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Abstract

We study a model for spatio-temporal objects, intro-
duced by Chomicki and Revesz, in which spatio-temporal
data is specified by a spatial reference object together with
a geometric transformation that determines the movement
of the reference object in time. We give complete results
concerning closure under Boolean set operators for the
different classes of spatio-temporal objects introduced by
these authors (In particular, we also answer a conjecture by
Chomicki and Revesz negatively). Since only few classes are
closed under all set operators, we suggest that their model
should be extended in order to increase its practical appli-
cability.

1. Introduction

In recent years, the number of applications in which
spatio-temporal data has to be manipulated and stored in
a database has increased steadily [4, 5, 7]. Meteorological
databases and air traffic control data are only two examples
of such applications.

Chomicki and Revesz claimed that a new framework is
necessary to model this new type of data and introduced
the concept of a spatio-temporal object [3]. They specify a
spatio-temporal object by giving a spatial reference object
and a time-dependent geometric transformation that deter-
mines how the reference object moves through space in a
certain time interval (the same authors have also introduced
variations of this model [1, 2]). In their elegant definition,
a spatial and temporal object are combined very naturally
into a spatio-temporal object.

Chomicki and Revesz consider a number of natural types
of spatial reference objects (which can be considered as pro-
totypes from well-known classes such as the polygons, the
triangles and the rectangles) as well as a number of natu-

ral classes of spatial movement (defined by well-known ge-
ometrical transformation groups such as the affinities, the
scalings and the translations). They have started a study of
how these classes behave with respect to the set-theoretic
operators. This study is motivated by practical needs. If an
air traffic control system is modeled by spatio-temporal ob-
jects, then, to be able to model situations of collision and
safe traffic, it is desirable to use a class of spatio-temporal
objects that is closed under intersection.

In this paper, we continue this research of Chomicki
and Revesz and give complete closure results for several
classes of spatio-temporal objects under union, intersection
and set-difference. We observe that all classes are closed
under union. For set-difference and intersection, the results
show that when scalings are considered as transformation,
only rectangles as reference objects give rise to closure.
For polygons and triangles more general affinities guaran-
tee closure only if they are described by appropriate rational
functions. We show that intersection and set-difference are
not closed under translations for any class of reference ob-
jects. Since for the class of rectangles closure is obtained
more often than for triangles, we also consider right-angled
triangles. We show that the hope that this class would be
closed under more groups of transformations than general
triangles is vain, however.

Since many relevant classes are not closed under in-
tersection and difference, it is useful to extend the model
of Chomicki and Revesz such that these classes become
closed. One obvious approach to follow would be to allow
all Boolean set operators, and not just union, in the con-
struction of spatio-temporal objects from atomic objects.

This paper is organised as follows. In Section 2, we
give definitions and describe the relevant classes of spatio-
temporal objects. The closure results for these classes with
respect to Boolean set operators are given in Section 3. Pos-
sible improvements of the current model are discussed in
Section 4. Some further details are given in an Appendix.



2. Definitions and preliminaries

In this Section, we define the notion of spatio-temporal
object. This definition is adopted from Chomicki and
Revesz [3]. They have defined a spatio-temporal object
as a reference spatial object (a representative of a class of
objects) together with a continuous transformation that de-
fines how this spatial object moves in time. In this pa-
per we will restrict our attention to two-dimensional spatio-
temporal objects.

2.1. Spatio-temporal and geometric objects

Let � be the set of real numbers and �� be the real
plane.

Definition 2.1 A spatial object is a subset of ��. A tem-
poral object is a subset of�. A spatio-temporal object is a
subset of����. ��

Definition 2.2 An atomic geometric object � is a triple
��� �� ��, where

� � � �� is the spatial reference object of �, which is
semi-algebraic1;

� � � � is the time domain (a point or interval) of �;
and

� � � �� �� � �
� is the transformation function of

�.

A geometric object is a finite set of atomic geometric ob-
jects. The time domain of a geometric object is the smallest
time interval that contains all the time intervals of the com-
posing atomic geometric objects. Recall that the smallest
interval containing a set of intervals is also known as the
convex closure of this set. ��

The semantics of an atomic geometric object � � ��� �� ��
is the spatio-temporal object

����� � ���� �� �� � �� �� 	 �
����
�������� ��� � �

�� � � � ��� �� � ����� ��� �����

The semantics of a geometric object ���� � � � ���� is the
union of the spatio-temporal objects ���� ��, � 
 	 
 
.

