
Nested Data Cubes for OLAP

Stijn Dekeyser,1 Bart Kuijpers,�1 Jan Paredaens1, and Jef Wijsen��1

University of Antwerp (UIA), Dept. Math. & Computer Sci.,
Universiteitsplein 1, B-2610 Antwerp, Belgium

Email: {dekeyser,kuijpers,pareda,jwijsen}@uia.ua.ac.be

Abstract. We present a new model for OLAP, called the nested data
cube (NDC) model. Nested data cubes are a generalization of other OLAP
models such as f-tables [3], and hypercubes [2], but also of classical struc-
tures such as sets, bags, and relations. The model we propose adds to
the previous models mainly flexibility in viewing the data, in that it al-
lows for the assignment of priorities to the different dimensions of the
multidimensional OLAP data.
We also present an algebra in which all typical OLAP analysis and nav-
igation operations can be formulated. We present a number of algebraic
operators that work on nested data cubes and that preserve the func-
tional dependency between the dimensional coordinates of the data cube
and the factual data in it. These operations include nesting, unnesting,
summary, roll-up, and aggregation operations. We show how these oper-
ations can be applied to sub-NDC’s at any depth, and also show that the
NDC algebra can express the SPJR algebra [1] of the relational model. A
major motivation for defining an algebra rather than a calculus, is that
an algebra naturally leads to an implementation strategy. Importantly,
we show that the NDC algebra primitives can be implemented by linear
time algorithms.

1 Introduction

Since the seminal paper of Codd, Codd, and Salley [5] of 1993, on-line analyt-
ical processing (OLAP) is recognized as a promising approach for the analysis
and navigation of data warehouses and multidimensional data [4,?,11, 12, 15,
26]. Multidimensional databases typically are large collections of enterprise data
which are arranged according to different dimensions (e.g., time, measures, prod-
ucts, geographical regions) to facilitate sophisticated analysis and navigation for
decision support in, for instance, marketing. Figure 1 depicts a three-dimensional
database, containing sales information of stores. A popular way of representing
such information is the “data cube” [8, 16, 26]. Each dimension is assigned to
an axis in n-dimensional space, and the numeric values are placed in the corre-
sponding cells of the ‘cube’.
� Post-doctoral research fellow of the Fund for Scientific Research of Flanders (FWO-

Vlaanderen).
�� At the time the presented research was performed, this author was affiliated to the

Free University of Brussels (VUB)

Day : day Item : item Store : store
Jan1 Lego Navona → 32
Jan1 Lego Colosseum → 24
Jan1 Scrabble Navona → 13
Jan1 Scrabble Colosseum → 14
Jan1 Scrabble Kinderdroom → 22
Jan2 Lego Kinderdroom → 2
Jan2 Lego Colosseum → 21

Fig. 1. A multidimensional database.

The effectiveness of analysis and the ease of navigation is mainly determined
by the flexibility that the system offers to rearrange the perspectives on different
dimensions and by its ability to efficiently calculate and store summary informa-
tion. A sales manager might want to look at the sales per store, or he might want
to have the total number of items sold in all his stores in a particular month.
OLAP systems aim to offer these qualities.

During the past few years, many commercial systems have appeared that
satisfactorily offer, through ever more efficient implementations, a wide number
of analysis capabilities. A few well-known examples are Arbor Software’s Ess-
base [9], IBM’s Intelligent Server [18], Red Brick’s Red Brick Warehouse [22], Pi-
lot Software’s Pilot Decision Support Suite [21], and Oracle’s Sales Analyzer [23].
Some of these implementations are founded on theoretical results on efficient ar-
ray manipulation [19, 20, 24].

In more recent years, however, the need for a formal model for OLAP that ex-
plicitly incorporates the notion of different and independent views on dimensions
and also offers a logical way to compute summary information, has become ap-
parent. Lately, a number of starting points for such models have been proposed.
Gyssens et al. [13] have proposed the first theoretical foundation for OLAP sys-
tems: the tabular database model. They give a complete algebraic language for
querying and restructuring two-dimensional tables. Agrawal et al. [2] have intro-
duced a hypercube based data model with a number of operations that can be
easily inserted into SQL. Cabibbo and Torlone [3] have recently proposed a data
model that forms a logical counterpart of multidimensional arrays. Their model
is based on dimensions and f-tables. Dimensions are partially ordered categories
that correspond to different ways of looking at the multidimensional information
(see also [8]). F-tables are structures to store factual data functionally depen-
dent on the dimensions (such as the one depicted in Figure 1). They also propose
a calculus to query f-tables that supports multidimensional data analysis and
aggregation.

In this paper, we generalize the notions of f-tables and hypercube by intro-
ducing the nested data cube model. Our data model supports a variety of nested
versions of f-tables, each of which corresponds to an assignment of priorities to
the different dimensions.

The answer to the query “Give an overview of the stores and their areas
together with the global sales of the various items,” on the data cube of Figure 1,
for instance, is depicted in Figure 2 by a nested data cube. This data cube

has two dimensions, Store and Area, at the most outer level of nesting, and one
dimension, Item, at a deeper level. This table gives a view of the sales of Figure 1
in such a way that the sales per store and per item are clearly visualized (being
grouped in bags).

