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Abstract

We consider a number of decision problems, that appear in the dynamical systems and database literature, conc
termination of iterates of real functions. These decision problems take a functionf :Rn → R

n as input and ask, for exampl
whether this function ismortal, nilpotent, terminating, or reaches a fixed point on a given point inRn. We associate topologies
functionsf :Rn → R

n and study some basic properties of these topologies. The contribution of this paper is a translatio
above mentioned decision problems into decision problems concerning well-known properties of topologies, e.g., con
We also show that connectivity of topologies onR

n is undecidable forn > 1.
 2003 Elsevier B.V. All rights reserved.
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1. Introduction and summary of results nilpotency is a more restrictive property than mort
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We consider properties, that originate from dyna
ical systems theory [1,2,5] but are also relevant to d
base theory [3], of iterates of functionsf :Rn → R

n

(by R we denote the real numbers). Here, we
cus on four such properties. We abbreviate the or
(0,0, . . . ,0) of R

n by 0. We call a functionf :Rn →
R

n mortal if f (0) = 0 and if for eachx ∈ R
n there

exists a natural numberk � 1 such thatf k(x) =
0 [2]. A function f :Rn → R

n is callednilpotent if
f (0) = 0 and if there exists a natural numberk �
1 such that for allx ∈ R

n, f k(x) = 0 [2]. Clearly,
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f :Rn → R
n, viewed as a binary relation overR

n, is
traditionally computed by computing the 2n-ary rela-
tionsTC1(f ),TC2(f ),TC3(f ), . . . , whereTC1(f ) =
graph(f ) andTCi+1(f ) := TCi (f ) ∪ {(x,y) ∈ R

2n |
(∃z)((x,z) ∈ TCi (f ) ∧ f (z) = y)}. We call a func-
tion f terminating if this iterative computation o
the transitive closure terminates after a finite nu
ber of iterations, i.e., if there exists ak � 1 such that
TCk+1(f ) = TCk(f ). Since these are Boolean pro
erties of functions, we can associate to them a d
sion problem (i.e., the mapping that takes a funct
as input and returns whether the function has the p
erty). Another decision problem is thepoint-to-fixed-
point problem, which asks whether for a given alg
braic numberx and a given piecewise affine functio

.
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f :Rn → R
n, the sequencex, f (x), f 2(x), f 3(x), . . .

reaches a fixed point, i.e., whether there exists ak � 1
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We remark that the definitions and results presented
here hold for arbitrary sets, rather than just forR

n, but
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such thatf k(x) = f k+1(x) [1,5].
In the field of dynamical systems, it is often im

portant that these decision problems are comput
(or decidable), in the sense that there exists an a
rithm that takes as input some finite representation
functionf :Rn → R

n and returns as output whetherf

has the property. About the above mentioned deci
problems the following is known. Mortality and nilpo
tency are known to be undecidable for piecewise af
functions fromR

2 to R
2 and for functions fromR to

R the (un)decidability of these properties is open [
Termination of functions fromR2 to R

2 is undecidable
but termination of continuous semi-algebraic fun
tions fromR to R is decidable [3]. The decidabilit
of the point-to-fixed-point problem is open forn = 1,
even for piecewise linear functions with only two no
constant pieces [1,5].

The decidability of these decision problems h
also implications in the area of database theory.
example, the decidability of termination of contin
ous semi-algebraic functions fromR to R was used
to obtain extensions of first-order logics with recu
sion, based on a transitive-closure operator [3], that
used as query languages for constraint database
These extensions of first-order logics are more exp
sive than these logics as such and they allow the
pression of recursive queries whose computatio
guaranteed to terminate. Decidability results conce
ing termination for wider classes of real functions m
lead to even more powerful query languages.

The main contribution of this paper is a translati
of these decision problems into decision proble
about topologies. Hereto, we define the followi
topologies1 associated to a functionf :Rn → R

n. We
call a subsetG of R

n f -closed if for every x in G,
alsof (x) belongs toG, i.e., if f (G) ⊆ G. We denote
the set of allf -closed subsets ofRn by Cf . We call
a subsetO of R

n f -open if for every x in O and
for everyy ∈ R

n for which f (y) = x, alsoy belongs
to O , i.e., if f −1(O) ⊆ O . We denote the set of a
f -open subsets ofRn by Of .

1 The notions from topology that we use can be found in m
introductory topology books, e.g., [4].
.

we stick toR
n since the mentioned decision problem

are stated forRn.
The proofs of the following properties and the

rems are postponed to the next section.

Property 1. Both the structures (Rn,Of ) and (Rn,Cf )

are topologies. Furthermore, Cf is the set of closed
sets of (Rn,Of ) and Of is the set of closed sets of
(Rn,Cf ).

So,(Rn,Of ) and(Rn,Cf ) are topologies in which
both the open and the closed sets form a topology.
remark that these topologies(Rn,Of ) and (Rn,Cf )

have no interesting separation properties [4] in
sense that both(Rn,Of ) and(Rn,Cf ) areTi , i = 0,

1,2, . . . (among which Hausdorff) if and only iff is
the identity. These topologies are also incompara
to the natural topology ofRn in the sense that none
finer than the other.

A basic property is the following.

Property 2. For any function f :Rn → R
n, f : (Rn,

Of ) → (Rn,Of ) and f : (Rn,Cf ) → (Rn,Cf ) are
continuous mappings.

In dynamical systems, when looking at iterates
a functionf :Rn → R

n, the notion of orbit is widely
used. Forx ∈ R

n, theorbit of x (with respect to f ) is
defined as the set{x, f (x), f 2(x), f 3(x), . . .} and we
denote it by Orb(x, f ). It is clear from the definition
that the set Orb(x, f ) is the smallestf -closed set
that containsx. The set of orbits{Orb(x, f ) | x ∈
R

n} therefore forms a basis of(Rn,Cf ). This basis
is also minimal, in the sense that any other basis
(Rn,Cf ) must contain{Orb(x, f ) | x ∈ R

n}. Also, the
closure in(Rn,Cf ) of a subsetA of R

n is the set⋃
x∈A Orb(x, f ).
Since the open sets of the topologyCf are closed

under iteration off , this topology captures the esse
tial elements one is interested in when looking at
iteration of functionf . Also, the orbits, which play a
central role in studying the iterates of functions in t
dynamical systems literature (see, e.g., [7]), turn ou
play a central role in the topologyCf . We remark that
Monks discusses a related topology [8].
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We are ready to summarize our main translation
results.
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Theorem 1. For any function f :Rn → R
n we have

the following equivalences.

(i) f is mortal if and only if f (0) = 0 and (Rn,Cf )

is connected;
(ii) f reaches a fixed point on x ∈ R

n if and only
if the smallest f -closed set containing x is finite
and contains a singleton closed subset;

(iii) f is terminating if and only if there is a uniform
bound on the size of the elements of the minimal
basis of the topology (Rn,Cf );

(iv) f is nilpotent if and only if f is terminating, {0}
is f -closed, and the only f -open set containing
0 is R

n.

Theorem 1 gives a translation of decision pro
lems from dynamical systems theory and database
ory into decision problems about topologies (and v
versa). Progress on decision problems about top
gies could therefore contribute to both these are
However, to the best of our knowledge, there is no
erature on results concerning decidable propertie
(even finitely-presented) topologies.

This result has a corollary concerning the un
cidability of testing connectivity of topologies onR2.
There are obviously uncountably many topolog
on R

2, but if we restrict our attention to those topol
gies that allow some finite representation and if
agree that the topology(R2,Cf ) can be represente
suitably by some finite description off , Theorem 1
and the earlier stated result that says that mortalit
undecidable for piecewise affine functions fromR2 to
R

2 [2], imply that connectivity of topologies onRn is
undecidable, for n � 2.

Corollary 1. Let f :Rn → R
n be a piecewise contin-

uous linear function. The connectivity of topologies of
the form (Rn,Cf ) is undecidable for n > 1.

The following sections are organized as follows.
Section 2, we prove the results that were stated in
section. We end the paper with a section where
discuss the topologies of congruent functions.
In this section we prove the results from Section

Proof of Property 1. First we show that(Rn,Of ) is
a topology. It is immediately clear from the definitio
that ∅ andR

n aref -open. LetO1 andO2 belong to
Of . If x ∈ O1 ∩ O2 andy ∈ R

n such thatf (y) = x,
then alsoy ∈ O1 andy ∈ O2 and hencey ∈ O1 ∩ O2.
Therefore, alsoO1 ∩ O2 is f -open. Finally, letOi

(i ∈ I ) belong toOf (I is an arbitrary index set, suc
that{Oi | i ∈ I } is an arbitrary subset ofOf ). We have
to show that

⋃
i∈I Oi belongs toOf . Let x belong to⋃

i∈I Oi . Then there exists ak ∈ I such thatx ∈ Ok.
For all y ∈ R

n with f (y) = x, we have thaty ∈ Ok

sinceOk is f -open and thusy ∈ ⋃
i∈I Oi . This shows

thatOf is a topology onRn.
Next, we show (1) that for anyG ∈ Cf , R

n \ G is
in Of and (2) that for anyO ∈ Of , R

n \O is in Cf . If
G is in Cf , then abbreviate byO the setRn \G. Letx
be inO and supposey is such thatf (y) = x. Suppose
that y /∈ O , theny ∈ G and thusx = f (y) in G (by
definition ofCf ). This contradicts the assumption a
(1) is proved. For (2), ifO is in Of , then abbreviate
by G the setRn \ O . Let x be in G and suppose
y = f (x) and suppose thaty /∈ G. Theny ∈ O and
thusx is in O (by definition ofOf ). This contradicts
the assumption and proves (2).

From the above it follows that to prove that(Rn,Cf )

is a topology it suffices to show thatOf is closed un-
der arbitrary intersections. LetOi , i ∈ I belong toOf .
We show that

⋂
i∈I Oi belongs toOf . Letx belong to⋂

i∈I Oi . Thenx ∈ Ok for all k ∈ I . Hence, for all
y ∈ R

n with f (y) = x, we have thaty ∈ Ok (sinceOk

is f -open) for allk ∈ I and thusy ∈ ⋂
i∈I Oi . This

completes the proof. ✷
Proof of Property 2. It suffices to show that for an
f -closed setG, f −1(G) is also closed. Letx be an
element off −1(G). Thenf (x) ∈ f (f −1(G)) ⊆ G.
From the given fact thatG is closed it therefore
follows that f 2(x) ∈ G, and thusf (x) ∈ f −1(G).
Therefore,f −1(G) is closed. ✷

For a functionf :Rn → R
n and a pointp ∈ R

n, the
set ofx ∈ R

n for whichp is the fixed point reached b
x, f (x), f 2(x), . . ., will be denoted by Fix(f,p).
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Lemma 1. For any p ∈ R
n, the set Fix(f,p) is open

and closed both in (Rn,Of ) and (Rn,Cf ).
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For the if-direction of item (iv), we assume the
three given facts. From the fact thatf is terminating,
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Proof. If Fix (f,p) is empty then the lemma triviall
holds. Otherwise, to show that Fix(f,p) is closed it
suffices to remark that ifx, f (x), f 2(x), . . . reaches
p as fixed point, then alsof (x), f 2(x), f 3(x), . . .

reachesp as fixed point. To show that Fix(f,p)

is open it suffices to remark that ifx, f (x), f 2(x),

. . . reachesp as fixed point and ifx = f (y), then
also y,x, f (x), f 2(x), f 3(x), . . . reachesp as fixed
point. ✷

We are now ready to give the proof of Theorem

Proof of Theorem 1. For the only-if direction of
item (i), assume thatf is mortal. Thenf (0) = 0
follows from the definition of mortality. Assume tha
there exists a non-empty subsetO of R

n such that
O is open and closed in(Rn,Cf ). SinceO is non-
empty there exists anx in O . From the fact thatf
is mortal, it follows that there is a natural numberk

such thatf k(x) = 0. SinceO is open in(Rn,Cf ) (so,
f -closed), therefore also0 ∈ O . SinceO is closed
in (Rn,Cf ) (so,f -open), therefore alsoRn ⊆ O . In
other words,O = R

n and(Rn,Cf ) is connected sinc
every open and closed subset ofR

n is either empty
or R

n.
For the if-direction of item (i), assume thatf (0) =

0 and(Rn,Cf ) is connected. Since0 ∈ Fix(f,0) and
since, by Lemma 1, Fix(f,0) is open and closed
Fix(f,0) = R

n, or equivalently,f is mortal.
Item (ii) follows directly from the observation tha

the smallestf -closed set containingx is exactly
Orb(x, f ). The condition that it should contain
singleton closed subset expresses that there is a
point rather than a cycle of length larger than one.

Item (iii) is straightforward since{Orb(x, f ) | x ∈
R

n} is the minimal basis for(Rn,Cf ). A uniform
boundk on the orbits Orb(x, f ) guarantees that th
transitive closure of the graph off terminates after a
most 2k iterations and vice versa.

Finally, for the only-if direction of item (iv), as
sume thatf is nilpotent. By the definition, there i
a uniform boundk on the number of elements in a
orbits. Therefore,f is terminating. Since all orbit
contain0, all open sets containing0 equalRn. Since
f (0) = 0, clearly{0} is f -closed.
we know that there exists a uniform boundk on the
size of the orbits off . From the fact that{0} is f -
closed,f (0) = 0 follows. It remains to be shown tha
for all x ∈ R

n, 0 ∈ Orb(x, f ). Suppose, there is a
x ∈ R

n such that0 /∈ Orb(x, f ). ThenR
n \ Orb(x, f )

is anf -open set that contains0 and is not equal toRn.
This contradicts the second given fact.✷
3. The topologies of congruent functions

We call two functionsf,g :Rn → R
n congruent

if there exists a bijectionh :Rn → R
n such that

h ◦ f = g ◦ h. Intuitively it is clear that congruen
functions share the same termination properties (s
as mortality, nilpotency, termination and point-t
fixed-point). We can formally prove this by showin
that congruent functions give rise to homeomorp
topologies.

Lemma 2. Let f and g be two functions from R
n to

R
n. A mapping h :Rn → R

n is an homeomorphism be-
tween the topological spaces (Rn,Cf ) and (Rn,Cg)

if and only if h is a bijection and for all x ∈ R
n,

h(Orb(x, f )) = Orb(h(x), g).

Proof. First, we prove the if-direction. It suffices t
prove that bothh and h−1 are continuous. LetG′
be anyg-closed set, and letG = h−1(G′). We show
that G is f -closed. Indeed, letx be an element o
G, and lety ∈ G′ be such thatx = h−1(y). Since
G′ is g-closed, Orb(y, g) ⊆ G′ andh−1(Orb(y, g)) ⊆
G. By the fact that for allx ∈ R

n, h(Orb(x, f )) =
Orb(h(x), g), Orb(x, f ) = h−1(Orb(y, g)) ⊆ G, and
hencef (x) is also inG. So,G is f -closed andh is
continuous. Similarly, one can show that alsoh−1 is
continuous.

For the only-if direction, we proceed as follow
Clearly, Orb(h(x), g) is a g-closed set, and by th
continuity of h, the setG = h−1(Orb(h(x), g)) is
f -closed. Sincex = h−1(h(x)) is an element ofG,
we have that Orb(x, f ) ⊆ G. Similarly, by the con-
tinuity of h−1, h(Orb(x, f )) is g-closed and con
tains Orb(h(x), g). Hence,h(Orb(x, f )) ⊆ h(G) =
Orb(h(x), g) and also Orb(h(x), g) ⊆ h(Orb(x, f )).
This implies thath(Orb(x, f )) = Orb(h(x), g) and
also the only-if direction is proven.✷
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Property 3. Let f and g be two functions from R
n to

R
n. If f and g are congruent by a mapping h, i.e.,
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h ◦ f = g ◦ h, then the topological spaces (Rn,Cf )

and (Rn,Cg) are homeomorphic by the mapping h.

