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Abstract

We consider a number of decision problems, that appear in the dynamical systems and database literature, concerning the
termination of iterates of real functions. These decision problems take a funttigfh — R” as input and ask, for example,
whether this function isortal, nilpotent, terminating, or reaches a fixed point on a given point ifrR”. We associate topologies to
functionsf : R"” — R”" and study some basic properties of these topologies. The contribution of this paper is a translation of the
above mentioned decision problems into decision problems concerning well-known properties of topologies, e.g., connectivity.
We also show that connectivity of topologies &ff is undecidable for > 1.
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1. Introduction and summary of results nilpotency is a more restrictive property than mortal-
ity. The transitive closure of the graph of a function
We consider properties, that originate from dynam- ¢:r" _ R” viewed as a binary relation ov&", is
ical systems theory [1,2,5] but are also relevantto data- traditionally computed by computing the:ry rela-
base theory [3], of iterates of functions: R” — R” tionsTC1(f), TC2(f), TC3(f), ..., whereTC1(f) =
(by R we denote the real numbers). Here, we fo- graph ) andTCiy1(f) := TC;(f) U {(x, y) € R?" |
cus on four such properties. \We abbreviate the origin (3z)((x, z) € TC;(f) A f(z) = y)}. We call a func-

(0,0,...,0) of R" by 0. We call a functionf : R" — tion f terminating if this iterative computation of
R" mortal if f(0) =0 and if for eachx € R" there the transitive closure terminates after a finite num-
exists a natural numbek > 1 such thatf*(x) = ber of iterations, i.e., if there existska> 1 such that

0 [2] A function f:]Rn — R" is called nilpotent if TCry1(f) = TCr(f). Since these are Boolean prop-
f(0) =0 and if there exists a natural number> erties of functions, we can associate to them a deci-

1 such that for allx € R”, f*(x) = 0 [2]. Clearly, sion problem (i.e., the mapping that takes a function
as input and returns whether the function has the prop-
* Comesponding author, ert_y). Another deqsmn problem is ﬂmmt-t_o-ﬂxed-
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f:R" — R", the sequence, f(x), f2(x), f3(x), ...
reaches a fixed point, i.e., whether there existsal
such thatf*(x) = f¥+1(x) [1,5].

In the field of dynamical systems, it is often im-

portant that these decision problems are computable
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We remark that the definitions and results presented
here hold for arbitrary sets, rather than justifdr, but
we stick toR” since the mentioned decision problems
are stated foR”.

The proofs of the following properties and theo-

(or decidable), in the sense that there exists an algo-rems are postponed to the next section.

rithm that takes as input some finite representation of a

function f : R” — R" and returns as output whethgr

Property 1. Boththestructures (R”, O¢) and (R”, Cy)

has the property. About the above mentioned decision are topologies. Furthermore, C is the set of closed

problems the following is known. Mortality and nilpo-

sets of (R”, Of) and Oy is the set of closed sets of

tency are known to be undecidable for piecewise affine (R", Cy).

functions fromR? to R? and for functions fronR to

R the (un)decidability of these properties is open [2].
Termination of functions frorR? to R? is undecidable
but termination of continuous semi-algebraic func-
tions fromR to R is decidable [3]. The decidability
of the point-to-fixed-point problem is open far= 1,
even for piecewise linear functions with only two non-
constant pieces [1,5].

So,(R", Oy) and(R", C) are topologies in which
both the open and the closed sets form a topology. We
remark that these topologig€R”, O ) and (R", Cy)
have no interesting separation properties [4] in the
sense that bottR”, Oy) and(R", Cy) areT;, i =0,

1,2, ... (among which Hausdorff) if and only if is
the identity. These topologies are also incomparable

The decidability of these decision problems has to the natural topology dR” in the sense that none is
also implications in the area of database theory. For finer than the other.

example, the decidability of termination of continu-
ous semi-algebraic functions frofd to R was used
to obtain extensions of first-order logics with recur-

A basic property is the following.

Property 2. For any function f:R" — R", f:(R",

sion, based on a transitive-closure operator [3], thatare Oy) — (R", Oy) and f:(R",Cy) - (R",Cy) are
used as query languages for constraint databases [6].continuous mappings.
These extensions of first-order logics are more expres-
sive than these logics as such and they allow the ex-  |n dynamical systems, when looking at iterates of
pression of recursive queries whose computation is a function f : R” — R”, the notion of orbit is widely
guaranteed to terminate. Decidability results concern- used. Fow € R”, theorbit of x (with respect to f) is
ing termination for wider classes of real functions may defined as the sék, f(x), f2(x), f3(x),...} and we
lead to even more powerful query languages. denote it by Orlax, f). It is clear from the definition
The main contribution of this paper is a translation that the set Orfx, f) is the smallestf-closed set
of these decision problems into decision problems that containst. The set of orbits{Orb(x, /) | x €
about topologies. Hereto, we define the following R"} therefore forms a basis @iR”, Cr). This basis
topologie$ associated to a functiofi: R” — R”". We is also minimal, in the sense that any other basis of
call a subseG of R" f-closed if for every x in G, (R", Cr) must contaifOrb(x, f) | x € R"}. Also, the
also f(x) belongs toG, i.e., if f(G) C G. We denote closure in(R", Cy) of a subsetd of R" is the set
the set of allf-closed subsets & by C ;. We call Uyea Orblx, f).
a subsetO of R" f-open if for every x in O and Since the open sets of the topology are closed
for everyy e R" for which f(y) = x, alsoy belongs under iteration off, this topology captures the essen-
to O, i.e., if f~1(0) € 0. We denote the set of all tial elements one is interested in when looking at the
f-open subsets &” by O;. iteration of functionf. Also, the orbits, which play a
central role in studying the iterates of functions in the
dynamical systems literature (see, e.g., [7]), turn out to
play a central role in the topology,. We remark that
Monks discusses a related topology [8].

1 The notions from topology that we use can be found in most
introductory topology books, e.g., [4].



F. Geerts, B. Kuijpers/ Information Processing Letters 89 (2004) 31-35 33

We are ready to summarize our main translation 2. Proofsof the results
results.

In this section we prove the results from Section 1.
Theorem 1. For any function f:R" — R" we have

the following equivalences. Proof of Property 1. First we show thatR”, Oy) is
a topology. It is immediately clear from the definition

(i) fismortal if and onlyif £(0) =0and (R", Cy) that@ andR”" are f-open. LetO; and O, belong to

is connected; Of.If x € 01N Oz andy € R” such thatf (y) = x,
(i) f reaches a fixed point on x € R” if and only then alsoy € 01 andy € Oz and hencgy € 01N Oa.

if the smallest f-closed set containing x isfinite ~ Therefore, alsoO1 N Oz is f-open. Finally, leto;

and contains a singleton closed subset; (i € I) belong toOy (1 is an arbitrary index set, such
(iii) f isterminating if and only if there is a uniform that{O; | i € I} is an arbitrary subset @b 7). We have

bound on the size of the elements of the minimal to show that J;., O: belongs toO . Letx belong to

basis of the topology (R", C¢); ;s Oi. Then there exists & e I such thatx € Oy.

(iv) f isnilpotentif and only if f isterminating, {0} For all y € R" with f(y) = x, we have thay € O
is f-closed, and the only f-open set containing ~ SinceO is f-open and thug € (J;; O:. This shows
0isR". that O is a topology orR”".
Next, we show (1) that for angg € Cr, R" \ G is
Theorem 1 gives a translation of decision prob- N Oy and (2) thatforany) € Oy, R*\ O isinCy. If
lems from dynamical systems theory and database the-G iSin C s, then abbreviate by the sefR" \ G. Letx
ory into decision problems about topologies (and vice P€inO and supposg is such thaif (y) = x. Suppose
versa). Progress on decision problems about topolo-thaty ¢ O, theny € G and thusx = f(y) in G (by
gies could therefore contribute to both these areas. d€finition ofC¢). This contradicts the assumption and
However, to the best of our knowledge, there is no lit- (1) 1S proved. For (2), {0 is in Oy, then abbreviate

erature on results concerning decidable properties of PY G the setR" \ 0. Letx be in G and suppose
(even finitely-presented) topologies. y = f(x) and suppose that ¢ G. Theny € O and

This result has a corollary concerning the unde- thusx is in 0 (by definition of O ¢). This contradicts
cidability of testing connectivity of topologies dr?. the assumption and proves (2).
There are obviously uncountably many topologies . oM the aboveitfoliows thatto prove th@", C )
onR2, but if we restrict our attention to those topolo- 'S & topology it suffices to show thaty is closed un-
gies that allow some finite representation and if we O€rarbitrary intersections. L€l;, i € I belong to0y.
agree that the topolog§R2, Cs) can be represented /e show thaf);.; O: belongs toO;. Letx belong to
suitably by some finite description gf, Theorem 1 Mies nOl-._Thenx €O forallk el. Hence_, for all
and the earlier stated result that says that mortality is ¥ €X' With /(y) =x, we have thay € Oy (sinceOx
undecidable for piecewise affine functions frétA to is f-open) for allk € I and thusy € (7);; O;. This
RR? [2], imply that connectivity of topologies oR” is completes the proof. 0

undecidable, forn > 2. _
Proof of Property 2. It suffices to show that for any

f-closed setG, f~1(G) is also closed. Lex be an

Corol!ary 1 Let'f:R” — R” be_gpiecewise cqntin- element of f~1(G). Then f(x) € f(f~1(G)) C G.
uous linear func’uqn. Thecc_)nnectlwtyof topologies of From the given fact thaG is closed it therefore
the form (R", Cf) isundecidablefor n > 1. follows that fZ(x) € G, and thusf(x) c f_l(G)

Therefore f~1(G) is closed. O
The following sections are organized as follows. In
Section 2, we prove the results that were stated in this  For a functionf : R" — R”" and a poinfp € R", the
section. We end the paper with a section where we set ofx € R” for which p is the fixed point reached by
discuss the topologies of congruent functions. x, f(x), f2(x), ..., will be denoted by Fikf, p).
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Lemma 1. For any p € R", the set Fix(f, p) is open
and closed bothin (R*, Of) and (R", Cy).

Proof. If Fix(f, p) is empty then the lemma trivially
holds. Otherwise, to show that Kig p) is closed it
suffices to remark that i, f(x), f%(x), ... reaches
p as fixed point, then alsgf (x), f2(x), f3(x), ...
reachesp as fixed point. To show that FiX, p)
is open it suffices to remark that if, f(x), f2(x),

. reachesp as fixed point and ift = f(y), then
alsoy, x, f(x), f2(x), f3(x), ... reachesp as fixed
point. O

We are now ready to give the proof of Theorem 1.

Proof of Theorem 1. For the only-if direction of
item (i), assume thatf is mortal. Thenf(0) =0
follows from the definition of mortality. Assume that
there exists a non-empty subs@t of R"” such that
O is open and closed iR", Cr). Since O is non-
empty there exists am in 0. From the fact thatf
is mortal, it follows that there is a natural number
such thatf*(x) = 0. Since0 is open in(R”", Cy) (so,
f-closed), therefore alsé € 0. Since O is closed
in R", Cy) (so, f-open), therefore alsi” € 0. In
other wordsO =R" and(R", Cy) is connected since
every open and closed subsetl®f is either empty
orR",

For the if-direction of item (i), assume th&(0) =
0 and(R", Cy) is connected. Sincé e Fix(f, 0) and
since, by Lemma 1, Fixf,0) is open and closed,
Fix(f, 0) =R", or equivalently,f is mortal.

Item (ii) follows directly from the observation that
the smallest f-closed set containing is exactly
Orb(x, f). The condition that it should contain a

For the if-direction of item (iv), we assume the
three given facts. From the fact thatis terminating,
we know that there exists a uniform boukdn the
size of the orbits off. From the fact tha{0} is f-
closed, f (0) = 0 follows. It remains to be shown that
for all x € R", 0 € Orb(x, f). Suppose, there is an
x € R" such thaD ¢ Orb(x, f). ThenR" \ Orb(x, f)
is an f-open set that contairisand is not equal t&”.
This contradicts the second given facto

3. Thetopologies of congruent functions

We call two functionsf, g:R" — R” congruent
if there exists a bijectionk:R* — R” such that
ho f =g o h. Intuitively it is clear that congruent
functions share the same termination properties (such
as mortality, nilpotency, termination and point-to-
fixed-point). We can formally prove this by showing
that congruent functions give rise to homeomorphic
topologies.

Lemma 2. Let f and g be two functions from R” to
R™. Amapping & : R" — R" isan homeomor phismbe-
tween the topological spaces (R", Cr) and (R”, Cy)
if and only if & is a bijection and for all x € R",
h(Orb(x, f)) = Orb(h(x), g).

Proof. First, we prove the if-direction. It suffices to
prove that bothz and A~ are continuous. LeG’
be anyg-closed set, and lef = h~1(G’). We show
that G is f-closed. Indeed, lex be an element of
G, and lety € G’ be such thate = 2~1(y). Since
G’ is g-closed, Ory, g) € G’ andh~1(Orb(y, g)) €
G. By the fact that for allx € R"?, h(Orb(x, f)) =
Orb(h(x), g), Orblx, f) = h~*(Orb(y, ¢)) € G, and

singleton closed subset expresses that there is a fixedhencef (x) is also inG. So,G is f-closed and: is

point rather than a cycle of length larger than one.

Item (iii) is straightforward sincg¢Orb(x, f) | x €
R"} is the minimal basis forR", Cr). A uniform
boundk on the orbits Orbx, f) guarantees that the
transitive closure of the graph gf terminates after at
most % iterations and vice versa.