We also present an algebra to formulate queries, such as the one above, on
nested data cubes. This query language supports all the important OLAP analy-
sis and navigational restructuring operations on data cubes. There are a number
of operations whose aim lies purely in rearranging the information in the cube
in order to create different and independent views on the data. These include,
for instance, nesting and unnesting operations, factual data collection in bags,
duplication, extention of the cube with additional dimensions, and renaming.
The algebra also contains selection, aggregation, and roll-up operations which
are directed towards the analysis of the data.

For instance, the nested cube of Figure 2 was obtained from the cube of
Figure 1 by the following series of operations: first nesting on Store is performed,
resulting in a cube with Store as the only dimension at the highest level, and
Item and Day on a deeper level; then, on the inner level, nesting is now used on
Item, yielding a nested data cube with depth three, and one dimension in each
level of nesting; next, on the deepest level, the information per Item is collected
resulting in a decrease of the depth by one, the removal of information about
Day , and the creation of bags of numbers in the functional part of the data cube
at depth two; finally, the nested data cube is extended by one dimension in which
the roll-up of the Store to Area information is stored. This results in a nested
data cube in which the dimensions Store and Area are given higher importance
than Item, and in which Day has disappeared. If one is interested in the total
number of sales per Store and per Item, then an aggregate function sum can be
applied to the individual bags in the cube.

These and other operations are illustrated fully in Section 3, which contains
a similar, yet more extensive example.

Motivation. The model we propose offers a natural paradigm for perceiving large
data cubes, as it adds to previously mentioned models mainly flexibility in view-
ing the data by assigning priorities to different dimensions. Put another way,
grouping on values of an attribute is made explicit. As is shown in the next sec-
tion, the NDC model can also be used to represent common data structures such
as sets, bags, and relations. Furthermore, our model generalizes and improves
upon a number of other OLAP models, as is discussed later in this paragraph.

Let us first come back to the problem of perceiving large data cubes. Tra-
ditional data cubes are “flat” in that they treat each dimension in the same
way. This causes two kinds of perceptional difficulties: firstly the dimensionality
can be too high to be practically visualizable in a “cubic” format. Secondly, the
cardinality (the number of tuples in the database) is typically very high. Our
approach can be used to decrease both measures.

We now turn to the comparison of our approach to other OLAP models.
While the query language for the tabular data model proposed by Gyssens et
al. [13] only covers restructuring of tables, ours supports both restructuring and

Store : store Area : area

Navona Italy → Item : item
Lego → {|32|}
Scrabble → {|13|}

Colosseum Italy → Item : item
Lego → {|24, 21|}
Scrabble → {|14|}

Kinderdroom Belgium → Item : item
Lego → {|2|}
Scrabble → {|22|}

Fig. 2. A three-dimensional data cube containing sales information.

complex analysis queries. Their model, although generalized for an arbitrary
number of dimensions [14], is mainly suited for two-dimensional spreadsheet
applications. The NDC model, however, offers a theoretical framework for “cube
viewers” where users navigate through a space of linearly nested n-dimensional
cubes.

Our model is based on a simple hypercube model such as the one proposed
by Agrawal et al. [2]. Their approach is mainly toward the insertion of their
alebra into SQL, while this paper proposes an independent implementation of
nested data cubes.

A final comparison of our model with other OLAP models involves the f-
tables proposed by Cabibbo et al. [3]. Like their model, ours contains explicit
notions of dimensions and describes hierarchies of levels within dimensions in
a clean way. However, the model we propose also allows the construction of a
hierarchy of the dimensions in an NDC. This does not only make viewing very
large cubes easier, it also gives semantics to the scheme of a data cube. Different
end-users will typically prefer different schemes for the same underlying data.

An important problem with the calculus for f-tables as proposed by Cabibbo
et al. is that in at least two cases it is necessary to leave the model temporarily.
Firstly, when aggregate functions are used, the result of a query may no longer
be functional. In contrast, the NDC model has the ability to collect factual
data in bags which allows us to stay within our model after grouping and before
aggregation. Once data is collected in bags, a wide variety of aggregate functions
can be performed on them by reusing the constructed bags.

Secondly, in the f-table model, it is not clear where in the system the infor-
mation for the roll-up function is to be found. It is assumed that it is known
for every value in any level how to roll-up to a value in a higher level from the
hierarchy. Conversely, our operator that is used for roll-up takes any relation as
input, meaning that roll-up information can be stored in another NDC in the
system.

While our model clearly shares similarities with the the nested relational
model [10, 17, 25], it is not a generalization of it. Importantly, our model imposes

linear nesting which only allows for the construction of a linear hierarchy of
dimensions.

Organization. Section 2 introduces nested data cubes (NDC’s). Section 3 in-
troduces the operators of the NDC algebra and illustrates them by presenting
an extensive example. Section 4 contains two results concerning the expressive
power of the NDC algebra. Section 5 shows how our algebra can be implemented
efficiently. Section 6 briefly summarizes the most important results. The ap-
pendix contains the formal definitions of the NDC algebra operators. For formal
definitions and the proofs of the theorems, we refer to [7].

2 Nested Data Cubes

In this section, we formally define the nested data cube model and illustrate the
definitions using the data cube of Figure 2. After giving additional examples,
we show that the set of NDC’s over a given scheme is recursively enumerable.
Algebraic operators that work on NDC’s are presented in the next section.

