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Abstract 
The simultaneous measurement of the expression 
level of thousands of genes presents a real 
challenge to the information processing 
capability of the present computer systems and 
statistical software tools because of the 
complexity of the problems at hand and size of 
the data sets. These days research is 
concentrating on projects to find clusters in the 
biological samples and to identify genes related 
to these clusters because of the availability of the 
new microarray laboratory techniques. 
In this study, three multivariate data analysis 
methods: principal component analysis (PCA), 
correspondence factor analysis (CFA), and 
spectral map analysis (SMA) are compared 
exactly for their ability to identify clusters of 
biological samples and genes using data on gene 
expression levels of leukemia patients (Golub, 
1999). PCA has the disadvantage that the 
resulting principal factors are not very 
informative regarding differential gene 
expression, while CFA is sensitive to single large 
values and has difficulties regarding 
interpretation of the distances between objects. 
We present spectral map analysis (SMA) as an 
alternative method developed by Lewi (1976) 
and compare it with the other two methods. The 
importance of weighting for the level of gene 
expression is demonstrated. Proper weighting 
allows less reliable data to be down-weighted 
and more reliable information to be emphasized. 
It is shown that weighted SMA outperforms PCA 
and CFA in finding clusters in the biological 
samples and identifying genes related to these 
clusters. SMA addresses the data in a more 
appropriate manner than CFA with respect to the 
scale of measurement. It allows for applying a 

more flexible weighting to the genes and 
biological samples. 
 
Introduction 
Microarray technology makes use of the 
production of messenger RNA (mRNA). The m-
RNA is produced in the internal of the cell when 
there is an activity in the cell that expresses a 
need for particular proteins. The mRNA is a 
sequence of bases matching to the sequence of a 
gene in the chromosomes of the biological cell 
(see figure 1). The m-RNA is then translated into 
chains of amino acids by the ribosomes. Those 
chains are then connected to form proteins. 
Those proteins then constitute the particular 
activity that the cell requested. In the microarray 
technology the amount of m-RNA is measured 
via chips that contain thousands of very small 
test-tubes (probes) of which each contains an 
over abundance of strings of bases of one type of 
gene (see figure 2). Each gene sequence can then 
hybridise with the m-RNA coming form the 
biological sample. Before the m-RNA is applied 
to the chip it is connected to a fluorescence 
molecule. The m-RNA that is not hybridised 
with the DNA sequences of the chip is washed 
away so that only the matching and thus 
hybridising (binding) m-RNA is measured. Since 
there is an abundance of DNA gene material in 
each minuscule reaction chamber the technology 
is able to quantify the relative amount of m-RNA 
in the biological cell. The more m-RNA was 
present in the biological cell the more 
fluorescence will be measured. This way the 
intensity of the fluorescence is directly linked to 
the amount of m-RNA and indirectly linked to a 
particular protein and activity. 
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        Figure 1. Schema of the translation of DNA via RNA into amino acids and proteins. 
 
Figure 1. Schema of the translation of DNA via RNA into amino acids and proteins. 
 
Those proteins then constitute the particular 
activity that the cell requested. A good summary 

of the biology and the technology is given by 
Nguyen et al 2002. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
       
       
Figure 2. The microarray technology 
 
In the present study gene expression data coming 
from patients with leukaemia are used (Golub  et 
al. 1999).  After data cleaning the dataset 
contained intensities of 5327 genes for each of 
38 samples.   Twenty-seven samples came from 
patients with ALL and eleven samples came 
from patients with AML. The group of samples 
can be split into two groups: T-lineage and B-
lineage.  
 
Statistical methods 
Three different multivariate statistical methods 
have been used to analyse the data. Principal 
component analysis (PCA, Pearson 1901, 
Hotelling 1933), the first method, transforms the 
intensities into n=5327 principal axis in such a 
way that they are ordered in terms of the 
variability explained. Each of those axes is a 

linear combination of all of the 5327 genes. Most 
multivariate projection methods are based on a 
derived space with n orthogonal axes. Those 
axes are linear combinations of the original 
measurements (intensities) of all the genes. The 
axes are constructed in a way that the first axis 
lies in the direction (in the multivariate data 
space) with the largest variability and the last 
axis has the smallest variability. Correspondence 
factor analysis (CFA, Benzécri 1973 and 
Greenacre 1984) and spectral map analysis 
(SMA, Lewi 1976) are special cases of 
multivariate projection methods that help to 
reduce the complexity (dimensions) of highly 
dimensional data (n genes versus p samples). A 
classical principal component analysis will create 
a first axis (principle component) that maximizes 
the variability due to size of the intensities. 
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Clusters that can be identified based on the first 
axis will simply differ in absolute size of the 
intensities. CFA was originally developed for 
contingency tables and decomposes the chi-
square statistic. Distances therefore have a chi-
square distribution. In a SMA of log transformed 
data the distances are proportional to ratios of 
genes or samples. In microarray data we are 
mainly looking for contrasts and not simply high 
or low intensities. For that reason both CFA and 
SMA have the appropriate properties (double 
closure for CFA and double centering for SMA) 
that remove the size component from the data. 
CFA and SMA will look for contrasts in 
intensities between genes without the nuisance 
effect of the absolute values of the intensities. 
However, microarray data tend to be more 
reliable with increasing intensity. In order to deal 
with that, re-introduction of the size component 
via variable weighting proportional to the mean 
intensities of genes and samples is required. 
Since there is a high difference in dimension 
between rows and columns in SMA it is possible 
to introduce scaling. This operation pulls the 
genes away from the center of a biplot while it 
leaves the samples at their original places 
(Wouters et al 2003). A biplot (Gabriel 1971 and 
Chapman 2001) created by the first two axes 
displays the maximal separation of both the 
genes and the samples. Coinciding clusters of 
samples and genes on the biplot indicate the 
genes (signatures) that are responsible for the 
separation of the samples. Genes that are located 
in the general direction of a sample on the biplot 

should be looked at as potential signatures for 
the separation of that sample versus the others. 
 
Principal component analysis 
PCA was carried out after logarithmic re-
expression of the gene expression profiles. Since 
gene expression data are positively skewed and 
can contain large influential values, we 
considered a logarithmic re-expression 
appropriate. For the construction of the biplot 
(Figure 3), an asymmetric scaling with unit 
column-variance was used to allow for better 
visual discrimination between the different 
samples. This special type of factor scaling was 
considered optimal for extreme rectangular 
matrices of microarray data where variability 
between the genes (average variance log 
transformed data = 6.4) is much higher than 
between the different samples (average variance 
= 2). A consequence of unit column-variance 
factor scaling is that correlations and distances 
between samples are not represented in the 
biplot. However, in exploring gene expression 
data only patterns in the distribution of the 
biological samples are of direct interest. In 
Figure 3, the horizontal axis of the biplot 
represents the first principal component that 
accounts for 71% of the total variance in the 
data. The second principal component is 
represented by the vertical axis of the biplot and 
explains only 3% of the total variance. The 
remaining principal components were considered 
to reflect random disturbances.   

  
 
 
 
 
 
 
                   
                     PC2 
 
 
 
 
 
 
 
                       
 
 
                                                                                       PC1    
Figure 3: Principal component analysis (PCA) The yellow dots represent genes and the boxes represent the 
diseases: AML (red), ALL-T (blue) and ALL-B (green).  
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The horizontal axis is dominated entirely by a 
global component related to the size of the 
measurements and does not contribute any 
information about the differential expression of 
genes in the samples. Differences between 
biological samples are found only along the 
vertical axis. Only a difference between the ALL 
and AML groups is eminent, while data from 
ALL B-lineage and ALL T-lineage completely 
overlap one another. Furthermore, it is 
impossible to use the biplot for selecting genes 
that discriminate best between the ALL and 
AML classes. 
 
Correspondence factor analysis 
The biplot obtained from CFA on the Golub data 
is depicted in Figure 4. The same asymmetric 
unit column-variance scaling was used as in 
PCA, to allow for optimal visual discrimination 
of the different samples. While distances 
between samples are not represented in this type 
of scaling, the weighted distances of genes from 
the center are interpreted as chi-square values. In 
CFA sums of squares are expressed as chi-square 
values and the global weighted sum of squares is 
defined as the global chi-square. The horizontal 
axis of the biplot in Figure 4 accounts for 17% of 
the global chi-square, while the vertical axis 
accounts for an additional 10%. In contrast to 

PCA the first dominant component is not related 
to size. CFA highlights the differential genetic 
profiles of the different samples, an approach 
that is much more relevant to the problem. In 
Figure 4, genes are distributed in a funnel-like 
pattern and there is a clear separation between 
ALL and AML patients with only two patients 
that overlap one another. In contrast to PCA, B-
lineage and T-lineage classes within the ALL 
group are also separated from one another. It is 
tempting to identify a few genes that could be 
used in characterizing the three pathological 
classes. Gene probes located at the poles of the 
triangular-like shape should be characteristic for 
a given class of leukemia. However, for the two 
gene probes identified as the top left and right 
pole only a few valid measurements were made 
and the results depended largely on the 
expression level obtained in a single patient. This 
underscores the, in this case, less desirable 
sensitivity of CFA to single large values. There 
is also a problem with the interpretation of the 
numerical value of the distances between genes. 
Since in CFA, distances refer to chi-square 
values that have a meaning only for contingency 
tables and not for continuous data, as is the case 
in gene expression experiments, one could 
question the applicability of CFA in microarray 
data analysis. 

 
 
 
 
 
 
 
           
           PC2 
 
 
 
 
 
 
 
 
 
 
 
                                                                                      PC1 
 
Figure 4: Correspondence Factor Analysis (CFA). The yellow dots represent genes and the boxes represent 
the diseases: AML (red), ALL-T (blue) and ALL-B (green). 
  

PC1  17 %

PC
2 

 1
0 

%

1

4

5

7

8

12

13

15

16
17 18

19

20

21

22

24

25

26

27

2

3

6

9 10

11

14

23

34

35

3637

38

28

29

30

31

32

33

2003 Joint Statistical Meetings - Biopharmaceutical Section

556



 

 

 Spectral map analysis 
In SMA, we considered both constant weighting 
and variable weighting proportional to the row 
marginal totals. The latter was motivated by the 
fact that differences found at lower levels of gene 
expression are less reliable than differences at 
higher levels. 
In a weighted SMA, we used variable weighting 
for the genes and samples, with weights 

proportional to the mean expression levels of 
genes and samples, respectively. SMA and 
construction of the biplot was carried out as 
above. The resulting biplot is depicted in Figure 
5. The pattern formed by the different samples 
lies in between the result obtained by CFA and 
unweighted SMA.  

 
   
 
 
 
 
 
 
 
 
    PC2 
 
 
 
 
 
 
 
 
 
 
 
                                                                                PC1 
Figure 5: Spectral map of the Golub training dataset. The yellow dots represent genes and the boxes 
represent the diseases: AML (red), ALL-T (blue) and ALL-B (green). The sizes of the symbols are 
proportional to the absolute intensity of the genes for the dots and of the diseases for the boxes. 
 
 
Also here, it is possible to identify a triangular-
like shape with three poles corresponding to the 
three classes of leukemia. The horizontal axis of 
the map is dominated by the ratio in gene 
expression between the AML and ALL class and 
accounts for 14% of the total interaction 
variance. The vertical axis is dominated by the 
contrast between the ALL T-cell and ALL B-cell 
group and accounts for an additional 12% of the 
interaction. In contrast to the former unweighted 
SMA, the three classes of leukemia are 
completely separated from one another. All of 
the genes that are located distal from the center 
could have a physiological meaning. It is 
noteworthy to mention that only 4 of the 27 most 
distal genes were among the 50 genes selected 
by Golub et al. (1999) to discriminate between 
the different classes of disease.  

In a subsequent analysis (Fig. 6), we carried out 
a weighted SMA using the 27 genes identified in 
Figure 5. Since row and column variances are 
now comparable, the biplot was constructed 
using singular values as the method for factor 
scaling. The horizontal and vertical axes explain 
43% and 32% of the global interaction variance. 
Using only this small subset of 27 genes allows 
complete separation of the three pathological 
classes.  
 
Discussion and conclusions 
The results obtained in the previous section 
illustrate the impact of the different methods. 
The characteristic difference between 
conventional PCA on the one hand and CFA and 
SMA on the other hand are the operations of 
double-closure and double-centering. The 
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double-closure operation in CFA eliminates the size factor that is related to the first 
 
 
 
 
 
 
 
 
 
   PC2 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                                PC1 
Figure 6: Spectral map of the 27 most extreme genes of the Golub training dataset. The yellow dots 
represent genes and the boxes represent the diseases: AML (red), ALL-T (blue) and ALL-B (green). The 
sizes of the symbols are proportional to the absolute intensity of the genes for the dots and of the diseases 
for the boxes. 
  
dominant component in PCA and stresses 
differences among the genes and among the 
samples. The same effect is obtained by double-
centering after logarithmic re-expression in 
SMA. Although, mathematically, these two 
operations are related, the results can differ 
substantially as is illustrated by the differences in 
the biplots obtained from CFA and SMA, 
respectively. Re-expressing the data to 
logarithms downplays very large contrasts that 
result from extreme outcomes. This is a desirable 
property for the analysis of gene expression data 
that typically suffer from the presence of 
severely outlying measurements. 
A drawback of the logarithmic re-expression is 
that contrasts at a less reliable level of gene 
expression are considered of equal importance, 
as are contrasts at a more reliable level. 
Incorporating weights proportional to the 

marginal totals in the centering, normalization 
can counteract this phenomenon, and 
factorization building blocks leading to weighted 
SMA. 
Our results indicate that weighted SMA is a 
valuable tool for the analysis of gene expression 
microarray data. Weighted SMA and CFA 
outperform conventional PCA in visualizing the 
data, determining clusters of samples and genes, 
correlating samples with gene expression 
profiles, and reducing the data. An advantage of 
SMA over CFA is the possibility of interpreting 
distances as ratios, while CFA does not allow 
such an intuitive approach.  
Apart from the data analytic aspects of this 
report, it is noteworthy to mention that the three 
most influential genes were identified in the 
literature to be related to leukemia (Wouters et 
al. 2003). 
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