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Summary. In many therapeutic areas, the identification and validation of surrogate end points
is of prime interest to reduce the duration and/or size of clinical trials. Buyse and co-workers
and Burzykowski and co-workers have proposed a validation strategy for end points that are
either normally distributed or (possibly censored) failure times. In this paper, we address the
problem of validating an ordinal categorical or binary end point as a surrogate for a failure time
true end point. In particular, we investigate the validity of tumour response as a surrogate for
survival time in evaluating fluoropyrimidine-based experimental therapies for advanced colorec-
tal cancer. Our analysis is performed on data from 28 randomized trials in advanced colorectal
cancer, which are available through the Meta-Analysis Group in Cancer.
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1. Introduction

Surrogate endpoints are referred toas endpoints that can replaceor supplementother endpoints
in the evaluation of experimental treatments or other interventions. For example, surrogate end
points are useful when they can bemeasured earlier, more conveniently or more frequently than
the end points of interest, which are referred to as the ‘true’ end points (Ellenberg andHamilton,
1989).
The most meaningful and the most objectively measured end point that is used to evaluate

new cancer treatments is the overall survival time. However, it requires a long observation time
and so may not be optimal for a fast assessment of therapeutic advances. The Food and Drug
Administration has stated in its recommendations for accelerated approval of investigational
cancer treatments that

‘formany cancer therapies it is appropriate to utilize objective evidence of tumour shrinkage as a basis for
approval, allowing additional evidence of increased survival and/or improved quality of life associated
with that therapy to be demonstrated later’

(Food and Drug Administration, 1996).
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European legislation allows for granting a marketing authorization under ‘exceptional cir-
cumstances’ where comprehensive data are not available at the time of submission (e.g. because
of the rarity of the disease) and provided that the applicant agrees to a further programme of
studies that will be the basis for a post-authorizations review of the benefit–risk profile of the
drug. Although this primarily refers to situations where randomized clinical trials are lacking,
it applies as well to the absence of data on a particular end point. According to the European
Agency for the Evaluation of Medicinal Products guidelines for the evaluation of anticancer
agents, possible end points for phase III trials in oncology include the response rate (Committee
for Proprietary Medicinal Products, 2001). The guidelines state that, if the objective response
rate is used as the primary end point, compelling justifications are needed and normally addi-
tional supportive evidence of efficacy in terms of, for example, the control of symptoms is nec-
essary. These requirements are close to those specified in the Food and Drug Administration’s
accelerated approval system.
The shrinkage of tumour mass, also called ‘tumour response’, has long been the corner-stone

of the development of cytotoxic therapies for solid tumours, even though the effect of a tumour
response on the patient’s survival has often been questioned (Anderson et al., 1983; Oye and
Shapiro, 1984; Ellenberg andHamilton, 1989; Buyse and Piedbois, 1996). In this paper, we take
up this issue and study the relationship between the end points of response and survival, as well
as between the effects of an investigational treatment on these two end points.More specifically,
we study the validity of tumour response as a surrogate for survival in assessing the benefits of
various treatment regimens for advanced colorectal cancer. For this, a likelihood model for the
joint assessment of survival and ordinal or binary end points needs to be developed.
Prentice (1989) proposed a formal definition of surrogate end points and outlined a set of

criteria. Much debate ensued, for the criteria set out by Prentice are not straightforward to
verify (Freedman et al., 1992; Fleming et al., 1994). In addition, Prentice’s criteria are only
equivalent to the definition that he proposed in the case of binary end points (Buyse and Mol-
enberghs, 1998). Freedman et al. (1992) supplemented Prentice’s approach by introducing the
proportion explained , aimed at measuring the proportion of the treatment effect that is mediated
by the surrogate. This proposal was important in that it shifted the interest in the validation
of surrogate end points from significance testing to estimation. However, it is also surrounded
with difficulties. Consequently, Buyse and Molenberghs (1998) proposed to replace it by two
new measures. The first, defined at the population level and termed the relative effect, is the
ratio of the overall treatment effect on the true end point over that on the surrogate end point.
The second is the individual level association between both end points, after accounting for
the effect of treatment, and referred to as adjusted association. Also these have important draw-
backs and thereforeDaniels andHughes (1997) andBuyse et al. (2000a) proposedmeta-analytic
approaches. Some of this discussion is given in Molenberghs et al. (2003).
As Buyse et al. (2000a) focused solely on the case of normally distributed end points, it is

necessary to explore other settings, often more complicated owing to the absence of a unifying
framework such as the multivariate normal distribution. Burzykowski et al. (2001) extended the
approach to the case when both the surrogate and the true end points are failure time variables.
Such a setting is commonly encountered, for instance, in oncology, where the time to progres-
sion or progression-free survival time is frequently used as a surrogate for survival time (Chen
et al., 1998).
The focus of this paper is twofold. First, using the developments in Burzykowski et al. (2001),

we further extend the approach that was proposed by Buyse et al. (2000a) to the case when the
surrogate is an ordinal categorical or a binary variable and the true end point is a failure time
variable. For this, motivated by the results developed byMolenberghs et al. (2001) in the context
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of mixed discrete and continuous data, we propose a novel concept of using copula models to
model mixed bivariate categorical or binary variables and survival data jointly. Secondly, we
use the new extension to study the validity of response as a surrogate for survival for advanced
colorectal cancer. The data that we analyse come from four successive meta-analyses of 28 trials
in advanced colorectal cancer (Buyse et al., 2000b). All four meta-analyses compared a stan-
dard regimen given as a bolus injection to various experimental regimens. All regimens used
fluoropyrimidines in the form of 5-fluorouracil (5FU) or 5-fluoro-2′deoxyuridine (FUDR). In
the majority of the trials, individual patient data were available on survival times and tumour
responses, whichwere classified as complete response (CR), partial response (PR), stable disease
(SD) or progressive disease (PD).
The rest of the paper is organized as follows. In Section 2 the method of validation that was

proposed by Buyse et al. (2000a) for the case of two normally distributed end points is sum-
marized and then an extension is proposed to the case of an ordinal categorical surrogate. Our
case-study is presented and analysed in Section 3 and some conclusions and amplifications based
on this analysis are presented in Section 4. Concluding remarks are formulated in Section 5.

2. Meta-analytic approach to the validation of surrogate end points

Throughout the paper, we adopt the following notation: T and S are random variables denoting
the true and surrogate end points respectively and Z is an indicator variable for treatment. We
shall expand the notation by using two indices: i= 1, . . . ,N for trial and j= 1, . . . ,ni for
subjects within trial.

2.1. Normally distributed outcomes
The concept of the meta-analytic approach to the validation of surrogate end points has been
developed by Buyse et al. (2000a) for the case of two normally distributed end points. At the
core of this proposal lies a two-level hierarchical model (Laird andWare, 1982; Goldstein, 1995;
Verbeke andMolenberghs, 2000). In practice, such amodel can assume that the trial level effects
are either random or fixed. In the latter case, a two-stage approach in which models at both
levels are fitted separately can be followed (Laird and Ware, 1982). The fixed effects version is
also easiest to generalize to the current situation with an ordinal surrogate and a time-to-event
true end point.
The first stage is based on a trial-specific model:

Sij = µSi + αiZij + "Sij, .1/

Tij = µTi + βiZij + "Tij, .2/

where µSi and µTi are trial-specific intercepts and αi and βi are trial-specific effects of treatment
Z on the end points in trial i. Finally, "Sij and "Tij are correlated error terms, assumed to be
mean 0 normally distributed.
At the second stage, it is assumed that (µSi,µTi,αi,βi/′ follows a normal distribution with

mean (µS ,µT ,α,β/′ and with an unstructured covariance matrix.
A natural quantity to assess the quality of a surrogate at the trial level is the coefficient of

determination, R2trial say, pertaining to the distribution of βi conditional on µSi and αi. This
coefficient measures how precisely we may predict the effect of treatment on the true end point
on the basis of previous data and the observed treatment effect on the surrogate end point from
a new trial. The association between the surrogate and final end points, after adjustment for
the effect of treatment, is captured by the coefficient of determination, R2indiv say, pertaining
to the distribution of "Tij conditional on "Sij. This coefficient measures how precisely we may
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predict the value of Tij for an individual patient on the basis of the observed value of Sij and
the treatment assignment.
We may call a surrogate ‘valid’ when both R2trial and R2indiv are sufficiently close to 1, the

precise quantification of which will depend on the context.
Technically, the two-stage model described above might be fitted to data by using a mixed

effects model representation (Buyse et al., 2000a). The convergence of the Newton–Raphson
algorithmyieldingmaximum likelihood solutions is not guaranteed, however. Simulation results
indicate that there should be enough variability at the trial level, and a sufficient number of trials,
to obtain convergence of the Newton–Raphson algorithm (Buyse et al., 2000a). Alternatively,
we can still rely on the fixed effects representation and obtain estimates of the treatment effects
at the trial level and estimates of residuals at the individual level, thus enabling estimation of
R2trial and R

2
indiv respectively.

2.2. The case of an ordinal or a binary surrogate end point
We shall now assume that T is a failure time random variable and S is a categorical variable with
K ordered categories. For each of j = 1, . . . ,ni patients from trial i (i = 1, . . . ,N) we thus have
quadruplets .Xij,∆ij,Sij,Zij/, whereXij is a possibly censored version of survival time Tij and
∆ij is the censoring indicator asuming the values 1 for observed failures and 0 otherwise.
To propose validation measures, similar to those introduced in the previous section, we shall

use copula models (Shih and Louis, 1995; Nelsen, 1999; Burzykowski et al., 2001). Accordingly,
we propose to replace model (1)–(2) by a bivariate copula model for the true end point Tij and
a latent continuous variable S̃ij underlying the surrogate end point Sij.
Specifically, to model Sij we propose the proportional odds model

logit{P.Sij � k|Zij/} = γik + αiZij: .3/

It can be interpreted as assuming a logistic distribution for the latent variable S̃ij. The value of
the marginal cumulative distribution function of S̃ij, givenZij = z, will be denoted by FS̃ij.s; z/.
Note that, in the case of a binary surrogate Sij, model (3) is equivalent to a logistic regression
model.
It is worth noting that the estimation of model (3) requires that in each trial all response levels

are observed. In practice, it often happens that in some trials not all levels are observed. To
adapt model (3) for such a case, we rewrite it as

logit{P.Sij � k|Zij/} = η0k + ηi + ηik + αiZij, .4/

where for identifiability we might specify that, for example,

η1 = η11 = . . . = η1,K−1 = 0:
If, for a particular trial, i0 say, not all levels of S are observed, we might use model (4) with
the terms ηi01, . . . , ηi0,K−1 constrained to 0. As a special case, the following model might be
considered:

logit{P.Sij � k|Zij/} = η0k + ηi + αiZij: .5/

The model assumes a fixed set of cut points η01, . . . , η
0
K−1 but allows for trial-specific shifts ηi of

the set.
To model the effect of treatment Zij on the marginal distribution of Tij we propose, as in

Burzykowski et al. (2001), to use the proportional hazard model

λij.t|Zij/ = λi.t/exp.βiZij/, .6/
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whereβi are trial-specific effects of treatmentZ andλi.t/ is a base-line hazard function. Themar-
ginal cumulative distribution function of Tij, following model (6) with Zij = z, will be denoted
by FTij .t; z/.
To specify fully a bivariate model corresponding to equations (1)–(2), let us assume that

the joint cumulative distribution of Tij and S̃ij, given Zij = z, is generated by a one-parameter
copula function Cθ:

FTij ,S̃ij .t, s; z/ = Cθ{FTij .t; z/,FS̃ij .s; z/, θ}: .7/

Cθ is a distribution function on [0, 1]2 with θ ∈ R1 (Genest and McKay, 1986; Shih and Louis,
1995; Nelsen, 1999), describing the association between S̃ij and Tij. An attractive feature of
model (7) is that the marginal models (the proportional odds and proportional hazards models
inourparticular case) and the associationmodel canbe selectedwithout constraining eachother.
Using the joint distribution function (7) with proportional hazard model (6) and propor-

tional odds model (3) (or its modification) as marginal models, it is possible to construct the
likelihood function for the observed data (Xij = xij,∆ij = δij,Sij = sij,Zij = zij). The details of
the construction are described in Appendix A.
At the first stage we propose to use the likelihood function to obtain an estimate of θ and

estimates of trial-specific treatment effects αi and βi on the surrogate and the true end point
respectively. At the second stage, we propose to use the trial level model(

ηi
αi

βi

)
=
(

η
α
β

)
+
(
ei
ai
bi

)
, .8/

with ηi obtained frommodel (4) ormodel (5). The second termon the right-hand side of equation
(8) is assumed to follow a zero-mean normal distribution with dispersion matrix

D =
(
dee dea deb

daa dab
dbb

)
:

The quality of surrogate S at the trial level can be assessed on the basis of the coefficient of
determination:

R2trial.α,η/ =

(
deb
dab

)T(
dee dea
dea daa

)−1(
deb
dab

)
dbb

: .9/

The index ‘trial.α, η/’ in R2trial.α,η/ indicates that the coefficient pertains to the distribution of βi
conditional on the set of trial-specific parameters including αi and ηi.
In principle, if the unrestricted marginal model (3) is used at the first stage, we might consider

taking into account the information about the cut points γi1, . . . ,γi,K−1. A simple solution
would be to replace ηi in equation (8) with the vector .γi1, . . . ,γi,K−1/′. From the formal point
of view, however, in this case the assumption of normality would have to be modified to reflect
the ordering of the γijs.
Alternatively, if the information in the cut points can be ignored, the use of a simple linear

regression model could be considered (Daniels and Hughes, 1997; Burzykowski et al., 2001):(
αi

βi

)
=
(

α
β

)
+
(
ai
bi

)
.10/
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with dispersion matrix

Dα =
(
daa dab

dbb

)
: .11/

In that case the coefficient of determination R2trial.α,η/ reduces to

R2trial.α/ = d2ab
daadbb

, .12/

the square of the correlation between αi and βi. It can be noted here that, using equations (9)
and (12), we can write

R2trial.α,η/ = R2trial.α/

1− corr2.ηi,αi/
+ corr.ηi,βi/corr.ηi,βi/− 2 corr.αi,βi/ corr.ηi,αi/

1− corr2.ηi,αi/
: .13/

It follows that, formally,R2trial.α,η/ =R2trial.α/ if corr.ηi,αi/= corr.ηi,βi/= 0. To useR2trial.α/ and
model (10) instead of R2trial.α,η/ and model (8), we would thus require that treatment effects on
true and surrogate end points should be uncorrelated with the base-line distribution (forZ = 0)
of S. The use of R2trial.α/ might give different results from those of the use of R

2
trial.α,η/, e.g. in

the presence of treatment–surrogate interaction.
To assess the quality at the individual level, a measure of association between Sij and Tij is

needed. A natural candidate is θ, since its value modifies the form of the copula function and,
consequently, influences the strength of the association between S̃ij and Tij. A drawback of θ is
that, for different copula functions, it may assume values from different domains. To overcome
this difficulty the use of Kendall’s τ or Spearman’s ρ may be considered (Burzykowski et al.,
2001). Both measures are transformations of θ and can be interpreted similarly to a correlation
coefficient irrespectively of the copula function (Nelsen, 1999). Alternatively, it may be possible
to choose a copula such that θ has a meaningful interpretation. This option will be discussed
next.
In principle, different copula functions can be used for the bivariate distribution (7). We pro-

pose to use the bivariate Plackett copula (Plackett, 1965; Mardia, 1970; Dale, 1986; Nelsen,
1999). This particular choice is motivated by the fact that, for the Plackett copula, the associ-
ation parameter θ takes the form of a (constant) global odds ratio. Specifically, in our setting
(for k = 1, . . . ,K − 1 and t > 0)

θ = P.Tij > t,Sij > k/P.Tij � t,Sij � k/

P.Tij > t,Sij � k/P.Tij � t,Sij > k/

= P.Tij > t|Sij > k/

P.Tij � t|Sij > k/

{
P.Tij > t|Sij � k/

P.Tij � t|Sij � k/

}−1
: .14/

Thus, it is naturally interpreted as the (constant) ratio of the odds for surviving beyond time t
given response higher than k to the odds of surviving beyond time t given response at most k.
For a binary surrogate, it is just the odds ratio for responders versus non-responders (assuming
that k = 2 indicates the response).
A more detailed treatment of the Plackett copula is given in Appendix B.

3. Case-study
The two-stage approach described above was applied to the advanced colorectal cancer data.
Four-category tumour response was considered a surrogate for survival time and contrasted
with a binary response.
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3.1. Description of the data
We shall use data from 28 advanced colorectal cancer trials (AdvancedColorectal CancerMeta-
Analysis Project, 1992, 1994; Meta-Analysis Group in Cancer, 1996, 1998). The individual
patient data were collected by the Meta-Analysis Group in Cancer between 1990 and 1996 to
obtain an overall quantitative assessment of the value of several experimental treatments in
advanced colorectal cancer. In the four meta-analyses, the comparison was between an experi-
mental treatment and a control treatment. The control treatments, referred to hereafter as ‘FU
bolus’, were similar across the four meta-analyses and consisted of fluoropyrimidines (5FU
or FUDR) given as a bolus intravenous injection. The experimental treatments, referred to
hereunder as ‘experimental FU’, differed across the four meta-analyses and consisted of 5FU
modulated by leucovorin (Advanced Colorectal Cancer Meta-Analysis Project, 1992), of 5FU
modulated by methotrexate (Advanced Colorectal Cancer Meta-Analysis Project, 1994), of
5FU given in continuous infusion (Meta-Analysis Group in Cancer, 1998) and of hepatic
arterial infusion of FUDR for patients with metastases confined to the liver (Meta-Analysis
Group in Cancer, 1996). As noted by Daniels and Hughes (1997), the use of an ‘experimental’
treatment that varies among the trials can be defended on the grounds of generalizability of
the results of the validation process to future clinical trials and treatments. The experimental
treatments in our example might be considered as representatives of ‘the modifications of the
standard fluoropyrimidine-based regimen’ in advanced colorectal cancer.
Several of the 28 trials were multiarmed. In total, 33 randomized comparisons were consid-

ered in the four meta-analyses. Individual patient data were available for 27 of the comparisons
(in 24 studies). From now on, we shall refer to each of the comparisons as a separate ‘trial’.
Table 1 presents summary data for the trials included in the analysis. In particular, for each

trial and each treatment arm Table 1 contains the median survival time (in months) and the
distribution of the four tumour response categories CR, PR, SD and PD (WorldHealth Organi-
zation, 1979). Also, the observed percentage for the binary response CR + PR is given. The first
column of Table 1 contains the labels that are used to identify the trials in Advanced Colorectal
Cancer Meta-Analysis Project (1992, 1994) and Meta-Analysis Group in Cancer (1996, 1998)
describing the four meta-analyses; we refer to these for additional details regarding the original
publications of results of the trials.
From Table 1 it can be seen that the trials varied quite considerably in sample size. The total

size ranged from 15 (‘City of Hope, HAI versus ST’) to 382 (‘GITSG’) patients. The last two
rows of Table 1 indicate that, overall, CR was rarely observed. Nevertheless, CR and PR were
observedmore frequently for experimental FU (3.2% and 19.2% respectively) than for FUbolus
(2.1% and 9.6% respectively). Consequently, the response rate, i.e. the combined percentage of
CR and PR, was higher for experimental FU (22.4% compared with 11.7% for FU bolus).
This conclusion applies also to all except three (‘NCOG’, ‘GOIRC’ and ‘RPCI, 5FU+M’)
individual trials. Similarly, the median survival time was slightly longer for experimental FU
(9.8months) than for FU bolus (8.9 months). This pattern can be consistently seen for all except
eight individual trials.
Table 2 presents estimates of odds for binary response (CR + PR versus SD + PD) and the

relative mortality hazard for experimental FU versus FU bolus. Overall, the odds were approx-
imately double for the experimental treatment, with a simultaneous 10% reduction in the risk
of death.
Fig. 1 shows survival curves by treatment within tumour response categories. There is no sta-

tistically significant difference between experimental FU and bolus FU in any tumour response
category (CR, p= 0:544; PR, p= 0:791; SD, p= 0:525; PD, p = 0:059 for a log-rank test
stratified by trial; three patients with unknown responses were treated as ‘progressions’), which
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Table 1. Summary data for 27 analysed trials†

Trial Treatment N Tumour reponse (%) Median
survival (months)

CR PR SD PD CR+PR

Advanced Colorectal Cancer Meta-Analysis Project (1992)
GITSG 5FU+L 269 1.5 20.1 0.0 78.4 21.6 11.3

ST 113 0.0 10.6 0.0 89.4 10.6 10.7
NCOG 5FU+L 107 5.6 12.1 62.6 19.6 17.7 10.5

ST 55 9.1 9.1 65.4 16.4 18.2 11.4
GOIRC 5FU+L 91 3.3 9.9 36.3 50.5 13.2 12.4

ST 90 6.7 8.9 31.1 53.3 15.6 14.5
GISCAD 5FU+L 91 5.5 15.4 31.9 47.2 19.9 13.0

ST 89 3.4 6.7 31.5 58.4 10.1 13.0
Genova 5FU+L 75 6.7 14.7 36.0 42.7 21.4 11.0

ST 73 2.7 5.5 52.0 39.7 8.2 11.0
Toronto 5FU+L 66 0.0 31.8 0.0 68.2 31.8 12.0

ST 64 0.0 6.2 0.0 93.7 6.2 9.6
City of Hope 5FU+L 39 2.6 35.9 35.9 25.6 38.7 14.2

ST 40 0.0 12.5 47.5 40.0 12.5 12.7
RPCI 5FU+L 30 3.3 36.7 23.3 36.7 40.2 11.0

ST 23 0.0 8.7 4.3 87.0 8.7 11.1
Bologna 5FU+L 34 0.0 26.5 32.3 41.2 26.5 10.1

ST 30 0.0 3.3 56.7 40.0 3.3 7.5

Advanced Colorectal Cancer Meta-Analysis Project (1994)
EORTC 5FU+M 152 2.6 15.1 38.2 44.1 17.7 12.1

ST 154 2.6 9.1 31.2 57.1 11.7 8.9
RPCI 5FU+M 23 0.0 4.3 13.0 82.6 4.3 10.3

ST 23 0.0 8.7 4.3 87.0 8.7 11.1
NGTAG 5FU+M+L 122 2.5 13.9 39.3 44.3 16.4 8.1

ST 127 0.0 2.4 43.4 54.3 2.4 6.0
AIO 5FU+M+L 86 4.6 18.6 33.7 43.0 23.2 10.7

ST 78 2.6 14.1 46.1 37.2 16.7 13.7
NCOG 5FU+M+L 103 5.8 12.6 65.0 16.5 18.4 12.3

ST 55 9.1 9.1 65.4 16.4 18.2 11.4
GOCS 5FU+M+L 64 1.6 25.0 32.8 40.6 26.6 11.9

ST 61 0.0 11.5 22.9 65.6 11.5 8.9
Mar del Plata 5FU+M+L 28 3.6 14.3 7.1 75.0 17.9 0.7

ST 33 0.0 0.0 57.6 42.4 0.0 1.0
Spain 5FU+M+L 26 3.8 19.2 53.8 23.1 23.0 13.2

ST 33 3.0 12.1 51.5 33.3 15.1 8.6

Meta-Analysis Group in Cancer (1996)
MSKCC HAI 43 0.0 48.8 37.2 13.9 48.8 18.3

ST 48 0.0 16.7 33.3 50.0 16.7 14.5
NCCTG HAI 39 2.6 38.5 33.3 25.6 41.1 12.8

ST 35 0.0 17.1 57.1 25.7 17.1 11.0
NCI HAI 32 3.1 37.5 3.1 56.2 40.6 16.9

ST 32 3.1 12.5 0.0 84.4 15.6 11.6
City of Hope HAI 9 0.0 77.8 0.0 22.2 77.8 22.9

ST 6 0.0 50.0 0.0 50.0 50.0 23.0

(continued)
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Table 1 (continued )

Trial Treatment N Tumour reponse (%) Median
survival (months)

CR PR SD PD CR+PR

Meta-Analysis Group in Cancer (1998)
SWOG CII 174 2.9 10.3 19.5 67.2 13.2 15.0

ST 182 2.7 9.9 30.2 57.1 12.6 13.9
ECOG CII 162 4.9 22.8 8.6 63.6 27.7 13.0

ST 162 3.1 14.2 5.6 77.2 17.3 10.5
NCIC CII 95 1.0 10.5 36.8 51.6 11.5 10.1

ST 90 1.1 5.6 32.2 61.1 6.7 9.3
France CII 77 3.9 22.1 41.6 32.5 26.0 8.5

ST 78 0.0 12.8 39.7 47.4 12.8 9.8
MAOP CII 88 4.5 25.0 69.3 1.1 29.5 10.6

ST 85 0.0 9.4 89.4 1.2 9.4 11.2
Jerusalem CII 11 0.0 9.1 18.2 72.7 9.1 8.6

ST 15 0.0 6.7 60.0 33.3 6.7 12.0

Total EX 2136 3.2 19.2 29.9 47.7 22.4 9.8
ST 1874 2.1 9.6 34.1 54.2 11.7 8.9

†ST, control treatment (bolus 5FUor FUDR); EX, experimental treatment (M,methotrexate; L, leucovorin;
HAI, FUDR by hepatic arterial infusion; CII, 5FU by continuous intravenous infusion); N, sample size.
The median survival times are estimated from the Kaplan–Meier survival curve.
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Fig. 1. Survival curves by treatment within tumour response categories ( , experimental; - - - - - - - ,
control): CR, N = 108; PR, N = 590; SD, N = 1276; PD, N = 2036)

confirms that the overall survival benefit in favour of experimental FU is due to the higher
tumour response rates that are obtained with experimental FU compared with bolus FU. This
observation suggests that tumour response might be a valid surrogate for survival according to
Prentice’s (1989) definition.
The true end point T is the survival time, defined as the time from randomization to death

from any cause. In our set of data, most patients have died (3591 out of 4010 patients, i.e. 89.5%).
The surrogate end point S is tumour response, defined either as a binary variable with S = 2 for
CR or PR and S = 1 for SD or PD, or as a categorical variable with S = 4, 3, 2, 1 for CR, PR,
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Table 2. Summary results for binary tumour response and survival for
the 27 analysed trials†

Trial Odds ratio Hazard ratio
[95% confidence interval] [95% confidence interval]

Advanced Colorectal Cancer Meta-Analysis Project (1992)
GITSG 2.31 [1.19, 4.50] 0.88 [0.70, 1.12]
NCOG 0.97 [0.42, 2.26] 1.22 [0.86, 1.72]
GOIRC 0.82 [0.36, 1.90] 1.23 [0.88, 1.72]
GISCAD 2.34 [1.00, 5.51] 1.09 [0.76, 1.56]
Genova 3.03 [1.11, 8.24] 0.90 [0.65, 1.25]
Toronto 7.00 [2.24, 21.82] 0.78 [0.54, 1.13]
City of Hope 4.37 [1.40, 13.65] 0.78 [0.50, 1.23]
RPCI 7.00 [1.38, 35.51] 1.13 [0.65, 1.98]
Bologna 10.44 [1.23, 88.21] 0.74 [0.43, 1.28]

Advanced Colorectal Cancer Meta-Analysis Project (1994)
EORTC 1.63 [0.86, 3.11] 0.79 [0.62, 1.02]
RPCI 0.48 [0.04, 5.66] 1.28 [0.71, 2.30]
NGTAG 8.10 [2.34, 28.05] 0.76 [0.59, 0.98]
AIO 1.51 [0.70, 3.30] 1.03 [0.75, 1.40]
NCOG 1.02 [0.44, 2.37] 0.89 [0.63, 1.26]
GOCS 2.79 [1.06, 7.31] 0.78 [0.54, 1.12]
Mar del Plata 15.68 [0.83, 297.4] 0.98 [0.58, 1.67]
Spain 1.68 [0.45, 6.28] 1.17 [0.62, 2.24]

Meta-Analysis Group in Cancer (1996)
MSKCC 4.77 [1.81, 12.54] 0.77 [0.51, 1.17]
NCCTG 3.36 [1.13, 9.96] 0.95 [0.60, 1.50]
NCI 3.69 [1.13, 12.10] 0.81 [0.46, 1.40]
City of Hope 3.50 [0.37, 32.97] 0.91 [0.31, 2.66]

Meta-Analysis Group in Cancer (1998)
SWOG 1.05 [0.57, 1.96] 0.93 [0.75, 1.15]
ECOG 1.84 [1.08, 3.14] 0.89 [0.71, 1.12]
NCIC 1.83 [0.65, 5.18] 0.80 [0.59, 1.07]
France 2.39 [1.03, 5.51] 0.86 [0.62, 1.19]
MAOP 4.04 [1.71, 9.54] 0.83 [0.58, 1.20]
Jerusalem 1.40 [0.08, 25.14] 1.29 [0.57, 2.91]

Overall 2.19 [1.84, 2.61] 0.90 [0.84, 0.96]

†Observed odds ratios for response for experimental FU versus 5FU bolus,
with 95% confidence intervals based on theMantel–Haenszel test (except for
the odds ratio forMar del Plata, which usedGart’s (1966) logit estimate with
0.5 correction for zero cells) and hazard ratios for experimental FU versus
5FU bolus estimated by using a proportional hazard model, with 95% confi-
dence intervals based onWald’s test. The overall odds ratio was estimated by
using a trial-adjusted Mantel–Haenszel estimator. The overall hazard ratio
was estimated by using a trial-stratified proportional hazard model.

SD and PD respectively. The binary indicator for treatment (Z) is set to 0 for FU bolus and to
1 for experimental FU.

3.2. Analysis of four-category tumour response
The bivariate model (7) was defined by using the Plackett copula. For survival, proportional
hazards model (6) was used, with Weibull trial-specific base-line hazard functions. Tumour
response was modelled by using a constrained version of proportional odds model (4). More
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specifically, for those trials, for which not all levels of tumour response were observed (see
Table 1), all coefficients ηik were constrained to 0.
Under these assumptions, the likelihood function for the observed data (see equation (15) in

Appendix A) is fully specified. Maximum likelihood parameter estimates can be obtained by
using the Newton–Raphson algorithm. In our example, the algorithm with numerical second-
order derivatives, as implemented in SAS-IML, version 6.12 (and higher versions), in the form
of a standard routine NLPNRR (SAS Institute, 1995), was used.
It should be noted that θ, as defined by equation (14), involves a comparison of survival times

of patients classified according to tumour response. It is well known that such a comparison
is likely to be length biased, because a response to treatment is not observed instantaneously.
As a result, patients who enjoy long survival times are more likely to be responders than non-
responders, and therefore the survival of responders is likely to be biased upwards compared
with that of non-responders. One method of correcting for length bias in such a comparison is
a landmark analysis (Anderson et al., 1983).
In a landmark analysis, only patients who are alive at an arbitrary, prespecified, landmark

time are considered, and their response status is assessed at the landmark time. In this way,
response is no longer time dependent, and no bias affects the comparison of responders and
non-responders. Unfortunately, when the data were originally collected, the time to response
was not reported. Hence, it was not possible to reclassify patients’ responses at the landmark
time. As an approximate solution in this case we excluded patients who died before the landmark
time and assumed that all recorded responses had occurred before the landmark.
Theoretically, we might consider using the (trial-specific) planned time of response analysis

to reclassify patients’ responses at the landmark. Unfortunately, for several trials the original
publication of results did not provide appropriate information about the time. Consequently,
the planned time of response analysis could not be used in the landmark analysis.
By way of a sensitivity analysis, we conducted the analysis based on the bivariate model (3)–

(7) for landmark times ranging from 0 (no correction) to 6 months. Of most interest, however,
is the range between 3 and 6 months. That is because tumour response is usually assessed 3–6
months after the beginning of chemotherapy. In fact, this was the case for most of the trials
analysed, for which information on the response assessment scheme could be obtained from the
original publication of results.
Fig. 2 shows a plot of estimates of θ for different landmark times up to 12 months for the

four-category tumour response. Here, the zero value corresponds to the analysis without any
correction for length bias. As expected, the estimates decrease, approaching a value of 2 around
10–12 months. The dependence of θ on the landmark time clearly illustrates the need for the
correction of the analysis for the length bias. It should be underlined that this need is not due to
the particular choice of the method of analysis, but to the nature of the end points considered.
In fact, a correction for length bias would most probably have to be considered in any analysis
of the validity of tumour response as a surrogate for survival.
Importantly, lower 95% confidence limits for θ at all landmark times in Fig. 2 are greater than

1.7. It might therefore be concluded that length bias, if any, does not induce an association but
rather affects the magnitude of an existing association. Moreover, as already mentioned, the
landmark times between 3 and 6months are of most interest. For these time points, estimates of
θ remain between 3 and 4.6, with lower 95% confidence interval limits above 2.5. They indicate
that the odds for surviving beyond time t for, for example, responders (PR or CR) were at least
2.5 times higher than the odds for non-responders (patients with SD or PD). This suggests that,
even after taking into account possible length bias, there remains a considerable association
between tumour response and survival time at the level of individual.
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Fig. 2. Estimated individual level association parameter θ, with 95% confidence interval limits, by landmark
time

Table 3. Four-category tumour response: individual level asso-
ciation θ and trial level associations R2

trial.α,η/ and R2
trial.α/, for var-

ious landmark times†

Landmark Individual level Trial level associations
(months) association θ

R2trial.α,η/ R2trial.α/

Without adjustment for performance status
0 6.78 [6.01, 7.55] 0.16 [0, 0.42] 0.16 [0, 0.42]
3 4.59 [4.04, 5.15] 0.15 [0, 0.41] 0.15 [0, 0.41]
4 4.07 [3.56, 4.57] 0.10 [0, 0.34] 0.10 [0, 0.34]
5 3.56 [3.10, 4.03] 0.06 [0, 0.28] 0.05 [0, 0.26]
6 3.09 [2.67, 3.51] 0.08 [0, 0.31] 0.06 [0, 0.28]

With adjustment for performance status
0 6.50 [5.75, 7.25] 0.22 [0, 0.49] 0.20 [0, 0.49]
3 4.52 [3.96, 5.07] 0.16 [0, 0.42] 0.16 [0, 0.45]
4 4.00 [3.49, 4.51] 0.11 [0, 0.35] 0.11 [0, 0.39]
5 3.50 [3.04, 3.96] 0.07 [0, 0.29] 0.06 [0, 0.32]
6 3.03 [2.62, 3.45] 0.08 [0, 0.31] 0.06 [0, 0.33]

†95% confidence intervals are given in square brackets.

The upper part of Table 3 (‘without adjustment for performance status’ (PS)) presents esti-
mates of θ,R2trial.α,η/ andR

2
trial.α/ for the analysiswith no adjustment for length bias (landmark 0)

and for landmark times between 3 and 6 months. The estimates of R2trial.α,η/ and R2trial.α/
were obtained by using models (8) and (10) respectively. The 95% confidence intervals for
R2trial.α,η/ and R2trial.α/ were obtained by finding such values of these parameters, for which
the corresponding estimates were equal to the 2.5% and 97.5% quantiles of the cumulative dis-
tribution function of R2 (Fisher, 1928; Algina, 1999). The distribution function was computed
by using the algorithm proposed by Ding (1996).
The estimates of R2trial.α,η/ that are presented in the upper part of Table 3 are only slightly

higher than those ofR2trial.α/. Thus, not much would be gained in the precision of the prediction
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Fig. 3. Estimated trial-specific treatment effects on survival versus treatment effects on four-category tumour
response

if instead of model (10) the more complex model (8) were used to predict the treatment effect
on survival.
Overall, however, the estimates are low and do not exceed 20%. The low association bet-

ween the estimated trial-specific treatment effects for survival and tumour response can be
observed in Fig. 3, which presents the plot of the effects for the analysis using the landmark
time of 3 months. The size of each point is proportional to the number of patients in the corre-
sponding trial. The straight line is the prediction from model (10). The estimated slope of the
regression line is 0.12 (standard error 0.06). (According to the parameterization that is used in
model (3)–(7), βi > 0 and αi > 0 indicate increases in the hazard of death and in the odds of non-
response respectively, for the experimental treatment.) The line passes very close to the origin.
In fact, the estimated intercept is −0:02 (standard error 0.06) and is not significantly different
from 0. This suggests a simple multiplicative association between treatment effects for survival
and tumour response. Daniels and Hughes (1997) considered this as one of the conditions for a
good surrogate. Buyse and Molenberghs (1998) required it for prediction based on the relative
effect estimated from a single trial.
The estimates of R2trial.α,η/ and R

2
trial.α/ from the upper part of Table 3 suggest that a four-

category tumour response is a weak surrogate for survival at the trial level, in that it does not
permit reliable predictions of treatment effects on survival. In contrast, the estimates of θ in-
dicate a strong association between tumour response and survival time for individual patients,
after adjusting for treatment effects.
One might ask whether taking into account information about prognostic factors would

influence the estimates of the trial level R2 that are shown in the upper part of Table 3. The
data collected for the patients included in the four meta-analyses of advanced colorectal cancer
trials contained information about PS at randomization. Overall, 41.3% of patients had PS 0,
43.5% had PS 1 and 13.7% had PS 2 (1.5% had missing information on PS). To investigate
the extent to which taking into account the information about PS would change the estimates
shown in the upper part of Table 3, the two-stage analysis was repeated with PS included as a
continuous covariate in the marginal models (4) and (6). The patients with missing PS status
were excluded from the analysis. The results are shown in the lower part of Table 3. The 95%
confidence intervals for R2trial.α/ were computed in the same way as those in Table 3. It can be
seen that, compared with the upper part of Table 3, the individual level association remains
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Fig. 4. Estimated (��, experimental; , control) and predicted ( , experimental; - - - - - - - , control)
cumulative hazard functions by treatment group

essentially unchanged, whereas trial level estimates of R2 increase only slightly. Altogether, the
results from Table 3 indicate no substantial increase in the individual or trial level association
after adjusting for PS.
It is advisable to conduct model checking. Fig. 4 shows logarithms of Nelson–Aalen (Nel-

son, 1972; Aalen, 1978) estimates of the cumulative hazard for the experimental and control
treatment groups with predictions based on a simple linear regression model. The plots look
reasonably linear, justifying the choice of the Weibull distribution for survival.
Additionally, the assumed bivariate Plackett copula model was fitted using a separate asso-

ciation parameter θ for each trial. The analysis was performed for the landmark time of 3
months. It led to the log-likelihood of−6759:15. The log-likelihod for the model corresponding
to the second row of the upper part of Table 3 was equal to −6781:86. The resulting differ-
ence in deviances is −2× .−22:71/= 45:42 on 26 degrees of freedom. It suggests (p= 0:010)
that there might be somewhat more variability in individual level association between the
trials than allowed in the model that was used to obtain the results that are presented in
Table 3.
A separate issue is the verification of the assumed form of the copula function. For this, some

method allowing for a comparison of the goodness of fit of models based on different copula
functions, including the Plackett copula, would be needed.At present, however, no suchmethod
is known.

3.3. Analysis of binary tumour response
In clinical practice, tumour response is very often used as a binary variable, with patients with
CR or PR considered responders and patients with SD or PD considered non-responders. It
is therefore of interest to investigate the validity of binary tumour response as a surrogate for
survival. The methodology developed can be applied in this case as well. Table 4 presents the
corresponding estimates of θ and R2trial.α/ by landmark time for the analysis without and with
the adjustment for PS. The 95% confidence intervals for R2trial.α/ were computed in the same
way as those in Table 3. Note that, for a binary response, proportional odds models (3)–(5)
are equivalent to a logistic regression model. In the computations, model (4) was used. In one
of the smallest trials, ‘Mar del Plata’ (see Table 1), no tumour responses in the control arm



Validation of Surrogate End Points 117

Table 4. Binary tumour response: individual level association θ and
trial level associations R2

trial.α,η/ and R2
trial.α/, for various landmark times†

Landmark Individual level Trial level associations
(months) association θ

R2trial.α,η/ R2trial.α/

Without adjustment for performance status
0 4.91 [4.16, 5.67] 0.46 [0.12, 0.69] 0.44 [0.13, 0.69]
3 3.62 [3.07, 4.17] 0.47 [0.13, 0.70] 0.44 [0.13, 0.69]
4 3.29 [2.78, 3.80] 0.41 [0.08, 0.65] 0.37 [0.08, 0.64]
5 3.01 [2.54, 3.48] 0.36 [0.04, 0.61] 0.32 [0.05, 0.60]
6 2.71 [2.28, 3.14] 0.31 [0.02, 0.58] 0.29 [0.03, 0.57]

With adjustment for performance status
0 4.78 [4.04, 5.53] 0.47 [0.13, 0.70] 0.46 [0.15, 0.71]
3 3.57 [3.02, 4.13] 0.49 [0.15, 0.71] 0.46 [0.15, 0.71]
4 3.25 [2.74, 3.76] 0.44 [0.10, 0.67] 0.41 [0.11, 0.67]
5 2.97 [2.50, 3.45] 0.39 [0.06, 0.64] 0.35 [0.07, 0.63]
6 2.68 [2.25, 3.12] 0.35 [0.04, 0.61] 0.32 [0.05, 0.60]

†95% confidence intervals are given in square brackets.

were observed at all. This precluded the estimation of the trial-specific treatment effect on the
surrogate. Therefore, this trial has been removed from the analysis that is presented in Table 4.
The influence of the exclusion on the results of the analysis will be discussed later.
The estimates of R2trial.α,η/ and R

2
trial.α/ that are presented in Table 4 do not exceed 50%, irre-

spectively of the landmark time and the adjustment for the information about PS. They suggest
that not more than 50% of the variability in treatment effect on survival could be explained
through a treatment effect on the binary tumour response. Consequently, though somewhat
better than the four-category response, the binary tumour response would be a poor surrogate
for survival at the trial level, in that it would not permit reliable predictions of treatment effects
on survival.
The weak association between the estimated trial-specific treatment effects for survival and

binary tumour response can be observed in Fig. 5, which presents the plot of the effects for the
analysis with the landmark time set to 3 months and without adjustment for PS. The estimated
intercept and slope of the straight line, containing the predictions from model (10), are respec-
tively 0.10 (standard error 0.06) and 0.22 (standard error 0.05). It follows that, similar to the
case of the four-category response, a simple multiplicative association between treatment effects
for survival and binary tumour response can be inferred.
The estimates of θ that are presented in Table 4 indicate a considerable association between

binary tumour response and survival time for individual patients, after adjusting for treatment
effects.
We used a simple method to provide evidence that the assumed parametric form, applied

within the bivariate Plackett copula model, was appropriate. For this, we first fitted a model
separately for each treatment arm in each trial, adjusting for length bias by using a landmark
time of 3 months. Each model used four parameters—one for association (θ), one for the inter-
cept in the marginal logistic regression for tumour response and two for the Weibull model for
survival. This led to a log-likelihood of −4973:0. The log-likelihod for the model correspond-
ing to the second row in the upper part of Table 4 was equal to −5019:0. Consequently, the
difference in deviances was −2× .−46:0/= 92:0 on 208− 131= 77 degrees of freedom and
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Fig. 5. Estimated trial-specific treatment effects on survival versus treatment effects on binary tumour
response

it was not significant (p = 0:117). The use of the reduced model (assuming a common copula
parameter for all trials) to obtain the results presented in Table 4 thus seemed justified.
It is worth noting here that the results of theMar del Plata trial, which was excluded from the

analysis, indicated a large effect of the experimental treatment on the surrogate with virtually
no effect on the true end point. Fig. 5 allows us to infer that adding a point corresponding to
the raw treatment estimates for the excluded trial (based on the odds ratio and hazard ratio
from Table 1) might decrease, rather than increase, the value of R2trial.α/ presented in the first
row of Table 4. The bias resulting from the exclusion of the data for theMar del Plata trial from
the analysis, if any, is thus most probably positive. Consequently, the weak association that is
observed at the trial level for the binary response model might be in fact overestimated.
To include theMar del Plata trial in the analysis of binary tumour response, wemight consider

using the EM algorithm (Dempster et al., 1977) or multiple imputation (Schafer, 1997). Adapt-
ing thesemethods to themodels that are considered in this paper is not straightforward, though.
As an alternative, we have considered including the data for the Mar del Plata trial in the anal-
ysis (unadjusted for length bias and PS), with an assumed fixed value of the treatment effect on
tumour response. The following values of the effect, in terms of the logarithm of the odds ratio
of response in favour of the ‘experimental’ treatment, were considered: −6,−3,−1, 0, 1, 3, 6.
(Note that the value of 3 is close to the logarithm (2.75) of the crude estimate of the odds ratio
(15.68) that is presented inTable 1 for theMar del Plata trial.) As a result, the following estimates
of R2trial.α/ were obtained: 0.28, 0.38, 0.44, 0.45, 0.44, 0.36 and 0.20 respectively. The differences
observed between the coefficients of determination were entirely due to the changes in treatment
estimates for the Mar del Plata trial: the estimates for the remaining trials did not essentially
change. These results indicate that the exclusion of the trial from the analysis that is presented in
Table 4 leads to an overestimation of the trial levelR2, as conjectured in the previous paragraph.

4. Discussion of case-study

The increase in the strength of the trial level association for binary tumour response might raise
a question whether using a different dichotomization of the response categories might yield an
even bigger increase. To verify this possibility, we performed two additional analyses (without
adjusting for length bias or PS). In the first analysis, the tumour response was defined as CR,



Validation of Surrogate End Points 119

Table 5. Tumour response, under various definitions: individual level
association θ and trial level associations R2

trial.α/†

Response θ R2trial.α/

Four category 6.78 [6.01, 7.55] 0.16 [0.00, 0.42]

Binary
CR versus PR + SD + PD 7.59 [4.71, 10.48] 0.08 [0.00, 0.51]
CR + PR versus SD + PD 4.91 [4.16, 5.67] 0.44 [0.13, 0.69]
CR + PR + SD versus PD 8.32 [7.17, 9.47] 0.04 [0.00, 0.28]

†95% confidence intervals are given in square brackets.

with PR, SD or PD regarded a failure (CR versus PR+ SD+ PD; it should be noted that, owing
to a small number of CRs, the analysis was based on 12 trials only). In the second analysis, the
response was defined as CR, PR or SD, with PD treated as a failure (CR+ PR+ SD versus PD).
Table 5 presents the results of the analyses, along with the corresponding result from Table 4
for the conventional dichotomization (CR or PR versus SD or PD). It can be seen that the
estimates of R2trial.α/ for the two alternative dichotomizations are much lower than the estimate
that is obtained for the conventional binary tumour response.
Table 5 includes also the corresponding result from Table 3 for the four-category response.

The strength of the trial level association for the conventionally defined binary tumour response
(CR + PR versus SD + PD) is remarkably higher than the strength for the other two binary
responses or for the four-category response. This is an interesting observation from a practical
(clinical) point of view. It is not straightforward to explain this difference. A possible reason
might be that, for example, the categorizations other than CR + PR versus SD + PD are clini-
cally more difficult to establish and lead to more complicated, than proportional odds, models.
(This might also be why for the four-category response some inadequacies of the constant asso-
ciation model were observed, whereas for the conventional binary response the model seemed
satisfactory.) This is a topic for more detailed future research.
All of the aformentioned analyses might be subject to bias from another source, though.

The results that are presented in Tables 3 and 4 were calculated under the assumption that
the true trial-specific treatment effects αi and βi were equal to their estimates, α̂i and β̂i say,
obtained from the first-stage copula model (7). Thus, the estimation error that is present in the
estimates was ignored. However, it is known that ignoring the measurement error may lead to
bias (Fuller, 1987; Carroll et al., 1995). To address this issue, Burzykowski et al. (2001), using the
developments of van Houwelingen et al. (2002), proposed a method of estimation of R2trial.α,η/
and R2trial.α/ that takes the estimation error α̂i and β̂i into account. However, the method is
numerically involved and its convergence is not guaranteed. Non-convergence can happen, e.g.
when there is a substantial estimation error in α̂i and β̂i (Tibaldi et al., 2003). Unfortunately, in
none of the cases considered in Tables 3 and 4 could we obtain adjusted estimates of R2trial.α, η/
or R2trial.α/. In all cases, the algorithm converged to the boundary of the parameter space. This
is probably because several of the trials included in the analysis had small sizes (see Table 1) and,
consequently, the estimation error for their trial-specific treatment effects was quite large.
It is worth noting here that the meta-analytic approach to the validation of surrogate end

points, as any meta-analysis, simply uses the data from previously organized clinical trials. We
might expect that the trials will be powered for the true end point. Of course, the resulting
sample sizes—and the treatment estimation errors—will vary, reflecting different assumptions
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made at the trials’ design stage. Our case-study illustrates this point very well. However, it is
difficult to quantify in general the extent of the sample size variability that will still allow for the
adjustment of the estimation of trial level R2 for the error in the estimates of treatment effects.
More investigation into this issue is needed.
In this analysis, meta-analytic data were used to investigate the validity of tumour response

as a surrogate for survival. As is often the case with real life data, we were faced with several
practical complications, like zero frequencies in contingency tables or incomplete information
(e.g. about the time of tumour response assessment). The effect of these problems on the final
conclusions was assessed by means of a sensitivity analysis. In particular, owing to the nature
of the end points considered (tumour response and survival), an adjustment of the analysis for
length bias had to be considered. For this, we used a form of a landmark analysis. We found
that the strength of the individual level and trial level association depended on the landmark
time; irrespectively of the landmark time, however, the individual level association remained
substantial, whereas the trial level association was low. It is worth stressing that the dependence
should not be seen as a problem with the method of the analysis, but as a feature related to the
question asked (about the association between tumour response and survival).
Using the meta-analytic approach we found that tumour response is a poor surrogate for a

prediction of the treatment effect at the trial level, even though the response is highly prognostic
of survival, after adjusting for treatment, at the individual level. These results suggest that using
tumour response as a surrogate for survival in trials investigating the effect of treatment involving
5FU or FUDR in advanced colorectal cancer may lead to invalid results. This conclusion casts
a doubt, at least for the type of treatments that are considered for advanced colorectal cancer,
on the Food and Drug Administration’s guidelines for accelerated approval of investigational
cancer treatments, mentioned in Section 1. Further research is required, however, before a more
decisive statement can be reached. We believe that our results can contribute to the process of
arriving at the conclusion.

5. Concluding remarks

In this paper, we have studied the validity of tumour response as a surrogate for survival in trials
investigating the effect of treatment involving 5FU or FUDR in advanced colorectal cancer. We
suggest that the prediction of the treatment effect at the trial level, and the assessment of the
quality of such predictions, is central to the problem of surrogate marker validation; in fact,
some approaches are based exclusively on trial level information (Daniels andHughes, 1997). A
similar postulate was considered by, for example, Fleming and DeMets (1996). Recently, Begg
and Leung (2000) formulated two principles for guiding the choice of a surrogate end point.
Their principle 2 requires that the results that are obtained in a trial using a surrogate should
be ‘concordant’ with the results that are obtained by using the true end point. Begg and Leung
(2000) did not point to any particular measure for assessing the ‘concordance’; in an illustrative
example, they considered the probability that treatment effects on surrogate and true end points
have the same sign. It is worth noting that, from the point of view of the approach that is used in
this paper, a requirement concerning the desired level of the probability of concordance might
be translated into a requirement regarding the value of the trial level coefficient of determination
R2 derived under model (10), for instance. Hence, the concept of validating a surrogate based
on the assessment of the precision of the prediction of a treatment effect on the true end point
at the trial level can be linked to Begg and Leung’s (2000) proposal.
From a methodological point of view, this paper proposes a novel concept of using copula

models to model mixed bivariate categorical or binary and survival data jointly. It is motivated
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by the results that were developed by Molenberghs et al. (2001) in the context of mixed dis-
crete and continuous data. One of the models that they considered is equivalent to using the
Plackett copula to construct the joint distribution for the continuous outcome and for a latent
continuous variable underlying the (observed) discrete outcome. However, Molenberghs et al.
(2001) did not formulate their results in terms of copula models. The explicit use of copulas,
as proposed in this paper, substantially broadens the range of possible models that can be for-
mulated. For instance, it is possible to choose various association structures through the choice
of various forms of copula functions. Moreover, the chosen copula can be combined with var-
ious models for the marginal distributions for the categorical or binary and survival variables,
including the proportional hazards and proportional odds models that are considered in this
paper.
Themethod of validating surrogate end points, described in this paper, extendsmeta-analytic

ideas proposed by Buyse et al. (2000a) to the case of an ordinal categorical surrogate end point
and a failure time true end point. It offers considerable flexibility. In the analysis of the advanced
colorectal cancer trials the Plackett copula was used. This choice was motivated by the natural
interpretation of the association parameter θ for this copula. Generally, other copulas can be
considered (Oakes, 1989; Shih and Louis, 1995; Nelsen, 1999). In principle, the choice might
be guided by the adequacy of fit of the bivariate model (7), using a particular copula that fits
the data at hand best. For this, an adaptation of the method of checking the goodness of fit of
Archimedean copulas to bivariate survival data, proposed recently by Wang and Wells (2000),
might be developed. This is an important topic for future research.
It is also worth noting that, although in the application that was considered in this paper the

true end point was assumed to have a Weibull distribution, it is possible to use other distribu-
tional assumptions, or even to use a semiparametric approach with unspecified base-line hazard
functions (Shih and Louis, 1995), while maintaining the copula value.
In our evaluation, a subjective assessment was required about what values ofR2 or θ are suffi-

ciently ‘high’ for the candidate surrogate to be deemed acceptable. On purely theoretical grounds
it is difficult to propose a threshold. Any other choice is necessarily subjective. Preferably, it
should be guided by practical experience in using the definition of validity of a surrogate that
was proposed by Buyse et al. (2000a). For obvious reasons such an experience is thus far very
limited. Taking the above into account, observed values of R2trial below 0.5 have been judged
‘not close to 1’. Such subjectivity will be less of an issue if several end points are evaluated
simultaneously as candidate surrogates for the same true end point. However, the possibility of
an assessment of strength of evidence for validity of a surrogate can be seen as an advantage of
the method proposed by Buyse et al. (2000a), especially when compared, for example, with the
rigid ‘yes’ or ‘no’ decision rule that is implied by the Prentice’s (1989) definition.
At first sight, it is striking to see that the individual level and trial level surrogacies can be

dramatically different. Two comments are appropriate. First, it is easily seen from the normal
outcomes hierarchical model (Section 2.1 and Buyse et al. (2000a)) that these surrogacies are
based on different components of variability. The individual level surrogacy indicates how a
subject’s two measurements covary, whereas the trial level surrogacy is directed towards the
joint behaviour of the subjects within a trial, based on their treatment allocation. For example,
if one group of treatment arm subjects responds on the surrogate, whereas another does so on
the true end point, and such behaviour is seen across trials, then we might have a substantial
trial level surrogacy but a small individual level surrogacy. The clinical trialist will primarily
be interested in the trial level surrogacy. When we are interested, for example, in predicting the
behaviour of a given patient (e.g. for prophylactic reasons), then the individual level surrogacy
will be the more relevant quantity.
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From the point of view of assessing trial level validity, especially when the reducedmodel (10)
is used at the second stage, the meta-analytic approach, as described in this paper, can be seen
as corresponding to the model that was proposed by Daniels and Hughes (1997). An important
difference is that our approach permits a simultaneous study of the quality of the surrogate
at the trial level and at the individual level. The latter aspect of surrogacy was not considered
by Daniels and Hughes (1997) at all. If we are less interested in the individual level surrogacy,
however, our approach can be simplified, e.g. by using only marginal models for S and T at the
first stage (Tibaldi et al., 2003), which would amount to following the proposal of Daniels and
Hughes (1997).
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Appendix A: The construction of the likelihood function

Assume that the joint cumulative distribution of Tij and S̃ij , given Zij = z, can be described by the copula
model (7), with the marginal cumulative distribution functions given by marginal proportional hazard
model (6) and proportional odds model (3). The bivariate density gij.t, k; z/ for Tij and Sij , given Zij = z,
can then be specified by taking

gij.t, k; z/ =
@FTij , S̃ij.t, γik; z/

@t
−

@FTij , S̃ij.t, γi.k−1/; z/

@t
:

Consequently, we can define

Gij.t, k; z/ ≡ P.Tij � t, Sij = k|Zij = z/

= FS̃ij
.γik; z/− FS̃ij

.γi.k−1/; z/− {FTij ,S̃ij.t, γik; z/− FTij ,S̃ij.t, γi.k−1/; z/}:
As a result, for the observed data (Xij = xij ,∆ij = δij , Sij = sij ,Zij = zij), the log-likelihood can be
expressed as ∑

i,j
[δij log{gij.xij , sij ; zij/} + .1− δij/ log{Gij.xij , sij ; zij/}]: .15/

Appendix B: The bivariate Plackett copula

Let Y = .Y1,Y2/ be a bivariate random variable with joint distribution function F.y1, y2/ and marginal
distributions Fj.yj/.j = 1, 2/. The global cross-ratio function θ.y1, y2/ is defined by

θ.y1, y2/ = p11p22

p12p21
= F.1− F1 − F2 + F/

.F1 − F/.F2 − F/
.16/

with Fj ≡Fj.yj/ .j= 1, 2/ and F ≡F.y1, y2/. The cross-ratio satisfies 0� θ.y1, y2/� ∞ when F.y1, y2/ sat-
isifes the Fréchet (1951) bounds. The components pij in equation (16) are the quadrant probabilities inR2

with vertex at .y1, y2/. The Plackett distribution is obtained for constant cross-ratio θ.y1, y2/ ≡ θ (Plackett,
1965; Mardia, 1970). Equation (16) is the defining equation for F , given that F1, F2 and θ are known.
Given the marginal distribution function F1 and F2 and the cross-ratio θ the values of the Plackett

distribution functions are found as one of the two solutions of the second-degree polynomial equation

θ.F − a1/.F − a2/− .F − b1/.F − b2/ = 0,
where a1 = F1, a2 = F2, b1 = 0 and b2 = F1 +F2 − 1. Its solution is given explicitely by for example Dale
(1986) and Mardia (1970):
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F.y1, y2/ = Cθ{F1.y1/,F2.y2/, θ},
where

Cθ.u, v, θ/ =
{
1+ .u+ v/.θ − 1/− Sθ.u, v/

2.θ − 1/ if θ �= 1,
uv otherwise

.17/

and

Sθ.u, v/ = √
[{1+ .θ − 1/.u+ v/}2 + 4θ.1− θ/uv]: .18/

It immediately follows fromMardia (1970), chapter 8, that Cθ.u, v/ always is a 2-copula, with θ in [0,∞].
A detailed discussion of the bivariate Plackett distribution can be found in Mardia (1970), where it is

called a ‘contingency-type distribution’. A thorough discussion of copulas is presented in Nelsen (1999).
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