In what follows, we use the delimiters {|·|} to denote a bag. We assume the
existence of a set A of attributes and a set L of levels. In Figure 2, the attributes
are Store, Area, and Item, and the levels are store, area, item, and num (the
set of natural numbers). Every level l has a recursively enumerable set dom(l)
of atomic values associated to it. For technical reasons, the set L contains a
reserved level, λ, which has a singleton domain: dom(λ) = {�}, with � the
Boolean true value. We define dom =

⋃{dom(l) | l ∈ L}.
For certain pairs (l1, l2) of L × L, there exist a roll-up function, denoted

R-UPl2
l1

, that maps every element of l1 to an element of l2. Further requirements
may be imposed on the nature of roll-up functions, as is done in [3].

Definition 1. (Coordinate).

– A coordinate type is a set {A1 : l1, . . . , An : ln} where A1, . . . , An are distinct
attributes, l1, . . . , ln are levels, and n ≥ 0.

– A coordinate over the coordinate type {A1 : l1, . . . , An : ln} is a set {A1 :
v1, . . . , An : vn} where vi ∈ dom(li), for 1 ≤ i ≤ n.

The set of attributes appearing in a coordinate (type) γ, is denoted att(γ). ��
The NDC of Figure 2 has two coordinate types; i.e., {Store : store,Area : area}
and {Item : item}. An example of a coordinate over the former coordinate type
is (Navona, Italy).

Definition 2. (Scheme). The abstract syntax of a nested data cube scheme
(NDC scheme, or simply scheme) is given by:

τ = [δ → τ] | β (1)
β = l | {|β|} (2)

where δ is a coordinate type, and l is a level. Throughout this paper, the Greek
characters δ, τ , and β consistently refer to the above syntax. ��

The nested data cube of Figure 2, for example, is

τ0 = [{Store : store,Area : area} → [{Item : item} → {|num|}]].

As another example, the scheme of Figure 1 is [{Day : day, Item : item,Store :
store} → num].

Definition 3. (Instance). To define an instance (nested data cube) over a
scheme τ , we first define the function dom(·) as follows:

dom(δ) = the set of all coordinates over coordinate type δ

dom([δ → τ]) = {{v1 → w1, . . . , vm → wm} | m ≥ 0, and
v1, . . . , vm are pairwise distinct coordinates of dom(δ), and
wi ∈ dom(τ) for 1 ≤ i ≤ m}

dom({|β|}) = {{|v1, . . . , vm|} | vi ∈ dom(β) for 1 ≤ i ≤ m}

An NDC over the scheme τ is an element of dom(τ). ��
Figure 2 is a representation of an instance of the NDC with scheme τ0.

Definition 4. (Depth). The depth of a scheme τ , denoted depth(τ), is defined
as the number of occurences of δ in the construction of τ by applying rule (1) of
Definition 2.

The notion of depth is extended to NDC’s in an obvious way: if C is an NDC
over the scheme τ , then we say that the depth of C is depth(τ).

The notion of subscheme of a scheme τ at depth n is assumed to be intuitively
clear. ��

The NDC with scheme tau0 is of depth 2. The subscheme at depth 2 is
[{Item : item} → {|num|}].
We now give some additional examples.

Example 1. Note that [{} → num] is a legal scheme. Its depth is equal to 1. All
NDC’s over this scheme can be listed as follows (assume dom(num) = {1, 2, . . .}):
{} (the empty NDC), {{} → 1}, {{} → 2}, and so on.

Importantly, num itself is also a legal scheme. Its depth is equal to 0. The NDC’s
over num (as a scheme) are 1,2, . . .

��

Example 2. NDC’s can represent several common data structures, as follows.

Bag: An NDC over a scheme of the form {|β|}.
Set: An NDC over a scheme of the form [{A : l} → λ].
Relation: An NDC over a scheme of the form [δ → λ]. The NDC called C0 in

Section 3 represents a conventional relation.
F-tables [3]: An NDC over a scheme of the form [δ → l].

��

Example 1 shows that the NDC’s over the scheme [{} → num] are recursively
enumerable. The following theorem generalizes this result for arbitrary schemes.

Theorem 1. The set of all NDC’s over a given scheme τ is recursively enu-
merable.

3 The NDC Algebra

The NDC algebra consists of the following 8 operators:

bagify This operator decreases the depth of an NDC by replacing each inner-
most sub-NDC by a bag containing the right-hand values appearing in the
sub-NDC;

extend This operator adds an attribute to an NDC. The attribute values of the
newly added attribute are computed from the coordinates in the original
NDC;

nest and unnest These operators capture the classical meaning of nesting and
unnesting;

duplicate This operator takes an NDC and replaces the right-hand values by
the attribute values of some specified attribute;

select and rename These operators correspond to operators with the same
name in the conventional relational algebra;

aggregate This operator replaces each right-hand value w in an NDC by a new
value obtained by applying a specified function to w.

Furthermore, the NDC algebra also allows for the use of these operators at
arbitrary depths. For instance, the use of nest at depth 2, will be denoted by
nest2. For more details, we refer to Section 4.1.

These operators are illustrated in the following extensive example, which
resembles the one given in the introduction of this paper, but is purely designed
to contain all operators (and thus contains redundant steps). Formal definitions
of the operators can be found in the appendix.

