotation of the cycles. We say that ψ is rotation
invariant.

The following lemma, proven by a simple Ehrenfeucht-Fräıssé
game argument (omitted), shows that we can “push down”
invariance to the level of the separate connected components
of a code.

Pushdown Lemma. Every invariant sentence over codes
can be rewritten as a boolean combination of conditions of
the form |γ| > n, with γ again invariant. Such a condition
means that at least n components in the code satisfy γ.

We are now ready for the

Proof of Lemma 1. As already mentioned, we must deal only
with the transformations of Substitution and Stretching.

Substitution revolves around eliminating the major differ-
ence between cycles and cones, namely that codes contain
the matching relation G. The following crucial lemma al-
lows us to get rid of G. The proof, which is quite involved,
is sketched at the end of this section.

Invariance Lemma. Let ψ be a first-order sentence over
word structures equipped with planar matchings G. If ψ is
planar-invariant, then it can be equivalently written without
G, i.e., as a first-order sentence over words.

We would like to apply the Invariance Lemma to each com-
ponent sentence γ from the Pushdown Lemma that works on
single cycles, so that it can be rewritten without G. Since γ
is also rotation-invariant, it is then an easy matter to rewrite
it further to get a cone sentence. If we then take k to be the
maximal quantifier rank of all the resulting component cone
sentences, we obtain the desired result that Substitution of a
single flower is indistinguishable by ϕ. Moreover, if we take
` to be the maximal bound n from the Pushdown Lemma,
we obtain the same for Stretching of a single flower.

There is a small problem, however, since the Invariance
Lemma deals with word structures equipped with a total
planar matching, while cycles have a planar matching only
on their L’s. We can solve this as follows. Let r be the
quantifier rank of γ. A standard Ehrenfeucht-Fräıssé game
argument shows that γ cannot distinguish two words that
agree if we count blocks of R’s only up to 2r. This allows
us to view γ as a sentence on the word consisting of the L’s
only, but where each L is labeled with one of the new letters
Pi for i = 0, . . . , 2r, where Pi for i < 2r means that there
are exactly i R’s following the element, and P2r means that
there are at least 2r R’s. After using this abstraction, we
can then apply the Invariance Lemma. Other applications
of the Invariance Lemma in the next paragraphs must also
be interpreted in this manner.

For flower pairs the argument for Substitution is a bit more
complicated. First, observe that by t.e.e. we can always re-
arrange G so that there is either exactly one cross-match,
or none at all. The first case occurs when the number
of L’s in each cycle is odd; the second when the number

is even. Hence, if we restrict a component sentence γ to
pairs with even cross-matches, then we can rewrite it as
an assertion about cone types; in this case we can arrange
for there to be no cross-matches, leaving us with simply
two word structures equipped with planar matchings, from
which the matching can be removed using the Invariance
Lemma. Similarly if we restrict to pairs with odd cross-
matches; the cross-matched pair can be replaced in favor of
a distinguished label for the ends of the crossing line, and the
Invariance Lemma can be applied to these enhanced words.
From this we see not only that Substitution is justified for
pairs of the same parity, but also that γ can be written as
a sentence using only the cone signature, provided that a
parity check is permitted in addition to first order logic.

Now on the other hand, again by t.e.e. we can also maximize
the number of cross-matches, so that the smaller of the two
cycles has all its lines crossing to the larger cycle. Again
incorporating blocks of R’s into the labels of the L’s as be-
fore, this yields a view of the cycle pair as a word of pairs
of letters, followed by a word comprising the unpaired ele-
ments from the larger cycle, on which we still have a planar
matching G. Over this view, a component sentence γ can
be broken up into sentences γ1 quantifying over the letter
pairs and sentences γ2 quantifying over the unpaired ele-
ments. The planar matching G can be removed from the
latter sentence using the Invariance Lemma. Viewing now
the unpaired elements as paired with a dummy letter, we
obtain a first-order sentence over words over a pair alpha-
bet.

