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The last couple of decades have seen a large amount of activity in the area of surrogate marker
and surrogate endpoint validation, both from a clinical and a statistical perspective. Prentice1 made a
pivotal contribution in the context of a single trial. Subsequently, the framework he proposed has been
discussed, criticized, and extended. An important class of extensions considers several rather than a single
trial. Recently, a lot of work has been done in this so-called hierarchical or meta-analytic framework. In
this paper, we review both the single trial and the hierarchical framework. A number of applications,
scattered throughout the literature, are brought together. We outline the statistical issues involved in trying
to validate surrogate endpoints. Clearly statistical evidence should only be seen as a component in a
decision making process that also involves a number of clinical and biological considerations.

1 Introduction

The use of surrogate endpoints in the development of new therapies has always been
very controversial. This may be due to a number of unfortunate historical instances
where treatments showing a highly positive effect on surrogate endpoints were
ultimately shown to be detrimental to the subjects’ clinical outcome; and conversely,
some instances of treatments conferring clinical benefit without measurable impact on
presumed surrogates.2 For example, in cardiovascular disease, the unsettling discovery
that the two major antiarrhythmic drugs encanaide and flecanaide reduced arrhythmia
but cause a more than three-fold increase in overall mortality, stressed the need for
caution in using non-validated surrogate markers in the evaluation of the possible
clinical benefits of new drugs.3 On the other hand, the dramatic surge of the AIDS
epidemic, the impressive therapeutic results obtained early on with zidovudine, and the
pressure for an accelerated evaluation of new therapies, have all led to the use of CD4
blood count and later of viral load as endpoints that replaced time to clinical events and
overall survival,4 in spite of serious concerns about their limitations as surrogate
markers for clinically relevant endpoints.5

Throughout this paper, we use the terms ‘endpoint’ and ‘marker’ interchangeably to
refer simply to some random variable that can be measured over the course of the
disease process. Variables that are measured early in the course of the disease are often
suggested as potential ‘surrogates’ for those that are measured later. The following
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definitions reflect the commonly accepted use of various terms in the biomedical
literature:6

� clinical endpoint: a characteristic or variable that reflects how a patient feels,
functions, or survives;

� biomarker: a characteristic that is objectively measured and evaluated as an
indicator of normal biological processes, pathogenic processes, or pharmacologic
responses to a therapeutic intervention;

� surrogate endpoint: a biomarker that is intended to substitute for a clinical
endpoint. A surrogate endpoint is expected to predict clinical benefit (or harm or
lack of benefit or harm).

In our examples, we also treat situations in which the potential surrogate is not a
biomarker, but an intermediate endpoint that has clinical meaning of its own (e.g.,
progression-free survival as a potential surrogate for survival).

One important reason for the present interest in surrogate endpoints is the advent of
a large number of biomarkers that closely reflect the disease process. An increasing
number of new drugs have a well-defined mechanism of action at the molecular level,
allowing drug developers to measure the effect of these drugs on the relevant
biomarkers.7 There is also increasing public pressure for new, promising drugs to be
approved for marketing as rapidly as possible, and such approval will have to be based
on biomarkers rather than on some long-term clinical endpoint.8 As an illustration of
this trend towards early decision making, recently proposed clinical trial designs use
treatment effects on a surrogate endpoint to screen for treatments that show insufficient
promise to have a sizeable impact on survival.9 Last but not least, if the approval
process is shortened, there will be a corresponding need for earlier detection of safety
signals that could point to toxic problems with new drugs. It is a safe bet, therefore, that
the evaluation of tomorrow’s drugs will be based primarily on biomarkers, rather than
on the longer term, harder clinical endpoints that have dominated the development of
new drugs until now.

Thus, while many would like to avoid surrogate endpoints altogether, there are
situations where surrogates will be the only reasonable alternative, especially when the
true endpoint of interest is rare and=or distant in time. It is then best to use validated
surrogates, but one clearly needs to reflect on the very meaning of validation.10 As in
many clinical decisions, statistical arguments will play a major role, but ought to be
considered in conjunction with clinical and biological evidence. At the same time,
surrogate endpoints can play different roles in different phases of drug development.
While it may be more acceptable to use surrogates in early phases of research, one should
be much more careful using them as substitutes for the true endpoint in pivotal phase III
trials versus replacing the true endpoint by the surrogate altogether in all research past a
certain point in time. For a biomarker (or intermediate endpoint) to be used as a ‘valid’
surrogate for a clinical endpoint, a number of conditions must be fulfilled. The ICH
Guidelines on Statistical Principles for Clinical Trials state that ‘In practice, the strength
of the evidence for surrogacy depends upon (1) the biological plausibility of the
relationship, (2) the demonstration in epidemiological studies of the prognostic value
of the surrogate for the clinical outcome and (3) evidence from clinical trials that
treatment effects on the surrogate correspond to effects on the clinical outcome’.11 In
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this chapter, we discuss statistical methods that are useful to address conditions (1) and
(3) from this list. Much of the work laid out here is still in progress. The statistical
approach proposed has been developed using data from a range of clinically diverse
situations, including age-related macular degeneration,12–14 cardiovascular disease,13

advanced ovarian cancer,14,15 chronic schizophrenia,16,17 advanced prostate cancer18,19

and advanced colorectal cancer.12,15,20,21 It is currently being validated in other situa-
tions, including advanced breast cancer, early colorectal cancer, early breast cancer,
thrombosis and AIDS.

1.1 Types of endpoint
Statistically speaking, the surrogate endpoint and the clinical endpoint are realiza-

tions of random variables. As will be clear from the formalisms developed in Section 3,
interest needs to focus on the joint distribution of these variables. The easiest situation is
where both are Gaussian random variables. This is, however, seldom the case, because
the surrogate endpoint and=or the clinical endpoint are often realizations of non-
Gaussian random variables. For example, one can encounter:

� binary (dichotomous): biomarker value below or above a certain threshold (e.g.,
CD4þ counts over 500=mL) or clinical ‘success’ (e.g., tumor shrinkage);

� categorical (polychotomous): biomarker value falling in successive, ordered classes
(e.g., cholesterol levels <200 mg=dL, 200–299 mg=dL, 300þ mg=dL) or clinical
response (e.g., complete response, partial response, stable disease, progressive
disease);

� continuous (Gaussian): biomarker (e.g., log PSA level) or clinical measurement (e.g.,
diastolic blood pressure);

� censored continuous: time to biomarker below or above a certain threshold (e.g.,
time to undetectable viral load) or time to clinical event (e.g., time to cardiovascular
death);

� longitudinal or repeated measures: biomarker (e.g., CD4þ counts over time) or
clinical outcome (e.g., blood pressure over time);

� multivariate longitudinal: several biomarkers (e.g., CD4þ and viral load over time)
or several clinical measurements (e.g., dimensions of quality of life over time).

The models used to validate a surrogate for a clinical endpoint will depend on the type
of variables observed in the problem at hand. In the present paper, we will illustrate this
through the example of advanced prostate cancer treated with either liarozole or
antiandrogens. We will analyse the same data in three different ways. The clinical
endpoint will be survival in all cases, but the biomarker will consist, respectively, of PSA
response (binary variable), time to PSA progression (censored continuous variable), and
the PSA pattern over time (longitudinal).

Table 1 shows some further examples of potential surrogate endpoints in various
diseases.

1.2 Units of analysis
Prentice,1 seeing the need for a formal statistical framework for the validation of

surrogate endpoints, provided a definition and a set of criteria to be used when data are
available on the effect of some intervention on both a surrogate and a clinical endpoint.
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Prentice’s approach formed the basis for much subsequent work showing that compli-
ance to a strict definition of surrogacy would impose almost impossible requirements on
potential surrogates. Further research showed that while the idea behind Prentice’s
approach is appealing, a drawback (common to all single trial approaches) is that it
rests on strong and unverifiable assumptions. As argued by several authors,14,22,23 a
way out of this problem is the combination of information from several units or trials.
Using hierarchical linear models, Buyse et al.23 defined Q11surrogacy in terms of an
individual level as well as a trial level measure of surrogacy, both of which are of a
coefficient of determination type. Combining ideas from both frame-works, we propose
here a unified approach without obviating the obligation to consider biological and
clinical plausibility of a surrogate.

The single unit framework, developed by Prentice1 and his successors, is reviewed in
Section 2. The meta-analytic framework is discussed in Section 3 in the context of
Gaussian outcomes, and in Section 4 for non-Gaussian outcomes. The use of different
models for different non-Gaussian settings implies a strong need for a unifying set of
validation measures. This topic is taken up in Section 5. The ideas developed in earlier
sections are illustrated, using prostate cancer data, in Section 6. A number of other
examples are reviewed and briefly discussed in Section 7.

2 Data from a single unit

In this section, we will discuss the single-unit setting (e.g., a single trial). The notation
and modeling concepts introduced are useful to present and discuss critically the key
ingredients of the Prentice–Freedman framework. The next section is devoted to the
multitrial setting.

Throughout the paper, we will adopt the following notation: T and S are random
variables that denote the true and surrogate endpoints, respectively, and Z is an
indicator variable for treatment. For ease of exposition, we will assume that S and T

Table 1 Examples of possible surrogate endpoints in various diseases

Disease Surrogate endpoint Type Final endpoint Type

Resectable solid tumor Time to recurrence Censored Survival Censored
Advanced cancer Tumor response Binary Time to progression Censored
Osteoporosis Bone mineral density Longitudinal Fracture Binary
Cardiovascular disease Ejection fraction Continuous Myocardial infarction Binary
Hypertension Blood pressure Longitudinal Coronary heart disease Binary
Arrhythmia Arrhythmic episodes Longitudinal Survival Censored
ARMD 6-month visual acuity Continuous 24-month visual acuity Continuous
Glaucoma Intraoccular pressure Continuous Vision loss Censored
Depression Biomarkers Multivariate Depression scale Continuous
HIV infection CD4 counts þ viral load Multivariate Progression to AIDS Censored

AIDS: acquired immune deficiency syndrome.
ARMD: age-related macular degeneration.
HIV: human immunodeficiency virus.
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are normally distributed. The effect of treatment on S and T can be modeled as
follows:

Sj ¼ mS þ aZj þ eSj (1)

Tj ¼ mT þ bZj þ eTj (2)

where j ¼ 1, . . . , n indicates patients, and the error terms have a joint zero-mean normal
distribution with covariance matrix

S ¼
sSS sST

sTT

� �
(3)

In addition, the relationship between S and T can be described by a regression of the form

Tj ¼ mþ gSj þ ej (4)

We will assume later that the n patients come from N different experimental units, but
for now the simple situation of a single experiment will suffice to explore some
fundamental difficulties with the validation of surrogate endpoints.

2.1 De¢nition and criteria
Prentice proposed to define a surrogate endpoint as ‘a response variable for which a

test of the null hypothesis of no relationship to the treatment groups under comparison
is also a valid test of the corresponding null hypothesis based on the true endpoint’. In
terms of our simple model (1)–(2), the definition states that for S to be a valid surrogate
for T, parameters a and b must simultaneously be equal to, or different from, zero. This
definition is not consistent with the availability of a single experiment only, since it
requires a large number of experiments to be available, each with tests of hypothesis on
both the surrogate and true endpoints. An important drawback is also that evidence
from trials with nonsignificant treatment effects cannot be used, even though such trials
may be consistent with a desirable relationship between both endpoints. Finally, it can
be shown that this definition generally requires the true endpoint T to be completely
determined by knowledge of the surrogate endpoint S. Several authors, including
Prentice, pointed out that this surrogacy requirement was too stringent to be fulfilled
in real situations.1,2

Prentice derived operational criteria that are equivalent to his definition. These
criteria require that

� treatment has a significant impact on the surrogate endpoint (parameter a differs
significantly from zero in Equation (1));

� treatment has a significant impact on the true endpoint (parameter b differs
significantly from zero in Equation (2));

� the surrogate endpoint has a significant impact on the true endpoint (parameter g
differs significantly from zero in Equation (4)); and

� the full effect of treatment upon the true endpoint is captured by the surrogate.
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The last criterion is verified through the conditional distribution of the true endpoint,
given treatment and surrogate endpoint, derived from Equations (1)–(2):

Tj ¼ ~mmT þ bSZj þ gZSj þ ~eeTj (5)

where the treatment effect (corrected for the surrogate S), bS, and the surrogate effect
(corrected for treatment Z), gZ, are

bS ¼ b� sTSs
�1
SS a (6)

gZ ¼ sTSs
�1
SS (7)

and the variance of ~eeTj is given by

sTT � s2
TSs

�1
SS (8)

It is usually claimed that the fourth criterion requires parameter bS to be equal to zero in
Equation (5). Buyse and Molenberghs12 showed that the last two criteria are necessary
and sufficient for binary responses, but not in general. In spite of this drawback,
the spirit of the fourth criterion is very appealing, especially if it can be considered in the
light of an underlying biological mechanism. For example, it is interesting to explore
whether the surrogate is part of the causal chain leading from treatment exposure to the
final endpoint. While this issue is beyond the scope of the current paper, the connection
between statistical validation (with emphasis on association) and biological relevance
(with emphasis on causation) deserves further reflection.

2.2 The proportion explained
Freedman et al.24 argued that the last Prentice criterion raises a conceptual difficulty

since it requires the statistical test for treatment effect on the true endpoint to be
nonsignificant after adjustment for the surrogate. The nonsignificance of this test does
not prove that the effect of treatment upon the true endpoint is fully captured by the
surrogate, and therefore Freedman et al.24 proposed to calculate the proportion of the
treatment effect mediated by the surrogate:

PE ¼
b� bS

b

with bS and b obtained respectively from Equations (5) and (2). In this paradigm, a
valid surrogate would be one for which the PE is equal to one. In practice, a surrogate
would be deemed acceptable if the lower limit of its confidence interval of PE was
sufficiently large.

Some difficulties surrounding the PE have been described in the literature.12,22,25–27

PE will tend to be unstable when b is close to zero, a situation that is likely to occur in
practice. As Freedman et al.24 themselves acknowledged, the confidence limits of PE
will tend to be rather wide (and sometimes even unbounded if Fieller confidence
intervals are used), unless large sample sizes are available or a very strong effect of
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treatment on the true endpoint is observed. Note that large sample sizes are typically
available in epidemiologic studies or in meta-analyses of clinical trials. Another
complication arises when Equation (5) is not the correct conditional model, and an
interaction term between Zi and Si needs to be included. In that case, defining the PE
becomes problematic.

2.3 The relative e¡ect
Buyse and Molenberghs12 suggested to calculate another quantity for the validation

of a surrogate endpoint: the RE, which is the ratio of the effects of treatment upon the
final and the surrogate endpoint. Formally:

RE ¼
b
a

(9)

They also considered the treatment adjusted association between the surrogate and the
true endpoint, rZ:

rZ ¼
sSTffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sSSsTT

p (10)

Now, a simple relationship can be derived between PE, RE, and rZ. Let us define
l2

¼ sTTs
�1
SS . It follows that lrZ ¼ sSTs

�1
SS and, from Equation (6), bS ¼ b� rZla. As a

result, we obtain

PE ¼ lrZ
a
b
¼ lrZ

1

RE
(11)

A similar relationship was derived by Buyse and Molenberghs12 and by Begg and
Leung28 for standardized surrogate and true endpoints. Molenberghs et al.29 provided
a detailed study of the disadvantages of the single unit framework, and measures such
as PE and RE. We will therefore introduce a multiunit framework, opening up new
opportunities, whilst maintaining the spirit of Prentice’s definition and fourth criterion.

3 Data from several units

Using ideas from Buyse et al.,14 we now extend the setting and notation by supposing
we have data from i ¼ 1, . . . , N units (e.g., centers, investigators, trials), in the ith of
which j ¼ 1, . . . , ni subjects are enrolled. We now denote the true and surrogate
endpoints by Tij and Sij, respectively, and by Zij the indicator variable for treatment.

The linear models (1) and (2) can be rewritten as:

Sij ¼ mSi þ aiZij þ eSij (12)

Tij ¼ mTi þ biZij þ eTij (13)
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where mSi and mTi are trial specific intercepts, ai and bi are trial specific effects of
treatment Zij on the endpoints in trial i, and eSi and eTi are correlated error terms,
assumed to be of zero mean and normally distributed with covariance matrix (3),
as before. Due to the replication at the trial level, we can impose a distribution on the
trial specific parameters:

mSi
mTi
ai
bi

0
BB@

1
CCA ¼

mS
mT
a
b

0
BB@

1
CCAþ

mSi

mTi

ai
bi

0
BB@

1
CCA (14)

where the second term on the right hand side of (14) is assumed to follow a zero-mean
normal distribution with covariance matrix

D ¼

dSS dST dSa dSb
dTT dTa dTb

daa dab
dbb

0
BB@

1
CCA (15)

This setting lends itself naturally to introducing the concept of surrogacy at both the
trial level as well as the individual level. We discuss them in turn.

3.1 Trial-level surrogacy
As indicated previously, the key motivation for validating a surrogate endpoint is to

be able to predict the effect of treatment on the true endpoint based on the observed
effect of treatment on the surrogate endpoint at the trial level. It is essential, therefore,
to explore the quality of the prediction of the treatment effect on the true endpoint in
trial i by (1) information obtained in the validation process based on trials i ¼ 1, . . . , N
and (2) the estimate of the effect of Z on S in a new trial i ¼ 0. Fitting models (12)–(13)
to data from a meta-analysis provides estimates for the parameters and the variance
components. Suppose then the new trial i ¼ 0 is considered for which data are available
on the surrogate endpoint but not on the true endpoint. We then fit the following linear
model to the surrogate outcomes S0j:

S0j ¼ mS0 þ a0Z0j þ eS0j (16)

Estimates for mS0 and a0 are

m̂mS0 ¼ m̂mS0 � m̂mS (17)

âa0 ¼ âa0 � âa (18)

Note that such an approach is closely related to leave-one-out regression
diagnostics.30,31
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We are interested in the estimated effect of Z on T, given the effect of Z on S. To this
end, observe that (bþ b0jmS0, a0) follows a normal distribution with mean and
variance:

E(bþ b0jmS0, a0) ¼ bþ
dSb

dab

� �T
dSS dSa

dSa daa

� ��1 mS0 � mS
a0 � a

� �
(19)

Var(bþ b0jmS0, a0) ¼ dbb �
dSb

dab

� �T
dSS dSa

dSa daa

� ��1
dSb

dab

� �
(20)

In practice, these equations can be used as follows. Using Equations (17) and (18),
a prediction can be made using Equation (19), with prediction variance
Equation (20). Of course, one has to properly acknowledge the uncertainty resulting
from the fact that the parameters in Equations (17)–(18) are not known but
merely estimated. This follows from a straightforward application of the iterated
expectation law.

A surrogate could thus be called perfect at the trial level if the conditional variance
Equation (20) were equal to zero. A measure to assess the quality of the surrogate at the
trial level is the coefficient of determination

R2
trial ¼ R2

bijmSi,ai
¼

dSb
dab

� �T
dSS dSa
dSa daa

� ��1
dSb
dab

� �
dbb

(21)

Similar to the logic in Equations (19) and (20), the conditional model for bi given mSi
and ai can be written:

bi ¼ y0 þ yaai þ ymmSi þ ei (22)

where expressions for the coefficient (y0, ya, ym) follow from Equations (14) and (15).
In case the surrogate is perfect at the trial level (R2

trial ¼ 1), the error term in Equation
(22) vanishes and the linear relationship becomes deterministic, implying that bi
equals the systematic component of Equation (22).

This approach avoids problems surrounding the RE, since the relationship between bi
and ai is studied across a family of units, rather than in a single unit. Even if the posited
linear relationships do not hold, it is possible to consider alternative regression
functions, although one has to be aware of a potentially low power to discriminate
between candidate regression functions. By virtue of replication, it is possible to check
the stated relationships for the treatment effects. Moreover, the use of a measure of
association to assess surrogacy is more in line with the adjusted association suggested in
the single trial case.

A key issue when using the proposed meta-analytic framework, and in particular its
prediction facility Equation (19), is the coding of the treatment indicators Zij. While
the framework is invariant to coding reversal of all treatment indicators at the
same time, more caution is needed when the coding of a single trial is considered,
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such as in Equation (16). In such a case, invariance is obtained only when the fixed
effects in Equations (12) and (13) are equal to zero. This issue is intimately linked to
the question as to how broad the class of units to be included in a validation study
can be. Clearly, the issue disappears when the same or similar treatments are
considered across units (e.g., in multicenter or multi-investigator studies, or when
data are used from a family of related study such as in a single drug development
line). In a more loosely connected, meta-analytic setting it is important to ensure that
treatment assignments are logically consistent. This is possible, for example, when the
same standard treatment is compared to members of a class of experimental therapies.

Next, we will show that the adjusted association carries over naturally to the
multiunit setting as well.

3.2 Individual level surrogacy
We now return to the association between the surrogate and the final endpoints after

adjustment for treatment. As described earlier, we need to construct the conditional
distribution of T, given S and Z. From Equations (12)–(13) we derive

Q2TijjZij, Sij � N mTi � sTSs
�1
SS mSi þ (bi � sTSs

�1
SS ai)Zij þ sTSs

�1
SS Sij; sTT � s2

TSs
�1
SS

n o
(23)

which is an extension of Equation (5). Note that

bSi ¼ bi � sTSs
�1
SS ai (24)

The association between both endpoints after adjustment for the treatment effect is
captured by

R2
indiv ¼ R2

eTijeSi ¼
s2
ST

sSSsTT

the squared correlation between S and T after adjustment for both the trial effects
and the treatment effect. R2

indiv generalizes r2
Z as described earlier by adjusting the

association both for treatment and for trial. We call a surrogate perfect at the individual
level if R2

indiv ¼ r2
Z ¼ 1.

Taken together, the R2 measures allow one to quantify the properties of a candidate
surrogate endpoint. In addition, by using a hierarchical model such as Equations (12)–
(15), measurement error in the surrogate is automatically taken into account. When a
two stage approximation is used (i.e., fitting a separate model to each unit in the first
stage and fitting a regression on the resulting treatment effect parameters in the second
stage), this is no longer true. Burzykowski et al.15 illustrate how measurement error can
be incorporated in such a context.
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4 Non-Gaussian endpoints

In this section, we will briefly discuss the settings of binary endpoints, failure time
endpoints, the combination of an ordinal and a survival endpoint, and longitudinal
endpoints.

4.1 Binary endpoints
Renard et al.16 have shown that extension to this situation is easily done using a

latent variable formulation. That is, we posit the existence of a pair of continuously
distributed latent variable responses (~SSij,

~TTij) that produce the actual values of (Sij, Tij).
These unobserved variables are assumed to have a joint normal distribution and the
realized values follow by double dichotomization. On the latent variable scale, we
obtain a model similar to Equations (12)–(13) and in the matrix (3) the variances are set
equal to unity in order to ensure identifiability. This leads to the following model:

F�1(P[Sij ¼ 1jZij, mSi
, ai, mTi

, bi]) ¼ mS þmSi
þ (aþ ai)Zij

F�1(P[Tij ¼ 1jZij, mSi
, ai, mTi

, bi]) ¼ mT þmTi
þ (bþ bi)Zij

(

where F denotes the standard normal cumulative distribution function. Renard et al.16

used pseudo-likelihood methods to estimate the model parameters.

4.2 Two failure time endpoints
Assume now that Sij and Tij are failure time endpoints. Model (12)–(13) is replaced

by a model for two correlated failure time random variables. Burzykowski15 used
copulas to this end.32,33 Precisely, one assumes the joint survivor function of (Sij, Tij) is
written as:

F(s, t) ¼ P(Sij� s, Tij� t) ¼ Cd{FSij(s), FTij(t)}, s, t� 0 (25)

where (FSij, FTij) denote marginal survivor functions and Cd is a distribution function on
[0, 1]2 with d 2 R1. Cd is called a copula function.34

When the hazard functions are specified, estimates of the parameters for the joint
model can be obtained using maximum likelihood. Shih and Q11Louis35 discuss alternative
estimation methods. The association parameter is hard to interpret. However, it can be
shown34 there is a link with Kendall’s t:

t ¼ 4

ð1

0

ð1

0

Cd(u, v)Cd(du, dv) � 1

providing an easy measure of surrogacy at the individual level. At the second stage R2
trial

can be computed based on the pairs of treatment effects estimated at the first stage.
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4.3 An ordinal surrogate and a survival endpoint
We will now assume that T is a failure time random variable and S is a categorical

variable with K ordered categories.
To propose validation measures, similar to those introduced in the previous section,

Burzykowski et al.21 also used bivariate copulas, thereby combining ideas of Geys36

and Burzykowski et al.15 One marginal distribution is a proportional odds logistic
regression, while the other is a proportional hazards model. The Plackett copula37

was chosen to capture the association between both endpoints. The advantage of this
choice is that the association is expressed as a global odds ratio, which is relatively
easy to interpret.

4.4 Longitudinal endpoints
Repeated measurements are often encountered on either or both endpoints. However

it is clear that methods taking into account the longitudinal structure of the data will
yield much more complex statistical modelling strategies and will require further
extensions in the surrogate marker evaluation methodology. In analogy to the cross-
sectional setting considered by Buyse et al.,14 we will base the calculation of surrogacy
measures on a two stage approach rather than a full random effects approach, to reduce
numerical complexity.

In their work Alonso et al.17 assume that information from i ¼ 1, . . . , N trials is
available, in the ith of which, j ¼ 1, . . . , ni subjects are enrolled and they denoted the
time at which subject j in trial i is measured as tij. If Tijt and Sijt denote the associated
true and surrogate endpoints, respectively, and Zij is a binary indicator variable
for treatment then along the ideas of Galecki,38 they propose the following joint
model, at the first stage, for both responses

Tijt ¼ mTi
þ biZij þ gTi

(tij) þ eTijt

Sijt ¼ mSi þ aiZij þ gSi(tij) þ eSijt

�
(26)

where mSi and mTi
are trial specific intercepts, ai, bi are trial specific effects of treatment

Zij on the two endpoints and gTi
and gSi are trial specific time functions. Note that, even

though in practice Tij and Sij are frequently measured at the same time points, model
(26) would let us approach situations in which this condition does not hold. The vectors
~eeTij

and ~eeSij are correlated error terms, assumed to be jointly mean-zero multivariate

normally distributed with covariance matrix

Si ¼
STTi STSi

S0
TSi SSSi

� �
¼

sTTi sTSi
sTSi sSSi

� �
� Ri (27)

In the aforementioned formulation, Ri reflects a general correlation matrix for the
repeated measurements of the responses. A frequent choice in practice would be the first
order autoregressive structure (in case measures are equally spaced, otherwise a spatial
type structure is better).

Even though Buyse et al.14 assumed, in the special case of a single measurement
per response, that the error covariance structure was constant over all trials, this
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assumption is no longer tenable for most longitudinal settings. Measures could be taken
at different time points within different trials, the number of measurements could be
different in each trial, etc. Therefore, the covariance structure should be allowed to vary
over trials. If treatment effect can be assumed constant over time then the R2

trial
measured proposed by Buyse et al.14 can still be useful to evaluate surrogacy at
the trial level. However at the individual level the situation is totally different, there
the R2

ind is no longer applicable and new concepts are needed.
Using multivariate ideas, Alonso et al.17 proposed the variance reduction factor

(VRF). Essentially, they summarized the variability of the repeated measurements on
the true endpoint within trial by the trace of its variance covariance matrix and sum this
over all trials. In a similar way they summarized the conditional variability of the true
endpoint measurements, given the surrogate by the trace of the conditional variance
covariance matrix, summed over trials and they quantified the relative reduction in
the true endpoint variance after adjustment by the surrogate as

VRFind ¼

P
i {tr(STTi) � tr(S(TjS)i)}P

i tr(STTi)
(28)

where S(TjS)i
denotes the conditional variance of ~eeTij

given ~eeSij : S(TjS)i ¼ STTi �

STSiS
�1
SSiS

0
TSi, here STTi and SSSi are the variance covariance matrices associated with

the true and surrogate endpoint respectively and STSi contains the covariances between
the surrogate and the true endpoint. An advantage of the proposed expression is that
data from trials with unequal length vectors of repeated measures can easily be handled.
Intuitively, Equation (28) tries to quantify how much of the total variability around the
repeated measurements on the true endpoint is explained by adjusting for the treatment
effects Zij and the repeated measurements on the surrogate endpoint.

Further, they proved that the VRFind ranges between zero and one, that it equals zero
if and only if the error terms of the true and surrogate endpoints are independent within
each trial, that the VRFind equals one if and only if there exists a deterministic
relationship between the error terms of the true and surrogate endpoints within each
trial and finally they proved that the VRFind reduces to the R2

ind when the endpoints are
measured only once.

In addition, they showed that the VRF can be incorporated into a much more general
framework that allows interpretation in terms of the canonical correlations of the error
vectors. Indeed, if at trial i we have pi time points then we will also have t ¼ 1, . . . , pi
canonical correlations r2

it Q3for (~eeTij
, ~eeSij) such that r2

i1 � r2
i2 � . . . � r2

ipi
and r2

it are the

eigenvalues of S�1=2
TTi STSiS

�1
SSiS

T
TSiS

�1=2
TTi . Based on these canonical correlations they

defined a family of parameters to study surrogacy at the individual level. The family
was conceived in such a way that the properties, based on which R2

ind was considered a
useful measure of surrogacy by Buyse et al.,14 are preserved:

O ¼ y: y ¼
X
i

X
k

aikr
2
ki, where: aik > 0 8(i, k),

X
i

X
k

aik ¼ 1

( )
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Here, i ¼ 1, . . . , N denotes the trial and k ¼ 1, . . . , pi denotes the designed time points.
They also proved that previous definitions like the VRF or the R2 measurements are
special members of O.

Given that O can be seen as a family of measures to study individual level surrogacy,
they evaluated the operational characteristics of some of its members, including the
VRF, that one might want to consider in practice using extensive simulations. Based on
the results of the simulations as well as on interpretational and mathematical arguments
they suggested that a very plausible choice in several practical situations could be yp
defined as

yp ¼
X
i

1

Npi
tr{(ST Ti � S(TjS)i)S

�1
T Ti} (29)

It is important to notice that structurally, both VRF and yp are similar, the difference
being the reversal of summing the trace and calculating the ratio. Moreover, yp has the
appealing property of coinciding with Pillai’s trace statistic, well-known from classical
multivariate analysis. In spite of this strong structural similarity, these parameters have
fundamental differences. First, the VRF is not symmetric in S and T. Second, it is only
invariant with respect to linear orthogonal transformations. In contrast, yp is both
symmetric and invariant with respect to the broader class of linear Q4bijective transforma-
tions. Finally and based on all these considerations these authors suggested that yp
seems to be a more preferable choice in the analysis of real problems.

One serious drawback of the previous approach is that it is strongly based on the
normality assumption and an extension to nonnormal settings seems to be difficult. In
the present work we consider an alternative methodology that offers some practical and
conceptual advantages with respect to the previous one and it also allows a straight-
forward extension to nonnormal settings.

We propose a new parameter, called R2
L, to evaluate surrogacy at the individual level

when both responses are measured over time or in general when multivariate or
repeated measures are available

R2
L ¼

1

N

X
i

(1 � Li) (30)

where Li ¼ jSij=jSTTijjSSSij.
First one should notice that R2

L is defined based on the Wilks’ Lambda statistic used
in multivariate analysis and it involves the determinants of the variance covariance
matrices. Therefore all the elements of the covariance structure are used when
calculating Equation (30). On the other hand Equations (28) and (29) only use the
information in the diagonal of the matrices that defined association between both
endpoints what can make them less informative.

It is possible to prove that R2
L is symmetric and invariant with respect to linear

bijective transformations, R2
L ranges between zero and one, R2

L ¼ 0 if and Q5only if, for all
i, (~eeTi

, ~eeSi) are independent, R2
L ¼ 1 if and only if, for all i, there exist vectors ai and bi

such that a0i~eeTi
¼ b0i~eeSi with probability one and finally in the cross-sectional case

R2
L ¼ R2

ind.
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Essentially, these are the same properties satisfied by the VRF, yp and all the members
of the O family. However the fourth property makes an important difference between
the new proposal and the previous ones. Whereas the elements of O take the value 1
only when there is a deterministic relationship between both endpoints, R2

L is 1
whenever there is a deterministic relationship between two linear combinations of
both endpoints letting us detect strong associations in cases in which the VRF or yp
would fail to do so.

Here again, using canonical correlation ideas, it is possible to define a whole family of
parameters to study surrogacy at the individual level so that R2

L is just a special member
of that family

OL ¼ yL: yL ¼ 1 �
XN
i¼1

ai
Ypi
k¼1

(1 � r2
ik), where: ai > 0 8i,

X
i

ai ¼ 1

( )

Its use towards unification of the various proposals that have been made for the various
settings, will be discussed in the next section.

5 A uni¢ed theory

While the meta-analytic framework clearly has advantages, there are some downsides
as well. First, the modelling exercise increases in complication, since the need arises for
a joint, hierarchical model for the surrogate and true endpoints. In addition, a different
model is needed depending on the type of outcome. As a consequence, while the trial
level surrogacy is typically expressed by means of a R2 measure, the individual level
surrogacy is expressed by a model specific quantity. This calls for further unification.

5.1 Relationship between R2
K and hP

In Section 4.4 two ‘parallel’ approaches have been described to evaluate surrogacy at
the individual level in a repeated measurement framework. Even though each definition
for one of these proposals seems to be translatable into a similar definition for the other
one, no clear connection between these two approaches has been made.

Let us first consider the special case defined by Galecki’s model. Under this model the
variance covariance matrix of the error vectors is ‘decomposed’ in two basic compo-
nents describing the association between sequences respectively and the association
within sequences and these two components are pulled together using the Kronecker
product. It is easy to show that under this assumption of separability for the covariance
structure

yP ¼
1

N

X
i

r2
TSi and R2

L ¼ 1 �
1

N

X
i

(1 � r2
TSi)

pi

where r2
TSi ¼ sTS=sTTsSS. Taking into account that

(1 � r2
TSi)

pi ¼ (1 � r2
TSi) þ (1 � r2

TSi) (1 � r2
TSi)

pi�1
� 1

n o
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we finally obtain

R2
L ¼ yP þ

1

N

X
i

(1 � r2
TSi) 1 � (1 � r2

TSi)
pi�1

n o
(31)

Formula (31) clearly shows that yP can be seen as an approximation for R2
L when the

second part of the sum is negligible.
If we also take into account that

1

N

X
i

(1 � r2
TSi) 1 � (1 � r2

TSi)
pi�1

n o
�0

then we have that

yP �R2
L (32)

The equality is obtained for some special interesting cases:

� pi ¼ 1, for all i, univariate setting and both proposals reduce to the R2
ind;

� r2
TSi ¼ 0, for all i if and only if (~eeTi

, ~eeSi) are independent and R2
L ¼ yp ¼ 0;

� r2
TSi ¼ 1 for all i if and only if there is a deterministic relationship between ~eeTi

and
~eeSi ; in this case R2

L ¼ yp ¼ 1.

If we now switch to a totally general framework where the separability assumption
does not necessarily hold, then it is easy to see that, for all yL 2 OL we have

yL ¼
XN
i¼1

Xpi
h¼1

ai
pi
r2
ih þ

XN
i¼1

Xpi
k¼1

ai
pi

(1 � r2
ik) 1 �

Y
h 6¼k

(1 � r2
ih)

0
@

1
A

¼ yþ
XN
i¼1

Xpi
k¼1

ai
pi

(1 � r2
ik) 1 �

Y
h6¼k

(1 � r2
ih)

0
@

1
A (33)

Equation (33) shows that for all yL 2 OL, there exists a y 2 O so that yp can be

considered an approximation of yL if the last term in the sum (33) is negligible.
Here, exactly as before,

XN
i¼1

Xpi
k¼1

ai
pi

(1 � r2
ik) 1 �

Y
h6¼k

(1 � r2
ih)

0
@

1
A� 0

Therefore, the previous expression also shows that for all yL 2 OL, there exists a y 2 O
so that

y� yL (34)
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leading to the conclusion that Equation (32) holds in a totally general setting and not
only under the assumptions of separability defined by Galecki’s model.

5.2 The likelihood reduction factor
Estimating individual level surrogacy, as the previous developments clearly show, has

frequently been based on a variance covariance matrix coming from the distribution of
the residuals. However, if we move away from the normal distribution, it is not always
very clear how we can quantify the association between both endpoints after adjusting
for treatment and trial effect. Hence, a number of different parameters have been
proposed. This, of course, calls for further unification.

Here, we offer a general procedure that will allow us to evaluate surrogacy at the
individual level in very general settings. To develop this idea, let us assume that for the
data from trial i the following generalized linear models hold

gT(Tij) ¼ mTi
þ biZij, (35)

gT(Tij) ¼ y0i
þ y1iZij þ y2iSij (36)

If necessary, we can assume that repeated measurements on the same patient have
been taken. For instance, in a longitudinal study, different functions of time can
be included in Equations (35) and (36). In general, other more complex settings
could be analysed in a very similar way using the methodology that will be described
below. We could even construct a model that takes into account a nonlinear relation-
ship between S and T, for instance,

gT(Tij) ¼ y0i
þ y1iZij þ f (Sij)

Note that Equation (36) is just the model proposed by Prentice in his fourth criterion. In
the present approach, it comes back to play a key role in the definition of a unifying
procedure to quantify surrogacy at the individual level. One of the most appealing
characteristics of this proposal is that we can avoid the joint fitting of complicated
models for the surrogate and the true endpoint. In general, models like Equation (35)
and (36) can usually be fitted using standard commercial software.

To this end, we can consider G2
i as the log-likelihood ratio test statistics to compare

Equation (35) and (36) in trial i. We propose to quantify the association between both
endpoints at the individual level using a scale likelihood reduction factor (LRF)

LRF ¼ 1 �
1

N

X
i

exp �
G2

i

ni

� �
(37)

Following the ideas of Kent,39 we can think of Equation (37) as a sample estimate of a
general measure of association between both endpoints, based on the information gain
about the true endpoint by using the surrogate, it is also possible to see that: 1) the
LRF always lies between 0 and 1; 2) the LRF is zero if the Q6surrogate and the true
endpoint are independent in each trial; 3) as LRF approaches 1 for Gaussian outcomes,
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there is usually some degeneracy appearing in the true joint distribution of S and T in
each trial; often f1i(S) ¼ f2i(T) implying a deterministic relationship between both
variables, in the longitudinal-longitudinal case LRF becomes the R2

L defined earlier and
finally in the cross-sectional normal-normal case, the LRF reduces to the R2

ind.

6 Prostate-speci¢c antigen in advanced prostate cancer

6.1 Two liarozole trials
We illustrate the statistical approach based on the individual level and trial level

associations using two trials in patients with advanced (metastatic) prostate cancer.
These trials compared oral liarozole, an experimental retinoic acid metabolism blocking
agent developed by the Janssen Research Foundation, with two antiandrogenic drugs:
cyproterone acetate (CPA) in the first trial and flutamide in the second. In both trials,
patients were in relapse after first-line endocrine therapy.40 The trials accrued 312 and
284 patients, respectively. Each trial was multinational and multicentric. Since our
analyses require the estimation of the effect of treatment in multiple trials or other
meaningful groups of patients, we grouped the patients by trial and by country. This
allowed us to define 19 groups containing between four and 69 patients per group.

The primary endpoint of the trials was overall survival from the start of treatment.
Assessments were undertaken before the start of treatment, at two weeks, monthly for
six months, at three-month intervals until the second year, and at six-month intervals
until treatment discontinuation or death. The assessments included measurement of the
prostate specific antigen (PSA) level. PSA is a glycoprotein that is found almost
exclusively in normal and neoplastic prostate cells. Changes in PSA often antedate
changes in bone scan, and they have been used as an indicator of response in patients
with androgen independent prostate cancer.41–43 Figure 1 shows the structure of the
validation problem.

We consider successively, PSA response, time to PSA progression (TPP), and the full
longitudinal PSA profile of each patient as potential surrogates for survival in this
disease.44

6.2 PSA response as surrogate for survival
The best PSA outcome was determined for each patient, and hierarchically ordered

as:45

� complete response (CR) if the PSA level was at least 20 ng=mL at baseline, returned
to normal (<4 ng=mL) at any time, and remained normal for at least 28 days;

� partial response (PR) if the PSA level was at least 20 ng=mL at baseline, decreased
by at least 50% from the baseline level, and remained under 50% of the baseline
level for at least 28 days;

� no change (NC) if the PSA level was at least 20 ng=mL at baseline, and fluctuated
between 50% below and 50% above the baseline level for at least 28 days;

� progressive disease (PD) if no other response category applied, and if PSA was at
least equal to 10 ng=mL

� not evaluable (NE), if none of the above applied.
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A patient was defined as having a PSA response if his best PSA outcome was either
PR or CR. Hence the biomarker is binary here, and the clinical endpoint is a (possibly
censored) survival time.

At the individual level, PSA response was a very strong predictor of survival
(Figure 2a). Because PSA response is binary and survival is censored, the normal
theory coefficient of determination (R2) discussed in Section 3 does not apply, and
another measure of association between PSA response and survival is needed. One way
to express the impact of PSA response on survival is as follows (8): Q7consider the odds of
surviving beyond time t for PSA responders and for nonresponders; the ratio of these
odds is a survival odds ratio. Although the odds of surviving beyond time t decrease in
time for both responders and nonresponders, in our model the ratio of these odds is
assumed constant. This survival odds ratio is equal to 5.5 (95% confidence interval
[2.7,8.2]), which means that at any point in time the odds of surviving beyond that time

Figure 1 Validation of a biomarker (or intermediate endpoint) as a surrogate for a clinical endpoint (or true
endpoint) with respect to the effect of a randomized treatment. In advanced prostate cancer, the biomarker
could be the level of PSA over time, and the clinical endpoint could be the time to death. The figure shows
individual PSA values and their mean over time by treatment group, and the hazard rate over time by
treatment group.
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are more than five times higher for patients with a PSA response as compared to
patients without such a response. The strong prognostic impact of PSA response can be
explained in at least three plausible ways:

� PSA response and survival are largely determined by a common set of prognostic
factors, so that patients who are likely to have a response are also those who are
potentially long survivors.

� Patients who survive a long time are more likely to have a PSA response because of
length biased sampling.46

� There is a true causal relationship between the achievement of a PSA response and a
prolongation of survival.

Figure 2 (a) The survival of patients with a PSA response differs substantially from that of patients without a
PSA response. At any point in time the odds of surviving beyond that time are more than five times higher for
patients with a PSA response as compared to patients without such a response. (b) The treatment effects on
survival and on PSA response show no correlation in advanced prostate cancer (R2

trial ¼ 0:05).
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The first and second explanation are amenable, at least in part, to statistical
investigations, the first through adjustments of the comparison of responders and
nonresponders for all known prognostic factors, and the second through a landmark
analysis.47 When these investigations fail to explain a large portion of the prognostic
impact of PSA response, then there is indirect evidence that PSA response truly results in
a survival improvement.20

At the group level, the effects of liarozole on PSA response and on survival were
poorly correlated, with a coefficient of determination R2

trial ¼ 0:05 (standard
error¼ 0.13) (Figure 2b).

There was no overall significant benefit of liarozole over control for either PSA
response or survival: the PSA response rate was 16% and 11%, respectively, for
liarozole and control (P¼ 0.11), while median survival was 11.3 and 10.9 months,
respectively, for liarozole and control (P¼ 0.71).

6.3 Time to PSA progression as surrogate for survival
The time to PSA progression (TPP) was determined on the basis of a moving average

of three consecutive values of PSA. Progression was defined as an increase in PSA equal
to, or larger than, 50 above the lowest prior moving average. This increase had to be
either the last determination in the patient’s follow-up, or had to be maintained for at
least 28 days.

At the individual level, PSA progression occurred much earlier than the patients’
death. PSA progression occurred within six months for half of the patients, while about
half of the patients were still alive at one year (Figure 3a). Here again, because TPP and
survival may both be censored, the normal theory coefficient of determination (R2)
discussed in Section 3 does not apply, and a possible measure of association between
TPP and survival is a generalization of that proposed above:15 consider the odds of
surviving beyond time t for patients who have not yet had a PSA progression, and for
those who have; the ratio of these odds is a survival odds ratio. Although the odds of
surviving beyond time t decrease in time for both patients with and without PSA
progression, in our model the ratio of these odds is assumed constant.

This odds ratio is equal to 6.3 (95% confidence interval [4.4,8.2]), which means that
at any point in time the odds of surviving beyond that time are more than six times
higher for patients who have not yet had a PSA progression as compared to patients
who have already had such a progression. Thus, here again, there is a strong individual
level association between TPP and survival.

At the group level, the effects of liarozole on TPP and on survival were poorly
correlated, with a coefficient of determination R2

trial ¼ 0:22 (standard error 0.18)
(Figure 3b). There was a significant benefit of liarozole over control in terms of time
to PSA progression, with a median time of 4.9 months for liarozole and 3.7 months for
control (P¼ 0.001).

6.4 Longitudinal measurements of PSA as surrogate for survival
Since PSA levels were measured repeatedly over time, it seems natural to make use of

all these measurements, rather than to define a single PSA response or time to PSA
progression for each patient. The statistical models required to take the longitudinal
nature of the measurements into account are more complex, and the analyses
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potentially more sensitive to model assumptions, than for singly measured endpoints.
Such models have been used extensively to study the relationship between CD4
lymphocytes and survival in patients with AIDS and AIDS related complex.4,48–51

In our example, the mean PSA levels over time shown in the upper right hand panel
of Figure 1 are not fully informative, because these means were not calculated on the
same patients over time. Indeed, patients who had a PSA progression left the study, and
no longer contributed to the mean PSA after that time point, thus creating a selection
bias in the calculation of the mean. A more informative way of looking at mean PSA
levels over time is to consider cohorts of patients defined by the time they leave the
study (for any reason). Figure 4a shows four such cohorts, split by treatment group:
patients leaving the study within six months, between six and 12 months, between 12

Figure 3 (a) PSA progression is a strong predictor of death in advanced prostate cancer. At any point in time
the odds of surviving beyond that time are more than six times higher for patients who have not yet had a PSA
progression as compared to patients who have already had such a progression. (b) The treatment effects on
survival and on time to PSA progression show very little correlation in advanced prostate cancer (R2

trial ¼ 0:22).
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and 18 months, and between 18 and 24 months (PSA data became too scarce to
calculate meaningful means after 24 months). The patterns exhibited by these cohort
specific means show a tendency for PSA to go down initially (PSA response), and to
come up again after a while (PSA progression).

At the individual level, the PSA longitudinal process was correlated with the hazard
rate, which is the risk of dying at a certain time for a patient who has survived up until
that time. The coefficient of determination between the PSA process and the hazard rate
(R2

indiv) here is a function of time that cannot be easily summarized into a single
measure.16 Suffice to say that R2

indiv was greater than 0.84 at all times to indicate that

Figure 4 (a) The mean PSA profiles for cohorts of patients with similar follow-up times show a tendency for
PSA to go down initially (PSA response), and to come up again after a while (PSA progression). The
longitudinal PSA profiles are strongly correlated with the hazard of death (R2

indiv < 0:84 at any point in
time). (b) The treatment effects on survival and on longitudinal PSA show a weak correlation in advanced
prostate cancer (R2

trial ¼ 0:42).
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there was again a strong association, at the individual patient level, between the
evolution of PSA and the hazard of dying.

At the group level, the effects of liarozole on longitudinal PSA and on survival were
moderately correlated, with a coefficient of determination R2

trial ¼ 0:45 (standard error
0.18) (Figure 4b). There was a significant benefit of liarozole in terms of longitudinal
PSA (P¼ 0.01); in other words, the profiles shown on Figure 4a were significantly
different between liarozole and control.

7 Further examples

We have illustrated, through an actual example, statistical approaches that may be
useful to study the complex relationships between a biomarker, a clinical endpoint, and
the effects of a treatment on both the biomarker and the clinical endpoint. Our analyses
emphasize the importance of distinguishing between two types of association: one
between the biomarker and the clinical endpoint at the individual level, the other
between the effects of treatment on the biomarker and on the clinical endpoint at the
trial, or some other group, level.

For instance, in the prostate cancer example outlined above, only two trials were
available for analysis, and thus we considered country in each trial as the grouping unit
of interest. Table 2 summarizes the clinical situation in this and in other examples, while
Table 3 shows the corresponding individual level and the trial level measures of
association. The first three rows of Table 2 (labelled 1a, 1b and 1c) show the surrogates

Table 2 Description of clinical situations

Disease Z S T
Treatment comparison Surrogate endpoint True endpoint

1a Advanced prostate
cancer18,19

Liarozole vs antiandrogens PSA response Survival

1b Time to PSA progression Survival
1c Repeated measures PSA Survival
2a Advanced colorectal
cancer20,21

Experimental vs bolus 5FU Tumor response (Yes=No) Survival

2b Tumor response
(CR=PR=SD=PD)

Survival

3 Advanced colorectal
cancer15,30,51

Interferon-a þ 5FU vs 5FU Progression-free survival Survival

4 Advanced ovarian
cancer14,15,30,51

CAP vs CP Progression-free survival Survival

5 Schizophrenia30 Risperidone vs active control PANSS response CGI response
6 Schizophrenia16,30 Risperidone o.d. vs b.i.d. PANSS response CGI response
7 Age-related macular
degeneration14,15,30,51

Interferon-a vs placebo Visual acuity at 6 months Visual acuity
at 12 months

PSA: prostate-specific antigen.
5FU: 5-fluorouracil.
CR: complete response, PR: partial response, SD: stable disease, PD: progressive disease.
CAP: cyclophosphamide, adriamycin, platinum, CP: cyclophosphamide, platinum.
PANSS: positive and negative symptom scale, CGI: Clinician’s global impression.
o.d.: once daily, b.i.d.: twice daily.
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considered successively in advanced prostate cancer: response to PSA, time to PSA
progression, and longitudinal PSA. The first three rows of Table 3 indicate that PSA
does not qualify as an acceptable surrogate at this stage of the disease, regardless of
how it is analysed, in spite of its strong association with survival at the individual level.
The trial level associations are all low, and even when the full PSA pattern is taken into
account in a longitudinal analysis, R2

trial is less than 50%, a value too low to permit
reliable prediction of the effect of treatment on the clinical endpoint, having observed
the effect of treatment on the biomarker.18,19

It is also clear from Table 3 that the trial level associations are estimated very
imprecisely, because of the relatively small number of units (centers) available to estimate
treatment effects. In general, the individual level associations can be estimated far more
precisely than the trial level associations, because of the large number of patients
available.12–17,20,21 Unfortunately, the individual level associations between biomarkers
and clinical endpoints are usually of secondary interest in validation studies, because
these associations are strong and often well documented in previous studies. The main
focus of validation studies will thus typically be on trial level associations between the
effects of some treatment(s) on the biomarker and the clinical endpoint.14,22,23

Similar comments can be made about the second example illustrated in Tables 2 and
3 (rows labelled 2a and 2b). This example concerns advanced colorectal cancer, the
clinical endpoint of interest is survival as in the example above, and the potential
surrogate is response to treatment, defined either as a binary variable (complete or
partial tumor shrinkage versus no tumor shrinkage), or as an ordinal variable (complete
response, partial response, stable disease, progressive disease). Response is strongly
associated to survival at the individual level, but the effects of treatment on survival are
again poorly predicted by the effects on response.20,21 Ordinal response is more
strongly associated to survival than binary response, but the opposite is true, perhaps
somewhat surprisingly, at the trial level. This example nicely illustrates that the two
levels of association are independent of each other.

Table 3 Association statistics

Surrogate
endpoint

True endpoint Individual level Trial level

Number of
individuals

Association
measure (95% CI)

Number
of units

Rtrial
2 (95% CI)

1a Binary Failure time 596 OR¼ 5.5([2.7,8.2]) 19 0.05([0.00,0.31])
1b Failure time Failure time OR¼ 6.3([4.4,8.2]) 0.22([0.00,0.58])
1c Longitudinal process Failure time Rindiv

2 (t)> 0.84 0.45([0.09,0.81])
2a Binary Failure time 3791 OR¼ 4.7([4.0,5.5]) 25 0.38([0.09,0.68])
2b Categorical Failure time OR¼ 6.3([5.6,7.0]) 0.12([0.00,0.42])
3 Failure time Failure time 736 Rindiv

2
¼ 0.57([0.52,0.62]) 68 0.57([0.41,0.72])

4 Failure time Failure time 1194 Rindiv
2

¼ 0.89([0.87,0.90]) 50 0.94([0.91,0.97])

5 Binary Binary 805 Rindiv
2

¼ 0.56([0.43,0.68]) 138 0.51([0.47,0.55])

6 Binary Binary 206 Rindiv
2

¼ 0.70([0.44,0.96]) 34 0.55([0.47,0.62])

7 Continuous Continuous 190 Rindiv
2

¼ 0.48([0.38,0.59]) 42 0.69([0.52,0.86])

OR: odds survival ratio.
CI: confidence interval.
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The third and fourth examples of Tables 2 and 3 (rows labelled 3 and 4) concern two
situations in advanced cancer where progression free survival (the time to tumor
progression or death from any cause) is contemplated as a possible surrogate for
survival. In the case of advanced colorectal cancer, moderate associations exist both at
the individual level (R2

indiv ¼ 0:57) and at the trial level (R2
trial ¼ 0:57).15,29,52 In the case

of advanced ovarian cancer, the associations are much stronger both at the individual
level (R2

indiv ¼ 0:89) and at the trial level (R2
trial ¼ 0:94).14,15,29,52 Thus we could claim

that progression free survival is a better surrogate for survival in advanced ovarian
cancer than in advanced colorectal cancer. This may be due to the fact that advanced
ovarian cancer is a more slowly progressing disease than advanced colorectal cancer,
though once progression is noted, the remaining time to death is about identical in both
diseases.

The fifth and sixth examples of Tables 2 and 3 (rows labelled 5 and 6) concern the
very different clinical situation of schizophrenia, a disease in which several scales exist
to measure the functional status of the patient. In fact, none of these scales can be
viewed as a gold standard, but we posit here, for illustrative purposes, that the PANSS
(positive and negative symptom scale) is proposed as a surrogate scale for the CGI
(clinician’s global impression). In two successive trials, the measures of associations
were rather close to each other both at the individual level (R2

indiv ¼ 0:56 and 0:70,
respectively) and at the trial level (R2

trial ¼ 0:51 and 0:55, respectively), yet the treatment
comparisons were rather different in these two trials: it was risperidone versus active
control in the first one29 and two modes of administration of risperidone in the second
one.16,29 The first trial had more patients and more units (centers) than the second one,
which resulted in tighter confidence limits of the association statistics at both levels.

The last example of Tables 2 and 3 (row labelled 7) illustrate an interesting situation
in ophthalmology, where the surrogate and the true endpoints are in fact the same
continuous variable (the visual acuity score) measured at two different time points (six
months and 12 months).14,15,29,52 It is well known that in the disease considered, age-
related macular degeneration, measures of visual acuity taken on the same patient at
different time points are only poorly correlated (R2

indiv ¼ 0:48). Yet, at the trial level, the
effect of the drug Interferon-a on the six-month time point predicts the effect of the drug
on the 12-month time point reasonably well (R2

trial ¼ 0:69, with 95% confidence limits
[0.52,0.86]). If regulatory agencies found this trial level association sufficiently con-
vincing to grant market authorization based on the six-month data, half a year could
thus be gained in the drug approval process (note that the final endpoint at 12 months
would be available later anyway). In other ophthalmic conditions such as glaucoma,
where the loss of vision is much slower than in age-related macular degeneration,
having an acceptable surrogate would potentially yield far greater gains in the time
required to approve active new drugs.

8 Concluding comments

The approach outlined above essentially combines the concepts initially formalized
by Prentice1 with a hierarchical view. The intuitive appeal of this approach is the
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requirement of a good surrogate to satisfy two distinct but similar looking properties.
First, the surrogate endpoint must predict the true endpoint in individual patients. This
condition is in fact strongly related to Prentice’s definition. Second, the effect of a
treatment on the surrogate endpoint must predict the effect of that treatment on the true
endpoint. While different, at face value, from Prentice’s fourth criterion, this condition
is consistent with its spirit, properly exploiting replication across trials.

The strength of the associations can be quantified in a straightforward manner
through R2 statistics in the case of normally distributed endpoints. These statistics do
not readily generalize to settings with nonnormal outcomes, but the likelihood reduc-
tion factor applies to a wide variety of settings (normal, binary, categorical, survival,
and longitudinal outcomes) and reduces to the R2 measure for normally distributed
endpoints. It generalizes both Prentice1 and Buyse et al.14

The hierarchical framework applies when several units of analysis are available. In
general, this framework requires that a multicentric trial, or preferably several distinct
trials, be available for analysis. For the R2 statistics to be practically useful, they must
be estimated with sufficient precision, which in turn requires large amounts of data (in
terms of both patients and units of analysis). This should not be seen as a disadvantage
of the approach, but as a necessary requirement before a surrogate endpoint is used in
lieu of a clinical endpoint. It is clear that this requirement is not sufficient. Surrogate
marker validation cannot rely solely on statistical findings, as important clinical and
biological considerations will always need to be factored into the decision.
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