Before turning to the example, we make the following remarks.
To make the tables smaller in size, we have used abbreviations for the at-

tributes. It should be noted that the size of the tables printed below is big

because we chose to show all sub-cubes at once. However, in interactive cube-
viewers, sub-cubes will only “open” when clicked upon, thus reducing the size
profoundly.

As a last remark, the reader should understand that the definitions of the
operators are formed such that the result of an operation always retains func-
tionality.

The query used in the example is

Give an overview per (area, country) pair and per item of the amounts
of toys sold over all shops and all time, in the area of Europe.

We start from raw data in a relation C0 containing information about toy
shops. Typically, such tables may contain more than one attribute that can be
seen as a measure. In C0, for instance, both the number of items sold (So) as
well as the number of damaged or lost items (Lo) can serve as a measure.

Da : day It : item St : store So : num Lo : num Co : country
Jan1 Lego Colosseum 35 4 Italy → �
Jan1 Lego Navona 12 1 Italy → �
Jan1 Lego Kindertuin 31 6 Belgium → �
Jan1 Lego Toygarden 31 1 USA → �
Jan1 Scrabble Atomium 11 2 Belgium → �
Jan1 Scrabble Colosseum 15 2 Italy → �
Jan1 Scrabble Funtastic 22 0 Canada → �
Jan1 Scrabble Kindertuin 19 5 Belgium → �
Jan1 Scrabble Navona 17 3 Italy → �
Jan2 Lego Kindertuin 42 5 Belgium → �
Jan2 Lego Navona 28 7 Italy → �

C0

Cube C1 is obtained after selecting one attribute (So) from C0 to be used as a
measure, i.e., C1 = duplicate(C0,So). After chosing this measure for the OLAP
analysis, a logical next step would be to remove this and all other measures from
the coordinate type of the NDC. This projection can be simulated in our NDC
algebra by the following three steps; first the measures are put in a seperate
sub-cube by using the nest operator, then the information is collapsed in bags,
and finally computing the aggregate ssum over them.

However, to save space, we temporarily leave the measures in the coordinate
type. In later steps, they will disappear.

Da : day It : item St : store So : num Lo : num Co : country
Jan1 Lego Colosseum 35 4 Italy → 35
Jan1 Lego Navona 12 1 Italy → 12
Jan1 Lego Kindertuin 31 6 Belgium → 31
Jan1 Lego Toygarden 31 1 USA → 31
Jan1 Scrabble Atomium 11 2 Belgium → 11
Jan1 Scrabble Colosseum 15 2 Italy → 15
Jan1 Scrabble Funtastic 22 0 Canada → 22
Jan1 Scrabble Kindertuin 19 5 Belgium → 19
Jan1 Scrabble Navona 17 3 Italy → 17
Jan2 Lego Kindertuin 42 5 Belgium → 42
Jan2 Lego Navona 28 7 Italy → 28

C1 = duplicate(C0,So)

In order to satisfy the query, we have to add the area attribute to the coordinate
type. This is done by applying extend, i.e., C2 = extend(C1,Ar , area, R-UPareacountry).

Da : day It : item St : store So : num Lo : num Co : country Ar : area
Jan1 Lego Colosseum 35 4 Italy Europe → 35
Jan1 Lego Navona 12 1 Italy Europe → 12
Jan1 Lego Kindertuin 31 6 Belgium Europe → 31
Jan1 Lego Toygarden 31 1 USA America → 31
Jan1 Scrabble Atomium 11 2 Belgium Europe → 11
Jan1 Scrabble Colosseum 15 2 Italy Europe → 15
Jan1 Scrabble Funtastic 22 0 Canada America → 22
Jan1 Scrabble Kindertuin 19 5 Belgium Europe → 19
Jan1 Scrabble Navona 17 3 Italy Europe → 17
Jan2 Lego Kindertuin 42 5 Belgium Europe → 42
Jan2 Lego Navona 28 7 Italy Europe → 28

C2 = extend(C1,Ar , area, R-UPareacountry)

We now nest in two steps. Thus, C3 = nest(C2,Ar).

Ar : area

Europe →

Da : day It : item St : store So : num Lo : num Co : country
Jan1 Lego Colosseum 35 4 Italy → 35
Jan1 Lego Navona 12 1 Italy → 12
Jan1 Lego Kindertuin 31 6 Belgium → 31
Jan1 Scrabble Atomium 11 2 Belgium → 11
Jan1 Scrabble Colosseum 15 2 Italy → 15
Jan1 Scrabble Kindertuin 19 5 Belgium → 19
Jan1 Scrabble Navona 17 3 Italy → 17
Jan2 Lego Kindertuin 42 5 Belgium → 42
Jan2 Lego Navona 28 7 Italy → 28

America → Da : day It : item St : store So : num Lo : num Co : country
Jan1 Lego Toygarden 31 1 USA → 31
Jan1 Scrabble Funtastic 22 0 Canada → 22

Ar : area

Europe →

Co : country

Belgium →
Da : day It : item St : store So : num Lo : num
Jan1 Lego Kindertuin 31 6 → 31
Jan1 Scrabble Atomium 11 2 → 11
Jan1 Scrabble Kindertuin 19 5 → 19
Jan2 Lego Kindertuin 42 5 → 42

Italy →

Da : day It : item St : store So : num Lo : num
Jan1 Lego Colosseum 35 4 → 35
Jan1 Lego Navona 12 1 → 12
Jan1 Scrabble Colosseum 15 2 → 15
Jan1 Scrabble Navona 17 3 → 17
Jan2 Lego Navona 28 7 → 28

America →

Co : country

USA → Da : day It : item St : store So : num Lo : num
Jan1 Lego Toygarden 31 1 → 31

Canada → Da : day It : item St : store So : num Lo : num
Jan1 Scrabble Funtastic 22 0 → 22

C4 = nest2(C3,Co)

We now decrease the number of tuples in the cube by performing a selection.
Cube C5 = select(C4,Ar , Europe).

