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ABSTRACT The objective of this paper is to extend the surrogate endpoint validation
methodology proposed by Buyse et al. (2000) to the case of a longitudinally measured
surrogate marker when the endpoint of interest is time to some key clinical event. A joint
model for longitudinal and event time data is required. 10 this end, the model formulation
of Henderson et al. (2000) is adopted. The methodology is applied to a set of two
randomized clinical trials in advanced prostate cancer to evaluate the usefulness of
prostate-specific antigen (PSA) level as a surrogate for survival.

1 Introduction

In recent years, interest in modelling the relationship between a time-to-event
endpoint and longitudinally measured data has developed considerably. This
problem occurs naturally in many biomedical or public health studies where
participants are followed over time. In such studies, measurements on a number
of outcomes can also be obtained at different occasions and times to some clinical
events can be observed.

In randomized clinical trials, the main question is often whether a new treatment
has some beneficial effect on the time to a certain clinical event, the endpoint of
primary interest. The time elapsed between randomization and this event, however,
can be very long and it may therefore be desirable to find a surrogate for the
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clinical outcome of interest that is less distant in time, thereby permitting a trial to
be completed sooner and making a potentially useful treatment available earlier to
a wider range of patients. A well-known example is in AIDS research where an early
proposal of a surrogate marker for clinical outcomes such as disease progression or
survival was the number of CD4 T-lymphocytes (see, for example, Tsiatis er al.,
1995).

The recent literature on the use of biomarkers as surrogate endpoints has focused
on different points of view. Prentice (1989) defines surrogacy in terms of the
equivalence of hypothesis tests for treatment effects and proposes operational
criteria for his definition. Freedman ez al. (1992) introduced the proportion explained
(PE) to quantify the proportion of treatment effect on the true endpoint, which is
captured by the surrogate endpoint. More recently Buyse er al. (2000), building
on earlier work by Buyse & Molenberghs (1998), proposed a new definition of
surrogacy. They distinguish between rial-level surrogacy, which characterizes the
quality of prediction of the treatment effects at the trial level, and ndividual-level
surrogacy, which measures the strength of association between the surrogate and
the endpoint of interest after correction for trial and treatment effects.

The objective of this paper is to extend the methodology of Buyse ez al. (2000)
to the case of a biomarker, measured repeatedly over time, and a time-to-event
endpoint. Technically, a joint model for longitudinal measurements and event time
data is required. Research on this topic has received substantial attention over
recent years and useful references include Pawitan & Self (1993), DeGruttola &
Tu (1994), Taylor ez al. (1994), Faucett & Thomas (1995), Lavalley & DeGruttola
(1996), Hogan & Laird (1997), Wulfsohn & Tsiatis (1997), Henderson er al.
(2000) and Xu & Zeger (2001). In this paper, the model of Henderson ez al. (2000)
will be adopted. Their approach assumes standard models for the longitudinal and
event time data and postulates a latent bivariate Gaussian process inducing
stochastic dependence between the measurement and event processes.

The paper is organized as follows: Section 2 introduces the motivating example
which involves a set of two randomized clinical trials in advanced prostate cancer.
Section 3 describes the methodology of Buyse er al. (2000) to validate a surrogate
endpoint in a meta-analytic setting, while Section 4 shows how it can be adapted
to the case of a longitunally measured marker and a time-to-event endpoint. The
methodology is applied to the prostate cancer data in Section 5, which is then
followed by a concluding discussion.

2 Motivating study

We consider a set of two open-label multicentre clinical trials in which patients with
advanced prostate cancer were randomized either to oral liarozole—an experimental
retinoic acid metabolism-blocking agent developed by Janssen Research Founda-
tion—or to an antiandrogenic drug: cyproterone acetate (CPA) in the first trial
(Debruyne et al., 1998) and flutamide in the second. The two trials accrued 312
and 284 patients in centres spread over nine and ten countries, respectively. All
patients were in relapse after first-line endocrine therapy.

The primary endpoint in each trial was survival time after randomization.
Assessments were undertaken before the start of treatment and repeated at two
weeks, monthly for six months and every three months thereafter, until patients
show clinical progression or develop a serious adverse event. All patients were then
followed up until death. The assessments included measurement of prostate-
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Fi1G 1. Individual log-transformed PSA profiles for the liarozole trials (30 randomly chosen subjects are
plotted using darker lines).

specific antigen (PSA) level. PSA is a glycoprotein that is found almost exclusively
in normal and neoplastic prostate cells. Serum PSA usually rise in men who have
prostate cancer, but also with some infections of the prostate or non-malignant
diseases, such as benign prostatic hyperplasia. As a consequence, changes in PSA
often antedate changes in bone scan, and they have been used as a response
indicator in patients with androgen-independent prostate cancer (Kelly ez al., 1993;
Sridhara er al., 1995; Smith ez al., 1998). It is therefore of interest to study more
formally to which extent a sequence of PSA measurements can be a valuable
surrogate for a patient’s survival.

Figure 1 shows plots of the individual log-transformed PSA profiles. To avoid
overly cluttered plots, profiles were shadowed and 30 randomly chosen subjects
are depicted using darker lines. As can be seen, the length of the individual
sequences of PSA measurements is highly variable accross patients, with only a
few individuals having very long sequences. Figure 2 displays PSA and survival
summaries for each trial. The (log-transformed) PSA data were smoothed using
the LOESS technique (Cleveland, 1979); the survival curves were obtained using
the Kaplan—Meier estimator (Kaplan & Meier, 1958). Notice the scatter of points
in the left-hand plots: most of the subjects had their PSA measurements taken
within the first few months after treatment randomization.

To further investigate the effect of ‘drop-out’ induced by patients being taken
off the study upon clinical progression, we plotted the mean profiles per drop-out
pattern according to visits as they were planned in the protocol (thus, not using
the exact date of PSA measurement). This is shown in Figure 3 for the combined
data from the two trials, with the label ‘control’ referring to CPA/flutamide and
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F1G 2. Longitidunal and event time summaries for the liarozole trials (left: smoothed PSA profiles;
right: survival curves).

‘experimental’ to liarozole. Late-dropout patterns are not included in this plot
because of the scarcity of data after 1.5 years. Noticeable in the plot is that: patients
who progressed early tend to have a higher initial PSA value and do not exhibit an
early decline in their PSA level. The mean PSA evolution among subjects who
progressed belatedly can also be contrasted with the relatively flat curves displayed
in Fig. 2.

3 Validation of a surrogate endpoint

In this section, we describe the two-stage model used by Buyse ez al. (2000) to

validate a surrogate endpoint, when both the surrogate and the true enpoints are

assumed to be normally distributed. Refer to this paper for additional details.
The first stage is based upon a joint regression model for S and T

Syl Zy= us, + . Z; + &s;;

¢y)
Tz‘j | Zij = Ur,+ ﬂiZij + ety

where the indices ¢ and j refer to trials and subjects within trials, respectively, pus,
and py, are trial-specific intercepts, and o, and f; are trial-specific effects of treatment
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F1G 3. Mean PSA profiles per ‘drop-out’ patterns (the black diamonds represent the mean PSA level
of those patients who only have a baseline measurement).

Z on the two endpoints in trial 1= 1,..., N. Finally, &5, and ¢, are correlated error
terms, assumed to be mean-zero normally distributed with covariance matrix

s = Oss Osr @)
Ost OrT
At the second stage, we assume
Hs; Hs ms;
X my.
HUr; _ Ur n T; 3)
o; o a;
Bi B b;

where the second term on the right-hand side is assumed to follow a zero-mean
normal distribution with covariance matrix

dSS dS T dSa dSb
dS T dTT dﬂz dTb
ds, dn du da
dS b d Tb dab dbb
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For the developments that follow, one can start from model (1) and perform
calculations in an additional step, or fit the more complex random-effects model
obtained by combining the two steps above:

Sij | Zij = Us + mg, + (o + az')Zz'j + SS,,}

5
T\ Zij= pr+ my+ (B + b)) Z;; + e, ®
Since both the individual- and trial-level associations are of interest here, the
surrogate endpoint validation issue is examined at each of these levels. A key
motivation for validating a surrogate endpoint is to be able to predict the effect of
treatment on the true endpoint, based on the observed effect of treatment on the
surrogate endpoint. It is therefore essential to explore the quality of the prediction
of the treatment effect on the true endpoint by information obtained in the
validation process based on trials 7=1,..., N and by information available on the
surrogate endpoint in a new trial, =0, say.
A measure to assess the quality of a surrogate at the trial level is given by the

coeflicient of determination
ds\ (dss ds.\ ' [dss
dab dSa daa dab

Rfrial = Ri-\msx,ai = d (6)
bb

This coefficient measures how precisely the effect of treatment on the true endpoint
can be predicted if the treatment effect on the surrogate endpoint has been observed
in a new trial ( = 0). It is unitless and ranges in the unit interval if the corresponding
variance—covariance matrix D is positive-definite—two desirable features for its
interpretation.

The association between the surrogate and final endpoints after adjustment for
the effect of treatment is captured by

2
gsr

2 —
R indiv —

(7
O0ssOrT

which is simply the squared correlation between S and 7, after accounting for trial

and treatment effects.

A surrogate endpoint will be said to be ‘valid’ if it is both trial-level valid
(R34~ 1) and individual-level valid (R4, ~ 1). Guidelines about how close RZ%,
and R2,, have to be to 1 are hard to formulate in full generality. This will be
based, preferably, upon expert opinion, and confidence limits for these coefficients
should be examined.

As suggested above, an estimate of RZ;,; can practically be obtained in two ways:
either by direct use of equation (6) after fitting model (5) or through the linear
regression model

ﬁi =/Ao+ )4/2& + 228+ &
after fitting model (1). In either case, the association at the individual level (R%g,)
is a by-product of the joint model. Of course, inference will preferably be based on
equation (5) but this model is difficult to fit in practice and does not go without
numerous convergence problems (Buyse et al., 2000). Finally, it can be noted that
grouping units need not be trials from a meta-analysis but can denote any grouping
unit of interest such as centre, investigator or country for example. In the following
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we shall continue, however, to refer to the corresponding R? surrogacy coefficient
as a ‘trial’-level measure (RZ,,).

4 Modelling approach

In order to extend the methodology of Buyse ez al. (2000) to the setting of interest
here, a joint model for longitudinal measurements and event time data is required.
To that end, we consider the model proposed by Henderson ez al. (2000). We will
follow their notation and thus, we consider a set of N grouping units (trial, centre,
etc) with subjects within the ¢th unit being followed for some time 7. The jth
subject in unit 7 provides a set of measurements {y;:k=1,...,n;} at times {z;:
k=1,...,m;}, together with the realization of a counting process {N;(u):
0<u<rt,} for the time-to-event endpoint and a zero-one process {H (u):
0 < u < 1;} indicating whether a subject is at risk of experiencing an event at time u.

A central feature of the model is to postulate an unobserved (latent) zero-mean
bivariate Gaussian process, W;(z) = {W,;(), W,,;(¢)}, to describe the association
between the longitudinal measurement and event processes. The measurement and
intensity models are linked as follows:

(1) The sequence of measurements {y,;;:k=1,...,n;} of a subject is modelled
using a standard linear mixed model, possibly allowing for a serially corre-
lated component:

Y = wii(tin) + Wi () + € (8a)

where f1;(z;;) describes the mean response profile and &~ N(0,0°,) is a

sequence of mutually independent measurement errors. We will let o, denote

the vector of parameters for the trial-specific treatment effects used in

modelling the mean response profile. Examples will be given in what follows.
(2) The event intensity process is modelled using a semi-parametric model

iij([) = I"Iij(t))~o(t)eXP {51211 + WZij(t)} (8b)

where the form of /,(?) is left unspecified. The parameters f5; represent trial-
specific treatment effects on the hazard function.

The specification of W,;;and W,,; can take many different forms. As a basic example,
suppressing the indices for notational simplicity, one could consider W (z) =
U, + U,t, with (U,, U,) being normally distributed with mean zero and covariance
matrix G, to specify a model with random intercept and random slope for the longi-
tudinal marker. The W,(z) process could then include different effects for the initial
value (U,), the slope (U,) or the current value (U, + U,t) of the marker according to
the assumed model, yielding W,(z) =y,U, + 7, U, + y5(U; + U,1). Inclusion of a
frailty component, orthogonal to the measurement process, is also possible if
necessary.

Following Henderson ez al. (2000), the Expectation-Maximization (EM) algo-
rithm can be employed to fit the model. Practically, the coefficients of determina-
tion R2,, and R, can then be obtained as follows. The inclusion of (fixed) trial-
specific coefficients in both the longitudinal measurement and intensity models
allows to estimate R2;,. Unlike the simpler normal setting, which involves solely
trial-specific intercepts and treatment effects, the longitudinal measurement model
will require, in general, more terms to model the evolution of the marker over
time. For practical purposes, we will therefore assume that the mean response
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profile within each treatment group can be specified parsimoniously, as a low-order
polynomial or as a continuous piecewise linear function of time. Alternatively,
fractional polynomials (Royston & Altman, 1994). To illustrate the calculation of
RZ,,, suppose that the trajectory of the marker is quadratic over time within each
treatment group. Then p;(z;;) can be written

Wi (Ein) = Moi + Mty + ﬂz;‘t?jk + 0oL, + 0y Lty + ‘“Zz'Zz'jklzgjk

and RZ,, defined as the usual coefficient of determination in the regression of ﬁi on
Qois Gy and dy;:
Pi= Ao + Ao + Ao0y; + Astly + &

At the individual level, it is natural to consider the association between W,(z)
and W,(¢) in the above model. Therefore, R2,, will not refer directly to the
association between the two endpoints but rather, to the association between the
two components of the bivariate latent process that governs the longitudinal and
event processes. This association can no longer be summarized by a single number,
however. It will now be a time-dependent measure since the association between
the marker and the event process can be defined relative to any time over the
course of measurement of the marker. In fact, this could even be extended to the
association between the marker, as measured at some time z;, and the event process
defined at a later time , > t,, thereby yielding a surface to describe the association
between the longitudinal and event processes. This feature can be important in
selecting an optimal time at which the marker should be evaluated, either to
enhance clinical judgement or even further, to predict the event time of interest.

To illustrate the derivation of R2,(z), we consider the aforementioned example
with Wi(®) =U, + U,t and W, =9,U, +y, U, + ys(U, + U,r). The correlation
between Wi(z) and W, (z), for any fixed time 1z, is easily calculated since W,(z) and
W, (¢) have a joint normal distribution. Thus, if (U,,U,) ~ N(0,G), we have:

var[W, (D] = Gy, + 2G,t + Gyt
var[W, (9] = O + 20103) Gui + 20102 + 7103t +7273) Gz
+ (3 + 272750 Gz + y3var [Wi (1)
covar[W;(2), W,(®)] = y1G11 + (72 + 1) Grz + 9,Goot + psvar [Wi(9)]

from which the (squared) correlation between W,(z) and W,(z) can be easily derived
by plugging in estimates for y,, y,, Gy;, G, and G,,. This function, which will be
termed ‘model-based’, is entirely based on the assumptions made in our model. A
more heuristic estimate, which we will refer to as ‘empirical’, could be derived
along the same lines of development, except that sample estimators based on the
estimated U values obtained at the (final) E-step of the EM algorithm are
substituted for the elements of G. Thus, G,, is replaced by var{U,;}, G,, by
var{U,;} and G,, by covar{U,;, U,;} .

It should be stressed that the so-obtained curve is still strongly dependent on
some aspects of the model. For example, should we assume that W,(x) =yW,(®),
then R4, (t) =1. As one departs from this simple model and further terms are
added, a finer characterization of the curve is allowed in its admissible forms.
Because of this, we recommend including a sufficiently large number of association
parameters {y,} in the model.
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5 Application to the advanced prostate cancer data

In this section, we aim at applying the proposed methodology to the liarozole data
introduced in Section 2. We will utilize pooled data from the two trials and will
refer to the control and experimental arms as in Fig. 3. Since our methodology
requires the estimation of the treatment effects in multiple trials or other meaningful
groups of patients, we will use country as a grouping unit within each trial in order
to have a sufficient number of patients in each unit. This enables us to define 19
groups containing between 3 and 69 patients per group. For the analysis, however,
two of these groups had to be excluded: in one of them (n=3), subjects were
accrued in only one treatment arm and no events were observed in the second
(n=28).

A first step in the analysis is to specify a parsimonious model that captures the
time evolution of the marker within each treatment group. A simplistic attempt
could involve second-order polynomials. While this choice may, at first, seem odd
after inspection of the average profiles (Fig. 2), this is more in agreement with
what Fig. 3 suggested. This was also confirmed by a likelihood ratio test, as the
introduction of a quadratic term in the model (as a fixed and random coefficient)
yields a large drop in deviance.

As a possible refinement, we can employ fractional polynomials (Royston &
Altman, 1994) to characterize the time evolution of the marker more suitably.
Starting from the set of powers ranging from —2 to 2 by step of 0.5 and assuming
a model with individual-level random effects for the intercept, ¢ and %, we select
the best-fitting pair of powers in this set, allowing for treatment-specific curves.
This approach leads to the selection of terms 7 and \/z and as our final model, we
further consider individual-level random effects for z and 4/z instead of 7 and #*
(note: comparison of this final model with the original one also yields a large drop
in deviance).

The joint model to be fitted can therefore be written as follows:

Yin = poi + taitie + o \/fijk + 0t Ly + 0y Lty + O Ly \/fijk (9a)

+ Uy + Uyt + Uzj\/a + &
and
Ai(8) = Ao@exp{fiZ; + yoUy + 71Uy + 9. Uy + 95 (Uy; + Uyt + Uzj'\/b} (9b)

with 7 denoting country (within trial), j referring to individual patients and % to
measurement occasions.

As explained in Section 4, R2,, can be calculated as the coefficient of determina-
tion in the regression of {[?,»} on d; = {dy;, di;» dpi} » Which yields a value of 0.517.
This mid-range value is probably too low to permit reliable prediction of treatment
effects on survival, having observed the effect of treatment on the marker. Confid-
ence limits on R2;, can be obtained based on the assumption that «; and f; are
normally distributed (as in equation (3)), from which the distribution of the
coefficient of determination can be derived (Algina, 1999; Ding, 1996). More
specifically, a 95% confidence interval can be obtained by finding values of RZ,
for which the corresponding estimates are approximately equal to the 2.5% and
97.5% quantiles of the cumulative distribution function of R% In our example, the
so-obtained confidence limits for RZ, are [0.013, 0.748], thus showing that the
trial-level association is estimated rather imprecisely.
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It is interesting to notice that dependence between the marker and the time-to-
event endpoint is a complicating assumption in our framework. If one is interested
solely in trial-level surrogacy, a naive computational approach could involve inde-
pendent models for each endpoint, thereby ignoring dependence between the two
endpoints and simplifying model fitting. Tibaldi ez al. (2001) explore this issue in
the situation of Section 3 (normally distributed endpoints) and conclude that this
simplified approach seems to perform reasonably well. Obviously, as one departs
from the multivariate Gaussian world, it is not at all clear that such a simplistic
approach would work effectively well. For comparative purposes, we calculated
RZ,, by fitting, separately models, model (9a) and (9b) with 7=y, =7,=7;=0.
This results in a value of R2,,,=0.291 that is much lower than the one found above.
(Concidence limits should not be overlooked however.) Thus, we see that ignoring
dependence between the marker and the survival endpoint might give misleading
inference on R2,, in this setting, although this issue should be further explored.

Figure 4(a) shows the model-based and empirical curves R*,(z) for model (9a)—
(9b). Both curves agree fairly well over the time range considered. They start from
a relatively low level (~0.3), then rise sharply until a value of about 0.9 at year 1
and stabilize at that level thereafter. Although the interpretation of such a plot
holds, strictly speaking, at the level of the latent processes W, (z) and W,(z), this
would suggest that, initially, PSA level bears relatively little information on a
patient’s future survival, but as information on the marker is gathered over time
(first year of treatment), it achieves a better predictive strength for survival, with
no further gain in subsequent years. For comparison purposes, the plot in the
right-hand panel (Fig. 4(b)) shows the same curves under the model with quadratic
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F1G 4. Plots of the model-based and empirical R2,(t) curves. Left panel: final model (int., z, \/E).
Right panel: original model (int., z, ).
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time evolution and individual-level random effects for the intercept, ¢ and . The
two curves show a similar behaviour within the first year, but then a dip can be
observed. In addition, it can be noticed that the two curves do not coincide so
well. It is not clear whether this is caused by the inferior fit of the model, or by
constraints imposed by the model itself, but this calls for caution when interpreting
such curves. We do believe that they might shed some light on the basic intricacies
between the marker and the survival endpoint of interest, but these curves should
not be over-interpreted as they may be strongly model-dependent.

