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ABSTRACT 
In haptic cloth rendering, a user can interact 
with a cloth simulation, while feeling forces 
that relate to the cloth topology. This can be 
realized by combining two existing techniques: 
cloth simulation and collision detection. How-
ever, several design choices must be made in 
order to have a realistic simulation while main-
taining real-time rendering times. 
This paper discusses the techniques needed for 
haptic cloth rendering and assesses which tech-
niques are best suited in order to realize the 
haptic simulation. 

1. Introduction 
Haptic cloth rendering combines two existing 
technologies: cloth simulation, which calcu-
lates the behaviour of cloth in a virtual simula-
tion and haptic rendering, which is used to 
make virtual objects touchable by means of a 
haptic device. 
This paper describes how a cloth can be mod-
elled, animated and hapticly rendered using 
various techniques. The next section describes 
how such a cloth can be represented. Section 3 

discusses how the cloth can be animated using 
various integration techniques. A third issue to 
increase the realism of a cloth simulation is 
collision detection, which will be discussed in 
section 4. Section 5 will describe some tech-
niques that can be used to render cloth topolo-
gies. 
The above-mentioned techniques will be com-
bined in section 6 in order to realize a haptic 
cloth rendering algorithm. Several different 
technologies that have been used are compared 
in order to find a good trade-off between real-
ism and processing time. 
Finally, we will draw some conclusions and 
discuss future work. 

2. Cloth Simulation 
Cloth simulation can be realized by means of 
two different techniques: Finite Elements  and 
Mass Spring Systems. In this paper we will 
concentrate on cloth simulation using mass 
spring systems as this technique is better suited 
for a haptic simulation. 
A first technique uses Finite Elements [1]. An 
important drawback of this method is its long 
computation time for detailed simulations. 

Figure 1: The three different types of springs 



Since our goal is to combine cloth rendering 
with haptic rendering, the processing time has 
to be optimized. Therefore we will use another 
technique: Mass Spring Systems, which can 
obtain visually attractive results with a relative 
short computation time. 
A Mass Spring System is a special type of par-
ticle system, consisting of several particles 
connected by springs. Each particle in the sys-
tem moves under the influence of Newton’s 
dynamics, based on several physical forces 
such as gravity, Hook’s law, etc 
In order to create a cloth topology, the particles 
are mostly connected by springs in a rectangu-
lar mesh [2].  

Several techniques exist to simulate the physi-
cal properties of the cloth. The most used tech-
nique makes use of three different types of 
springs [3,4], as can be seen in Figure 1: 

• structural springs model the resistance to 
stretching 

• shear springs hinder the shearing of indi-
vidual particles on the cloth surface 

• bend springs model the resistance to bend-
ing 

3. Integration Techniques 
In order to simulate movements of the cloth 
topology, described in the previous section, the 
position and velocity of the different particles 
have to be calculated. This is realized through 
an integration technique. 
This section discusses several existing integra-
tion techniques. Starting from this overview we 
will choose the integration technique that is 
best suitable for haptic rendering in terms of 
the trade-off between computation speed and 
physical correctness. 

3.1. Ordinary Differential Equations 
Each of the particles in the cloth’s topology is 
a moving object and therefore its properties 
should be integrated each timestep. In order to 
represent the movement properties of a particle 
we use an initial value problem. These prob-
lems can be solved using a first order Ordinary 
Differential Equation (ODE)1:  

(1) 

                                                     
1 Please note that the Newton’s laws are second 
order; using a simple conversion we obtain two first 
order ODE’s. 

Solving an ODE can be achieved using ana-
lytic and numerical methods. As numerical 
methods are better suited for simulations, we 
will discus these methods in the remainder of 
this section. 