Ar : area

Europe →

Co : country

Belgium →
Da : day It : item St : store So : num Lo : num
Jan1 Lego Kindertuin 31 6 → 31
Jan1 Scrabble Atomium 11 2 → 11
Jan1 Scrabble Kindertuin 19 5 → 19
Jan2 Lego Kindertuin 42 5 → 42

Italy →

Da : day It : item St : store So : num Lo : num
Jan1 Lego Colosseum 35 4 → 35
Jan1 Lego Navona 12 1 → 12
Jan1 Scrabble Colosseum 15 2 → 15
Jan1 Scrabble Navona 17 3 → 17
Jan2 Lego Navona 28 7 → 28

C5 = select(C4,Ar , Europe)

To obtain the pairs of (area, country) requested in the query, unnesting is
applied to the cube. Cube C6 = unnest(C5). Alternatively, we could also have
nested the cube C2 directly in the requested form and applied the selection to
the resulting cube.

Ar : area Co : country

Europe Belgium →
Da : day It : item St : store So : num Lo : num
Jan1 Lego Kindertuin 31 6 → 31
Jan1 Scrabble Atomium 11 2 → 11
Jan1 Scrabble Kindertuin 19 5 → 19
Jan2 Lego Kindertuin 42 5 → 42

Europe Italy →

Da : day It : item St : store So : num Lo : num
Jan1 Lego Colosseum 35 4 → 35
Jan1 Lego Navona 12 1 → 12
Jan1 Scrabble Colosseum 15 2 → 15
Jan1 Scrabble Navona 17 3 → 17
Jan2 Lego Navona 28 7 → 28

C6 = unnest(C5)

We now need to nest on the second level of grouping (as mentioned in the
statement of our example query), i.e., on the item attribute.

Ar : area Co : country

Europe Belgium →

It : item

Lego → Da : day St : store So : num Lo : num
Jan1 Kindertuin 31 6 → 31
Jan2 Kindertuin 42 5 → 42

Scrabble → Da : day St : store So : num Lo : num
Feb1 Kindertuin 19 5 → 19
Feb2 Atomium 11 2 → 11

Europe Italy →

It : item

Lego →
Da : day St : store So : num Lo : num
Jan1 Colosseum 35 4 → 35
Jan1 Navona 12 1 → 12
Jan2 Navona 28 7 → 28

Spider → Da : day St : store So : num Lo : num
Jan1 Colosseum 15 2 → 15
Jan1 Navona 17 3 → 17

C7 = nest2(C6, It)

Since we have obtained the necessary grouping, all attributes remaining at
the deepest level of nesting are not needed anymore. Their data is collapsed into
bags, i.e., C8 = bagify(C7). Note that we are now removing the measures from
the coordinate type, and are also putting all information over all dates together.

Ar : area Co : country

Europe Belgium → It : item
Lego → {|31, 42|}
Scrabble → {|19, 11|}

Europe Italy → It : item
Lego → {|35, 12, 28|}
Scrabble → {|15, 17|}

C8 = bagify(C7)

As a last step in the implementation of our example query in the NDC
algebra, we perform the sum aggregate on the bags of cube C8 to obtain the
totals of sold items. This yields the desired result.

Ar : area Co : country

Europe Belgium → It : item
Lego → 73
Scrabble → 30

Europe Italy → It : item
Lego → 75
Scrabble → 32

C9 = aggregate(C8, sum)

4 The Expressive Power of the NDC Algebra

In this section, we show some properties concerning the expressiveness of the
NDC algebra. We first show that the NDC algebra is sufficiently powerful to
capture algebraic operations working directly on sub-NDC’s over a subscheme of
a scheme. Next we show that the NDC algebra can express the SPJR algebra [1].

We refer to [7] for the proofs of the theorems in this section.

4.1 Applying Operators at a Certain Depth

The recursion in the definition of NDC is a “tail recursion.” Consequently, the
“recursion depth” can be used to unequivocally address a sub-NDC within an
NDC. This is an interesting and important property of NDC’s. It is exploited
by defining operators that directly work on sub-NDC’s at a certain depth. Such
operators reduce the need for frequent nesting and unnesting of NDC’s.

Definition 5. Let C be an NDC over the scheme τ . Let 1 ≤ d ≤ depth(τ). Let
op(C, a1, . . . , an) be any previously defined operation of the NDC algebra.

Let τ ′ = subscheme(τ, d). opd(C, a1, . . . , an) is defined iff op(τ ′, a1, . . . , an) is
defined.

We first give the result on schemes.

1. op1(τ, a1, . . . , an) = op(τ, a1, . . . , an).
2. If d > 1 then opd([δ → τ], a1, . . . , an) = [δ → opd−1(τ, a1, . . . , an)].

