
A Comparison of Different Techniques for
Haptic Cloth Rendering

Chris Raymaekers, Lode Vanacken, Erwin Cuppens, Karin Coninx
Hasselt University, Expertise centre for Digital Media

and transnationale Universiteit Limburg
Wetenschapspark 2, B-3590 Diepenbeek, Belgium

{chris.raymaekers, lode.vanacken, erwin.cuppens, karin.coninx }@uhasselt.be

ABSTRACT
In haptic cloth rendering, a user can interact
with a cloth simulation, while feeling forces
that relate to the cloth topology. This can be
realized by combining two existing techniques:
cloth simulation and collision detection. How-
ever, several design choices must be made in
order to have a realistic simulation while main-
taining real-time rendering times.
This paper discusses the techniques needed for
haptic cloth rendering and assesses which tech-
niques are best suited in order to realize the
haptic simulation.

1. Introduction
Haptic cloth rendering combines two existing
technologies: cloth simulation, which calcu-
lates the behaviour of cloth in a virtual simula-
tion and haptic rendering, which is used to
make virtual objects touchable by means of a
haptic device.
This paper describes how a cloth can be mod-
elled, animated and hapticly rendered using
various techniques. The next section describes
how such a cloth can be represented. Section 3

discusses how the cloth can be animated using
various integration techniques. A third issue to
increase the realism of a cloth simulation is
collision detection, which will be discussed in
section 4. Section 5 will describe some tech-
niques that can be used to render cloth topolo-
gies.
The above-mentioned techniques will be com-
bined in section 6 in order to realize a haptic
cloth rendering algorithm. Several different
technologies that have been used are compared
in order to find a good trade-off between real-
ism and processing time.
Finally, we will draw some conclusions and
discuss future work.

2. Cloth Simulation
Cloth simulation can be realized by means of
two different techniques: Finite Elements and
Mass Spring Systems. In this paper we will
concentrate on cloth simulation using mass
spring systems as this technique is better suited
for a haptic simulation.
A first technique uses Finite Elements [1]. An
important drawback of this method is its long
computation time for detailed simulations.

Figure 1: The three different types of springs

Since our goal is to combine cloth rendering
with haptic rendering, the processing time has
to be optimized. Therefore we will use another
technique: Mass Spring Systems, which can
obtain visually attractive results with a relative
short computation time.
A Mass Spring System is a special type of par-
ticle system, consisting of several particles
connected by springs. Each particle in the sys-
tem moves under the influence of Newton’s
dynamics, based on several physical forces
such as gravity, Hook’s law, etc
In order to create a cloth topology, the particles
are mostly connected by springs in a rectangu-
lar mesh [2].

Several techniques exist to simulate the physi-
cal properties of the cloth. The most used tech-
nique makes use of three different types of
springs [3,4], as can be seen in Figure 1:

• structural springs model the resistance to
stretching

• shear springs hinder the shearing of indi-
vidual particles on the cloth surface

• bend springs model the resistance to bend-
ing

3. Integration Techniques
In order to simulate movements of the cloth
topology, described in the previous section, the
position and velocity of the different particles
have to be calculated. This is realized through
an integration technique.
This section discusses several existing integra-
tion techniques. Starting from this overview we
will choose the integration technique that is
best suitable for haptic rendering in terms of
the trade-off between computation speed and
physical correctness.

3.1. Ordinary Differential Equations
Each of the particles in the cloth’s topology is
a moving object and therefore its properties
should be integrated each timestep. In order to
represent the movement properties of a particle
we use an initial value problem. These prob-
lems can be solved using a first order Ordinary
Differential Equation (ODE)1:

(1)

1 Please note that the Newton’s laws are second
order; using a simple conversion we obtain two first
order ODE’s.

Solving an ODE can be achieved using ana-
lytic and numerical methods. As numerical
methods are better suited for simulations, we
will discus these methods in the remainder of
this section.