Remark that a spatio-temporal object is empty outside
the time domain of the geometric object that defines it.
Also, within the time domain a spatio-temporal object is
empty at any moment when no atomic object exists.

1A semi-algebraic set in the plane is a Boolean combination of sets
determined by a polynomial inequality of the form ���� �� � �, where �
is a polynomial with integer coefficients in the real variables � and �.

2.2. Interesting classes of geometric objects

We now define special classes of geometric objects that
are relevant to spatio-temporal database practice (intro-
duced by Chomicki and Revesz [3]). These classes �����
are determined by the type � of reference spatial object and
the type� of transformation function (for clarity, a geomet-
ric object belongs to a class if all of its atomic geometric
objects belong to that class).

The classes of reference objects that we will consider are
����� (arbitrary polygons), ��� (arbitrary triangles), ���	

(triangles with two sides parallel to the coordinate axes),
and ���
� (rectangles with all sides parallel to the coordi-
nate axes). In this paper, we assume triangles, polygons and
rectangles to be filled objects. But since we allow two or
more corner points of a triangle or rectangle to coincide,
the model can deal with polylines too. A line segment and
a point are considered triangles. Also line segments parallel
to the axis and points are considered rectangles.

The classes of transformation functions we will consider
are �	� (the affine transformations), ��
 (the scalings),
������ (the translations) and ��� (consisting of the identity
mapping) . These classes are defined as follows.

The class �	� of affine transformations contains map-
pings of the form

��� �� �� ��

�
���� ����

��� ����

�
�

�
�

�

�
�

�
����
����

�
�

where ���� ������
��� ����� �� � for all � in the time domain
under consideration. The class ��
 of scalings consists of
the affine transformations for which ���� and 
��� are identi-
cal to 0. The class ������ consists of the scalings for which
���� and ���� are identical to 1.

For practical purposes we will only consider functions
����, ����, 
���, ����, ����, ���� that belong to certain well-
behaved classes. These are the rational functions (i.e., frac-
tions of polynomial functions), the polynomial functions
and the linear polynomial functions. The corresponding
classes of transformations will be denoted as ����, �����

and ����. For example, ����
�
 represents the class of ratio-

nal scalings. We assume that the time domain of an atomic
geometric object belongs to the domain of the transforma-
tion function (hence, the denominator of a rational function
in the definition of a transformation is never zero in a time
domain).

Note that the shape of a spatio-temporal object at a cer-
tain time is not necessarily the same as the shape of the ref-
erence object of the geometric object that gives rise to the
spatio-temporal object. For example, a rectangle is mapped
to a parallelogram under an affinity.



2.3. Example

Let �� and �� be two (atomic) geometric objects with
spatial reference objects �� and �� respectively the trian-
gles with corner points ���� ��, ��� ��, ��� �� and ���� ��,
��� ��, ������, and time domains �� � �� � ��� 	
. In
this time domain, �� remains at its place while �� is trans-
lated with constant speed (equal to 1) in the direction of the
positive �-axis. At � � � both objects intersect in a line
segment. For � � � � � they intersect in a hexagon, for
� 
 � � 	 in a quadrangle, and finally for � � 	 in a point.

� � �

� � � � �

� � � � � � � �

Figure 1. Two atomic geometric objects. The
time domain can be partitioned in four parts
such that the intersection of the two objects
retains the same shape during each element
of the partition.

3. Boolean set operators

We investigated which of the above classes ����� are
closed under the Boolean set operators � (union), � (inter-
section) and � (set difference).

Definition 3.1 Let � be one of �, � or �. We say that the
class ����� is (atomically) closed under � if for any two
(atomic) geometric objects�� and�� in ����� there exists
an object � in ����� such that ����� � ������ � ������.

��

We will refer to an object� that satisfies the condition in
the definition as an intersection, union or difference of � �

and �� (they need not to be unique).
For the union operation, the closure follows immediately

from the definition.

Property 3.1 For any class of objects � and any class of
transformations � , ����� is closed under �. ��

For � and � the situation is more complicated. The fol-
lowing property will help to simplify the proofs below con-
siderably, however. Its proof follows straightforwardly from
simple set-theoretic considerations.

Property 3.2 (Atomicity) Let � be a class of objects and
� a class of transformations. Then ����� is atomically
closed under � if and only if it is closed under �. If �����
is atomically closed under � and �, then it is also closed
under �. ��

The following technical property describes how and how
often the form (or appearance) of the intersection or differ-
ence of two atomic geometric objects can change. We ob-
serve that the intersection of two moving triangles can be
empty, a single point, a straight line segment, a triangle, a
quadrangle, a pentagon and a hexagon. The intersection of
two moving rectangles can be empty, a single point, a line
segment or a rectangle. We call all these different forms of
the intersection its possible shapes. Also the difference of
two triangles or two rectangles can take a finite number of
different shapes. In the example in Figure 1, the intersection
takes four different shapes, whereas the difference takes five
different shapes.

In the following, we denote for two time domains �� and
�� by �� � �� the convex closure of the set �� � �� in�.

Property 3.3 (Finite time partition) Let �� and �� be
two atomic geometric objects with rational affine transfor-
mations with time domains �� and ��. There exists a finite
partition of the interval �� � �� in points and intervals such
that ������ � ������ takes a single shape in each element
of the partition. The same is true for ������ � ������.

Proof (sketch). From the assumption that the reference ob-
jects of�� and�� are semi-algebraic and their transforma-
tion functions are affine rational functions, it follows that
the sets ������ and ������ are semi-algebraic subsets of
�

���. We can therefore consider the set ������ � ������
(or ������ � ������) as a subset of ���� parameterized
by the time parameter �. It follows from the Trivialization
Theorem (page 147 of [6]) that the set of corner points of
������ � ������ (or ������ � ������) can only take a fi-
nite number of shapes, each in a semi-algebraic subset of
�� � ��. ��

In the following we will only talk about time intervals in
the finite time partition (points are intervals with coinciding
endpoints).

The next theorem summarises the closure results for in-
tersection and set-difference.

Theorem 3.1 For any class of objects � among �����, ���,
���	
 and ���
� and any class of transformations� among
�	� ,��
,������ and���, the closure with respect to� and
� is summarized in Table 1.Closure is indicated by �, non-
closure by �. ��



Table 1. Summary of all closure results.

�, � ����
	� �����

	� ����
	� ����

�
 �����
�
 ����

�
 ����
����� �����

����� ����
����� ���

����� � � � � �(*) �* � � � ��

��� � � � � �(*) �* � � � ��

���	
 � � � � � � � � � �

���
� � � � � � �* � � � �

The items marked with * are proven in [3], the ones marked with (*) follow directly
from results or proofs in the same paper. The ones marked with � are from [7].

The remainder of this section is devoted to proving this
theorem. We do this by proving a series of lemmas. We
start with the affine transformations. For the most general
classes we have the following positive result.

Lemma 3.1 The classes ������,����
	� � and ����,����

	� � are
closed under � and �.

Proof (sketch). It suffices to show this lemma for triangles.
By Atomicity (Property 3.2), we have to show that the inter-
section (or difference) of two atomic geometric objects � �

and �� with reference objects from ��� is represented by
an object in ����, ����

	� �.
According to the Finite time partition (Property 3.3), the

intersection (or difference) of the two triangles takes differ-
ent shapes in elements of a finite partition of �� � ��. Let
� be an interval in this partition. We have to consider all
possible shapes of the intersection in time interval � . The
intersection can be a polygon, a line segment or a single
point. These different cases are explained in detail in the
Appendix.

The idea of the proof is to construct a single affine trans-
formation from the movements of the corner points of the
intersection (or difference), and then to show that its coeffi-
cients are rational functions of time. ��

In general, if the affine transformations of �� and �� are
given by polynomial or linear functions, the corner points
���� ���, ���� ��� and ���� ��� of triangles in the intersection
(or difference) are in general rational in these functions. The
computations in the proof of the previous lemma (see the
Appendix) suggest that this leads to non-closure.

Lemma 3.2 The classes ������,�����
	� �, ������,����

	� �,
����,�

����
	� � and ����, ����

	� � are not closed under �, �.

Proof (sketch). It suffices to prove the theorem for triangles.
We first give a counterexample for intersection for the class
����, ����

	� �. Consider two atomic geometric objects ��

and �� with reference objects triangles with corner points
��� ��, ��� ��, �	� �� and �	� 	�, ��� 	�, ��� ��, respectively.
The affine transformations of the triangles are given by the

matrices

�
� 	�
�� �

�
and

�
� 	�� �
� ��� �

�
� respectively. In

some interval of the strictly positive �-axis, the intersection
of the two objects is a triangle with corner points
�
��	� ���	�, � �� �

���������
������� � �� �

���������
������� � and � ��� �� ��� ��.

If this triangle were to be the image of a single triangle
under an affine transformation, then the computations in the
proof of Lemma 3.1 (in the Appendix) show that this needs
to be a rational matrix. For example, if the original intersec-
tion triangle (with corner points �	� 	�, � �� � 	� and � �� �

�
� �) is

taken as a reference object, the transformation would look
like:�
�� �

�
�
� �
�
��������������

�������

�� �
�
�
� �
�
�����	�����

��

�������

�
�

�
�

�

�
�

�
�

�
�
���
�����������

�������

�
�
��������������

�������

�
�

This is clearly not a linear transformation, not even a
polynomial one. It can be shown that this is the case for
any reference triangle. If the intersection were the image
of more triangles then at least one of them would have a
side that is mapped onto an initial line segment of the side
� �� �

���������
������� � �� �

���������
������� � and � ��� ��

��
� �� of the intersec-

tion. A similar algebraic argument as the one followed
above then shows that the corresponding affine transforma-
tion needs to be rational in at least one of the coordinates.
This example proves also that the class ������

����
	� � is not

closed under intersection. We can use the same example
and a similar argument to settle the case of difference. ��



Lemma 3.3 The class ����
�,��
	�� is closed under � and

� for � � ��������������.

Proof (sketch). We consider atomic geometric objects ��

and �� with reference objects two rectangles �� and ��
both transformed by affine transformations in the time do-
mains �� and ��. As a rectangle is uniquely determined by
the coordinates of its upper left corner and its lower right
corner, we define �� and �� by ������ ������ ������ ����� and
������ �����, ������ ����� respectively.

According to Finite time partition (Property 3.3), the in-
tersection of the two reference rectangles �� and �� takes a
finite number of different shapes in the interval �� � ��. Let
� be an interval in �� � �� such that the intersection takes
the shape of a rectangle in � (most general case). We choose
the intersection of �� and �� to be the reference object of
the intersection. Suppose the upper left corner point of the
intersection originates from �� and the lower right corner
point originates from ��. The reference object of the inter-
section is then defined by ������ ����� and ������ �����. For
each time moment � � � , the coordinates of the intersection
are

��������������������������� 
�������������������������

and

��������������������������� 
��������������������������

To find the transformation of the intersection, we have to
solve a similar matrix equation as in the proof of Lemma
3.1 (see the Appendix, the case where the intersection is
a line segment). Therefore, the solution in this lemma is
also an affinity without translation vector that is linear in
the components of the affine transformations of�� and��.

We can conclude that the class ����
�,��
	�� is closed

under � for � � ��������������, as for rectangles, the
corner points of the intersection have the same functions
of time as the affine transformations of �� and ��. The
proof for � is analogous to the above one (for each of the
rectangles that constitute the difference). ��

The following lemma concludes the results for affinities.
We omit the proof.

Lemma 3.4 The class ����	
,����
	� � is closed under � and

�. The classes ����	
,����
	� � and ����	
,�����

	� � are not
closed under � and �.

The proof of the positive case of the above lemma is
based on the property that affinities do not preserve paral-
lelism to the axes. We will see later that for scalings, which
do preserve parallelism to the axes, the class of the objects
of ���	
 is not closed.

We divide the results for scalings into one positive and
two negative results. Lemma 3.7 answers the conjecture of
Chomicki and Revesz [3] negatively.

Lemma 3.5 ����
�, ��
�
� is closed under � and � for � �

��������������.

Proof. Let �� and �� be atomic geometric objects in
����
�, ��

�
� with time intervals �� and ��. According to
Atomicity, we have to find objects � and � � in ����
�,
��
�
� such that ����� � ������ � ������ and ������ �

������ � ������.
We start with the intersection. According to Finite time

partition, the intersection of the two rectangles takes differ-
ent shapes in elements of a finite partition of �� � ��. Let
� be an interval in this partition and let us assume that the
intersection is a rectangle in � (this is the most general case,
since a line segment or point can be considered special cases
of a rectangle).

We remark that a rectangle is uniquely determined by the
coordinates of its upper-left corner point ����� ���� and the
coordinates of the lower-right corner point �� �� � ����. Let
assume the upper-left corner point of the intersection comes
from �� and the lower-right from ��. Let the scaling of
�� be determined by �����, �����, �����, ����� and the one
of �� by �����, �����, �����, ����� (following the matrix
notation of Section 2.2).