We next give the result on NDC’s.

1. op1(C, a1, . . . , an) = op(C, a1, . . . , an).
2. If d > 1 and C = {v1 → w1, . . . , vm → wm} then opd(C, a1, . . . , an) = {v1 →

opd−1(w1, a1, . . . , an), . . . , vm → opd−1(wm, a1, . . . , an)}.

��
In the example of Section 3, cube C4 was obtained from C3 by using the nest
operator at depth 2.

The following theorem states that opd(C, a1, . . . , an) is not a primitive operator—
i.e., it can be expressed in terms of the operators of the NDC algebra.

Theorem 2. Let C be an NDC over the scheme τ . The operator opd(C, a1, . . . , an)
with d ≥ 2 is redundant.

As an example of this theorem, cube C4 of the previous section can be ob-
tained from cube C3 by applying the following expressions at depth 1:

C4 = nest(nest(unnest(C3), It),Ar).

4.2 The SPJR Algebra

The following theorem states that the NDC algebra can express the SPJR algebra
[1].

Theorem 3. The NDC algebra expresses the SPJR algebra.

The proof for Theorem 3 (see [7]) shows how the extend operator can be
used to simulate the relational join.

5 Implementing the NDC Algebra

The operations of Section 3 can be implemented by algorithms that run in linear
time with respect to the number of atomic values that appear in the data cube.
We assume that each aggregate function is computable in polynomial time.

We introduce two new constructs: the iCube which holds the actual data
in an n-dimensional array, and the iStruct, essentially a string representing the
structure behind the data.

For example, consider the scheme [{A1 : a1,A2 : a2} → [{B1 : b1,B2 : b2} →
c]]. It can be implemented by the iCube cube of type c[#b1][#a2][#d1][#b2][#a1]
(the array type of the Java language is used for simplicity) together with the
iStruct [5, 2 → [1, 4 → ·]]. In the iCube’s type, #a1 denotes the cardinality
of dom(a1) plus one. That is, there is one entry for each element of dom(a1)
(indexes 1, 2, . . . ,#a1 − 1) on top of the entry with index 0. The numbers in
the iStruct denote positions in the array type. For example, “5” refers to the
fifth dimension, which ranges to #a1. A possible member of an NDC over the
given scheme is [{A1 : u1,A2 : u2} → [{B1 : v1,B2 : v2} → w]] which will be
represented in the iCube as cube[v1][u2][0][v2][u1] = w.

Note that an extra, unused dimension is present in the iCube (namely, the
third dimension ranging to #d1). This is necessary in case the extend operation
is used, as we require the iCubes to remain the same throughout the computation

of the query. This dimension will then be used to store the attribute created by
the extend operator.

A final remark relates to the use of bags in our model. The implementation
should support fast access to the elements in a bag of an NDC, to facilitate the
computation of aggregate functions. Consider, for example, the scheme [{A :
a} → {|c|}]. NDC’s over this scheme contain bags. One possible implementation
uses the iCube cube of type c[#a][#d] and the iStruct [1 → {|2|}]. A member
[{A : v} → {|w1, w2|}] of an NDC over this scheme, for example, is represented
by {|cube[v][i] | 1 ≤ i < #d|} = {|w1, w2|}.

The operations of the NDC algebra are implemented in such a way that the
type of the iCube never changes. Importantly, the nest, unnest, and bagify
operations only change the iStruct, leaving the iCube unaffected. The other
operations also change the content of the iCube. Based on this, we can implement
an expression in the NDC algebra in linear time. We now give a concrete example.

Let revenue be an NDC over the scheme

[{Store : store → [{City : city} → [{Product : product} → num]]]

We want to answer the query “For each city, give the maximal total revenue
realized by any store in that city.” The iCube and initial iStruct implementing the
NDC are revenue = num[#store][#city][#product] and [1 → [2 → [3 → ·]]],
respectively. The algebraic expression for the query is

aggregate(bagify(aggregate(bagify(nest(unnest(revenue),City)), sum)), max)

A Java-like linear program implementing the expression is

for (int c = 1; c ≤ #city; c++) {
revenue[0][c][0] = 0;
for (int s = 1; s ≤ #store; s++) {

revenue[s][c][0] = 0;
for (int p = 1; p ≤ #product; p++) {

revenue[s][c][0] += revenue[s][c][p];
}
revenue[0][c][0] = max(revenue[0][c][0], revenue[s][c][0]);

}
}

6 Summary

We proposed the NDC data model and its associated algebra. The NDC data
model differs from most existing OLAP data models in its explicit modeling of
grouping at different levels of nesting. We believe that nested grouping natu-
rally arises in many OLAP applications. We proved some properties about the
expressiveness of our algebra. The advantage of an algebra in comparison with

a calculus is that an algebra approach is generally more close to an implemen-
tation. We indicated, in fact, that all operations of the NDC algebra can be
implemented by linear time algorithms.

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

2. R. Agrawal, A. Gupta, and S. Sarawagi. Modeling multidimensional databases. In
Proc. IEEE Int. Conf. Data Engineering (ICDE ’97), pages 232–243, 1997.

3. L. Cabibbo and R. Torlone. Querying multidimensional databases. In Sixth Int.
Workshop on Database Programming Languages (DBPL ’97), pages 253–269, 1997.

4. S. Chaudhuri and U. Dayal. An overview of data warehousing and olap technology.
SIGMOD Record, 26(1):65–74, 1997.

5. E. Codd, S. Codd, and C. Salley. Providing OLAP (On-Line Analytical
Processing) to user-analysts: An IT mandate. Arbor Software White Paper,
http://www.arborsoft.com.

6. G. Colliat. Olap, relational, and multidimensional database systems. SIGMOD
Record, 25(3):64–69, 1996.

7. S. Dekeyser, B. Kuijpers, J. Paredaens, and J. Wijsen. Nested Data Cubes. Tech-
nical Report 9804, University of Antwerp, 1998.
ftp://wins.uia.ac.be/pub/olap/ndc.ps

8. C. Dyreson. Information retrieval from an incomplete data cube. In Proc. Int.
Conf. Very Large Data Bases (VLDB ’96), pages 532–543, Bombai, India, 1996.

9. Essbase. Arbor Software, http://www.arborsoft.com/OLAP.html.

10. P.C. Fischer, and S.J. Thomas. Nested Relational Structures. In The Theory of
Databases, Advances in Computing Research III, PC. Kanellakis, ed., pages 269–
307, JAI Press, Greenwich, CT, 1986.

11. J. Gray, A. Boswirth, A. Layman, and H. Pirahesh. Data cube: A relational aggre-
gation operator generalizing group-by. In Proc. IEEE Int. Conf. Data Engineering
(ICDE ’97), pages 152–159, 1997.

12. J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pel-
low, and H. Pirahesh. Data cube: A relational aggregation operator generalizing
group-by, cross-tab, and sub-totals. Data Mining and Knowledge Discovery, 1:29–
53, 1997.

13. M. Gyssens, L. Lakshmanan, and I. Subramanian. Tables as a paradigm for query-
ing and restructuring. In Proc. ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems (PODS ’96), pages 93–103, Montreal, Canada,
1996.

14. M. Gyssens and L. Lakshmanan. A Foundtion for Multi-Dimensional Databases.
In Proc. Int. Conf. Very Large Data Bases (VLDB ’97), pages 106–115, Athens,
Greece, 1997.

15. J. Han. OLAP mining: An integration of OLAP with data mining. In Proceedings
of the 7th IFIP 2.6 Working Conference on Database Semantics (DS-7), pages 1–9,
1997.

16. V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing data cubes effi-
ciently. In Proc. ACM SIGMOD International Conference on Management of Data
(SIGMOD ’96), pages 205–216, Montreal, Canada, 1996.

17. G. Jaeschke, and H.-J. Schek. Remarks on the Algebra on Non First Normal
Form Relations. In Proceedings first Symposium on Principles of Database Systems
(PODS ’82), pages 124–138, Los Angeles, CA, 1982.

18. Intelligent server. IBM, http://www.software.ibm.com/data/pubs/papers.
19. L. Libkin, R. Machlin, and L. Wong. A query language for multidimensional arrays:

Design implementation, and optimization techniques. In Proc. ACM SIGMOD Int.
Conf. Management of Data (SIGMOD ’96), pages 228–239, Montreal, Canada,
1996.

20. A. Marathe and K. Salem. A language for manipulating arrays. In Proc. Int. Conf.
Very Large Data Bases (VLDB ’97), pages 46–55, Athens, Greece, 1997.

21. Pilot decision support suite. Pilot Software,
http://rickover.pilotsw.com/products/Welcome.htm.

22. Red brick warehouse. Red Brick,
http://www.redbrick.com/rbs-g/html/plo.html.

23. Sales analyzer. Oracle, http://www.oracle.com/products/olap/html/.
24. S. Sarawagi and M. Stonebraker. Efficient organization of large multidimensional

arrays. In Proc. IEEE Int. Conf. Data Engineering (ICDE ’94), pages 328–336,
Houston, Texas, 1994.

25. H. J. Schek, and M. H. Scholl. The Relational Model with Relation-Valued At-
tributes. In Information Systems 11:2, pages 137–147, 1986.

26. A. Shoshani. OLAP and statistical databases: Similarities and differences. In Proc.
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems
(PODS ’97), pages 185–196, Tucson, AZ, 1997.

Appendix

In the appendix, we formally define the operators that were introduced in Sec-
tion 3. Operators of the NDC algebra are defined on scheme level and on instance
(NDC) level.

The bagify operator

The bagify(·) operator takes as its argument an NDC of depth n ≥ 1, and
returns a new NDC with depth (n − 1). Intuitively, this operator is related to
the projection of the relational algebra, as it removes attributes.

Definition 6. Let C be an NDC over the scheme [δ → τ].

On scheme level, bagify([δ → τ]) is recursively defined as follows:

bagify([δ1 → [δ2 → τ]]) = [δ1 → bagify([δ2 → τ])]
bagify([δ → β]) = {|β|}

On NDC’s, bagify(C) is recursively defined as follows.

– If C = {v1 → w1, . . . , vm → wm} is an NDC over [δ1 → [δ2 → τ]], then
bagify(C) = {v1 → bagify(w1), . . . , vm → bagify(wm)}.

– If C = {v1 → w1, . . . , vm → wm} is an NDC over [δ → β], then bagify(C) =
{|w1, . . . , wm|}.

��

The extend operator

Definition 7. Let C be an NDC over the scheme [δ → τ]. Let A be an attribute
such that A �∈ att(δ). Let l be a level. Let R be a subset of dom(δ) × dom(l).

The definition of extend on scheme level is as follows. extend([δ → τ], A, l, R)
is equal to [δ ∪ {A : l} → τ].

The definition of extend on NDC level is as follows. extend(C,A, l, R) is defined
as the smallest NDC containing v∪{A : c} → w whenever (1) C contains v → w,
and (2) (v, c) ∈ R. ��

As discussed in the motivation, the relation R used in extend(·, ·, ·, R) can
be given by an NDC. This is an interesting feature, as it allows for both the
storage of roll-up information, and the “joining” of two NDC’s.

Intuitively, it is clear that the relation R can not be represented by an arbi-
trary NDC; a nested NDC is not possible for instance. For a formal discussion
of how NDC’s can be used as input relations to the extend operator, we again
refer to [7].

The nest operator

Definition 8. Let C be an NDC over the scheme [δ → τ], X a subset of att(δ),
and Y = att(δ) \ X. Let χ be the coordinate type δ restricted to attributes of
X, and ψ the coordinate type δ restricted to attributes of Y .

On scheme level, nest([δ → τ],X) is equal to [χ → [ψ → τ]].

On instance (NDC) level, nest(C,X) is defined as follows. Let

V = {v[X] | v → w ∈ C}.
Clearly, V ⊆ dom(χ). Then

1. For every x ∈ V , nest(C,X) contains x → C ′ where C ′ is the NDC over
[ψ → τ] satisfying

C ′ = {v[Y] → w | v → w ∈ C, and v[X] = x}.
2. If nest(C,X) contains x → C ′ then x ∈ V —i.e., nest(C,X) contains no

other elements than those specified in (1).

��

The unnest operator

The unnest operator is the inverse of the nest operator.

Definition 9. Let C be an NDC over the scheme [δ1 → [δ2 → τ]], where
att(δ1) ∩ att(δ2) = {}.
On scheme level, unnest([δ1 → [δ2 → τ]]) is equal to [δ1 ∪ δ2 → τ].

On instance level, unnest(C) is the smallest (w.r.t. set inclusion) NDC contain-
ing v1 ∪ v2 → w whenever C contains v1 → C ′ with v2 → w ∈ C ′. ��

The duplicate operator

Informally, duplicate serves to duplicate attribute values at the right-hand side
in an NDC. Both Codd et al. [5] and Agrawal et al. [2] stress the importance of
“symmetric treatment of dimensions and measures”, meaning that it needs to
be possible to transfer the right-hand values appearing in the deepest sub-cube
of an NDC (the measures) to the coordinates (the dimensions) of that NDC and
vice versa. The first direction is made possible by the extend operator, while
duplicate facilitates the latter direction.

Definition 10. Let C be an NDC over the scheme [δ → τ], and A : l ∈ δ.

On scheme level, duplicate([δ → τ], A) is equal to [δ → l].

On instance level, duplicate(C,A) is the smallest NDC over [δ → l] containing
v → c whenever C contains v → C ′ and v(A) = c (for some NDC C ′ over τ).

��

The select operator

Definition 11. Let C be an NDC over the scheme [δ → τ]. Let A : l ∈ δ. Let
B ∈ att(δ), and c ∈ dom(l).

For both types of the operator, i.e., select([δ → τ], A, c) and select([δ →
τ], A,B), the scheme of the result is equal to [δ → τ].

On instance level, select(C,A, c) is the smallest NDC over [δ → τ] containing
v → w whenever C contains v → w and v(A) = c, while select(C,A,B) is the
smallest NDC over [δ → τ] containing v → w whenever C contains v → w and
v(A) = v(B). ��

The rename operator

The rename operator serves to rename attributes.

Definition 12. Let C be an NDC over the scheme [δ → τ]. Let A ∈ att(δ) and
let B be an attribute not in att(δ). Let δ′ be the coordinate type obtained from
δ by substituting B for A.

On scheme level, rename([δ → τ], A,B) is equal to [δ′ → τ].

On instance level, rename(C,A,B) is the smallest NDC over [δ′ → τ] containing
v ∪ {B : c} → w whenever C contains v ∪ {A : c} → w. ��

The aggregate operator

The aggregate operator applies a (aggregation) function on the right-hand val-
ues appearing in an NDC.

Definition 13. The ground of a scheme τ , denoted ground(τ), is defined recur-
sively as follows:

ground([δ → τ]) = ground(τ)
ground(β) = β

Let C be an NDC over the scheme τ with ground(τ) = β1. Let f be a total
function from dom(β1) to dom(β2).

On scheme level, aggregate(τ, f) is recursively defined as follows:

aggregate([δ → τ], f) = [δ → aggregate(τ, f)]
aggregate(β1, f) = β2

On NDC’s, aggregate(C, f) is recursively defined as follows.

– If C = {v1 → w1, . . . , vm → wm} is an NDC over [δ → τ], then aggregate(C, f) =
{v1 → aggregate(w1, f), . . . , vm → aggregate(wm, f)}.

– If C = c is an NDC over β1, then aggregate(C, f) = f(c).

��

