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I. INTRODUCTION

Biomarkers will become important in the clinic over the years to come, for

several reasons. First, an increasing number of new drugs will have a well-

defined mechanism of action at the molecular level, allowing drug developers to

measure the effect of these drugs on the relevant biomarkers. Second, there will

be increasing public pressure for new, promising drugs to be approved for

marketing as rapidly as possible, and such approval will have to be based on

biomarkers rather than on some long-term clinical endpoint. Finally, if the

approval process is shortened, there will be a corresponding need for earlier

detection of safety signals that could point to toxic problems with new drugs. It is

a safe bet, therefore, that the evaluation of tomorrow’s drugs will be based

primarily on biomarkers, rather than on the longer-term, harder clinical endpoints

that have dominated the development of new drugs until now.

Yet, for biomarkers to be acceptable surrogates for clinical endpoints, a

number of conditions must be fulfilled. In this chapter, we review these

conditions and we discuss some statistical methods that are useful to address
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the problem of surrogate marker validation. Much of the work laid out here is still

in progress. The statistical approach proposed has been developed using data

from a range of clinically diverse situations, including age-related macular

degeneration [1–3], cardiovascular disease [2], advanced ovarian cancer [3,4],

chronic schizophrenia [5,6], and advanced colorectal cancer [1,4,7,8]. It is

currently being validated in other situations, including advanced prostate cancer,

advanced breast cancer, early colorectal cancer, early breast cancer, and

autoimmune deficiency syndrome (AIDS).

In this chapter, we concentrate on one clinical situation, the hormonal

treatment of advanced (metastatic) prostate cancer, to illustrate the statistical

methods used for, and the difficulties encountered in, the validation of a

biomarker (the prostate-specific antigen, PSA, measured over time) as a surrogate

for a clinical endpoint (the patient’s death). We will avoid, insofar as possible,

technical developments that have been published in full detail elsewhere [1–8].

Although some of our observations are specific to this situation, many of our

conclusions are of general relevance to the validation of biomarkers as surrogates

for clinical endpoints.

II. CONCEPTUAL FOUNDATION

A. Statistical Definitions and Models

Let us first introduce the problem in general terms, and define some notations that

will be used throughout this chapter. We are interested in the effect of some

experimental treatment on a clinical or “true” endpoint of interest, as well as on a

biomarker that could potentially be used as a “surrogate” endpoint (Fig. 1). In

general, the experimental treatment is compared to an appropriate control group

in randomized clinical trials.

Statistically, interest will focus on the following parameters (Fig. 1): the

effect of the experimental treatment upon the biomarker, called a; the effect of

the experimental treatment upon the clinical endpoint, called b; and the effect of

the surrogate biomarker on the clinical endpoint, called g. It will be useful to

denote the randomized treatment by Z, the potential surrogate biomarker by S,

and the true clinical endpoint by T. Strictly speaking, the biomarker can be used

as a surrogate for the clinical endpoint for the purposes of evaluating the

experimental treatment if, and only if, a treatment effect on S (a – 0) predicts a

treatment effect on T (b – 0), and no treatment effect on S (a ¼ 0) predicts no

treatment effect on T (b ¼ 0). This view of surrogacy, which is rooted in the

paradigm of hypothesis testing, had led to a formal statistical definition of

surrogacy, but not to useful validation criteria [9–12]. Alternatively, the

biomarker can be used as a surrogate for the clinical endpoint for the purposes of

evaluating the experimental treatment if, and only if, the estimated treatment
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effect on S (parameter a) can be used to predict the treatment effect on T

(parameter b) with sufficient accuracy [1,3]. This view of surrogacy, which is

rooted in the paradigms of estimation and prediction, will be adopted in our

analyses of the data in advanced prostate cancer.

Let us first assume the simple, but rare, situation in which the biomarker S

and the clinical endpoint T have a bivariate standardized normal distribution. The

bivariate normal distribution has been extensively studied, and the statistical

techniques required in this situation are straightforward. In reality, the situations

will be more complex and will call for less standard models, but the underlying

Figure 1 The validation of a biomarker (or intermediate endpoint) as a surrogate for a

clinical endpoint (or true endpoint) with respect to the effect of a randomized treatment

involves estimating parameters a, b, and g. In advanced prostate cancer, the biomarker

could be the level of PSA over time, and the clinical endpoint could be the time to death.

Shown are individual PSA values and their mean over time by treatment group, and the

hazard rate over time by treatment group.
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ideas will remain unchanged. If we had data from a single randomized clinical

trial with n subjects, the relationships between Z, S, and T could be modeled

through simple linear regressions:

Si ¼ mS þ aZi þ 1Si ð1Þ

Ti ¼ mT þ bZi þ 1Ti ð2Þ

Ti ¼ mþ g Si þ 1i ð3Þ

where mS, mT, and m are intercepts; a, b, and g are the slopes of the regression

lines, and also the parameters of interest (Fig. 1); and 1Si, 1Ti, and 1i are normally

distributed error terms. The dependence of T upon both Z and S could be modeled

through a multiple linear regression:

Ti ¼ m0 þ bSZi þ gZSi þ 10i ð4Þ

If we had data from several trials, the relationships between Z, S, and T would

become:

Sij ¼ mSi þ aiZij þ 1Sij ð10Þ

Tij ¼ mTi þ biZij þ 1Tij ð20Þ

with notations analogous to those used above, the subscript i now referring to trial

and the subscript j to individual patients. In the most general case, a linear mixed

model approach could be used, where the intercepts mSi and mTi, as well as the

slopes ai and bi, can be decomposed into fixed and random components [13]. We

shall need these models to discuss validation criteria.

B. Types of Biomarkers and Endpoints

Statistically speaking, the biomarker and the clinical endpoint are realizations of

random variables. Interest focuses on the joint distribution of these variables,

which was assumed bivariate normal in the preceding models. This is, however,

seldom the case, because the biomarker and/or the clinical endpoint is often a

realization of nonnormally distributed random variables, which can be:

Binary (dichotomous): biomarker value below or above a certain threshold

(e.g., CD4þ counts over 500/mm3) or clinical “success” (e.g., tumor

shrinkage)

Categorical (polychotomous): biomarker value falling in successive classes

(e.g., cholesterol levels ,200 mg/dL, 200–299 mg/dL, 300þ mg/dL) or
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clinical response (e.g., complete response, partial response, stable disease,

progressive disease)

Continuous (normally distributed): biomarker (e.g., log PSA level) or

clinical measurement (e.g., diastolic blood pressure)

Censored continuous: time to biomarker below or above a certain threshold

(e.g., time to undetectable viral load) or time to clinical event (e.g., time

to cardiovascular death)

Longitudinal (repeated measures): biomarker (e.g., CD4þ counts over

time) or clinical outcome (e.g., blood pressure over time)

Multivariate longitudinal: several biomarkers (e.g., CD4þ and viral load

over time) or several clinical measurements (e.g., dimensions of quality

of life over time)

The models used to validate a biomarker as a surrogate for a clinical endpoint

will depend on the type of variables observed in the problem at hand. In the

example below, we will illustrate this by analyzing the same data in three different

ways. The clinical endpoint will be survival in all cases, but the biomarker will

consist, respectively, of PSA response (binary variable), time to PSA progression

(censored continuous variable), and the PSA pattern over time (longitudinal).

C. Types of Data

To validate the use of biomarkers as surrogates for clinical endpoints, the

following information must be available on some series of patients:

Surrogate biomarker or endpoint: most commonly a vector of repeated

measurements of the biomarker during the patient’s treatment course or

follow-up thereafter

Clinical endpoint: most commonly a time (possibly censored) to the

clinical event of interest

Treatment: a categorical variable indicating what treatment the patient

received (often through randomization)

Unit of analysis: typically a categorical variable indicating the “unit” in

which the patient was treated (physician, center, country, trial, meta-

analysis, or any other unit defining groups of patients in whom the effect

of treatment can meaningfully be estimated)

III. STATISTICAL CRITERIA FOR SURROGACY

The purpose of this section is to provide a brief overview of various statistical

ideas that have been proposed for the validation of markers as surrogates for
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clinical endpoints. In the next section, we will show through an actual example

that some of these ideas lead to useful operational criteria.

A. Measures of Association Between the Biomarker and the
Clinical Endpoint

Severalauthorshave argued that if abiomarker is toserveasasurrogate for aclinical

endpoint, there should be a causal relationship between them [14,15]. If there was a

causal pathway from the surrogate marker to the clinical endpoint, then any change

in the marker (e.g., as a result of treatment) would translate into a corresponding

change in the clinical endpoint. Causality, unfortunately, cannot be tested, and the

statistical criteria developed to validate a surrogate marker provide only indirect

evidence about the causality of the relationship between the marker and the

endpoint.

A first source of evidence is provided by the association, at the level of the

individual patient, between the marker and the clinical endpoint. One would

expect a good surrogate marker to have a strong association with the clinical

endpoint at the individual level, reflecting some biological pathway from the

biomarker to the clinical endpoint. In that case, the biomarker could be a

plausible surrogate on biological grounds, since the clinical endpoint would be

largely determined by the biomarker regardless of any treatment effect. This

reasoning, although intuitively appealing, has, however, been shown to be

potentially misleading, for a good correlate is not automatically a good

surrogate [15]. Another source of evidence is needed to quantify the association,

at the level of a trial, between the effects of a treatment on the marker and on the

clinical endpoint. The distinction between these two levels of evidence is

essential, but has sometimes been missed in attempts to validate surrogate

markers in the past [16]. We return to the trial-level association below.

The individual-level measure of association between the biomarker and

the clinical endpoint could be provided by parameter gZ in Eq. (4), the slope

of the linear regression line between S and T (adjusted for Z), or on a closely

related parameter, the squared correlation between S and T (adjusted for Z),

which has a more general and intuitive interpretation. The squared correlation

(or coefficient of determination) represents the proportion of variance of the

clinical endpoint that is explained by the variance of the biomarker, after

adjusting for any difference due to treatment. We denote this coefficient

R2
individual to stress that it characterizes the association between the biomarker

and the clinical endpoint in individual patients. Just as in linear regression, we

will require R2
individual to be large (close to 1) before we claim that there is a

strong association between the biomarker and the clinical endpoint.
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For biomarkers and clinical endpoints that are not normally distributed, other

measures of association will be used, as will be shown in the analyses below,

but the basic idea of a strong association between the biomarker and the

clinical endpoint will carry over.

B. Explanation of Clinical Effects from Surrogate Effects

Prentice proposed to define a surrogate marker as “a response variable for which a

test of the null hypothesis of no relationship to the treatment groups under

comparison is also a valid test of the corresponding null hypothesis based on the

true endpoint” [9]. As such, this definition is of limited value since direct

verification that a triplet {treatment; surrogate biomarker; clinical endpoint}

fulfills the definition would require a large number of experiments to be available

with information on the triplet. Even if many experiments were available, the

equivalence of the statistical tests for the effect of treatment upon the clinical

endpoint and the biomarker might not be seen in all of them because of chance

fluctuations and/or lack of statistical power. Operational criteria are therefore

needed to check if the definition is fulfilled. Prentice proposed four operational

criteria:

Treatment must have a significant effect on the biomarker [a – 0 in

Eq. (1)].

Treatment must have a significant effect on the clinical endpoint [b – 0 in

Eq. (2)].

The biomarker must have a significant effect on the clinical endpoint

[g – 0 in Eq. (3)].

The full effect of treatment on the clinical endpoint must be captured by the

biomarker [bS ¼ 0 in Eq. (4)].

Even though the prentice criteria were of key importance to help formalize

validation approaches, a number of conceptual problems were identified with

them. Indeed, it can be shown that Prentice’s operational criteria are equivalent to

his definition only in the case of binary variables [1]. Moreover, the operational

criterion of full capture raises a conceptual difficulty in that it requires the

statistical test for treatment effect on the true endpoint to be nonsignificant after

adjustment for the surrogate [11]. Hence this criterion is useful only to reject a

poor surrogate biomarker, when the statistical test for treatment effect on the true

endpoint remains statistically significant after adjustment for the surrogate. An

example of such a situation is given by the effects of zidovudine on clinical

endpoints in human-immunodeficiency-virus-positive subjects, which remain

significant after CD4þ lymphocytes are taken into account [17,18].
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The fourth Prentice criterion cannot be used as such to validate a good

surrogate marker, for failing to reject the null hypothesis may be due merely to

lack of power. Freedman et al. therefore suggested focusing attention on the

proportion of the treatment effect captured by the surrogate, or “proportion

explained” [11,19]. In this spirit, a good surrogate is one that explains a large

proportion of that effect. Numerically, the proportion explained can be estimated

as the ratio ðb2 bSÞ=b from Eqs. (2) and (4). Calculation of its confidence limits

requires estimation of the covariance between b and bS. Several authors have

shown that there are fundamental difficulties with the proportion explained, and

have proposed alternative approaches [1,12,20].

C. Prediction of Clinical Effects from Surrogate Effects

The reason for using surrogate markers (or surrogate endpoints) is to be able to

predict the effect of treatment on the clinical endpoint, having observed its effect

on the surrogate marker. This led to consideration of the ratio of the effect of

treatment on the clinical endpoint to that on the surrogate marker, or “relative

effect” [1]. Numerically, the relative effect can be estimated as the ratio b/a from

Eqs. (1) and (2). Calculation of its confidence limits requires estimation of the

covariance between b and a. Note that the relative effect depends on the scales

chosen to measure S and T. If the relative effect is estimated precisely, then the

predicted effect upon the clinical endpoint will in turn be precise enough to be

useful. Such a situation requires large numbers of observations that are typically

available in large clinical trials, or in meta-analyses of several clinical trials.

When meta-analytical data are available, it is also possible to test the assumption

implicit in the estimation of the relative effect, i.e., that the treatment effects on

the clinical endpoint are proportional to the treatment effects on the surrogate

biomarker.

D. Measures of Association Between Treatment Effects

If data are available from multiple sources, for instance if several clinical trials

have been performed on the same therapy, it will be possible to estimate the

treatment effects upon the marker and upon the clinical endpoint in each of these

trials [3,21,22]. These treatment effects were denoted ai and bi in Eqs. (10) and

(20). We focus here on the squared correlation (or coefficient of determination)

between these treatment effects, which represents the proportion of variance of

the treatment effect on the clinical endpoint that is explained by the variance of

the treatment effect on the biomarker. We denote this coefficient R2
trial to stress

that it characterizes the association between the effects of treatment on the

biomarker and on the clinical endpoint in the various trials available. Here again,
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we will require R2
trial to be large (close to 1) before we claim that there is a strong

association between the effects on the biomarker and on the clinical endpoint.

IV. EXAMPLE: PSA IN ADVANCED PROSTATE CANCER

A. The Two Liarozole Trials

We illustrate the statistical approach based on the individual-level and trial-level

associations using two trials in patients with advanced (metastatic) prostate

cancer. These trials compared oral liarozole, an experimental retinoic acid

metabolism-blocking agent developed by the Janssen Research Foundation, with

two antiandrogenic drugs: cyproterone acetate (CPA) in the first trial and

flutamide in the second. In both trials, patients were in relapse after first-line

endocrine therapy [23]. The trials accrued 312 and 284 patients, respectively.

Each trial was multinational and multicentric. Since our analyses require the

estimation of the effect of treatment in multiple trials or other meaningful groups

of patients, we grouped the patients by trial and by country. This allowed us to

define 19 groups containing between four and 69 patients per group.

The primary endpoint of the trials was overall survival from the start of

treatment. Assessments were undertaken before the start of treatment, at 2 weeks,

monthly for 6 months, at 3-month intervals until the second year, and at 6-month

intervals until treatment discontinuation or death. The assessments included

measurement of the prostate-specific antigen (PSA) level. PSA is a glycoprotein

that is found almost exclusively in normal and neoplastic prostate cells. Changes

in PSA often antedate changes in bone scan, and they have been used as

an indicator of response in patients with androgen-independent prostate

cancer [24–26].