3.2. Explicit Integration
The simplest and most known integration tech-
niques are those based on Taylor series. Using
a truncated Taylor series and an approximation
for higher order terms we can easily add more
accuracy to the simulation. The simplest ex-
plicit integration technique, explicit Euler; uses
only 2 terms of the Taylor series:

(2)

This technique requires only little computation
time, but can lead to an inaccurate and even an
unstable simulation.
The accuracy can be increased by introducing
more terms: the Explicit Midpoint technique
uses 3 terms and Runge-Kutta uses a variable
number of terms. The Runge-Kutta with 5
terms (also called Runge-Kutta of 4th order) is
the most used variant and provides the best
trade off between computational power and
expected accuracy [5].

3.3. Implicit Integration
Contrary to explicit techniques, where the ve-
locity at the current timestep is used to com-
pute the new position of the particle at the next
timestep, implicit techniques take a step back
in time and compute the velocity at the posi-
tion in the new timestep.
An example is Backward Euler [2]:

(3)

As this technique uses a linear system, which
leads to an increased stability, much larger
timesteps can be taken. However, the computa-
tion time is much larger than those of explicit
techniques.

3.4. IMEX Integration
The springs in a cloth can both be stiff (high
spring stiffness constant) as non-stiff (low
spring stiffness constant). Stiff springs lead
more easily to high forces, which cause inaccu-
rate and unstable simulations.
IMEX integration techniques try to combine
the advantages of the above-mentioned tech-
niques. The ODE is subdivided in a non-stiff
part which is integrated using an explicit tech-
nique and a stiff part which is integrated using
an implicit technique.

Using this subdivision of an ODE, more com-
putational power is given to stiff equations
which are problematic for a stable simulation.
At first only the structural springs were inte-
grated implicitly [6] as they usually have much
higher stiffness constants. But this is danger-
ous: as soon as any shear or bend spring be-
comes stiff, the simulation would diverge.
Boxerman et al. [7] split the ODE at run-time.
Using a stability criterion, they decide which
springs to handle as non-stiff or as stiff.

3.5. Verlet Integration
Verlet integration is often used in molecular
dynamics, but can also be used for cloth simu-
lation [8]. The basic Verlet scheme, uses the
sum of two Taylor series around the current
timestep and then is rearranged to provide the
position at the next timestep:

(5)

The accuracy of this integration technique is
O(h4) which is only one order below Runge-
Kutta of the 4th order but has the advantage that
it only evaluates f once instead of four times.
A drawback of the basic Verlet scheme is the
fact that it doesn’t take the velocity into ac-
count. The velocity at the current timestep can
be calculated when it is needed during the
simulation, but this computed velocity will
lack one timestep behind. To solve this prob-
lem, velocity Verlet and leapfrog Verlet are
introduced. In these two schemes, the veloci-
ties are computed at the midpoint between the
current and the next timestep and are then used
to compute the position at the next timestep.

3.6. Inverse Dynamics
In the previous sections we gave a short over-
view of possible integration techniques that
could be used for cloth simulation. One of the
most important aspects in any simulation is
stability. Inverse dynamics can increase the
stability drastically and can be combined with
any integration technique. There are two possi-
ble methods; the first one repositions the parti-
cles after the integration in order to retain the
rest length of the springs or deviate a given
amount from it [3]. While the second one
changes the velocities [9].

4. Collision Detection
In order to increase the realism of the cloth
simulation it is necessary that the cloth inter-
acts with other objects in the scene. For exam-

ple, when the cloth is put on a table, it should
drape the table instead of falling through. Also,
when a user touches the cloth with the virtual
pointer, the cloth should move according to the
movements of the pointer.
This behaviour can be supported by means of
collision detection. In most cases, collision
detection algorithms consist of two phases: the
broad phase and the narrow phase. The broad
phase efficiently decreases the number of pos-
sibly colliding objects. The narrow phase
quickly detects the areas of an object that pos-
sibly collides and checks these areas for colli-
sion.
Since we are especially interested in finding
the intersection of two objects, we will only
concentrate on the narrow phase of the colli-
sion detection algorithm. Two techniques that
can be used to detect collision in the narrow
phase are bounding volume hierarchies and
spatial subdivision. Both will be presented
more in detail in the remainder of this section.

4.1. Bounding Volume Hierarchies
The Bounding Volume Hierarchy (BVH) is
one of the most efficient data structures for
collision detection and it is mostly used with
non-deformable objects.
The main idea behind a BVH is a tree structure
where the primitives of the object are recur-
sively subdivided until some leaf criterion is
obtained. In most applications this criterion is
1 primitive per leaf. A BVH gets pre-computed
but if we want to use a BVH with deformable
objects (e.g. a cloth), then we need to rebuild
or repair the BVH. Rebuilding will take too
long, up to a few seconds. But repairing the
BVH can be performed relatively fast. A lot of
types of bounding volumes exist, such as
sphere, Axis-Aligned Bounding Box (AABB)
and Object-aligned Bounding Box (OBB). An
ideal bounding volume encloses the primitive
as close as possible and can be checked for
intersection in a very fast manner. If the BVH
has to be repaired, the enclosing of a primitive
by the bounding volume also has to be calcu-
lated in little time.
A BVH can be constructed top-down, bottom-
up or through insertion [10]. The top-down
technique is the easiest and most widely used,
the group of primitives are subdivided in sets
of primitives using heuristics [11, 12]. The
number of sets that are used to subdivide the
primitives into defines the arity of the BVH. A

BVH of higher arity is faster for deformable
objects due to the BVH having less nodes that
need repairing and lower recursion depth [13,
14].
To test collision among objects or a self-
collision of an object, we run through the
BVH’s top-down and test recursively pairs of
nodes. If two nodes are intersecting, then the
primitives of those leafs are checked for inter-
section. If one node is a leaf and the other is an
internal node, then the leaf is checked against
all children of the internal node. If both nodes
are internal, then the number of collision tests
is minimized by checking the internal node
with the smallest volume against the children
of the internal node with the biggest volume
[12, 11].
The BHV can be repaired in a bottom-up and
in a top-down manner. Larsson et al. [13] use a
hybrid technique, in which the upper half is
repaired bottom-up. When during collision de-
tection an unrepaired node is reached, this
node and its children are repaired top-down.
Brown et al. [15] propose a bottom-up tech-
nique in which they use a priority queue. The
nodes are sorted on depth in the tree and the
priority queue is initialized with all leafs that
contain deformed primitives. As long as the
queue is not empty, the top element (node) is
updated and its parent is inserted into the
queue. Using this update mechanism, recursion
is eliminated and all leafs are only updated
once.

4.2. Spatial Subdivision
Another collision detection technique subdi-
vides the objects in space using a hierarchy.
Two possibilities exist: a subdivision for the
complete space [16] or the space around the
object is subdivided and every object has its
own subdivision hierarchy [17]. In this section,
we will discuss a technique, which utilizes the
first possibility: Optimized Spatial Hashing
(OSH).
OSH will divide the space implicitly into small
grid cells (uniform grid) and employs a hash
function to map 3D grid cells to a hash table.
This is not only memory efficient, but also
provides flexibility, since this allows for han-
dling potentially infinite regular spatial grids
with a non-uniform or sparse distribution of
object primitives.
The algorithm runs in two phases. In the first
phase, the vertices are classified against the

grid cells and added to the hash table. In the
second phase, the primitives are hashed. A
primitive can intersect multiple grid cells, as
can be seen in Figure 2.

Figure 2: Optimized Spatial Hashing

A discussion about the optimal parameters for
OSH can be found in [16].

5. Haptic Rendering
Haptic rendering computes the appropriate
forces in order to create the illusion of physical
contact using a haptic device.
In this section we will discuss some techniques
for the rendering of deformable objects. Since
these techniques are often based on rendering
methods for rigid objects, two of these tech-
niques are shortly elaborated on�[18]. �
In Penalty Based Methods a repelling force is
generated according to the penetration depth
into an object. This technique has several prob-
lems: pop-through of thin objects and force
discontinuities when the penetration direction
isn’t uniquely defined. In order to solve these
problems, Constraint Based Methods were in-
troduced by Zilles et al [19]. A representative
object, often called the Surface Contact Point
(SCP), is introduced in the virtual environment
to replace the haptic device pointer (see Figure
3). A force is then calculated that draws the
pointer towards the SCP.

Figure 3: Constraint Based Method: the lighter
circle is the representative object (SCP).

As haptic rendering of deformable objects is
performed together with a costly physical
simulation of the object, an adaptation of the
haptic rendering algorithm is not uncommon.
We will give an overview of adaptations that
are proposed.
Mark et al. [20] propose to use an intermediate
model that is updated in the simulation and
used during the haptic rendering. They propose
a very simple model: a plane. This way forces
can be calculated very fast using a penalty
based method but some problems do arise. As
the plane needs to change according to the
movement of the user, discontinuities can oc-
cur (e.g. on a sharp edge).
Instead of using an intermediate model to rep-
resent the deformable object in the haptic
loop, a local model can be used. Here only a
part of an object is used in the haptic loop. The
haptic loop treats this part as a rigid object.
Deformations are computed in a physical simu-
lation. Mendoza et al. [21] propose to attach a
virtual bar to the haptic pointer and use the
OpenGL picking technique to compute the lo-
cal model [22]. This way movement is re-
stricted in bar-wise direction but their method
is proposed for a laparoscopic simulator where
it works fine.
A last approximation structure is the Forcegrid
introduced by Mazella et al. [23]. The Force-
grid is an uniform grid and functions as a
buffer structure. In this grid approximate forces
are stored, which are forwarded to the haptic
device using an interpolation function. The
Forcegrid is filled up during the simulation. At
the beginning the grid has zero-forces and dur-
ing the simulation a collision detection module
checks for contact with an object and puts an
appropriate force in the grid. For this reason, it
takes a few milliseconds before the user starts
to feel any forces. Unfortunately this technique
also suffers from some of the problems men-
tioned earlier.

6. Haptic Cloth Rendering
Haptic cloth rendering can be realized by com-
bining the techniques that were previously dis-
cussed in this paper.
This section discusses the design choices of
our haptic cloth rendering implementation and
evaluates the used techniques. For this pur-
pose, we have developed an evaluation tech-
nique for haptic algorithms [24]. In this evalua-
tion, one or more users interact with an object,

using a reference algorithm. At each haptic
loop, the haptic pointer’s position and velocity
is recorded. Afterwards, all algorithms are exe-
cuted using the saved positions and velocities
as input. This ensures that all algorithms re-
ceive the same input and can be compared in a
fair manner.

6.1. Topology
As mentioned earlier, we will use a Mass
Spring System to model a cloth. A few simple
forces which can act on a Mass Spring System
are implemented: gravity and viscous drag.
The cloth itself has some properties which can
be selected and adjusted: As we use a rectan-
gular surface, the height and width of the cloth
can be chosen together with the number of the
particles along this height or width. Further-
more, the cloth’s mass can be chosen, and is
uniformly divided across the particles.
In order to be able to perform collision detec-
tion, each particle has a normal attached to it.
These normals are also used for the visible rep-
resentation, using smooth (Gouraud) shading.
Figure 4 shows an example of a cloth, a flag of
our research institute. The upper corners of the
flag are fixed. The other particles are under the
influence of gravity.

Figure 4: Result of the cloth simulator using
smooth shading and texturing

6.2. Integration
As cloth simulations are stiff systems, where
the solutions have no problem with an oscilla-
tory behaviour, Verlet integration is probably
the best solution according to the taxonomy of
Hauth [1].
We have implemented several techniques in
order to validate this: Euler, Midpoint and
Runge-Kutta 4th, together with the 3 Verlet
schemes, basic, leapfrog and velocity.
We found that leapfrog Verlet had the best re-
sults with a simulation speed that was almost
equal to Explicit Euler. Mathematically leap-
frog Verlet is the second most stable/accurate
integration technique compared to the tech-

niques implemented here, Runge-Kutta 4th is
the most stable.
We also implemented inverse dynamics using
the technique of Provot [3]. This technique
made the cloth more stable, but also made it
less flexible and movable. We therefore chose
leapfrog Verlet for our implementation.