The intersection is an atomic geometric object with a
rectangle as reference object and a transformation deter-
mined by

���� = �����	��������	���
�����
����
	���	��

�

���� = ������������������
�����
����
�������

�

���� = �������������	��	���
����	���
����	��
	���	��

�

���� = ��������������������
��������
�������
�������

�

These formulas show that if the transformations of ��

and �� are rational, polynomial, respectively linear, that
then also ����, ����, ����, ���� are rational, polynomial, re-
spectively linear. Set difference is proven analogously. The
difference is subdivided into at most eight rectangles, and
each of their movements can again be described by a scal-
ing. ��

Lemma 3.6 The classes ����	
��
�
�
� and ����	
� �����

are not closed under � and � for � � ��������������.

Proof. Consider the triangle with corner points ��� ��, ��� ��
and ��� �� and the triangle with corner points � �� � ��, �

�
� � ��

and � �� � ��, both transformed by the identity transforma-
tion. Their intersection (for an illustration see (A) of Fig-
ure 2) cannot be described as a finite union of elements of
����	
��

�
�
� since scalings preserve parallelism with the



��� ���

Figure 2. Counterexample for intersection (A)
and difference (B) for the clas ����	
��

���
�
 �.

coordinate axis. (Remember, for affinities, this class was
closed, because affinities do not preserve parallelism with
the coordinate axis.) The triangle with corner points ��� ��,
��� �� and ��� �� and the triangle with corner points � �� � ��,
� �� � �� and � �� � �� provide a counterexample for the differ-
ence (for an illustration see (B) of Figure 2). ��

Lemma 3.7 Both ������
���
�
 � and ������,����

�
 � are not
closed under � and �.

Proof. It suffices to prove this for triangles. Let the refer-
ence triangle of the atomic geometric object�� have corner
points ��� ��, ��� �� and ��� �� and let the reference trian-
gle of the atomic geometric object �� have corner points
��� ��, � �� � �� and ��� �� �. Suppose these objects are trans-

formed by the scalings

�
�
�

�
� �

�
and

�
� �
� �

�
in strictly

positive time domains. At any moment � � � these ob-
jects intersect in a single triangle with corner points ��� ��,
� �
���� �

��
���� � and � ��

����� �
�

����� �. By straightforward alge-
braic arguments (showing that a system of equations has no
solution) it can be shown that it is not the case that there
exists a single reference triangle and a rational scaling such
that this scaling maps the reference triangle to the intersec-
tion.

Suppose the intersection were the union of several
atomic objects. This union can be assumed (or made) to
be a disjoint union. It is not difficult to show that if a scal-
ing �� maps a side of a reference triangle �� into a line � and
a scaling �� maps a side of a reference triangle �� also into
� and if they both map a corner point of ��, resp. �� onto
the same point, that then �� equals ��. From this we can
deduce that all triangles that are adjacent to at least one of
the sides of the above described intersection triangle must
have the same scalings.

Furthermore, it can be shown that if a scaling �� maps
a side of a reference triangle �� into a line � that is parallel
to the �-axis (resp. �-axis) and a scaling �� maps a side of
a reference triangle �� also into � and if they both map a
side of ��, resp. �� onto the same line segment, that then

the �-component (resp. �-component) of �� equals the �-
component (resp. �-component) of ��.

From this we can deduce that all triangles in the above
disjoint union must have the same scalings. This concludes
the proof. ��

Finally, we give a general negative result for translations.

Lemma 3.8 For each of the classes � considered in the
previous Section, the class ��� ��

������ is not closed under
� and �, for � � ��������������.

Proof (sketch). First, we remark that translations preserve
the shape and area of objects and the length of lines. Con-
sider now two objects from each of the relevant classes that
have the interval ��� �
 on the �-axis as one of their sides.
Let the first object undergo the translation ���� �� in the di-
rection of the negative �-axis and let the second object un-
dergo the translation ��� �� in the opposite direction, both in
the time interval ��� ��
, for some �� � �. If the objects at
time � � � are located on different sides of the �-axis, then
their intersection is a shrinking line segment. If both objects
are originally located at the same side of the �-axis, then
their differences have increasing area. So, in both cases,
they cannot be described as a finite union of translating ob-
jects. ��

4. Conclusion

As can been seen from Table 1 only few classes have
closure for all three Boolean set operators. This negative
conclusion, together with the observation that the consid-
ered classes of objects are relevant to practice implies the
need to adjust the model for geometric objects. An obvi-
ous way to obtain closure in more cases would be to allow
more Boolean operators (and not just union) on atomic ge-
ometric objects in the construction of geometric objects. It
should be investigated how this can be achieved most eco-
nomically. Maybe the additional power of intersection on
atomic geometric objects alone or of complement on atomic
geometric objects alone is sufficient to obtain closure in all
the cases considered in Table 1.
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Appendix

Further details for the proof of Lemma 3.1 (closure of
����, ����

	� � under � and �).

By Atomicity, we have to show that the intersec-
tion (or difference) of two atomic geometric objects� � and
�� with reference objects from ��� is represented by an
object in ����, ����

	� �.
According to Finite time partition, the intersection (or

difference) of the two triangles takes different shapes in el-
ements of a finite partition of �� � ��. Let � be an interval
in this partition. The intersection can have three possible
shapes during � , namely a polygon, a line or a single point.
In the polygon case, the intersection (or difference) always
is a finite union of triangles. It suffices to show how one
triangle in this union belongs to ����, ����

	� �. The situa-
tions where the intersection is a point or a line are treated
separately.

First suppose the intersection is a polygon. We divide
the polygon into triangles. The three corner points �� �� ���,
���� ��� and ���� ��� of one such triangle in the intersection
(or difference) are transformed by three (in general differ-
ent) affinities�

����� �����

���� �����

�
�

�
�

�

�
�

�
�����
�����

�
� 	 � �� 	� ��

The condition for the existence of a single affine trans-
formation that transforms these corner points according to
their respective affinities is that the first matrix in the matrix

equation below is regular (time dependence is omitted)�
������

�� �� � � � �
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This is the case if and only if the three points ���� ���,
���� ��� and ���� ��� are not collinear. By assumption, this
condition is always satisfied. We find the affine transforma-
tion that transforms the triangle according to the different
movements of the corner points, by solving the above ma-
trix equation.

The result of this computation is the affine transforma-
tion with coefficients (to save space time dependence is
omitted):
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These functions give rise to an affinity. Indeed, the trans-
formation matrix �

���� ����

��� ����

�

is regular. Simplifying the expression �������� � ����
���
gives the result
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where ��� � ������� � ������� � ����� and ��� � 
������ �
������� � �����, 	 � �� 	� �� This expression is zero if the
three points ���� ���, ���� ��� and ���� ��� are collinear
or if their transformations under the original affinities are
collinear (at some moment �). By assumption, the points
���� ���, ���� ��� and ���� ��� form a triangle, and affinities
preserve (non-) collinearity.

The coefficients of the resulting affine transformation are
linear functions of the coefficients of the original transfor-
mations of the corner points ���� ���, ���� ��� and ���� ���.
As the original transformations are rational, the resulting
affine transformation is rational too.

Now we investigate the situation if the intersection of
�� and �� is a line segment. The movement of the two
endpoints of the line ���� ��� and ���� ��� are affine trans-
formations�
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as both�� and�� have affine transformation functions. We
prove that there always exists a rational affine function, with
the translation components ���� and ���� being zero, that
transforms the line segment.

The condition for the existence of a single affinity that
transforms the two endpoints of the line segment according
to their respective affinities is that the first matrix in the fol-
lowing equation is regular (to save space time dependence
is omitted).
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This is true if the two endpoints of the line segment do
not coincide.

As in this part of the proof we assume that the intersec-
tion is a line segment, and not a single point, the condition
is satisfied.

The affinity that determines the movement of the inter-
section, found by solving the above equation, is the follow-
ing (to save space time dependence is omitted):
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As in the more general case above, it can be shown that�
���� ����

��� ����

�

is regular and therefore determines an affinity.
This solution is linear in the components of the original

rational affine transformations of �� and ��, so it is also
rational.

The only situation left is when the intersection is a single
point. It is trivial that in this case the intersection’s move-
ment is a rational affine transformation.

Now we have shown that the class ����, ����
	� � is closed

under intersection, as the class is atomically closed under
intersection. The proof for the atomic closure under differ-
ence is analogous. By Atomicity, we know that if the class
����, ����

	� � is atomically closed under difference and in-
tersection, then it is closed under difference. ��


