Made available by Hasselt University Library in https://documentserver.uhasselt.be

Integrating UIML, task, dialogs with layout patterns for multi-device user
interface design

Peer-reviewed author version
LUYTEN, Kris; CONINX, Karin & Abrams, Marc (2005) Integrating UIML, task,
dialogs with layout patterns for multi-device user interface design. In: Proceedings of

HCI International 2005..

Handle: http://hdl.handle.net/1942/6678



Integrating UIML, Task and Dialogswith Layout Patternsfor
Multi-Device User Interface Design

Kris Luyteri, Karin Coninx and Marc Abramis

"Expertise Center for Digital Media *Harmonia, Inc.
Limburgs Universitair Centrum Virginia Tech CorpteaResearch Center
Wetenschapspark 2, Diepenbeek, 1715 Pratt Drivie 2820 - PO Box 11282
Belgium Blacksburg VA, 24062, USA
{kris.luyten,karin.coninx}@Iuc.ac.be mabrams@harmocom
Abstract

HCI Patterns represent design knowledge that cardggplied in different situations where the sagpe tof tasks
has to be represented. This can be done easiig idi¢vices that support these tasks do not differgut and output
capabilities. A pattern described with the tragitibAlexandrian notation does not contain suffici@formation “as
is” to be flexible enough to support multi-deviceeu interface design and automatically adapt acegrth the

context of use. On the other hand, a degree ofiglgsfor a pattern can be defined that determities varying

contexts where the pattern can be applied. We diowa certain type of interaction patterlagjout patternscan

be combined with a model-based interface developmetess to support multi-device user interfacggie The
suitability of a certain layout pattern can be auatically determined by combining information cantl in the

various models and the description of the pattern.

1 Introduction

XML-based User Interface Description Languages ({Dhave become very popular since a few years now,
mainly driven by the emerging requirement of sugipgrmulti-device user interface (Ul) design andelepment.
Most solutions that can be found try to supporttivdévice Ul design by introducing a high level XMiompliant
language to describe the Ul in terms of Abstrat¢erbrction Objects (AlOs) (Vanderdonckt and Bodag93).
While there are many advantages to this approaate tare two major drawbacks. The first drawbadkédack of
expressivenessf most UIDLs to make use of different modalitiestake full advantage of a target widget set. A
modality refers to the type of communication chdnreed to communicate with the user and is refteatethe
presentation of the user interface: speech andhgralpare two familiar modalities. Most UIDLs deéi a set of
abstractions that can be used to describe the Hi; limits the expressivity of the language to thirticular
predefined set. The second drawback iscthraplexityof the process that transforms the abstract Udrge#on into

a concrete working Ul for a particular platform. tBgroblems can be tackled by using a task-centdesign
approach combined with a powerful UIDL. Task-ceetedesign is an approach that supports a clearaaben of
the interactive system without omitting the sigrafit details that matter in Ul design. In our apgto the
ConcurTaskTrees (CTT) notation is used; a graphiogtion for task specification that supports conent tasks
introduced by Fabio Paterno (Paternd, 2000). Fig(ae shows task specification specified with tier@otation.



Enter Name

Sel. Male
Sel. Female

Submit

(a) ConcurTaskTrees diagre (b) State Transition Netwo

/ﬁl%m\ ) /%\
N . R -

Enter Name SelectMale SelectFemale Choose CurrentJob Select Unemployed Submit

Figure 1: A task (1(a)) and a dialog (1(b)) spesifion.

The interactive tasks in a task specification canrélated with user interface building blocks: ehls Ul
descriptions that specify the interface for a patér task in an abstract way. We use the Userfate Markup
Language (UIML) (Abrams et al., 1999; Abrams andnite 2004) to describe the Ul because UIML is notted
to any modality or widget set in any way and offessthe desired level of abstraction. UIML offaraay to define
custom abstractions by means of user-defined véaaes. A mechanism is provided in this languagege AlOs
to describe the interface and define a set of nmgspi{vocabularies) to convert the AlOs into a Cetetnteraction
Objects (CIO). The same interface structure carebsed with different presentation styles and nraggiwhich is
essential for multi-device Ul development.

The remainder of this paper is structured as fdtosection 2 gives an overview of the related wdt&xt, in
section 3 we show how layout patterns and a moasdd interface development process can be comifheetion
4 provides more insight in layout patterns and rtipeoperties. Finally, section 5 concludes the papi¢h the
contributions presented here.

2 Rdated Work

Building multi-device user interfaces can be coestd one of the main purposes of UIML and has lbeeered in
various publications. For example, the solutiont tisapresented in (Ali et al., 2004) is based omemeric
vocabulary a set of predefined abstractions that can be asexs different GUI toolkits and devices. Thiguiees
an extra processing stage where the interface eapdcialized for each device. This can happeereittanually or
using templates that are related to particular iffasnof) devices. The approach here differs witspect to the
generic vocabulary by promoting integrating betwisesk, context-of-use and presentation.

The most common approach to support multi-deviar irgerface development is a model-based interfasign
(MBID) approach where the task model often is thestrprominent model. The Teresa environment (Mbalg
2003) is an example of a tool that supports thisr@gch where task, presentation and context arebiceth to
generate multi-device user interfaces. Teresasedan an XML-based UIDL to describe AlOs; thisgaage is
limited to a predefined set of abstractions (Bertal., 2004). The process presented here has siomiarities with
the process that is used in Teresa to generateransrface for multiple devices.

The third and last approach that is valuable fig Work is pattern-driven interface design. Althbugere is no
agreement on the definition of an HCI pattern,téren is commonly considered as an artifact thaturep reusable
design knowledge suitable for a particular contebaise. We consider interaction patterns as deftnewelie and
Treetteberg (Welie and Traetteberg, 2000) to be gnoapate representation of what a HCI pattern ttegitures
design knowledge exactly should represent. In tlefinition interaction patterns are task-relatedtegorized
according to the usage problem they address andatbazed by the following elements: problem diggiom,
usability principles, context of use, solutionjoatle and examples. Javahery et al. have showp#tierns can be
used for multi-device user interface development #rat the same patterns can be reused or trarsfloatross
several devices (Javahery et al., 2004).

3 Task-Driven Presentation Selection
This section shows how UIML can be used gsesentation specificatioim the Dygimes framework and run-time

environment (Coninx et al., 2003). Dygimes is a pldzhsed environment that has been developed ftii-davice
Ul creation. With the approach presented here, nogige UIML with a dialog and task model withoutastging or



extending the UIML language itself. While some othpproaches try to integrate this kind of modelthie UIML
specification itself, this approach does not regjeixtending UIML itself and will constrain UIML tihe description
of single dialogs.

3.1 Integration with the task specification

The starting point in this approach is the creatiba task specification with the CTT notation (digure 1(a)). A
leaf task from a hierarchical task descriptionigualized by aiser interface building blockyhich is a presentation
expressed in UIML. This user interface buildingddaontains an abstract description of a part efutber interface
that can be considered as a “unit”: it would notnbeaningful to subdivide this user interface umy éurther in
subparts. Notice the granularity of a building g directly related to the way the interface dasr thinks about
the tasks the interface should support. In reaityinterface designer often prefers to designnéerface for each
device to obtain the most “pleasing” results: thektbased approach can support this and still apimeusability.
First, tasks can be constrained to a certain famitif devices (e.g. PDA and desktop, but not dediRg): when
generating the interface for a particular targeficethe tasks that do not apply can be filtered(dws omitting the
related building blocks). Second, a task specificatan contain decision nodes (Clerckx et al.,42208 decision
node is just another type of node besides theiegi€ITT node types that provides a selection mdshamside the
task specification. Decision nodes allow selectamgappropriate sub-tree in the task specificafmna given
context-of-use.

Let us reconsider the simple task specificatiofigare 1(a). A user interface building block forchdeaf task that
should be visualized is created to obtain a coraplser interface for the task specification. Tligeg us the set of
task-related user interface building blocks as showtable 1. For each task there is a buildingbl@presented by
a UIML document that visualizes the task. For ¢jaronly the structure fragment of the various dimig§ blocks is
shown in table 1.

3.2 Generation of the dialog model

The set of dialogs necessary to have a full coeerfgthe user interface, for all possible taske, generated
automatically from the task specification. Fulhldig coverage indicates that every task from a saskification is
reachable by interacting with a sequence of dialdpss is accomplished by the algorithm introdugedLuyten et
al., 2003). Since a dialog is actually a mappirmgrfra set of leaf tasks onto a presentation uretpthilding blocks
attached to these tasks exactly make up the peggentinit.

Next, using the terminology of (Paterno, 2000) fiitowing enabled task sets (ETS) for the task sjation in
figure 1(a) can be identifiedETS = {Enter Name} ETS = {Select Male, Select Femal|&gTS = {Choose Current
Job, Select UnemployedhdETS: = {Submit}. An enabled task sets specifies which tasks wilabtive during the
same period of time; exactly these tasks shoulgresented to the user all at once. We have to geofaur
different dialogs to obtain complete dialog coverdgr this task specification (one for each ETS)KEETS for
example: it has two tasks, which should be visedlim the same period of time. Merging the usarfate building
blocks for these tasks is a matter of selecting@propriate layout pattern that serves as a cartafrdding the two
building blocks in this container makes up a newlUldocument that can be rendered as the finalfaater Table 2
shows two very simple layout patterns for illustatpurposes: the left container just uses a hotadayout and
the container on the right uses tabbed pages.elrtample the UIML building block of the task “CleoCurrent
Job” is inserted first, and the task “Select Uneayipt” is inserted second in the container. The Uiddbperties are
not shown in the example because merging them eatraightforward: the list of properties of thelthng blocks
can be concatenated as can the behavior rules. r& suphisticated merge could be provided by makisg of
certain elements provided by UIML like the “sourcatribute or “restructure” tag. Containers are @enlayout
patterns that could be pre-generated for the designd customized afterward. In this example we et
completion of the enabled task &% explicit in the container by adding a part “confirthat maps to a button to
indicate the information for this dialog is comglet

This approach can be extended for context-sensitsar interfaces: e.g. the task specification e tinto
account the different constraints that occur whéreminteraction devices are used to complete ds&(s). In
(Clerckx et al., 2004) we showed a simple but ¢iffecrealization of the integration of context infeation in the
task specification. Context is represented by datisodes in the task specification: a decisionenisdust another
type of node besides the existing CTT node typatptovides a selection mechanism inside the tpskification.
This can easily be extended to select a layouepattmongst the available patterns according t@omgext-of-use
the task(s) will be executed. This results in a wagpecify which layout pattern is more suitabsieai particular
context by the designer. Figure 2 shows an exaofgls solution.



Task UIML structure Ul building block

<part class="VBox">
<part class="HBox">
<part class="Label" id="Isurname"/>

<part class="Entry" id="surname"/> "008 Uil container 668
Enter </part> Surname
Name <part class="HBox"> Namel

<part class="Label" id="Iname"/>

OK
<part class="Entry" id="name"/>
</part>
<part class="Button" id="ok"/>
</part>
Select <part class="HBox"> "008 Uiml contai 008 |
Male <part class="CheckButton" id="male"/> Niaie
dpart> ] = ,
Select <part class="HBox"> "DO0HimEcai 000
Female <part class="CheckButton" id="female"/> I Female
</part>
"D00UImEcor 000
Choose current Job
<part id="Top" class="Frame"> - Bl
<part class="VBox"> Job Types
Choose _n " I
Current <part class="CheckButton Manager

5o o=Teurent ETI—

<part id="currentjob" class="List"/>

| Salesman
</part> .
</part> President
Pilot
Nurse
Select <part class="HBox"> OOC Uimlcontain OO0
Unemployed <part class="CheckButton" id="unemployed"/> I Unemployed
</part>
Submit <part id:"stop" class="Frame"> ‘006 uml container OG?‘
<part id="submit" class="Button"/> I8 Hig Insaimeton conrecth
</part> e D

Table 1: User Interface building blocks for eadhf ask from figure 1(a)

4 Layout Patterns: A GUI Floor Plan

A layout pattern is probably one of the simplestqras: it can be compared to a floor plan of dding. Such a
floor plan describes where the different typesaafims are located in the building, often spread seseral floors.
The same concepts can be found in a layout patteenrepresentations of different tasks are alemtab the
different available spaces in the pattern. The ndéfierence is the plasticity of a layout patterithwrespect to a
floor plan: a layout pattern is reusable for aaeartanges of surface areas. Figure 2 shows alvispieesentation of



a layout pattern as a simple building plan. Notiegre are two “floors”, e.g. the two floors canrbapped on tabs in
the final interface, like shown in column 2 of tld. Layout patterns are proven solutions thatteaapplied easily
for an application. In contrast with (Javaherylet2004) where XUL templates are proposed to esthe layout
of a GUI, spatial constraints can offer more plastisince the layout will be suitable as long las tonstraints are
satisfied. Spatial constraints are a simple yetatiffe way for describing the layout of an intefdoy specifying the
spatial relations (left-of, right-of, above, undeext-level, previous-level) between different ram the pattern.
Furthermore the minimal and maximal width and heigdn be specified for each room, which gives usean to
calculate whether the chosen pattern is “plastatigh” for a given screen space.

Once a pattern is chosen, we need to know whicbitifoin the pattern should be used for each tasks Tan be
specified by the designer in the dialog model botaanual approach can not cover all possibilitiégsc&we started
from the CTT notation, several concepts that aeelils Teresa’s abstract user interface languagei @&eal., 2004)
can be reused here. E.g. a place for a buildingdilothe layout pattern can be reserved accordirige interaction
or output type of the task that is related with thélding block. The possible interaction and otitpwpes are
selection, control, editing, text, feedback... Fig@reshows a visual representation of a layout patiecluding
indications of which type of building block belongtere.

Finally, there is an opportunity to integrate thproach with pattern repositories such as MOU@kf(ar et al.,
2003) given the repository has some predefinedrsahtbat can be queried in a structured and welhddfway.
According to the context-of-use (in our case defily the tasks that need to be presented togethbrthe
interaction device that is used) an appropriateepatan be chosen to visualize a set of tasks.

Grounc-Level Level 1

Figure 2: Visual Representation of a Layout Pattern

5 Conclusions

We presented a way to integrate layout patternh teisk modeling to obtain multi-device user inteefa This
integration takes into account the different typgepatterns that occur in the design of a userfate: task patterns,
layout patterns, interaction patterns... The requiitegibility to support multi-device user interfaakesign and
development can not be obtained from layout padtéself, because they are directly related toestspace usage,
but can be obtained by combining layout patterrth Wie other design artifacts that are suitablenfotti-device
user interface design. This paper defines a sirppbdeess to support task-based design of an inbteeasystem
while using the full power of the XML-based Ul deaption language UIML. A common problem arising kvihe
(semi-)automatic generation of Ul dialogs, namdhe tinability to influence the organization of thadl
presentation, is tackled by container templatesréqaresent the layout patterns. Most importaritiis process can
be used with different XML-based Ul description daages depending on the expressiveness that igeédo
target a particular widget set.



Vertical Container

<part class="VBox">
<part class="HBox">

Tabbed Container

<part class="VBox">
<part id="tabs" class="Tabs">
<part id="Tabl" class="TabPage">

<!-- insert UIML structure
first task here -->
<!-- insert UIML structure </part>
second task here --> <part id="Tab2" class="TabPage">

<l-- insert UIML structure
first task here -->

</part> <!-- insert UIML structure
<part class="Button" id="confirm"/> second task here -->
</part> </part>
<part class="Button" id="confirm"/>
</part>

0006 Uiml con 008’

‘006 Uiml container 068] Page 1 Page 2

Choose current Job

-Choose current Job
v| Employed =
Job Types =

Job Types
Heneger lMana;Zr
Salesman M
President Salesman
Pilot President
Nurse Pilot
Confirm Nurse
Confirm

Table 2: Two examples of merging UIML building bksdrom an enabled task set with a predefined aoerta

Acknowledgments

The research at the Expertise Center for Digitatlil¢EDM/LUC) is partly funded by the Flemish gowerent and
EFRO (European Fund for Regional Development). Mabcams is supported by Small Business Innovative
Research contract N68335-05-C-0029 from the U.SyNa

References

Abrams, M. and Helms, J. (2004). Retrospective diekcription Languages, Based on 7 years Expegigvith
the User Interface Markup Language (UIML). In (Lemytet al., 2004), pages 1-8.

Abrams, M., Phanouriou, C., Batongbacal, A. L., l\&fihs, S. M., and Shuster, J. E. (1999). UIML: Appliance-
Independent XML User Interface Languag® VW8 / Computer Network31(11-16):1695-1708.

Ali, M. F., P’erez-Quiones, M. A., and Abrams, §2004).Building Multi-Platform User Interfaces with UIML
pages 95-116. In (Seffah and Javahery, 2004).

Berti, S., Correanim, F., Patern’o, F., and Santérq2004). The TERESA XML Language for the Desiion of
Interactive Systems at Multiple Abstraction Levéts(Luyten et al., 2004), pages 103-110.

Clerckx, T., Luyten, K., and Coninx, K. (2004). Geating Context-Sensitive Multiple Device Interfaciom
Design. In Limbourg, Q., Jacob, R., and VanderdgntkeditorsCADUI 2004 volume 4. Kluwer Academic.



Coninx, K., Luyten, K., Vandervelpen, C., Van deargh, J., and Creemers, B. (2003). Dygimes: Dynalfyic
Generating Interfaces for Mobile Computing Devieesl Embedded Systems. In Chittaro, L., edikdopile
HCI, volume 2795 of.ecture Notes in Computer Scienpages 256—-270. Springer.

Gaffar, A., Javahery, H., Sinnig, D., and Seffah, (®003). MOUDIL: A Comprehensive Framework for
Disseminating and Sharing HCI PatternsCld1'03 Workshop on Perspectives on HCI patternsn€pts and
Toolshttp://hci.cs. concordia.cal/mudil/.

Javahery, H., Seffah, A., Engelberg, D., and Sinbig(2004).Migrating User Interfaces Across Platforms Using
HCI Patterns pages 241-259. In (Seffah and Javahery, 2004).

Luyten, K., Abrams, M., Limbourg, Q., and Vanderdky J., editors (2004)Developing User Interfaces with
XML: Advances on User Interface Description Langsa@attelite workshop of Advanced Visual Interfaces
(AVI) 2004, Expertise Centre for Digital Media.

Luyten, K., Clerckx, T., Coninx, K., and Vanderd&hc). (2003). Derivation of a Dialog Model for ask Model
by Activity Chain Extraction. In Jorge, J. A., NmeN. J., and Falcdo e Cunha, J., editBSY-IS volume
2844 ofLecture Notes in Computer Scienpages 203-217. Springer.

Mori, G., Paterno, F., and Santoro, C. (2003). Tagbport for Designing Nomadic Applications.Rnoceedings of
the 2003 international conference on Intelligengnisiterfaces pages 141-148, Miami, Florida, USA.

Paterno, F. (2000Model-Based Design and Evaluation of Interactiveligations Springer.

Seffah, A. and Javahery, H., editors (20(Mlltiple User Interfaces — Cross-platform Applicats and Context-
aware InterfacesWiley.

Vanderdonckt, J. and Bodart, F. (1993). Encapsigaknowledge for Intelligent Automatic Interacti@bjects
Selection. IPACM Conference on Human Aspects in Computing SgdtaerCHI'93 pages 424—-429. Addison
Wesley.

Welie, M. V. and Treetteberg, H. (2000). Interactlatterns in User Interfaces. Rmoceedings of the 7th Pattern
Languages of Programs Conference



