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SUuMMARY. We put a perspective on the strengths and limitations of statistical methods for the evaluation
of surrogate endpoints. Whereas using several trials overcomes some of the limitations of a single-trial
framework (Prentice, 1989, Statistics in Medicine 8, 431-440), arguably the evaluation of surrogate endpoints
can never be done using only statistical evidence but such evidence should be seen as but one component in
a decision-making process that involves, among others, a number of clinical and biological considerations.
We briefly present a hierarchical framework that incorporates ideas from Prentice’s work and is uniformly
applicable to different types of surrogate and true clinical outcomes.
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1. Introduction

The very mention of surrogate endpoints has always been very
controversial. This may be due to a number of well-known
unfortunate historical events. For example, in cardiovascular
disease, the unsettling discovery that the two major antiar-
rhythmic drugs encanaide and flecanaide reduced arrhythmia
but cause a more than three-fold increase in overall mortality
stressed the need for caution in using nonvalidated surrogate
markers in the evaluation of the possible clinical benefits of
new drugs (CAST Investigators, 1989). On the other hand,
the dramatic surge of the AIDS epidemic, the impressive ther-
apeutic results obtained early on with zidovudine, and the
pressure for an accelerated evaluation of new therapies have
all led to first the use of CD4 blood count and, with the ad-
vent of HAART, viral load, as endpoints that replaced time
to clinical events and overall survival (DeGruttola and Tu,
1995), in spite of some concerns about their limitations as
surrogate markers for clinically relevant endpoints (Lagakos
and Hoth, 1992).

Thus, while many would like to avoid surrogate endpoints
altogether, sometimes surrogates will be the only reasonable
alternative, especially when the true endpoint is rare and/or
distant in time. It is then best to use walidated surrogates,
but one clearly needs to reflect on the very meaning of val-
idation. Like in most clinical decisions, statistical arguments
will play a major role, but ought to be considered in conjunc-
tion with clinical and biological evidence. Further, surrogate
endpoints can play different roles in different phases of drug
development. While it may be more acceptable in early phases
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of research, one should be much more careful using them as
substitutes for the true endpoint in pivotal phase III trials ver-
sus replacing the true endpoint by the surrogate altogether in
all research past a certain point. Prentice (1989), aware of
this controversy but seeing the need for a formal framework,
provided a definition and a set of criteria that have formed
the basis for much subsequent work in some of which the con-
nection between statistical and nonstatistical arguments has
been lost. It follows from Prentice that a pure and strict sta-
tistical position will impose almost impossible requirements
on a potential surrogate.

While the idea behind Prentice’s definition and main cri-
terion is appealing, a drawback, common to all single-trial
approaches, is that it rests on strong, unverifiable assump-
tions. As argued by Daniels and Hughes (1997), Buyse et al.
(2000), and Gail et al. (2000), a way out is the combination
of information from several units or trials. Using hierarchical
linear models, Buyse et al. (2000) defined surrogacy in terms
of an individual-level as well as a trial-level measure, both of
which are coefficients of determination. A drawback of this
approach is that it hinges on normality and consequently sev-
eral authors have proposed alternative concepts for other out-
come types (e.g., binary or time-to-event). Combining ideas
from both frameworks, we will propose a unified approach
without obviating the obligation to consider biological and
clinical plausibility of a surrogate.

Our ideas are illustrated using data from a clinical trial
in patients with age-related macular degeneration (ARMD),
a condition in which patients progressively lose vision
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(Pharmacological Therapy for Macular Degeneration, 1997);
194 patients from 43 centers participated in the trial. Patients’
visual acuity was assessed using standardized vision charts
displaying lines of five letters of decreasing size, which patients
had to read from top (largest letters) to bottom (smallest let-
ters). The visual acuity was measured by the total number
of letters correctly read. The treatment indicator is Z = 0
for placebo and Z = 1 for interferon-a. The final (surrogate)
endpoint T' = 1 (S = 1) if the lines of vision lost at 1 year
(6 months) is greater than or equal to 3 (2) and 0 otherwise.
The final endpoint is that used by the FDA for the approval of
new drugs. The surrogate endpoint would be attractive since
it is observed 6 months earlier. Five out of 42 participating
centers enrolled patients only to one of the two treatment
arms. These centers were excluded from consideration. Thus,
37 centers were available for analysis, with the number of in-
dividual patients per center ranging from 2 to 18 (189 patients
overall).