6.3. Haptic rendering
The haptic cloth rendering was realized using
HAL2, a haptic library we developed in our lab
[25]. We integrated the cloth simulator as a
separate library into HAL.
To realize the haptic rendering we imple-
mented the techniques discussed in section 4
and used them with Constraint Based Methods
discussed in section 5. Afterwards we evalu-
ated these techniques.
Our implementation has a BVH with two pos-
sible bounding volumes: a sphere and an
AABB. The arity of the tree can be either two
(binary tree) or four (quad tree). During the
simulation, the tree was repaired using a modi-
fication of the algorithm of Brown et al. [15].
Instead of using a priority queue, sorted on
depth in the tree, we sort the priority queue on
unique identifiers (ID) given to the nodes in a
preprocess step. This ID is distributed along
the tree by running through the tree in breadth-
first and giving every node an increasing num-
ber. Using these IDs every parent will have a
lower number than its children and every node
will have a lower number than its right
neighbour.
Furthermore, when updating a node, the last
added parent’s ID is saved. As the right
neighbour of the last treated node is always
treated next, we can test if the parent is already
added to the priority queue. This reduces the
number of times that internal nodes are added
to the priority queue. To initialize the priority
queue we need to know which leafs of their
bounding volume has become invalid. Instead
of traversing the tree top-down we add all leafs
in an array and use that array to eliminate re-
cursion, which reduces the time needed to re-
pair the tree, as can be seen in Table 1.

#nodes array binary quad
162 0.116 0.153 0.141
722 0.652 0.922 0.799

2 http://edm.uhasselt.be/software/hal/

1682 1.722 2.2277 1.99
3042 2.871 3.914 3.346
4802 4.537 5.4 5.15

Table 1 Comparison of optimized and two top-
down node repair selection techniques tech-

niques (times in ms)

The results of Table 1 were compared using
paired student t-tests. We found that all differ-
ences are statistical significant (p<0.01). We
can thus conclude that the optimized array is
the best solution.
Furthermore, we tested the number of nodes
that needed repairing and the time it took to
repair them all. In Table 2, we evaluated
sphere and AABB bounding volume hierar-
chies with an arity of two and four. We can
deduce that a sphere BVH invalidates less fre-
quently in our simulations than an AABB and
thus needs less updates. We can also note that
a higher arity has less computation time be-
cause there are always fewer nodes to update
as recursion is eliminated. These findings are
again confirmed using paired student t-tests
(p<0.01).
As a comparison, we also tested the Optimized
Spatial Hashing algorithm. This is developed
for collision detection between deformable
objects, but was adjusted to be used with haptic
rendering. Since only collision with the haptic
device pointer has to be calculated, we only
hash the triangles instead of also hashing the
vertices, thus removing the first phase of the
original algorithm. This algorithms is however
significantly slower than the other algorithms
(p<0.01).
The updating or hashing is executed during the
physical simulation, while the result is further
used in the haptic rendering. For haptic render-
ing we implemented the algorithm of Ruspini
et al. [26], combined with the force shading
algorithm of Morgenbesser et al. [27]. For the
collision detection step, we used a naive algo-
rithm tests for collision against all triangles as
reference algorithm. The results of this test are
summarized in Table 3. We break up the aver-
age timings in loops where collision is found
and loops where no collision is found as this
can make a large difference in the result. As
expected, the query times for OSH algorithm
are almost constant.

 Binary tree Quad tree
 sphere AABB sphere AABB OSH

#trian-
gles

#up-
dates

ms #up-
dates

ms #up-
dates

ms #up-
dates

ms ms

162 263 0.307 323 0.408 190 0.285 247 0.378 1.368
722 1191 1.759 1443 2.429 832 1.1531 1063 2.257 6.071
1682 2506 4.680 3355 7.429 1887 4.442 2675 7.216 13.185
3042 3185 7.211 5341 13.569 3162 6.360 3865 11.205 23.760
4802 6433 13.650 9401 22.686 4284 12.907 6727 20.729 39.998

Table 2 Comparison of average repair times for different representations

 Reference algorithm OSH Sphere (arity 2)
#triangles CD NCD CD NCD CD NCD

126 0.103 0.084 0.025 0.009 0.026 0.010
576 0.752 0.735 0.024 0.013 0.029 0.012

3042 2.782 2.745 0.026 0.009 0.031 0.013
 Sphere (arity 4) AABB (arity 2) AABB (arity 4)

#triangles CD NCD CD NCD CD NCD
126 0.026 0.010 0.023 0.009 0.024 0.008
576 0.028 0.012 0.025 0.009 0025 0.013

3042 0.029 0.013 0.027 0.010 0.027 0.011

Table 3 Comparison of average collision detection times for different representations

For the BVHs, the query times slowly in-
crease when the number of triangles in-
creases. A Paired student t-test indicates that
the differences are statistically significant
(p<0.01). For a small number of triangles, the
sphere BVH is the best, while OSH is better
for a large number of triangles

6.4. Discussion
Combining the results from this section, one
can conclude that for haptic cloth simulation
a sphere BVH with arity four is the best per-
forming algorithm. This is caused by the fact
that the differences in update times are much
higher then the haptic rendering times.
A few problems still arise in our implementa-
tion. During the haptic rendering force dis-
continuities can arise since the cloth topology
is changed outside the haptic loop. As the
user pushes against the cloth, vibrations are
introduced which cannot be eliminated using
interpolation between forces.

7. Conclusion and Future Work
In this paper we discussed haptic cloth ren-
dering, a combination of two existing tech-
nologies. Both technologies are very compu-
tationally expensive. Therefore a number of
techniques were assessed in a formal evalua-
tion. From this evaluation, we can conclude

that a BVH with a sphere as bounding volume
and an arity of four is the best for our cloth
simulation.
One problem that still has to be solved concerns
the force discontinuities. We believe that this
can be realized using two cloth representations
in the haptic loop: the newly calculated cloth
and the previously calculated cloth. The force on
the haptic pointer should be calculated on both
cloths and integrated, resulting in a smooth tran-
sition from one version of the cloth to the next.
Furthermore, no self-collisions are currently cal-
culated. The different representations should
also be evaluated on this test.

8. Acknowledgements
Part of the research at EDM is funded by EFRO
(European Fund for Regional Development), the
Flemish Government and the Flemish interdisci-
plinary institute for broadband technology
(IBBT).

9. References
1. Hauth M (2003) Numerical Techniques for

Cloth Simulation. In: Clothing Simulation
and Animation, Siggraph 2003 Course #29.

2. Baraff D, Witkin A (1998) Large Steps in Cloth
Simulation. In: Proceedings of ACM SIG-
GRAPH 98, pp 43-54.

3. Provot X (1995) Deformation Constraints in a
Mass-Spring Model to Describe Rigid Cloth
behavior. In: Graphics Interface ’95, pp 147-
154.

4. Lander J (1999) Devil in the Blue Faceted
Dress: Real-time Cloth Animation. In: Game
Developer Magazine.

5. Volino P, Magnenat-Thalmann N (2001)
Comparing Efficiency of Integration Methods
for Cloth Simulation. In: Proceedings of the
19th Computer Graphics International Con-
ference (CGI-01), pp 265-274.

6. Eberhardt B, Etzmuß O, Hauth M (2000) Im-
plicit-Explicit Schemes for Fast Animation
with Particle Systems. In: Proceedings of the
Eurographics Workshop on Computer Ani-
mation and Simulation 2000 (CAS 2000).

7. Boxerman E, Ascher U (2004) Decomposing
Cloth. In: Eurographics/ACM SIGGRAPH
Symposium on Computer Animation, pp 153-
161.

8. Jakobsen T (2001) Advanced Character Phys-
ics. In: Proceedings of GDCONF 2001.

9. Vassilev T, Spanlang B, Chrysanthou Y
(2001) Fast Cloth Animation on Walking
Avatars. Computer Graphics Forum 20(3), pp
260-267.