Finally, for the only-if direction of item (iv), as-
sume thatf is nilpotent. By the definition, there is
a uniform boundk on the number of elements in all
orbits. Therefore,f is terminating. Since all orbits
containO, all open sets containin@ equalR”. Since
f(0) =0, clearly{0} is f-closed.

continuous. Similarly, one can show that also! is
continuous.

For the only-if direction, we proceed as follows.
Clearly, Orlih(x), g) is a g-closed set, and by the
continuity of 4, the setG = h~1(Orb(h(x), g)) is
f-closed. Sincex = h~1(h(x)) is an element ofG,
we have that Ortx, /) € G. Similarly, by the con-
tinuity of =1, h(Orb(x, f)) is g-closed and con-
tains Orlih(x), g). Hence,h(Orb(x, 1)) C h(G) =
Orb(h(x), g) and also Orbh(x), g) € h(Orb(x, f)).
This implies thath(Orb(x, f)) = Orb(h(x), g) and
also the only-if direction is proven.o
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Property 3. Let f and g be two functions from R” to
R". If f and g are congruent by a mapping #, i.e.,
h o f = g o h, then the topological spaces (R", Cy)
and (R", C,) are homeomorphic by the mapping /.

Proof. By Lemma 2 it suffices to verify that for atl €
R", h(Orb(x, f)) = Orb(h(x), g). But this follows
directly from the fact that:(f*(x)) = g*(h(x)) for
anyx e R". O

This property shows that termination properties
such as mortality, nilpotency, termination and point-
to-fixed-point are shared by congruent functions.

Monks states, without proof, that the converse
of Property 3 only holds for acyclic functions, i.e.,
functions where the only cyclic points are the fixed
points [8] (more precisely, a functiofi: R"” — R” is
called acyclic if for any x € R”, f¢(x) = x implies

35

But g(h(x)) € Orb(h(x), g) = h(Orb(x, f)). We can
therefore conclude that‘(h(x)) = h(x) for all 0 <

¢ < ky, in particular foré = k, — 1. This implies that
g(h(x)) = g(g"7L(h(x))) = g* (h(x)) = h(f(x)).
This contradicts the minimality of, and makes the
third case impossible. We have shown that for any
x eR" h(f(x))=g(h(x)). O

Finally, we show that for any cycle lengh >
1, there are non-congruent functiorig, g;: R — R,
such that(R, Cr,) and (R, C,,) are homeomorphic.
Consider the functiong; andg, defined by, (i) =
ga@)=i+1lfori=1...,d—1; fu(d) =gald) =
L fa) =23 =1 fu(3) = &(3) =2; fa() =
ga(3) = 3; fa(§) = 2;84(5) = 1; and bothyf; andgy
constant 0 elsewhere. It is clear that bgthand g4
have a cycle of length. Using Lemma 2, it is readily
verified that f; and g4 give rise to homeomorphic

thatd is 1). For reasons of completeness, we here give topologiegR, Cy,) and(R, Cy,). Itis also easy to see

the proof of this result and give for any cycle length
greater than one examples of functions for which that
converse of Property 3 does not hold.

Property 4. Let f and g be acyclic functions. If
the topological spaces (R",Cy) and (R",C,) are
homeomorphic by a mapping %, then f and g are
congruent by the mapping 2, i.e, ho f =g o h.

Proof. Let f andg be acyclic functions and assume
that 2:(R", Cr) — (R", Cg) is a homeomorphism.
We have to show that for any € R", h(f(x)) =
g(h(x)).

By Lemma 2, for allx € R?, h(Orb(x, f)) =
Orb(h(x), g). Therefore, for any € R”, there exists
a natural numbek such thath(f(x)) = gF(h(x)).
Denote byk, the minimal such natural number. We
distinguish between three casés:= 0, k, = 1 and
ky > 1.

If kx =0, theni(f(x)) = h(x) and thusf(x) =
x. Therefore, Orbx, ) = {x} and, by Lemma 2,
Orb(h(x), g) = {h(x)}. Thus, g(h(x)) = h(x) =
h(f(x)).If ky =1, then we immediately have f (x))
= g(h(x)). Finally, assume that, > 1. From the min-
imality of ky it follows thatg®(h(x)) # h(f (x)) for all
0< ¢ < ky. Also, becausg is acyclic, for all 0< ¢ <
ke and all integers > 0, gt (h(x)) # TP (h(x)).
Therefore,

g"(h(x)) ¢ Orb(g" (n(x)), g) = h(Orb(f (x), ).

that f; andg, are non-congruent functions.
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