3.2. Explicit Integration 
The simplest and most known integration tech-
niques are those based on Taylor series. Using 
a truncated Taylor series and an approximation 
for higher order terms we can easily add more 
accuracy to the simulation. The simplest ex-
plicit integration technique, explicit Euler; uses 
only 2 terms of the Taylor series: 

(2) 

This technique requires only little computation 
time, but can lead to an inaccurate and even an 
unstable simulation.  
The accuracy can be increased by introducing 
more terms: the Explicit Midpoint technique 
uses 3 terms and Runge-Kutta uses a variable 
number of terms. The Runge-Kutta with 5 
terms (also called Runge-Kutta of 4th order) is 
the most used variant and provides the best 
trade off between computational power and 
expected accuracy [5]. 

3.3. Implicit Integration 
Contrary to explicit techniques, where the ve-
locity at the current timestep is used to com-
pute the new position of the particle at the next 
timestep, implicit techniques take a step back 
in time and compute the velocity at the posi-
tion in the new timestep. 
An example is Backward Euler [2]:  

(3) 

As this technique uses a linear system, which 
leads to an increased stability, much larger 
timesteps can be taken. However, the computa-
tion time is much larger than those of explicit 
techniques. 

3.4. IMEX Integration 
The springs in a cloth can both be stiff (high 
spring stiffness constant) as non-stiff (low 
spring stiffness constant). Stiff springs lead 
more easily to high forces, which cause inaccu-
rate and unstable simulations. 
IMEX integration techniques try to combine 
the advantages of the above-mentioned tech-
niques. The ODE is subdivided in a non-stiff 
part which is integrated using an explicit tech-
nique and a stiff part which is integrated using 
an implicit technique.  



Using this subdivision of an ODE, more com-
putational power is given to stiff equations 
which are problematic for a stable simulation. 
At first only the structural springs were inte-
grated implicitly [6] as they usually have much 
higher stiffness constants. But this is danger-
ous: as soon as any shear or bend spring be-
comes stiff, the simulation would diverge. 
Boxerman et al. [7] split the ODE at run-time. 
Using a stability criterion, they decide which 
springs to handle as non-stiff or as stiff. 

3.5. Verlet Integration 
Verlet integration is often used in molecular 
dynamics, but can also be used for cloth simu-
lation [8]. The basic Verlet scheme, uses the 
sum of two Taylor series around the current 
timestep and then is rearranged to provide the 
position at the next timestep:  

(5) 

The accuracy of this integration technique is 
O(h4) which is only one order below Runge-
Kutta of the 4th order but has the advantage that 
it only evaluates f once instead of four times. 
A drawback of the basic Verlet scheme is the 
fact that it doesn’t take the velocity into ac-
count. The velocity at the current timestep can 
be calculated when it is needed during the 
simulation, but this computed velocity will 
lack one timestep behind. To solve this prob-
lem, velocity Verlet and leapfrog Verlet are 
introduced. In these two schemes, the veloci-
ties are computed at the midpoint between the 
current and the next timestep and are then used 
to compute the position at the next timestep.  

3.6. Inverse Dynamics 
In the previous sections we gave a short over-
view of possible integration techniques that 
could be used for cloth simulation. One of the 
most important aspects in any simulation is 
stability. Inverse dynamics can increase the 
stability drastically and can be combined with 
any integration technique. There are two possi-
ble methods; the first one repositions the parti-
cles after the integration in order to retain the 
rest length of the springs or deviate a given 
amount from it [3]. While the second one 
changes the velocities [9].  

4. Collision Detection 
In order to increase the realism of the cloth 
simulation it is necessary that the cloth inter-
acts with other objects in the scene. For exam-

ple, when the cloth is put on a table, it should 
drape the table instead of falling through. Also, 
when a user touches the cloth with the virtual 
pointer, the cloth should move according to the 
movements of the pointer. 
This behaviour can be supported by means of 
collision detection. In most cases, collision 
detection algorithms consist of two phases: the 
broad phase and the narrow phase. The broad
phase efficiently decreases the number of pos-
sibly colliding objects. The narrow phase 
quickly detects the areas of an object that pos-
sibly collides and checks these areas for colli-
sion. 
Since we are especially interested in finding 
the intersection of two objects, we will only 
concentrate on the narrow phase of the colli-
sion detection algorithm. Two techniques that 
can be used to detect collision in the narrow 
phase are bounding volume hierarchies and 
spatial subdivision. Both will be presented 
more in detail in the remainder of this section. 

4.1. Bounding Volume Hierarchies 
The Bounding Volume Hierarchy (BVH) is 
one of the most efficient data structures for 
collision detection and it is mostly used with 
non-deformable objects. 
The main idea behind a BVH is a tree structure 
where the primitives of the object are recur-
sively subdivided until some leaf criterion is 
obtained. In most applications this criterion is 
1 primitive per leaf. A BVH gets pre-computed 
but if we want to use a BVH with deformable 
objects (e.g. a cloth), then we need to rebuild 
or repair the BVH. Rebuilding will take too 
long, up to a few seconds. But repairing the 
BVH can be performed relatively fast. A lot of 
types of bounding volumes exist, such as 
sphere, Axis-Aligned Bounding Box (AABB) 
and Object-aligned Bounding Box (OBB). An 
ideal bounding volume encloses the primitive 
as close as possible and can be checked for 
intersection in a very fast manner. If the BVH 
has to be repaired, the enclosing of a primitive 
by the bounding volume also has to be calcu-
lated in little time. 
A BVH can be constructed top-down, bottom-
up or through insertion [10]. The top-down 
technique is the easiest and most widely used, 
the group of primitives are subdivided in sets 
of primitives using heuristics [11, 12]. The 
number of sets that are used to subdivide the 
primitives into defines the arity of the BVH. A 



BVH of higher arity is faster for deformable 
objects due to the BVH having less nodes that 
need repairing and lower recursion depth [13, 
14]. 
To test collision among objects or a self-
collision of an object, we run through the 
BVH’s top-down and test recursively pairs of 
nodes. If two nodes are intersecting, then the 
primitives of those leafs are checked for inter-
section. If one node is a leaf and the other is an 
internal node, then the leaf is checked against 
all children of the internal node. If both nodes 
are internal, then the number of collision tests 
is minimized by checking the internal node 
with the smallest volume against the children 
of the internal node with the biggest volume 
[12, 11].  
The BHV can be repaired in a bottom-up and 
in a top-down manner. Larsson et al. [13] use a 
hybrid technique, in which the upper half is 
repaired bottom-up. When during collision de-
tection an unrepaired node is reached, this 
node and its children are repaired top-down. 
Brown et al. [15] propose a bottom-up tech-
nique in which they use a priority queue. The 
nodes are sorted on depth in the tree and the 
priority queue is initialized with all leafs that 
contain deformed primitives. As long as the 
queue is not empty, the top element (node) is 
updated and its parent is inserted into the 
queue. Using this update mechanism, recursion 
is eliminated and all leafs are only updated 
once.  

4.2. Spatial Subdivision 
Another collision detection technique subdi-
vides the objects in space using a hierarchy. 
Two possibilities exist: a subdivision for the 
complete space [16] or the space around the 
object is subdivided and every object has its 
own subdivision hierarchy [17]. In this section, 
we will discuss a technique, which utilizes the 
first possibility: Optimized Spatial Hashing 
(OSH). 
OSH will divide the space implicitly into small 
grid cells (uniform grid) and employs a hash 
function to map 3D grid cells to a hash table. 
This is not only memory efficient, but also 
provides flexibility, since this allows for han-
dling potentially infinite regular spatial grids 
with a non-uniform or sparse distribution of 
object primitives. 
The algorithm runs in two phases. In the first 
phase, the vertices are classified against the 

grid cells and added to the hash table. In the 
second phase, the primitives are hashed. A 
primitive can intersect multiple grid cells, as 
can be seen in Figure 2. 