In Section 2, we show how the key ingredients of Prentice’s
framework can be seen as integrated into a meta-analytic one.
Unified and appealing measures to quantify trial-level and
individual-level surrogacy are presented in Section 3 and their
application to the case study is given in Section 4.

2. Prentice’s Approach Versus a Meta-Analytic
Paradigm: Some Considerations

Prentice’s definition and the meta-analytic methodology have
been perceived as competing to evaluate surrogate markers.
However, it is possible to show that, in spite of obvious dif-
ferences, the original definition given by Prentice (1989) and
the individual-level surrogacy defined by Buyse et al. (2000)
are strongly related.

Let S and T denote the surrogate and true endpoints, re-
spectively, and let Z be an indicator variable for treatment. At
this point, restricting attention to the single-trial case, we will
conveniently assume that S and T are normally distributed.
We will further assume that the following bivariate regression
model holds

Sj = ps + aZj +esj, 1)
T; = pr + BZ; + €1y, (2)
where 7 =1, ..., n indicates patients, and the error terms have

a joint zero-mean normal distribution with covariance matrix

v (USS ZST) . (3)

Prentice defined a surrogate endpoint as “a response variable
for which a test of the null hypothesis of no relationship to the
treatment groups under comparison is also a valid test of the
corresponding null hypothesis based on the true endpoint”
(Prentice, 1989). From models (1) and (2), we can calculate
the maximum-likelihood estimators & and B for the treatment
effects on the surrogate and true endpoints. Based on these
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= 0 and Z; = 1, respectively, and
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If we now apply Prentice’s definition using the marginal dis-
tributions associated with (4), it is possible to prove that the
definition holds if and only if p* = 1.

Observe that the meta-analytic paradigm encompasses
Prentice’s definition in the association at the individual level.
In practice, in the meta-analytic framework (to be introduced
later in this section), we will estimate the association at the
individual-level R? ;. = p?, which quantifies the strength of
the relationship between the surrogate and the true endpoint,
after removing the effects of treatment. Since this association
allows us to evaluate how far the endpoints are from fulfilling
Prentice’s definition, a yes/no statement has been replaced by
a quantification.

Prentice (1989, for survival times), followed by Freedman,
Graubard, and Schatzkin (1992, for binary outcomes) outlined
a set of criteria. In summary, they read (a) treatment has an
impact on the surrogate endpoint, o # 0 in (1); (b) treat-
ment has an impact on the true endpoint, 3 # 0 in (2); (c)
the surrogate endpoint has an impact on the true endpoint,
# 0 in the regression relationship of T on S, captured in, for
example, T; = pu + vS; + €;; and (d) the full effect of treat-
ment upon the true endpoint is captured by the surrogate.
The latter two are Prentice’s original criteria. As Prentice
himself later acknowledged, he proposed the framework “not
to encourage their adoption in any particular setting (...) but
rather to reinforce that it is only in very special circumstances
that treatment information on an early surrogate end point
will convey direct information concerning a treatment effect
on a true later end point” (Prentice, 2000).