Proof. By Lemma 2 it suffices to verify that for allx ∈
R

n, h(Orb(x, f )) = Orb(h(x), g). But this follows
directly from the fact thath(f k(x)) = gk(h(x)) for
anyx ∈ R

n. ✷
This property shows that termination propert

such as mortality, nilpotency, termination and poi
to-fixed-point are shared by congruent functions.

Monks states, without proof, that the conve
of Property 3 only holds for acyclic functions, i.e
functions where the only cyclic points are the fix
points [8] (more precisely, a functionf :Rn → R

n is
called acyclic if for any x ∈ R

n, f d(x) = x implies
thatd is 1). For reasons of completeness, we here
the proof of this result and give for any cycle leng
greater than one examples of functions for which t
converse of Property 3 does not hold.

Property 4. Let f and g be acyclic functions. If
the topological spaces (Rn,Cf ) and (Rn,Cg) are
homeomorphic by a mapping h, then f and g are
congruent by the mapping h, i.e., h ◦ f = g ◦ h.

Proof. Let f andg be acyclic functions and assum
that h : (Rn,Cf ) → (Rn,Cg) is a homeomorphism
We have to show that for anyx ∈ R

n, h(f (x)) =
g(h(x)).

By Lemma 2, for all x ∈ R
n, h(Orb(x, f )) =

Orb(h(x), g). Therefore, for anyx ∈ R
n, there exists

a natural numberk such thath(f (x)) = gk(h(x)).
Denote bykx the minimal such natural number. W
distinguish between three cases:kx = 0, kx = 1 and
kx > 1.

If kx = 0, thenh(f (x)) = h(x) and thusf (x) =
x. Therefore, Orb(x, f ) = {x} and, by Lemma 2
Orb(h(x), g) = {h(x)}. Thus, g(h(x)) = h(x) =
h(f (x)). If kx = 1, then we immediately haveh(f (x))

= g(h(x)). Finally, assume thatkx > 1. From the min-
imality of kx it follows thatg�(h(x)) �= h(f (x)) for all
0 � � < kx . Also, becauseg is acyclic, for all 0� � <

kx and all integersp � 0, g�(h(x)) �= gkx+p(h(x)).
Therefore,

g�
(
h(x)

)
/∈ Orb

(
gkx

(
h(x)

)
, g

) = h
(
Orb

(
f (x), f

))
.

� < kx , in particular for� = kx − 1. This implies that
g(h(x)) = g(gkx−1(h(x))) = gkx (h(x)) = h(f (x)).
This contradicts the minimality ofkx and makes the
third case impossible. We have shown that for a
x ∈ R

n, h(f (x)) = g(h(x)). ✷
Finally, we show that for any cycle lengthd >

1, there are non-congruent functionsfd, gd :R → R,
such that(R,Cfd ) and (R,Cgd ) are homeomorphic
Consider the functionsfd andgd defined byfd(i) =
gd(i) = i + 1 for i = 1, . . . , d − 1; fd(d) = gd(d) =
1; fd(1

2) = gd(1
2) = 1; fd(1

3) = gd(1
3) = 2; fd(1

4) =
gd(1

4) = 1
3; fd(1

5) = 2; gd(1
5) = 1; and bothfd andgd

constant 0 elsewhere. It is clear that bothfd andgd

have a cycle of lengthd . Using Lemma 2, it is readily
verified thatfd and gd give rise to homeomorphi
topologies(R,Cfd ) and(R,Cgd ). It is also easy to se
thatfd andgd are non-congruent functions.
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