10. Zachmann G, Langetepe E (2003) Geometric
Data Structures for Computer Graphics. In:
Proceedings of ACM SIGGRAPH.

11. Quinlan S (1994) Efficient Distance Compu-
tation between Non-Convex Objects. In: Pro-
ceedings of the IEEE International Confer-
ence On Robotics and Automation, pp 3324-
3329.

12. Van Den Bergen G (1997) Efficient collision
detection of complex deformable models us-
ing AABB trees. J. Graph. Tools 2(4), pp 1-
13.

13. Larsson T, Akenine-Möller T (2001) Colli-
sion Detection for Continuously Deforming
Bodies. In: Eurographics 2001, Short Presen-
tations, pp 325-333.

14. Mezger J, Kimmerle S, Etzmuß O (2003)
Hierarchical Techniques in Collision Detec-
tion for Cloth Animation. Journal of WSCG
11(2), pp 322-329.

15. Brown J, Sorkin S, Bruyns C, Latombe J-C,
Montgomery K, Stephanides M (2001) Real-
Time Simulation of Deformable Objects
Tools and Application. In: Computer Anima-
tion 2001, pp 228-236.

16. Teschner M, Heidelberger B, Müller M,
Pomeranets D, Gross M (2003) Optimized
Spatial Hashing for Collision Detection of
Deformable Objects. In: Proceedings of the
Conference on Vision, Modeling and Visuali-
zation 2003 (VMV-03), pp 47-54.

17. Ganovelli F, Dingliana J, O’Sullivan C
(2000) BucketTree: Improving Collision De-
tection between Deformable Objects. In:

Spring Conference on Computer Graphics
(SCCG ’00), pp 156-163.

18. SIGGRAPH-ACM publication (1999) Haptics:
From Basic Principles to Advanced Applica-
tions. Course Notes for SIGGRAPH '99 #38.

19. Zilles C B, Salisbury J K (1996) A Constrained-
Based God-object Method For Haptic Display.
In: IROS '95: Proceedings of the International
Conference on Intelligent Robots and Systems-
Volume 3.

20. Mark W R, Randolph S C, Finch M Van Verth J
M, Taylor R M II (1996) Adding Force Feed-
back to Graphics Systems - Issues and Solutions.
In: SIGGRAPH '96: Proceedings of the 23rd an-
nual conference on Computer graphics and inter-
active techniques, pp 447-452.

21. Mendoza C A, Laugier C (2001) Realistic Haptic
Rendering for Highly Deformable Virtual Ob-
jects. In: Virtual Reality, pp 264-270.

22. Lombardo J-C, Cani M-P, Neyret F (1999) Real-
time Collision Detection for Virtual Surgery. In:
Proceedings of the Computer Animation (CA
'99), pp 82-90.

23. Mazzella F, Montgomery K, Latombe J-C (2002)
The Forcegrid - A Buffer Structure for Haptic In-
teraction with Virtual Elastic Objects. In: Pro-
ceedings of the IEEE International Conference
on Robotics and Automation.

24. De Boeck J, Raymaekers C, Coninx K (2005) A
Method for the Verification of Haptic Algo-
rithms. Preproceedings 12th International Work-
shop on Design, Specification and Verification
of Interactive Systems (DSVIS ’05), pp 85-96.

25. Raymaekers C, De Boeck J, Coninx K (2005) An
Empirical Approach for the Evaluation of Haptic
Algorithms. In: Proceedings of First Joint Euro-
Haptics Conference and Symposium on Haptic
Interfaces for Virtual Environment and Teleop-
erator Systems (WorldHaptics 2005), pp 567-
568.

26. Ruspini D C, Kolarov K, Khatib O (1997) The
haptic display of complex graphical environ-
ments. In: SIGGRAPH '97: Proceedings of the
24th annual conference on Computer graphics
and interactive techniques, pp 345-352.

27. Morgenbesser H B, Srinivasan M A (1996)
Force Shading for Shape Perception in Haptic
Virtual Environments. In: Touch Lab Report 4.
RLE TR-606.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