Figure 2: Optimized Spatial Hashing 

A discussion about the optimal parameters for 
OSH can be found in [16].  

5. Haptic Rendering 
Haptic rendering computes the appropriate 
forces in order to create the illusion of physical 
contact using a haptic device.  
In this section we will discuss some techniques 
for the rendering of deformable objects. Since 
these techniques are often based on rendering 
methods for rigid objects, two of these tech-
niques are shortly elaborated on�[18]. �
In Penalty Based Methods a repelling force is 
generated according to the penetration depth 
into an object. This technique has several prob-
lems: pop-through of thin objects and force 
discontinuities when the penetration direction 
isn’t uniquely defined. In order to solve these 
problems, Constraint Based Methods were in-
troduced by Zilles et al [19]. A representative 
object, often called the Surface Contact Point 
(SCP), is introduced in the virtual environment 
to replace the haptic device pointer (see Figure 
3). A force is then calculated that draws the 
pointer towards the SCP. 

Figure 3: Constraint Based Method: the lighter 
circle is the representative object (SCP). 



As haptic rendering of deformable objects is 
performed together with a costly physical 
simulation of the object, an adaptation of the 
haptic rendering algorithm is not uncommon. 
We will give an overview of adaptations that 
are proposed. 
Mark et al. [20] propose to use an intermediate 
model that is updated in the simulation and 
used during the haptic rendering. They propose 
a very simple model: a plane. This way forces 
can be calculated very fast using a penalty 
based method but some problems do arise. As 
the plane needs to change according to the 
movement of the user, discontinuities can oc-
cur (e.g. on a sharp edge). 
Instead of using an intermediate model to rep-
resent the deformable object in the haptic  
loop, a local model can be used. Here only a 
part of an object is used in the haptic loop. The 
haptic loop treats this part as a rigid object. 
Deformations are computed in a physical simu-
lation. Mendoza et al. [21] propose to attach a 
virtual bar to the haptic pointer and use the 
OpenGL picking technique to compute the lo-
cal model [22]. This way movement is re-
stricted in bar-wise direction but their method 
is proposed for a laparoscopic simulator where 
it works fine. 
A last approximation structure is the Forcegrid 
introduced by Mazella et al. [23]. The Force-
grid is an uniform grid and functions as a 
buffer structure. In this grid approximate forces 
are stored, which are forwarded to the haptic 
device using an interpolation function. The 
Forcegrid is filled up during the simulation. At 
the beginning the grid has zero-forces and dur-
ing the simulation a collision detection module 
checks for contact with an object and puts an 
appropriate force in the grid. For this reason, it 
takes a few milliseconds before the user starts 
to feel any forces. Unfortunately this technique 
also suffers from some of the problems men-
tioned earlier. 

6. Haptic Cloth Rendering 
Haptic cloth rendering can be realized by com-
bining the techniques that were previously dis-
cussed in this paper. 
This section discusses the design choices of 
our haptic cloth rendering implementation and 
evaluates the used techniques. For this pur-
pose, we have developed an evaluation tech-
nique for haptic algorithms [24]. In this evalua-
tion, one or more users interact with an object, 

using a reference algorithm. At each haptic 
loop, the haptic pointer’s position and velocity 
is recorded. Afterwards, all algorithms are exe-
cuted using the saved positions and velocities 
as input. This ensures that all algorithms re-
ceive the same input and can be compared in a 
fair manner. 

6.1. Topology 
As mentioned earlier, we will use a Mass 
Spring System to model a cloth. A few simple 
forces which can act on a Mass Spring System 
are implemented: gravity and viscous drag. 
The cloth itself has some properties which can 
be selected and adjusted: As we use a rectan-
gular surface, the height and width of the cloth 
can be chosen together with the number of the 
particles along this height or width. Further-
more, the cloth’s mass can be chosen, and is 
uniformly divided across the particles. 
In order to be able to perform collision detec-
tion, each particle has a normal attached to it. 
These normals are also used for the visible rep-
resentation, using smooth (Gouraud) shading. 
Figure 4 shows an example of a cloth, a flag of 
our research institute. The upper corners of the 
flag are fixed. The other particles are under the 
influence of gravity. 