Let us return to the fact that definition and criteria, as
detailed in Freedman et al. (1992), are equivalent only when
both the surrogate and the true endpoints are binary (Buyse
and Molenberghs, 1998). They are easily seen not to hold in
the normal situation, by concentrating on the fourth crite-
rion, which is verified through the conditional distribution of
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the true endpoint, given treatment and surrogate endpoint,
derived from (1) and (2)

T; = fir + BsZ; +vzS; +érj, (5)

where 8s = 8 — JSTagsloz7 Yz = USTagsl, and V(ép;) =
orr(1 — p?). Tt is usually stated that the fourth criterion re-
quires that the parameter 8¢ be equal to zero, which leads
to the condition on the mean structure 8 = USTUESIOc. Pren-
tice’s definition would simply require p?> = 1 or equivalently
V(ér;) =0, an intuitive condition in terms of the error struc-
ture of (5), rather than its systematic part.

We have assumed so far that the endpoints are normally
distributed, which implies no mean-variance link, and the
above considerations obviously do not apply as such to other
types of endpoints (e.g., binary endpoints as in our exam-
ple). The key point is, however, that Prentice’s definition at-
tributes a central role to p, whereas Prentice’s fourth criterion
attributes a central role to the relationship between 3 and a.
To meaningfully study the latter relationship, replication at
the trial level is required, motivating a hierarchical framework
(Buyse et al., 2000). Suppose we have data from ¢ =1,..., N
trials, in the ith of which j = 1,...,n; subjects are enrolled.
We now denote the true and surrogate endpoints by 7 and
Sij, respectively, and by Z; the indicator variable for treat-
ment. The linear models (1) and (2) can be rewritten as

Sij = psi + @ Zij + €55, (6)

Ty = pri + BiZiy + €1y, (7

where pg; and pr; are trial-specific intercepts, a; and (3; are
trial-specific effects of treatment Z on the endpoints in trial
i, and €g; and eq; are correlated error terms, assumed to be
mean-zero normally distributed with covariance matrix (3).
The assumption of a constant covariance matrix may be un-
realistic in certain settings but it should be noted that general-
ization to trial-specific covariance matrices is straightforward
and the framework sketched in the next section fully allows
for that.

Within this framework and as stated in the introduc-
tion, Buyse et al. (2000) defined surrogacy in terms of an
individual-level as well as a trial-level measure, denoted by
R? ... (capturing the squared correlation between eg; and e7;)
and R2,, (measuring how well 3; can be predicted by pg and
«;), respectively. It has been suggested by some authors to ex-
tend Prentice’s definition to this setting by applying it within
each single trial involved in a meta-analysis. However, the
foregoing discussion proved that this procedure would be, at
least, very inefficient. Under models (6) and (7) the correla-
tion between both endpoints is constant over trials, i.e., p; = p
for all 7. Applying Prentice’s definition to each trial would be,
for the same reasons as described above, equivalent to testing
the hypotheses H: p? = 1 versus H; : p? # 1. In contrast, the
meta-analytic approach combines all of the information com-
ing from the different trials by estimating R2,, = p?. This
approach makes more efficient use of the data at hand, in
addition to being more informative than several tests of hy-
pothesis.
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3. The Likelihood Reduction Factor

Based on this meta-analytic paradigm several parameters
have been proposed to quantify the association between the
surrogate S and the true endpoint 7, at individual level, de-
pending on the type of response variable used for S and T. In
the cross-sectional normal-normal case, Buyse et al. (2000),
using a bivariate normal regression model, defined the R?
as the squared correlation between the surrogate and the true
endpoint after adjusting for treatment and trial effects. In
the binary—binary setting, Geys (1994) used a bivariate con-
ditional probit model and defined R, = pZST, which is the

squared correlation between two latent variables (S,T). Alter-
natively, they also proposed to define R? ;= v, the global
odds ratio between both endpoints estimated from a bivari-
ate Plackett—Dale model. When the true endpoint is a survival
time and the surrogate is a longitudinal sequence, Renard et
al. (2001), using Henderson’s model, proposed to study the in-
dividual level based on a time function defined as R? () =
corr{Wi(t), Wy(t)}?, where {W;(t), Wy(t)} is a latent bivari-
ate Gaussian process. Other proposals have been suggested in
other settings. Estimating individual-level surrogacy, as the
previous examples clearly showed, has frequently been based
on a variance—covariance matrix coming from the distribution
of the residuals. However, if we move away from the normal
distribution it is not always very clear how we can quantify
the association between both endpoints after adjusting for
treatment and trial effects; therefore, several different param-
eters have been proposed showing a clear lack of a unified
approach.

Here, we offer a general procedure that will allow us to eval-
uate surrogacy at the individual level in very general settings.
Let us consider two generalized linear models for trial i

gr{E(Ty | Zy)} = pr; + BiZy, (8)

gr{E(T; | Zi, Sy)} = 0o, + 01:Z; + 025 (9)

Longitudinal data are easily incorporated by including func-
tions of time in (8) and (9). Other extensions readily follow,
such as nonlinear relationship between S and E(T). For ex-
ample, gr{E(T}; | Zy, Sy)} = 6o, + 01:Z;; + fi(Sy).

Denote the log-likelihood ratio test statistics to compare
(8) with (9) within trial i by G%. We then propose to quantify
the association between both endpoints at the individual level
using a likelihood reduction factor (LRF)

1 G?
LRF=1-— NZexp (n—> .

%

(10)

Following the ideas of Kent (1983), we can think of (10) as a
sample estimate of a general measure of association between
both endpoints based on the information gain about the true
endpoint by using the surrogate. It follows that (1) LRF is
always between 0 and 1, (2) LRF = 0 if the surrogate and
the true endpoint are independent in each trial, and (3) as
LRF — 1 for continuous models, there is usually some de-
generacy appearing in the true joint distribution of S and T
in each trial; often ¢1;(S) = ¢9;(T), implying a deterministic
relationship between both variables and finally in the cross-

sectional normal-normal case the LRF reduces to the R2 ..
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Note that (9) is just the model proposed by Prentice in his
fourth criterion. Thus, Prentice’s fourth criterion features in
the unifying procedure to quantify surrogacy at the individual
level. One of the most appealing characteristics of this pro-
posal is its avoidance of complicated hierarchical joint models
for S and T. Models like (8) and (9) can usually be fitted us-
ing standard commercial software. The formulation helps to
bridge the gap between the Prentice (1989) and Buyse et al.
(2000) paradigms.

A few remarks are in place. First, in our developments, we
have focused on the individual-level surrogacy. It ought to
be understood that a statement at the individual level does
not imply anything about trial-level surrogacy. For example,
a surrogate can be poor at the individual level, but still very
promising at the trial level when R?., is sufficiently large.
Second, and related to the previous point, one has to reflect
carefully on which of the two levels is of most interest. On the
one hand, one could restrict attention to the trial level only, in
which case an individual-level measure of surrogacy, such as
the LRF, would not need to be calculated. This could occur,
for example, when one is merely interested in the prediction
of the treatment effect in a new trial, given evidence from a
meta-analysis. It then ought to be clear that Prentice’s defi-
nition is less relevant, since it connects to the individual level
and not to the trial level. On the other hand, if the predic-
tion of a patient’s outcome (e.g., survival) is of interest, based
on one or several surrogate measurements (e.g., a longitudinal
profile), the individual-level surrogacy is of primary interest.

4. Analysis of Case Study

We illustrate our method, using the ARMD data, for the bi-
nary outcomes: visual acuity at 6 months (5) and acuity at 1
year (7). The following three models should be independently
fitted

logit (Wg) = pr, + BiZy,

TS
i

loglt (7T ) - ,qu'vl + ﬂfzzj + 'Yij ViS 61']'1

logit(wf;) = s, + o Zy,

here S;; = vis 6;; and T}; = vis 12;; are the dichotomized vi-
sual acuity, for the jth patient in the ith trial, at 6 months
and 1 year, respectively. We also use the notation 775
E(vis 12;), 71;‘7”5 = E(vis 12, vis 6;), and 75 = E(vis 6).

Even though, at the trial level, surrogacy can still be evalu-
ated using the estimated values of (us,, a;, 8;), obtained from

models (11)—(13) and applying the coefficient of determina-

tion (RZ,,) proposed by Buyse et al. (2000), at the individual
level, the R2 ;.. proposed in the continuous case can no longer

be used. However, the LRF can be used instead. Assuming
that the association between both variables is constant over
trials, (11) and (12) can be used to compute the LRF

2
LRF =1 —exp <G—> ,
n

where G? is the log-likelihood ratio statistics to compare mod-
els (11) and (12) and n = ) n,; is the total number of patients.
Note that (14) results from (10) by considering all data as
coming from a single study (so that N = 1). By way of sensi-
tivity analysis, the assumption of a constant covariance struc-

(14)
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Table 1
Age-related macular degeneration trial. Binary true and
surrogate endpoint. Estimates (95% confidence intervals)
calculated using the bootstrap.

Parameter Estimate (95% CI)

R 0.3845 (0.1494; 0.6144)
0.2648 (0.2213; 0.3705)
0.4955 (0.3252; 0.6044)

LRFadj

ture was relaxed. The results obtained were virtually identical
and therefore omitted.

Note that, as pointed out by Kent (1983), if the true end-
point has a fixed discrete distribution and if the true endpoint
given the surrogate is modeled by a family of discrete dis-
tributions, then the conditional information gain is bounded
above and hence the LRF is bounded by a number strictly
less than one. Therefore, we will also report here the value of
LRF,q; = LRF/max(LRF) which can always reach one and
hence is more meaningful.

Table 1 shows the results at both levels. All of the estimated
values are too low to make visual acuity at 6 months a reliable
surrogate for visual acuity at 12 months. At the trial level, an
R2.., of 0.38 clearly shows that an accurate prediction of treat-
ment effect at 1 year based on the treatment effect observed
at 6 months does not seem to be possible. Of course, it is
clear that when the outcome at 6 months is sufficiently large,
then the prediction of the month 12 outcome, together with
its prediction limits, may contain useful information. While
this would hold for every R? greater than zero, the closer it
is to zero, the larger and hence the more unrealistic will the
surrogate endpoint value have to be. Switching to LRF,g;, we
do obtain some evidence of a weak association at the indi-
vidual level. These results are similar to the ones reported by
Geys (1999), who used a joint bivariate probit model based
on latent variables. She reported a smaller association at the
trial level (RZ,,, = 0.22) and a stronger relationship at the in-
dividual level (R?, = 0.64). Nevertheless, these coefficients
describe the association at an unobservable latent scale, ren-
dering their interpretation more awkward than is the case
with our proposal.

5. Discussion

Following the above, Buyse et al. (2000) proposed both R?
measures as well as prediction equations to allow quantifi-
cation of the properties of a candidate surrogate endpoint,
thereby combining the essence of Prentice’s framework with
a hierarchical view. The intuitive appeal of this is the require-
ment of a good surrogate to satisfy two distinct but similarly
looking properties. First, the surrogate endpoint must pre-
dict the true endpoint in individual patients. This condition
is strongly related to Prentice’s definition. Second, the effect
of a treatment on the surrogate endpoint must predict the
effect of that treatment on the true endpoint. While different,
at face value, from Prentice’s fourth criterion, it is consistent
with its spirit, properly exploiting replication across trials.
While the R? measures do not readily generalize to settings
with nonnormal outcomes, the likelihood reduction factor ap-
plies to a wide variety of settings (normal, binary, categorical,
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survival, and longitudinal outcomes) and reduces to the R?
measure for normally distributed endpoints. It generalizes
both Prentice (1989) and Buyse et al. (2000). A more for-
mal study of the LRF in nonnormal settings will be reported
elsewhere.