So on the one hand γ expresses a combination of regular
conditions on the words in a pair (by the paragraph before
the previous one), and on the other hand it expresses a star-
free regular condition on the word pair (viewed as a word
over the pair alphabet). A simple argument (omitted) then
shows that γ must already be a combination of star-free
regular conditions on the separate words. Since these con-
ditions are rotation-invariant (here we apply a mini-version
of the Pushdown Lemma), we have arrived at the desired
combination of cone types, which justifies Substitution in
general, as well as Stretching for pairs.

Proof sketch of the Invariance Lemma. We will use the fol-
lowing notation for vocabularies. For words over an alphabet
Σ we use LWΣ = Σ ∪ {<} and for words equipped with a
planar matching we use LWMΣ = Σ ∪ {<,G}. From < we
can easily define the binary relation suc(x, y) meaning that
either y is the successor of x or x is the last position in the
word and y is the first position in the word.

For an LWMΣ sentence φ we denote by M(φ) the set of
models (words equipped with planar matchings) of φ, and
by W (φ) we denote the set of words obtained from M(φ)
by omitting the planar matchings. If φ is planar-invariant,
then M(φ) is completely determined by W (φ). Further,
note that W (φ) only contains words of even length. For an
LWΣ sentence θ we denote by W (θ) the set of words w with
w |= θ. In general, the set W (θ) can contain words of even
and words of odd length.

To prove the invariance lemma we have to show that for each
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planar-invariant LWMΣ sentence φ there exists an LWΣ sen-
tence θ such that W (φ) = W (θ) ∩ (ΣΣ)∗.

The main idea is to show that W (φ) for a planar-invariant
LWMΣ sentence φ is regular and contains counters of a very
restricted type only. The proof is then completed by showing
that a regular language W ⊆ (ΣΣ)∗ with these restrictions
on the occurrence of counters is of the form W ′ ∩ (ΣΣ)∗

for an LWΣ definable language W ′. We start with some
terminology on counters.

Let ↔W be the relation defined by u ↔W v if u ∈ W and
v ∈ W , or u /∈ W and v /∈ W . Nerode’s congruence for
W , denoted ≡W , is defined by u ≡W v if uw ↔W vw for
every w ∈ Σ∗. A pair (u, v) with u, v ∈ Σ∗ is a counter of
a language W if there exists n > 0 such that u 6≡W uv and
uvn ≡W u. The smallest such n is called the period of (u, v),
and |v| is called the progression of (u, v). An (n,m)-counter
is a counter with period n and progression m. We use the
expression (2, odd)-counter to denote a (2,m)-counter for
some odd m.

We say that (u, v, x, y) is a two-stage counter of W if (u, v),
(ux, y) and (uvx, y) are counters such that ux 6≡W uvxy. In
the minimal DFA for W a two-stage counter correponds to
the pattern depicted in Figure 6, where s is reachable via
u from the initial state and s0 and t1 are required to be
distinct.

We will make intensive use of the well known result that a
regular language W ⊆ Σ∗ is definable in LWΣ if, and only
if, it is counter-free [14].

To show the required restrictions on counters in W (φ) we
introduce two special types of planar matchings. We call G
a chain matching if it satisfies

∀xy(G(x, y)→ (suc(x, y) ∨ suc(y, x))) ,

and a parenthetical matching if it satisfies

∀x0x1x2x3(suc(x0, x1) ∧ suc(x2, x3)

→ (G(x0, x3)↔ G(x1, x2))) .

The main steps in the proof of the invariance lemma are the
following.

1. If φ is invariant under chain matchings, then W (φ) is
regular and only contains (2, odd)-counters.

2. If φ is invariant under chain matchings and parenthet-
ical matchings, then W (φ) does not contain two-stage
counters.