Figure 4: Result of the cloth simulator using 
smooth shading and texturing 

6.2. Integration 
As cloth simulations are stiff systems, where 
the solutions have no problem with an oscilla-
tory behaviour, Verlet integration is probably 
the best solution according to the taxonomy of 
Hauth [1]. 
We have implemented several techniques in 
order to validate this: Euler, Midpoint and 
Runge-Kutta 4th, together with the 3 Verlet 
schemes, basic, leapfrog and velocity. 
We found that leapfrog Verlet had the best re-
sults with a simulation speed that was almost 
equal to Explicit Euler. Mathematically leap-
frog Verlet is the second most stable/accurate 
integration technique compared to the tech-



niques implemented here, Runge-Kutta 4th is 
the most stable. 
We also implemented inverse dynamics using 
the technique of Provot [3]. This technique 
made the cloth more stable, but also made it 
less flexible and movable. We therefore chose 
leapfrog Verlet for our implementation. 

6.3. Haptic rendering 
The haptic cloth rendering was realized using 
HAL2, a haptic library we developed in our lab 
[25]. We integrated the cloth simulator as a 
separate library into HAL. 
To realize the haptic rendering we imple-
mented the techniques discussed in section 4 
and used them with Constraint Based Methods 
discussed in section 5. Afterwards we evalu-
ated these techniques. 
Our implementation has a BVH with two pos-
sible bounding volumes: a sphere and an 
AABB. The arity of the tree can be either two 
(binary tree) or four (quad tree). During the 
simulation, the tree was repaired using a modi-
fication of the algorithm of Brown et al. [15]. 
Instead of using a priority queue, sorted on 
depth in the tree, we sort the priority queue on 
unique identifiers (ID) given to the nodes in a 
preprocess step. This ID is distributed along 
the tree by running through the tree in breadth-
first and giving every node an increasing num-
ber. Using these IDs every parent will have a 
lower number than its children and every node 
will have a lower number than its right 
neighbour.  
Furthermore, when updating a node, the last 
added parent’s ID is saved. As the right 
neighbour of the last treated node is always 
treated next, we can test if the parent is already 
added to the priority queue. This reduces the 
number of times that internal nodes are added 
to the priority queue. To initialize the priority 
queue we need to know which leafs of their 
bounding volume has become invalid. Instead 
of traversing the tree top-down we add all leafs 
in an array and use that array to eliminate re-
cursion, which reduces the time needed to re-
pair the tree, as can be seen in Table 1.  

#nodes array binary quad 
162 0.116 0.153 0.141 
722 0.652 0.922 0.799 

                                                     
2 http://edm.uhasselt.be/software/hal/ 

1682 1.722 2.2277 1.99 
3042 2.871 3.914 3.346 
4802 4.537 5.4 5.15 

Table 1 Comparison of optimized and two top-
down node repair selection techniques tech-

niques (times in ms) 