6 Discussion

An extension of the surrogate endpoint validation methodology of Buyse er al.
(2000) was proposed for the case where a longitudinally measured biomarker is a
potential surrogate for a survival endpoint. To that end, the formulation of
Henderson ez al. (2000) was adopted for the joint model relating the marker and
the survival time. A limiting feature arises from the inherent complexity of the joint
modelling of longitudinal measurements and event time data, which is most
noticeable in the computational aspect of this approach. In particular, intensive
computing times can be expected in the type of applications covered by the present
paper because of the typically high sample size of the meta-analytic data sets
required for our validation exercise. In addition, use of the EM algorithm to fit the
model fails to provide precision estimates for parameters. In their paper, Henderson
et al. obtained standard errors by a Monte-Carlo method refitting the model to
simulated data sets generated using parameter values taken from the original
analysis. Clearly, this procedure may be overly time-consuming here, unless one
has a powerful computer at one’s disposal.

At the trial level, which will be mostly the level of interest in practice, the
surrogacy measure R2;, can be easily derived by considering extra terms needed to
characterize the longitudinal evolution of the marker, and our method provides
point estimates and uncertainty measures for this parameter. In addition, the
individual-level surrogacy can be explored through the function R?,4,(z), which
captures the association induced by the two underlying Gaussian processes, W,(z)
and W, (z), used in our joint model. Since the latter quantity is primarily of interest
for exploratory purposes, and since calculating precision estimates within the joint
model is cumbersome, we do not attach uncertainty measures on RZg, (z) here.
Note that when such a step is done, it could also help to incorporate the
measurement error introduced by the fact that estimates of the a;s and the f§;s are
effectively employed when estimating R2,,.

Finally, it would be desirable to investigate model adequacy better (with an
application to RZg, (¢) in mind, for example) or the diagnostic assessment of fitted
models. Unfortunately, such tools are currently lacking and this is an area for
further research, as pointed out by Henderson ez al. (2000).

As for the clinical interpretation of our work, we saw that PSA level and survival
seem, as expected, to be strongly related, at least when a sufficiently large amount
of information has been gathered on the marker. While bearing in mind that R%,;
was estimated with large uncertainty, the value that was found stands in the mid-
range of the unit interval and would prevent us from formulating any firm
conclusion had it been estimated more precisely. This points to an issue, not of
the methodology, but rather of the biological nature of the marker. We may
tentatively say, however, that PSA level has some value as a surrogate marker for
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survival (for the class of treatments considered in the two trials at least) but
probably is not a very good one. Obviously, these results should be taken with
caution since this study involved only a couple of clinical trials with a relatively
limited number of subjects. The issue of validiting a surrogate marker will, ideally,
be based on a much more extended set of randomized trials and will cover different
classes of therapies that are commonly used for treating patients with the disease
in question.

Acknowledgement

The first and fourth authors gratefully acknowledge support from an LUC
Bijzonder Onderzoeksfonds grant. The second author was supported by the
Institute for the Promotion of Innovation by Science and Technology in Flanders
(IWT), Belgium. The authors are grateful to Johnson and Johnson (Pharmaceutical
Research and Development) for the kind permission to use their data. The authors
would also like to thank Angela Dobson for her kind assistance and help in
implementing the model used in the paper.

REFERENCES

ALGINA, J. (1999) A comparison of methods for constructing confidence intervals for the squared
multiple correlation coefficient, Multivariate Behavioral Research, 34, pp. 494-504.

Buysg, M. & MOLENBERGHS, G. (1998) CRITERIA FOR THE VALIDATION OF SURROGATE ENDPOINTS IN
RANDOMIZED EXPERIMENTS, Biometrics, 54, pp. 1014—1029.

Buysg, M., MOLENBERGHS, G., BurRzykKowsKI, T., RENARD, D. & Geys, H. (2000) The validation of
surrogate endpoints in meta-analyses of randomized experiments, Biostatistics, 1, pp. 49—67.

CLEVELAND, W. S. (1979) Robust locally weighted regression and smoothing scatterplots, Fournal of the
American Statistical Association, 74, pp. 829-836.

DEBRUYNE, F. J. M., MURRAY, R., FRADET, Y., JOHANSSON, J. E., TYRRELL, C., BoccarDO, F. et al
(1998) Liarozole—a novel treatment approach for advanced prostate cancer: results of a large
randomized trial versus cyproterone acetate, Urology, 52, pp. 72-81.

DEGRuTTOLA, V. & Tu, X. M. (1994) Modelling progression of CD4-lymphocyte count and its
relationship to survival time, Biometrics, 50, pp. 1003-1014.

DING, C. G. (1996) On the computation of the distribution of the squared multiple correlation
coefficient, Computrational Statistics and Data Analysis, 22, pp. 345-350.

Faucert, C. L. & THOMAS, D. C. (1995) Simultaneously modelling censored survival data and
repeatedly measured covariates: a Gibbs sampling approach, Statistics in Medicine, 15, pp. 1663—1685.

FREEDMAN, L. S., GRAUBARD, B. I. & SCHATZKIN, A. (1992) Statistical validation of intermediate
endpoints for chronic diseases, Statistics in Medicine, 11, pp. 167-178.

HENDERSON R., DIGGLE, P. & DoBSON, A. (2000) Joint modelling of longitudinal measurements and
event time data, Biostatistics, 1, pp. 465—480.

HogaN, J. W. & LAIRD, N. H. (1997) Mixture models for the joint distribution of related measures and
event times, Statistics in Medicine, 16, pp. 239-257.

KarLaN, E. L. & MEIER, P. (1958) Nonparametric estimation from incomplete observations, Journal of
the American Statistical Association, 53, pp. 457-481

KEeLLy, W. K., SCHER, H. 1., MAZUMDAR, M. er al. (1993) Prostate-specific antigen as a measure of
disease outcome in metastatic hormone-refractory prostate cancer, Journal of Clinical Oncology, 11,
pp. 607-615.

LAvALLEY, M. P. & DEGRUTTOLA, V. (1996) Models for empirical Bayes estimators of longitudinal
CD4 counts, Statistics in Medicine, 15, pp. 2289-2305.

PAWITAN, Y. & SELF, S. (1993) Modelling disease marker processes in AIDS, Journal of the American
Staristical Association, 88, pp. 719-726

PRENTICE, R. L. (1989) Surrogate endpoints in clinical trials: definitions and operational criteria,
Statistics in Medicine, 8, pp. 431-440.

RamMLAU-HANSEN, H. (1983) Smoothing counting process intensities by means of kernel functions,
Annals of Statistics, 11, pp. 453-466



Validation of a longitudinally measured surrogate marker 247

RoYSTON, P. & ALTMAN, D. G. (1994) Regression using fractional polynomials of continuous covariates:
parsimonious parametric modelling, Applied Statistics, 43, pp. 429-467.

SmiTH, D., DunN, R. L., STAWDERMAN, M. S. & Pi1enTA, K. J. (1998) Change in serum prostate-
specific antigen as a marker of response to cytotoxic therapy for hormone-refractory prostate cancer,
Fournal of Clinical Oncology, 16, pp. 1835-1843.

SRIDHARA, R., EISENBERGER, M. A., SINIBALDI, V. J. et al. (1995) Evaluation of prostate-specific antigen
as a surrogate marker for response of hormone-refractory prostate cancer to suramin therapy, Fournal
of Clinical Oncology, 13, pp. 2944-2953.

TAYLOR, J. M. G., CUMBERLAND, W. G. & Sy, J. P. (1994) A stochastic model for analysis of longitudinal
AIDS data, Journal of the American Statistical Association, 89, pp. 727-736.

TiBALDI, F., CORTINAS ABRAHANTES, J., MOLENBERGHS, G., RENARD, D., BURZYKOWSsKI, T., BUYSE,
M., PARMAR, M., STIJNEN, T. & WOLFINGER, R. (2001) Computational approaches to the evaluation
of surrogate endpoints.

Ts1ATIS, A. A., DEGRUTTOLA, V. & WULFSOHN, M. S. (1995) Modelling the relationship of survival to
longitudinal data measured with error, Journal of the American Statistical Association, 90, pp. 27-37.
WULFSOHN, M. S. & TsIATIS, A. A. (1997) A joint model for survival and longitudinal data measured

with error, Biometrics, 53, pp. 330-339.

Xu, ]J. & ZEGER, S. (2001) Joint analysis of longitudinal data comprising repeated measures and times

to events, Applied Statistics, 50, pp. 375-387.



Copyright © 2003 EBSCO Publishing