3. If W is a regular language containing only (2, odd)-
counters and no two-stage counter, then there is an
LWΣ sentence θ such that W = W (θ) ∩ (ΣΣ)∗

Step 1 is shown by introducing a copy Σ̄ of the alphabet
and considering the language W̄ (φ) obtained from W (φ)
by replacing in each word every second letter by the corre-
sponding letter from Σ̄. Now G can be expressed using suc
and the alternation between letters from Σ and Σ̄. Hence,
W̄ (φ) is LW Σ̄ definable and thus regular and counter-free.
By projecting the letters from Σ̄ to the corresponding letters
of Σ we reobtain W (φ) and one can easily observe that the
counters introduced by this operation must all be (2, odd)-
counters.

To prove step 2 we pass to “folded” words. Let Σfold be the
set of all column vectors over Σ with two rows, called folded
letters. Words over this alphabet are called folded words.
A word w equipped with a parenthetical cycle bijection G
such that the first and the last position of the word are in the
relation G corresponds in a natural way to a folded word.
This folded word is obtained by reversing the second half of
w and writing it below the first half of w. In this way two
positions that are in the same column of the folded word are
positions that are linked by G in w. If we apply this opera-
tion to all words in W (φ) we obtain the language Wfold(φ)
and φ can be rewritten into a LWΣfold sentence defining
Wfold(φ). Now one can show that a two-stage counter in
W (φ) induces a counter in Wfold(φ) contradicting the fact
that Wfold(φ) is LWΣfold definable.

In step 3 we construct from the minimal DFA A for W
a new DFA A′ accepting a counter-free language W ′ such
that W = W ′ ∩ (ΣΣ)∗. At the beginning, A′ simulates A.
As soon as it has processed a word u such that (u, v) is a
counter of W , it goes to a pair of states (s, t), where s is
the state reached after reading u, and t is the state reached
in A after reading uv. Starting from this state A′ simulates
the product automaton A×A. A state (s1, s2) is accepting
in A′ if s1 or s2 is accepting in A. The language accepted
by this automaton has the desired properties.

8. DISCUSSION
In Section 3 we already mentioned that CL can indeed be
simulated in FO[R]. Actually, this is already possible in
FO[<], the fragment of FO[R] that does not use arithmetic
on R, only order. As an immediate corollary of our theorem
we thus obtain:

Corollary 1. Every topological FO[R]-sentence on closed
semi-algebraic sets in the plane can already be expressed in
FO[<].

This is a nice analog of the generic collapse theorem [2] used
in the proof of Proposition 1, which says exactly the same
for order-generic FO[R]-sentences on finite structures over
the reals. Thus our theorem can be viewed as a “lifting” of
collapse from finite structures to infinite datasets.

We note that the drawing arguments to prove our Main The-
orem (as well as the drawings used in the proof of Theorem 1
[19]) all remain within semi-linear sets, and hence the entire



argument could have taken place there. Hence we have also
proved:

Corollary 2. Every FO[R]-query that is topological over
(closed) semi-linear datasets is equivalent over semi-linear
datasets to a CL sentence.

Note that there are FO[R]-queries that are topological over
semi-linear datasets but not over all semi-algebraic datasets.
Indeed one can write an FO[R]-sentence (even without mul-
tiplication) that is true exactly for those datasets that are
“line-like”—definable with addition (possibly with real pa-
rameters). Such a sentence is a tautology over semi-linear
datasets but is not topological over semi-algebraic ones.

The theorem also lifts up to any family of sets that includes
the semi-linear sets and in which every set is isotopic to a
semi-linear one; for example, this is known to hold for the
collection of sets definable in an o-minimal expansion of the
real ordered group.

Likewise we use little about FO[R]queries. Our argument
goes through for constraint query languages over expansions
of the real field which have the properties that: a) definable
sets are isotopic to semi-linear sets and b) the generic col-
lapse theorem holds. Both of these are known to hold in
every o-minimal expansion of the reals [23, 2]. Hence, for
example, if we add exponentiation to our query language,
we get:

Corollary 3. Every FO[+, ∗, <, ex, S] query that is topo-
logical over closed semi-linear (resp. semi-algebraic, FO[+,
∗, <, ex] definable) sets in the plane is equivalent over semi-
linear (resp. semi-algebraic, FO[+, ∗, <, ex] definable) sets
to a CL sentence.
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