It could be argued that a disadvantage of the meta-analytic
framework discussed above is that it requires several trials (or
other experimental units) with reasonably large amounts of
data in each. This should not be seen as a disadvantage, but as
a necessary requirement in preparation of a potentially serious
decision. In spite of the appeal of these methodological devel-
opments, it is clear however that surrogate marker validation
cannot rely solely on a statistical approach, since important
clinical and biological considerations need to be factored into
the decision.

RESUME

Nous présentons une perspective sur les forces et les limites
des méthodes statistiques dans 1’évaluation des points fin-
aux de substitution. Alors que l'utilisation de plusieurs es-
sais dépasse certaines limitations posées par le cadre d’un es-
sai unique (Prentice, 1989), on peut soutenir que I’évaluation
de points finaux de substitution ne peut jamais résulter de
la seule évidence statistique, mais que cette évidence doit
étre envisagée comme une composante dans un processus de
décision impliquant, parmi d’autres, nombre de considérations
biologiques et cliniques. Nous présentons brievement un cadre
hiérarchique incorporant les idées du travail de Prentice et qui
est entierement applicable aux différents types d’issues clin-
iques réelles ou substitutives.

REFERENCES

Buyse, M. and Molenberghs, G. (1998). The validation of sur-
rogate endpoints in randomized experiments. Biometrics
54, 1014-1029.

Buyse, M., Molenberghs, G., Burzykowski, T., Renard, D.,
and Geys, H. (2000). The validation of surrogate end-
points in meta-analysis of randomized experiments. Bio-
statistics 1, 49-67.

Cardiac Arrhythmia Suppression Trial (CAST) Investigators.
(1989). Preliminary report: Effect of encainide and fle-
cainide on mortality in a randomized trial of arrhyth-
mia suppression after myocardial infarction. New Eng-
land Journal of Medicine 321, 406-412.

Biometrics, September 2004

Daniels, M. J. and Hughes, M. D. (1997). Meta-analysis for
the evaluation of potential surrogate markers. Statistics
in Medicine 16, 1515-1527.

DeGruttola, V. and Tu, X. M. (1995). Modelling progression
of CD-4 lymphocyte count and its relationship to sur-
vival time. Biometrics 50, 1003-1014.

Freedman, L. S., Graubard, B. I., and Schatzkin, A.
(1992). Statistical validation of intermediate endpoints
for chronic diseases. Statistics in Medicine 11, 167-
178.

Gail, M. H., Pfeiffer, R., van Houwelingen, H. C., and Carroll,
R. J. (2000). On meta-analytic assessment of surrogate
outcomes. Biostatistics 1, 231-246.

Geys, H. (1994). Pseudo-likelihood methods and generalized
estimating equations: Efficient estimation techniques
for the analysis of correlated multivariate data. Ph.D.
Thesis, Limburgs Universitair Centrum, Belgium.

Kent, J. (1983). Information gain and a general measure of
correlation. Biometrika 70, 163-173.

Lagakos, S. W. and Hoth, D. F. (1992). Surrogate markers
in AIDS: Where are we? Where are we going? Annals of
Internal Medicine 116, 599-601.

Pharmacological Therapy for Macular Degeneration Study
Groups (1997). Interferon a-IIA is ineffective for patients
with choroidal neovascularization secondary to age-
related macular degeneration. Results of a prospective
randomized placebo-controlled clinical trial. Archives of
Ophthalmology 115, 865—872.

Prentice, R. L. (1989). Surrogate endpoints in clinical tri-
als: Definitions and operational criteria. Statistics in
Medicine 8, 431-440.

Prentice, R. L. (2000). Comment on the paper by Begg and
Leung. Journal of the Royal Statistical Society, Series A
163, 26-27.

Renard, D., Geys, H., Molenberghs, G., Burzykowski, T.
Buyse, M., Vangeneugden, T., and Bijnens, L. (2001).
Validation of a longitudinally measured surrogate marker
for a time-to-event endpoint. Journal of Applied Statistics
30, 235-247.

Received December 2002. Revised February 2004.
Accepted February 2004.



