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SUMMARY

In this paper, we propose a multivariate Plackett–Dale model for survival outcomes. A pseudo-likelihood
method for the estimation of the parameters is proposed and these ideas are applied to two case studies.
The modelling approach is similar in spirit but di�erent from Parner’s approach. The �rst study is in
AIDS, where the overall survival time and di�erent opportunistic infections in HIV-infected patients
are studied. The second study is on adoption data where the association of the survival times within
families is modelled, illustrating the use of the proposed methodology for the context of population
genetics. Copyright ? 2004 John Wiley & Sons, Ltd.

1. INTRODUCTION

Survival models have been used intensively during the past two decades, across a number
of application areas. Medical researchers used them extensively, but in many other �elds
where the main interest is in time-to-event, they became an important tool as well [1]. The
e�ect of one or more covariates on the patient’s survival can be modelled via the Cox model
[2], but we should recall that independence of survival times from one observation to the
other is one of the basic assumptions of this model. However, in the last few years there
has been an increasing interest in frameworks where two or more events per patient or per
statistical unit are observed. These statistical units can refer to clusters and hence multivariate
survival models should be used, taking into account within-cluster dependencies. The former
phenomenon is observed in groups of patients that share common characteristics, such as in
family studies where the members share genetic and environmental factors. There are several
issues that one should take into account when extending the Cox model or other univariate
survival model, to the situation where the association needs to be modelled, which is the topic
of the current paper. The key idea is to introduce a model that allows for a full association
structure between the times to event pertaining to a given unit while, due to an appropriate
use of pseudo-likelihood ideas, keeping the computational burden under control.
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The paper is organized as follows. Section 2 motivates the problem through two case
studies. Section 3.1 gives a description of the Plackett–Dale model [3] for survival data in
the bivariate case. Section 3.2 describes an extension of the model to the case of k correlated
survival times and proposes a pseudo-likelihood approach for the estimation of the parameters
of the model. Section 5 contains the analysis of the case studies.

2. MOTIVATING CASES

In this section, we introduce two di�erent studies for which our methodology is of use.
The AIDS case study deals with intrasubject correlation, i.e. multiple events per subjects
are recorded. The adoption study is an example of a study where clustering, within-cluster
dependencies are present.

2.1. The AIDS study

These data arise from a randomized clinical trial. A total of 1530 patients who participated in
two clinical trials sponsored by the AIDS Clinical Trials Group (ACTG): ACTG 116A [4] and
116B=117 [5] were randomized to compare zidovudine (ZDV) and two doses of didanosine
(ddI). Participants either had a diagnosis of AIDS or AIDS-related complex (ARC) and=or had
CD4 counts of 300 or fewer. The primary outcomes of interest for this analysis were survival
and new or recurrent AIDS-de�ning events. Patients were randomly assigned to receive one
of the following three treatments: ddI 750 mg per day, ddI 500 mg per day or ZDV 600 mg
per day. These studies enrolled patients between October 1989 and April 1991; patients were
followed for a median of 65 weeks and a maximum of 132 weeks. For illustration, ZDV
is compared to any dose of DDI; therefore we use a binary indicator variable for treatment
e�ect. Measures of CD4 for individual patients are included in the model. This choice is
supported by the work of Saah et al. [6], who found that CD4 was a laboratory measure in
a Cox proportional hazards model which predicted survival after AIDS. There has been some
debate in the literature as to whether a dichotomization of CD4 can be justi�ed or not. We
will use a continuous version of this variable but any other categorization can be considered
without substantially having to modify the methodology. Molenberghs et al. [7] studied the
joint modelling of survival and CD4 count on these data.

2.2. The adoption study

This study presented in Reference [8] was carried out to analyse the impact of environmental
and genetic factors on the survival of adult adoptees. To this end, dependencies between the
survival time of children and biological parents, and between children and adoptive parents
are the focus of interest. In this study, families with adoptive children, born between 1924 and
1926, were analysed. The basic idea is that association between survival times of biological
parents and children can be assigned to some extent to genetic factors, while associations
between children and adoptive parents can be due only to environmental factors.
These data were studied by Nielsen et al. [9], who proposed a shared gamma frailty model

and by Parner [10], who proposed a composite likelihood method for the estimation of the
frailty parameters and the standard deviations. We propose to use a Plackett–Dale model [11]
for correlated survival time data with Weibull margins, as described in the next section.
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3. MODEL DESCRIPTION

3.1. Bivariate Plackett–Dale model for survival data

In this section, we introduce the Plackett–Dale model for two survival outcomes. Assume that
T1 and T2 are correlated survival times, then the joint survival function of (T1; T2) can be
written as

ST1T2 (t1; t2)=P(T1¿t1; T2¿t2)=C�12{ST1 (t1); ST2 (t2)}; t1; t2¿0 (1)

where ST1 and ST2 denote marginal survival functions and C�12 is a copula. An attractive
feature of model (1) is that the margins do not depend on the choice of the copula function.
In principle, in model (1) any copula function can be used. For simplicity, we consider

primarily one-parameter families; hence the use of a single parameter �12 in (1). Some possible
options are the Clayton, Hougaard and Plackett copulas. Burzykowski et al. [11] studied them
in detail within the framework of surrogate endpoints. For the Clayton and Hougaard copulas,
model (1) reduces to a proportional frailty model [12] with frailties generated, respectively,
by the gamma and the positive stable distributions.
To model the e�ect of speci�c covariates on the marginal distributions of T1 and T2 in (1)

we propose to use the proportional hazard model:

STk (tk)= exp
{
−
∫ tk

0
hTk (x) exp(RTkZk)dx

}
; k=1; 2 (2)

where hT1 and hT2 are marginal baseline hazard functions and RT1 and RT2 are vectors of
unknown regression parameters corresponding to the covariates Z. The hazard functions can
be speci�ed parametrically or can be left unspeci�ed as in the classical model proposed
by Cox [3]. When the hazard functions are speci�ed, maximum likelihood estimates of the
parameters for joint model (1) and (2) can be obtained [13]. Alternatively, the two-stage
parametric procedure proposed by Shih and Louis [14] can be used, in which parameters of
the marginal survival functions ST1 and ST2 are estimated �rst (assuming independence), and
then �12 is estimated conditional on the estimated values of the marginal parameters.
This one-parameter family is closely related to the Plackett family of bivariate distributions

[15]. In this case the dependence can be de�ned using a global cross-ratio at (t1; t2) which,
given the marginal cumulative density functions FT1 and FT2 , is given by

�12(t1; t2)=
F(t1; t2)[1− FT1 (t1)− FT2 (t2) + F(t1; t2)]
[FT1 (t1)− F(t1; t2)][FT2 (t2)− F(t1; t2)]

(3)

Note that ‘global’ refers to the fact that, at every point, the bivariate space is divided into
four quadrants. Then, the probability over each quadrant is calculated and these four quantities
are then used to compute the odds ratio. Here, �12 = �12(t1; t2) satis�es 06�126∞ when
F(t1; t2) satis�es the Fr�echet–Hoe�ding [16] bounds. The components in (3) are the quadrant
probabilities in R2 with vertex at (t1; t2). The Plackett distribution is obtained for constant
cross-ratio �12(t1; t2) ≡ � [15, 17]. The joint distribution FT1T2 is de�ned by means of (3),
when FT1 , FT2 and �12 are known.
The values of the Plackett distributions are found as one of the two solutions of the fol-

lowing second degree polynomial equation if the marginal distribution functions FT1 and FT2 ,
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and the cross-ratio �12 are known:

�12(F − FT1)(F − FT2)− F[F − (FT1 + FT2 − 1)]=0 (4)

Dale [18] and Mardia [17] gave an explicit solution for (4):

FT1 ;T2 (t1; t2)=



1 + (FT2 (t2) + FT1 (t1))(�12 − 1)−H (FT2 (t2); FT1 (t1); �12)

2(�12 − 1) if �12 �= 1

FT2 (t2)FT1 (t1) if �12 = 1

(5)

where

H (FT1 ; FT2 ; �12)=
√
(1 + (�12 − 1)(FT1 (t1) + FT2 (t2)))2 + 4�12(1− �12)FT1 (t1)FT2 (t2) (6)

Note that the other solution to the polynomial can be shown to always lie outside the Fr�echet
bounds. Mardia [17] showed that FT1 ;T2 (t1; t2) is always a bivariate copula, with �12 in [0;+∞].
Although (5) and (6) was obtained based on the de�ning equation for the distribution function
F , it can be shown that exactly the same copula is obtained for the survival function S=1−F .
Based upon this distribution function, we can derive a bivariate Plackett density function

fT1T2 (t1; t2) for two survival times using (5) and (6) by calculating @FT1T2 (t1; t2)=@t1@t2 in an
appropriate way by taking into account censoring.
The parameters of this model and their standard deviations can be estimated by means of

the maximum likelihood method. Appendix A details the expression for the log likelihood
function, together with the derivatives of the distribution function F .

3.2. Multivariate Plackett–Dale model for survival data and pseudo-likelihood estimation

While the model described in Section 3.1 su�ces to analyse bivariate time-to-event outcomes,
an extension is needed for applications with more than two times. To this end, we consider
an experiment involving N subjects or clusters of k time-to-event measurements.
The principal idea can be laid out in three steps. First, we construct a model for these

k times by considering univariate models for every time-to-event separately. It is evident
that covariates can be included in these parametric marginal models. Second, we consider
bivariate models for every possible pair that can be formed from the k times and of which
the univariate marginal models are the ones already considered; in other words, Plackett–Dale
models will be considered for every possible pairs. Third, in order to avoid the full multivariate
speci�cation of the model, while nevertheless properly accounting for the full association
structure, pseudo-likelihood ideas are used (similar to but di�erent from the principles behind
generalized estimating equations) to obtain valid point estimates as well as valid precision
estimates.
This approach is similar in spirit to the one proposed by Parner [10] in the sense that both

are marginal models for multivariate survival data and both use pseudo-likelihood-related
ideas. However, the actual copulas chosen are di�erent, enabling a comparison of the results
from both, for example. Since there is no unambiguous choice as to what the best model
would be for multivariate survival data, a more ample choice of models is desirable and can
lead up to a sensitivity analysis.
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Suppose that we also observe a vector of covariates Z. A Weibull distribution is as-
sumed for each time Tj with �Tj and pTj the scale and shape parameters, respectively.
While we focus on Weibull marginals, di�erent researchers may choose to use di�erent
univariate marginal survival distributions, implying only relatively small adaptations of the
methodology. The information concerning subject i can be expressed in vector format as
(Ti1; : : : ; Tik ;�i1; : : : ;�ik ; zi1; : : : ; zink ), with nk being the number of covariates, so that Wij=(Tij;
�ij ;Zi) are the values for a particular subject i and time point j.
While a full multivariate formulation of the Plackett–Dale model has been carried out in

the context of ordinal data [3, 19], it poses non-trivial computational complexities. Instead,
marginal pseudo-likelihood ideas will be used to keep the amount of computation under
control, while enabling to answer relevant research questions [20–22].
The idea behind our pseudo-likelihood function is based on considering all possible pairs

(Wir ;Wil) of outcomes on an individual, producing fTrTl(Wir ;Wil), rather than the full multi-
variate density, and then taking the product over them. The resulting function will be denoted
by PL and its log by

lnp‘(�)=
N∑
i=1
p‘i (7)

with

p‘i=
∑

(s; t)∈S
lnfTsTt (Wis;Wit ;�)

where S is the set of indices with all possible pairs of outcomes of interest, fTsTt is the value
of the function de�ned in Section 3.1 evaluated in the respective outcomes for subject i and
� is the vector of parameters. Speci�cally �′=(X′; R′T ; [′T ; p′T ), with X being the subvector of
association parameters, RT the subvector of coe�cients corresponding to the covariates z and
[T and pT subvector of parameters from the Weibull distribution.
The pseudo-likelihood estimator �̂ is de�ned as the maximizer of (7). Consistency has

been shown by Arnold and Strauss [23], Le Cessie and Van Houwelingen [20], and Geys,
Molenberghs, and Ryan [22]. Precisely, it converges in probability to �0, the true parameter
value and

√
N (�̂−�0) converges in distribution to

Nq(0; J (�0)−1K(�0)J (�0)−1) (8)

with J (�) de�ned by

Jrl=− ∑
(s; t)∈S

E�

(
@2 lnfTsTt (tis; tit)

@�r@�l

)
(9)

and K(�) by

Krl=− ∑
(s; t)∈S

E�

(
@ lnfTs(tis; tit)

@�r
@ lnfTt (tis; tit)

@�l

)
(10)

Similar in spirit to generalized estimating equations [24], this asymptotic normality result
provides an easy way to estimate consistently the asymptotic covariance matrix. Indeed, the
matrix J is found by evaluating the second derivate of the log p‘ function at the PL estimate.
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The expectation in K can be replaced by the cross-product of the observed scores. We will
refer to J−1 as the model-based variance estimator, which should not be used as such because
it overestimates precision; to K as the empirical correction; and J−1KJ−1 as the empirically
corrected variance estimator.
A further advantage of the PL approach is the close connection of pseudo-likelihood with

likelihood, enabling one to construct pseudo-likelihood ratio and pseudo-score test statistics
that have easy-to-compute expressions and intuitively appealing distributions [25].
As discussed by Arnold and Strauss [23], the Cram�er–Rao inequality implies that J−1KJ−1

is greater than the inverse of I , corresponding to the Fisher information matrix for the maxi-
mum likelihood case, in the sense that J−1KJ−1 − I−1 is positive semide�nite. Therefore, a
PL estimator is always less e�cient than the corresponding ML estimator. Aerts et al. (2002)
show that in many realistic settings e�ciency losses are minor.

4. ASSOCIATION MEASURES

The Plackett–Dale model allows us to estimate and interpret the strength of the association
between a pair of survival times via global cross-ratios (the � parameters in the model).
Therefore, � may be considered a natural candidate for the measure of association. However,
some researchers may feel that it is hard to get a feel for because it ranges throughout the entire
real line. Further, di�erent copulas (like the Clayton and Hougaard copulas) carry di�erent
and less straightforward association parameters. In such a situation it would be easier to work
with a transformation of � that has the interpretational properties of a correlation coe�cient,
such as Kendall’s � or Spearman’s �. These will be discussed in turn.

4.1. Kendall’s �

Kendall’s � can be seen as the di�erence between the probability of concordance and the
probability of discordance of two realizations of (T1; T2). This coe�cient lies in the [−1; 1]
interval and a zero value implies independence between T1 and T2. There exists a relationship
between Kendall’s � and � for any copula C(t1; t2; �) [26]:

�(�)=4
∫ 1

0

∫ 1

0
CT1T2 (t1; t2; �)CT1T2 (dt1; dt2; �)− 1 (11)

The marginal distributions of T1 and T2 do not a�ect (11), and hence it follows that �
only depends on the copula function CT1T2 [27]. Kendall’s � thus measures the association
between both time points after adjustment for the covariates used in the model. Such a
relationship is very simple for the Clayton and Hougaard copulas [11]. Precisely, one obtains
�=(�−1)=(�+1) for Clayton and �=1−� for Hougaard. Estimates and con�dence intervals
(using the delta method) are accordingly easily obtained. There is no closed form for Kendall’s
� in the Plackett–Dale case and an estimate has to be obtained directly from (11). We have
developed a SAS IML 8.02 macro to this e�ect.

4.2. Spearman’s �

Spearman’s � is also based on concordance and discordance, independent of the marginal
distributions, and belongs to the interval [−1; 1]. It can be shown that Spearman’s � equals
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Pearson’s product-moment for grades of a pair of continuous random variables. The relation-
ship between Spearman’s � and the copula function is

�(�)=12
∫ 1

0

∫ 1

0
CT1T2 (t1; t2; �)dt1dt2 − 3 (12)

In contrast to the previous case, there is a closed-form expression in the Plackett–Dale case:

�(�)=
�+ 1
�− 1 − 2� ln �

(�− 1)2 (13)

An estimate follows from �=�(�̂), with delta-method variance

Var(�̂)=

[
−4(�̂− 1) + 2(�̂+ 1) ln �̂

(�̂− 1)3

]2
Var(�̂)

From (13), the following asymptotic properties are derived: �(�)→ 0 when �→ 1, �(�)→ −1
when �→ 0 and �(�)→ 1 when �→∞.

5. CASE STUDIES

We are now in a position to analyse the data from Sections 2.1 and 2.2. Pseudo-likelihood esti-
mates were obtained by using Newton–Raphson with analytical �rst derivatives and numerical
second derivatives, implemented in SAS IML 8.02 and using routine NLPNRR (SAS Institute
Inc. 1999–2001). Standard errors of the parameters were calculated using the inverse of the
observed matrix of second derivatives. Although in these two examples a trivariate model
is considered, the methodology is fully generally applicable to longer sequences of time-to-
event endpoints. Indeed, the structure of the SAS programs allows us to �t any model and
any number of outcomes with only minor changes. Using a �exible design matrix structure,
a large class of model speci�cations is possible.

5.1. Analysis of the adoption study

We �rst consider bivariate analyses, selecting pairs out of the three possible survival times
of interest. The �rst aim is to describe the biological associations between mother, father
and child, and then to study the environmental e�ect, e.g., correlations with the adoptive
parents. In each case, a trivariate analysis is envisaged. We will start with bivariate analyses
and compare these results with those obtained from modelling the trivariate data directly.
We will use the abbreviations BM, BF and ACh for biological mother, biological father in
the biological models, replacing BM with AM and BF with AF in the adoptive models. The
corresponding subscripts are 1, 2 and 3 in each case. All results for the biological families
are presented in Table II, while Table III presents estimates for the adoptive families. The
marginal distributions are all assumed to be Weibull with parameters �j and pj, j=1; 2; 3,
and we consider three di�erent parameters �1, �2, and �3 to adjust for the sex of the child
as it was done by Parner [10]. All association parameters are assumed to be constant.
It is clear from the way in which PL is de�ned that ML estimates are exactly the same when

only two outcomes are considered. Although model-based standard errors and empirically
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Table I. Adoption study: Model for the biological families.

Par. BM–BF BM–ACh BF–ACh BM–BF–ACh

�12 1.076(0.128;0.128) — — 1.076(0.127)
�13 — 1.164(0.193;0.187) — 1.164(0.187)
�23 — — 1.176(0.194;0.202) 1.175(0.201)
�1 −0:085(0:086; 0:077) −0:086(0:086; 0:077) — −0:084(0:069)
�2 −0:009(0:078; 0:072) — −0:010(0:078; 0:072) −0:004(0:036)
�3 — −1:066(0:164; 0:159) −1:060(0:164; 0:159) −1:063(0:137)
p1 0.220(0.017;0.015) 0.219(0.017;0.015) — 0.220(0.013)
p2 0.279(0.011;0.010) — 0.279(0.011;0.010) 0.279(0.006)
p3 — 0.086(0.054;0.063) 0.085(0.054;0.063) 0.086(0.054)
�1 3.818(0.146;0.178) 3.817(0.146;0.179) — 3.818(0.155)
�2 5.568(0.179;0.201) — 5.568(0.179;0.200) 5.568(0.174)
�3 — 2.312(0.175;0.290) 2.313(0.176;0.291) 2.313(0.252)

�12 0.016(0.003,0.029) 0.016(0.003,0.029)
�13 0.034(0.016,0.051) 0.034(0.016,0.051)
�23 0.036(0.018,0.054) 0.036(0.017,0.054)

(Parner) �12 0.035(0.024,0.045)
(Parner) �13 0.050(0.036,0.064)
(Parner) �23 0.037(0.023,0.050)

�12 0:024(−0:053; 0:102) 0:024(−0:053; 0:102)
�13 0:051(−0:054; 0:155) 0:051(−0:054; 0:155)
�23 0:054(−0:054; 0:162) 0:054(−0:058; 0:165)

(Parner) �12 0:052(−0:010; 0:113)
(Parner) �13 0:075(−0:010; 0:165)
(Parner) �23 0:055(−0:027; 0:137)
Note: Maximum likelihood estimates (model-based standard errors; empirically corrected standard errors) of
bivariate survival times and pseudo-likelihood estimates (standard errors) for trivariate model. For Kendall’s
� and Spearman’s �, estimates and 95% con�dence intervals are given.

corrected standard errors i.e., those based on (8) are numerically di�erent, they are of similar
magnitudes and no clear ordering is seen between them. The tables reveal that the model-based
standard errors calculated by means of the information matrix and the empirically corrected
ones di�er only slightly. Common parameters estimated using two di�erent bivariate models
are similar since all models are of a marginal type. By ‘marginal type’, we mean that the
univariate marginal parameters in a bivariate model have exactly the same meaning as their
counterparts in the corresponding univariate model. For example, �̂1 =−0:085 in model BM–
BF as opposed to �̂1 =−0:086 in BM–ACh.
Tables I and II include all three types of association parameters: not only the log odds

ratios � but also Kendall’s � and Spearman’s �, as introduced in Section 4. We observe that
the association is not very strong but nevertheless signi�cantly di�erent from zero in some
cases. The � and � parameters are relatively similar but, in spite of them ranging on the same
scale, they have a di�erent meaning and they are not directly comparable.
Let us now turn attention to the trivariate situation. Let us consider a model with di�erent

association parameters for each pair of outcomes �12, �13 and �23 and with di�erent parameters
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Table II. Adoption study: Model for the biological and adoptive families.

Par. AM–AF AM–ACh AF–ACh AM–AF–ACh

�12 1.265(0.132;0.127) — — 1.265(0.127)
�13 — 0.844(0.138;0.133) — 0.849(0.133)
�23 — — 1.237(0.200;0.198) 1.240(0.197)
�1 −0:015(0:077; 0:072) −0:012(0:077; 0:072) — −0:029(0:064)
�2 0.078(0.075;0.074) — 0.077(0.075;0.074) 0.025(0.034)
�3 — −1:066(0:164; 0:159) −1:064(0:164; 0:158) −1:068(0:137)
p1 0.210(0.009;0.009) 0.210 (0.009;0.009) — 0.211(0.008)
p2 0.235(0.008;0.008) — 0.235(0.008;0.008) 0.241(0.005)
p3 — 0.085(0.054;0.063) 0.085(0.054;0.063) 0.086(0.055)
�1 6.402(0.203;0.218) 6.406(0.203;0.219) — 6.405(0.189)
�2 7.223(0.210;0.220) — 7.228(0.210;0.022) 7.222(0.191)
�3 — 2.312(0.176;0.290) 2.311(0.176;0.291) 2.312(0.252)

�12 0:052(−0:045; 0:150) 0.052(0.041,0.063)
�13 −0:038(−0:184; 0:108) −0:036(−0:060;−0:012)
�23 0.047(0.030,0.065) 0.048(0.030,0.065)

(Parner) �12 0.051(0.040,0.061)
(Parner) �13 −0:069(−0:085;−0:052)
(Parner) �23 0.041(0.027,0.054)

�12 0:078(−0:501; 0:657) 0.078(0.013,0.143)
�13 −0:057(−0:931; 0:818) −0:055(−0:198; 0:089)
�23 0:071(−0:033; 0:175) 0:072(−0:034; 0:177)

(Parner) �12 0.076(0.013,0.140)
(Parner) �13 −0:103(−0:202;−0:004)
(Parner) �23 0:061(−0:021; 0:143)
Note: Maximum likelihood estimates (model-based standard errors; empirically corrected standard errors) of
bivariate survival times and pseudo-likelihood estimates (standard errors) for trivariate model. For Kendall’s
� and Spearman’s �, estimates and 95% con�dence intervals are given.

for the covariates corresponding to each outcome �1, �2 and �3. Speci�c Weibull distributions
with di�erent scale and shape parameters for each outcome were used to model the marginals,
i.e., p1, p2, p3, �1, �2 and �3. E�ectively, this is the trivariate version of the previous bivariate
ones. For the trivariate models, only empirically corrected standard errors are given in Tables
I and II, since the model-based ones ignore the fact that in using all pairs out of three
survival times on a cluster, all outcomes are used twice, leading to an exaggerated precision.
Therefore, model-based standard errors are useless, even if all marginal and association models
are correctly speci�ed. We like to point out this feature since it is di�erent from the GEE
setting. Other than being a disadvantage, it is merely a ‘side e�ect’ of the way marginal
pseudo-likelihood works. Let us add that obtaining convergence was not di�erent and using
di�erent sets of starting values showed stability of the process.
Parameters retain the meaning they had in the bivariate models, with two advantages. First,

using the data in a trivariate model is more e�cient than using them in three separate models.
Second, one avoids the occurrence of double estimates for the marginal parameters (�, �, and
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p parameters), in spite of them being not too di�erent between various bivariate models. The
same model was applied to the biological and adoptive families, enabling to contrast both
sets of dependencies.
Comparisons of our association parameters with the ones given by Parner [10] cannot be

made directly, since they are expressed on di�erent scales. The association in our case is
the global odds ratio, while Parner’s quantity is based on the mean and variance of the
assumed Gamma distribution. Therefore, both sets of association parameters are transformed
to Kendall’s � and Spearman’s �. There is a close agreement between both methods, and both
enable consideration of multivariate models.
According to Parner’s conclusions, the environmental association between the adoptive child

and the mother was signi�cant and negative; the environmental association between the adop-
tive father and the adoptive mother was signi�cant. In our case, we can see from Table
III that the estimated Kendall’s coe�cients are �13 =−0:036 with a 95% con�dence interval
(−0:060;−0:012) and �12 = 0:052 with a 95% con�dence interval (0:041; 0:063), respectively.
These results suggest that the longevity of the mother and the adoptive child were negatively
correlated. Thus, we arrived at the same conclusions. The estimates are similar to the es-
timates obtained using Parner’s model as shown in Table II. We could also test for equal
environmental e�ects and genetic e�ects using a Wald-type test, but this is not the main goal
of this work; details can be found in Reference [10].

5.2. Analysis of the AIDS study

In this section, we analyse the data described in Section 2.1. In the original paper by Finkel-
stein et al. [28] the pattern of the development of opportunistic infections in HIV-infected
patients was evaluated, based on a cohort of 1530 patients. For the sake of illustration, we
will work with a random sample of 1000 patients to reduce the computational burden. In
principle it is not impossible to work with larger samples. The more common AIDS-de�ning
opportunistic infections are Pneumocystis carinii pneumonia (PCP), Mycobacterium avium
complex (MAC), cytomegalovirus (CMV) and systemic mycosis. These authors performed all
the analysis adjusted for CD4 count. Without loss of generality, we perform the analysis for
three time-to-event outcomes: PCP, CMV and the overall survival time of the AIDS patients
(DTH). The main objective is to describe the association between all three outcomes after
adjusting by CD4 count and treatment e�ect.
Parameters are subscripted with 1, 2 and 3 to refer to CMV, DTH and PCP, respectively.

For the sake of illustration, consider �T to be the common treatment e�ect and �1, �2 and �3
the outcome-speci�c parameters associated with the CD4 count. We will assume a Weibull
distribution with parameters p1, p2, p3, �1, �2 and �3. Therefore, the vector of parameters to
be estimated has 13 components:

�=(�12; �13; �23; �T ; �1; �2; �3; p1; p2; p3; �1; �2; �3) (14)

where �12, �13 and �23 are the global cross-ratios. Using straightforward generalized linear
models technology, it is straightforward to construct the overall design matrix X, consisting
of 13 columns (as many as there are parameters), and 3× 7×N rows. The calculation of
the number of rows follows because there are 3 pairs to be formed out of three outcomes,
for each pair (i.e. for each bivariate model), there are 7 “natural” parameters (an association
parameter, and then a �, �, and p parameter for each component of the pair). More details
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Table III. AIDS study: Maximum likelihood estimates (model-based standard errors; empir-
ically corrected standard errors) of bivariate survival times and pseudo-likelihood estimates

(standard errors) for trivariate model.

Par. CMV–DTH CMV–PCP DTH–PCP CMV–DTH–PCP

�12 5.165(2.570;2.401) — — 4.369(1.165)
�13 — 4.434(1.850;2.182) — 4.466(1.446)
�23 — — 3.943(1.023;0.959) 3.691(0.865)
�T −0:054(0:020; 0:020) 0.183(0.032;0.033) −0:014(0:019; 0:019) 0.016(0.111)
�1 1.708(1.816;1.681) 1.504(1.892;1.547) — 1.579(1.095)
�2 2.160(0.706;0.752) — 2.010(0.696;0.703) 2.069(0.732)
�3 — 2.037(1.570;1.845) 2.168(1.487;1.838) 2.109(1.169)
p1 −0:240(0:137; 0:142) −0:657(0:193; 0:184) — −0:451(0:350)
p2 0.341(0.033;0.038) — 0.353(0.032;0.035) 0.338(0.164)
p3 — −1:147(0:257; 0:331) −0:807(0:203; 0:270) −0:958(0:469)
�1 1.606(0.033;0.030) 1.406(0.023;0.022) — 1.487(0.136)
�2 1.941(0.015;0.017) — 1.933(0.015;0.016) 1.940(0.111)
�3 — 1.117(0.012;0.014) 1.215(0.014;0.018) 1.161(0.108)

�12 0.352(0.307,0.397) 0.318(0.292,0.345)
�13 0.321(0.272,0.370) 0.323(0.291,0.355)
�23 0.297(0.273,0.322) 0.284(0.260,0.308)

�12 0.503(0.269,0.736) 0.459(0.318,0.599)
�13 0.462(0.204,0.721) 0.464(0.295,0.634)
�23 0.430(0.298,0.563) 0.412(0.283,0.541)

Note: For Kendall’s � and Spearman’s �, estimates and 95% con�dence intervals are given.

on the design matrix are given in Appendix B. Generalization to more than three outcomes
is straightforward and the SAS macro we developed carries the general situation. Parameter
estimates are summarized in Table III.
Parameters in common between di�erent bivariate models are generally fairly close, with

the exception of �T , which is even changing signs. While not signi�cant, this is a clear
indication that the trivariate model is the more appealing one, in spite of a larger standard
error. Note that for some, but not all, parameters the standard error produced by the trivariate
model is smaller. The log global cross-ratios � are quite large, showing a strong association
between all pairs of outcomes. Also here, Kendall’s � and Spearman’s � are calculated to get
a better grip on the association. Based on the correlation parameters �, a consistent picture
of a correlation around 0.5 emerges.

6. CONCLUDING REMARKS

In this paper, we have extended the Plackett–Dale model for survival data to the multivari-
ate case and we have shown that pseudo-likelihood estimation, in the sense of Arnold and
Strauss [23], is a viable and attractive alternative to maximum likelihood in case of multi-
variate survival data. Maximum likelihood becomes prohibitive for large sequences of times,
due to computational requirements. In contrast, the pseudo-likelihood procedure gives quite
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satisfactory results. In addition, we proposed other association measures and we have shown
the link of Spearman’s � and Kendall’s � to the association parameter of the Plackett–Dale
model �. The method yields consistent and asymptotically normal estimates of the parameters
of interest and the computational complexity is manageable.
The choice of the Plackett–Dale model was motivated by the fact that the association param-

eter � has a natural interpretation for this copula. However, other copulas can be considered
[12, 14, 29, 30]. To this end, checking the goodness of �t of copulas to bivariate survival data
can be carried out by using the method proposed by Wang and Wells [31], and an adaptation
of this method to our framework is a topic for future research. It is also worth noting that,
while in this work we considered Weibull marginal distributions, it is possible to use other
distributional assumptions, or even use a semi-parametric approach with unspecifed baseline
hazard functions [14].
The approach we presented gives a �exible tool for modelling any kind of time-to-event

data accounting for the association between two or more outcomes. To illustrate our �ndings
we have applied the proposed method in two di�erent situations. Also, we have shown how
the standard errors of the parameters need to be corrected in order to account for the lack
of independence introduced by the fact that the information of a single subject is used more
than once.

APPENDIX A

A1. Log likelihood function for the bivariate Plackett–Dale model

Let (T1; T2) denote paired failures times and (S1; S2), (f1; f2) the corresponding marginal
survival and density functions. Then, the joint survival and density functions of (T1; T2) are
given by

S(t1; t2) = FT1T2 (ST1 (t1); ST2 (t2)) (A1)

f(t1; t2) =
@2S(t1; t2)
@t1@t2

fT1 (t1)fT2 (t2) (A2)

with t1, t2¿0.
Let us denote by (C1; C2) the paired censoring times. For i=1; : : : ; n, assume that (Ti1; Ti2)

and (Ci1; Ci2) are independent. For each i we observe Tij= min(Xij; Cij) j=1; 2 then �ij= I
{Xij=Tij}, i.e., indicates whether the lifetime is observed (�ij=1) or not (�ij=0).
We can write now the log likelihood function by combining the following di�erent situations

in one expression as follows:

Case �i1 �i2

I 1 1

II 1 0

III 0 1

IV 0 0
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Therefore,

log ‘=
n∑
i=1
�1i�i2 log(f(ti1; ti2)) +�i1(1−�i2) log

(
−@S(ti1; ti2)

@t1

)

+(1−�i1)�i2 log
(
−@S(ti1; ti2)

@t2

)
+ (1−�i1)(1−�i2) log(S(ti1; ti2)) (A3)

where S(t1; t2) and f(t1; t2) were de�ned in (A1) and (A2), respectively.

A2. Distribution function and its derivatives for � �= 1

F(u; v; �) =
1

2(�− 1) +
u+ v
2

− H (u; v; �)
2(�− 1)

H (u; v; �) =
√
(1 + (�− 1)(u+ v))2 − 4�(�− 1)uv

@H
@u
=

(�− 1)
H (u; v; �)

[(1 + (�− 1)(u+ v))− 2�v]

@H
@v
=

(�− 1)
H (u; v; �)

[(1 + (�− 1)(u+ v))− 2�u]

@H
@�
=
(1 + (�− 1)(u+ v))(u+ v)− 2uv(2�− 1)

H (u; v; �)

@2H
@u2

=
[(�− 1)2 − (@H=@u)2]

H (u; v; �)

@2H
@v2

=
[(�− 1)2 − (@H=@v)2]

H (u; v; �)

@2H
@�2

=
[(u− v)2 − (@H=@�)2]

H (u; v; �)

@2H
@u@�

=
@H
@u

[
1

�− 1 − 1
H (u; v; �)

@H
@�

]
+
(�− 1)(u− v)
H (u; v; �)

@2H
@v@�

=
@H
@v

[
1

�− 1 − 1
H (u; v; �)

@H
@�

]
+
(�− 1)(v− u)
H (u; v; �)

@2H
@u@v

=− 1
H (u; v; �)

[
@H
@u
@H
@v
+ (�− 1)(�+ 1)

]

Copyright ? 2004 John Wiley & Sons, Ltd. Statist. Med. 2004; 23:947–963



960 F. TIBALDI ET AL.

@F
@u
=
1
2

[
1− 1

�− 1
@H
@u

]

@F
@v
=
1
2

[
1− 1

�− 1
@H
@v

]

@F
@�
=−H (u; v; �)

�− 1 +
1

2(�− 1)
[
u+ v− @H

@�

]

@2F
@u2

=− 1
2(�− 1)

(
@H
@u

)2

@2F
@v2

=− 1
2(�− 1)

(
@H
@v

)2

@2F
@�2

=− 1
�− 1

[
2
@F
@�
+
1
2
@2H
@�2

]

@2F
@u@v

=− 1
2(�− 1)

[
@H
@u
@H
@v
+ (�− 1)(�+ 1)

]

@2F
@u@�

=
1

2H (u; v; �)(�− 1)
[
@H
@u
@H
@�

− (�− 1)(u− v)
]

@2F
@v@�

=
1

2H (u; v; �)(�− 1)
[
@H
@v
@H
@�

− (�− 1)(v− u)
]

@3F
@u3

=
1

H (u; v; �)
@H
@u

[
−@

2F
@u2

+
1

�− 1
@2H
@u2

]

@3F
@v3

=
1

H (u; v; �)
@H
@v

[
−@

2F
@v2

+
1

�− 1
@2H
@v2

]

@3F
@u2@v

=
1

H (u; v; �)

[
−@

2F
@u2

@H
@v
+

1
�− 1

@2H
@v@u

@H
@u

]

@3F
@u@v2

=
1

H (u; v; �)

[
@2F
@v2

@H
@u

− 1
�− 1

@2H
@u@v

@H
@v

]

@3F
@u2@�

=
1

�− 1
@2F
@u2

+
1

H (u; v; �)

[
−@

2F
@u2

@H
@�

+
1

�− 1
@H
@u

@2H
@u@�

]

@3F
@u@�2

=− 1
�− 1

@2F
@u@�

− 1
H (u; v; �)

− @2F
@u@�

@H
@�

+
1

2H (u; v; �)(�− 1)
[
@2H
@u@�

@H
@�

+
@H
@u
@2H
@�2

− (u− v)
]
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@3F
@u@v@�

=− 1
�− 1

@2F
@u@v

− 1
H (u; v; �)

− @2F
@u@v

@H
@�

+
1

2H (u; v; �)(�− 1)
[
@2H
@u@�

@H
@v
+
@H
@u

@2H
@v@�

+ 2�
]

APPENDIX B

Let us exemplify the construction of a design matrix for the AIDS case study. The contribution
of a single individual can be seen in our case as the contribution of three pseudo-likelihood
individuals. Thus, X can be written as N blocks,

X=




X1

X2
...

XN




where the block corresponding to subject i is expressed as

Xi=



Xi12

Xi13

Xi23




where

Xi12 =




1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 trti cd4i 0 0 0 0 0 0 0 0
0 0 0 trti 0 cd4i 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0




Xi13 =




0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 trti cd4i 0 0 0 0 0 0 0 0
0 0 0 trti 0 0 cd4i 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1




Copyright ? 2004 John Wiley & Sons, Ltd. Statist. Med. 2004; 23:947–963



962 F. TIBALDI ET AL.

and

Xi23 =




0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 trti 0 cd4i 0 0 0 0 0 0 0

0 0 0 trti 0 0 cd4i 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 1
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