The results of Table 1 were compared using 
paired student t-tests. We found that all differ-
ences are statistical significant (p<0.01). We 
can thus conclude that the optimized array is 
the best solution. 
Furthermore, we tested the number of nodes 
that needed repairing and the time it took to 
repair them all. In Table 2, we evaluated 
sphere and AABB bounding volume hierar-
chies with an arity of two and four. We can 
deduce that a sphere BVH invalidates less fre-
quently in our simulations than an AABB and 
thus needs less updates. We can also note that 
a higher arity has less computation time be-
cause there are always fewer nodes to update 
as recursion is eliminated. These findings are 
again confirmed using paired student t-tests 
(p<0.01). 
As a comparison, we also tested the Optimized 
Spatial Hashing algorithm. This is developed 
for collision detection between deformable 
objects, but was adjusted to be used with haptic 
rendering. Since only collision with the haptic 
device pointer has to be calculated, we only 
hash the triangles instead of also hashing the 
vertices, thus removing the first phase of the 
original algorithm. This algorithms is however 
significantly slower than the other algorithms 
(p<0.01). 
The updating or hashing is executed during the 
physical simulation, while the result is further 
used in the haptic rendering. For haptic render-
ing we implemented the algorithm of Ruspini 
et al. [26], combined with the force shading 
algorithm of Morgenbesser et al. [27]. For the 
collision detection step, we used a naive algo-
rithm tests for collision against all triangles as 
reference algorithm. The results of this test are 
summarized in Table 3. We break up the aver-
age timings in loops where collision is found 
and loops where no collision is found as this 
can make a large difference in the result. As 
expected, the query times for OSH algorithm 
are almost constant. 



 Binary tree Quad tree  
 sphere AABB sphere AABB OSH 

#trian-
gles 

#up-
dates 

ms #up-
dates 

ms #up-
dates 

ms #up-
dates 

ms ms 

162 263 0.307 323 0.408 190 0.285 247 0.378 1.368 
722 1191 1.759 1443 2.429 832 1.1531 1063 2.257 6.071 
1682 2506 4.680 3355 7.429 1887 4.442 2675 7.216 13.185
3042 3185 7.211 5341 13.569 3162 6.360 3865 11.205 23.760
4802 6433 13.650 9401 22.686 4284 12.907 6727 20.729 39.998

Table 2 Comparison of average repair times for different representations 

 Reference algorithm OSH Sphere (arity 2) 
#triangles CD NCD CD NCD CD NCD 

126 0.103 0.084 0.025 0.009 0.026 0.010 
576 0.752 0.735 0.024 0.013 0.029 0.012 

3042 2.782 2.745 0.026 0.009 0.031 0.013 
 Sphere (arity 4) AABB (arity 2) AABB (arity 4) 

#triangles CD NCD CD NCD CD NCD 
126 0.026 0.010 0.023 0.009 0.024 0.008 
576 0.028 0.012 0.025 0.009 0025 0.013 

3042 0.029 0.013 0.027 0.010 0.027 0.011 

Table 3 Comparison of average collision detection times for different representations 

For the BVHs, the query times slowly in-
crease when the number of triangles in-
creases. A Paired student t-test indicates that 
the differences are statistically significant 
(p<0.01). For a small number of triangles, the 
sphere BVH is the best, while OSH is better 
for a large number of triangles 

6.4. Discussion 
Combining the results from this section, one 
can conclude that for haptic cloth simulation 
a sphere BVH with arity four is the best per-
forming algorithm. This is caused by the fact 
that the differences in update times are much 
higher then the haptic rendering times. 
A few problems still arise in our implementa-
tion. During the haptic rendering force dis-
continuities can arise since the cloth topology 
is changed outside the haptic loop. As the 
user pushes against the cloth, vibrations are 
introduced which cannot be eliminated using 
interpolation between forces.  

7. Conclusion and Future Work 
In this paper we discussed haptic cloth ren-
dering, a combination of two existing tech-
nologies. Both technologies are very compu-
tationally expensive. Therefore a number of 
techniques were assessed in a formal evalua-
tion. From this evaluation, we can conclude 

that a BVH with a sphere as bounding volume 
and an arity of four is the best for our cloth 
simulation.  
One problem that still has to be solved concerns 
the force discontinuities. We believe that this 
can be realized using two cloth representations 
in the haptic loop: the newly calculated cloth 
and the previously calculated cloth. The force on 
the haptic pointer should be calculated on both 
cloths and integrated, resulting in a smooth tran-
sition from one version of the cloth to the next. 
Furthermore, no self-collisions are currently cal-
culated. The different representations should 
also be evaluated on this test. 
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