We consider, successively, PSA response, time to PSA progression (TPP),

and the full longitudinal PSA profile of each patient as potential surrogates for

survival in this disease [27].

B. PSA Response as Surrogate for Survival

The best PSA outcome was determined for each patient, and hierarchically

ordered as [28]:

Complete response (CR) if the PSA level was at least 20 ng/mL at baseline,

returned to normal (,4 ng/mL) at any time, and remained normal for at

least 28 days

Partial response (PR) if the PSA level was at least 20 ng/mL at baseline,

decreased by at least 50% from the baseline level, and remained under

50% of the baseline level for at least 28 days
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No change (NC) if the PSA level was at least 20 ng/mL at baseline, and

fluctuated between 50% below and 50% above the baseline level for at

least 28 days

Progressive disease (PD) if no other response category applied, and if PSA

was at least equal to 10 ng/mL

Not evaluable (NE), if none of the above applied

A patient was defined as having a PSA response if his best PSA outcome

was either PR or CR. Hence the biomarker is binary here, and the clinical

endpoint is a (possibly censored) survival time.

At the individual level, PSA response was a very strong predictor of

survival (Fig. 2a). Because PSA response is binary and survival is censored,

the normal theory coefficient of determination (R2) discussed earlier does not

apply, and another measure of association between PSA response and

survival is needed. One way to express the impact of PSA response on

survival is as follows [8]: consider the odds of surviving beyond time t for

PSA responders and for nonresponders; the ratio of these odds is a survival

odds ratio. Although the odds of surviving beyond time t decrease in time for

both responders and nonresponders, in our model the ratio of these odds is

assumed constant. This survival odds ratio is equal to 5.5 (95% confidence

interval ¼ 2.7–8.2), which means that at any point in time the odds of

surviving beyond that time are more than five times higher for patients with

a PSA response as compared to patients without such a response. The strong

prognostic impact of PSA response can be explained in at least three

plausible ways:

PSA response and survival are largely determined by a common set of

prognostic factors, so that patients who are likely to have a response are

also those who are potentially long survivors.

Patients who survive a long time are more likely to have a PSA response

because of length-biased sampling [29].

There is a true causal relationship between the achievement of a PSA

response and a prolongation of survival.

The first and second explanations are amenable, at least in part, to statistical

investigations, the first through adjustments of the comparison of responders and

nonresponders for all known prognostic factors, and the second through a

landmark analysis [30]. When these investigations fail to explain a large portion

of the prognostic impact of PSA response, then there is indirect evidence that

PSA response truly results in a survival improvement [7].

At the group level, the effects of liarozole on PSA response and on survival

were poorly correlated, with a coefficient of determination R2
trial ¼ 0:05 (standard

error ¼ 0.13) (Fig. 2b).
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Figure 2 (a) The survival of patients with a PSA response differs substantially from

that of patients without a PSA response. At any point in time the odds of surviving

beyond that time are more than five times higher for patients with a PSA response as

compared to patients without such a response (see text). (b) The treatment effects on

survival and on PSA response show no correlation in advanced prostate cancer

ðR2
trial ¼ 0:05Þ:
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There was no overall significant benefit of liarozole over control for either

response or survival: the PSA response rate was 16% and 11%, respectively, for

liarozole and control ( p ¼ 0.11), while median survival was 11.3 and 10.9

months, respectively, for liarozole and control ( p ¼ 0.71).

C. Time to PSA Progression as Surrogate for Survival

The time to PSA progression (TPP) was determined on the basis of a moving

average of three consecutive values of PSA. Progression was defined as an

increase in PSA equal to, or larger than, 50% above the lowest prior moving

average. This increase had to be either the last determination in the patient’s

follow-up, or maintained for at least 28 days.

At the individual level, PSA progression occurred much earlier than the

patients’ death. PSA progression occurred within 6 months for half of the

patients, while about half of the patients were still alive at 1 year (Fig. 3a). Here

again, because TPP and survival may both be censored, the normal theory

coefficient of determination (R2) discussed earlier does not apply, and a possible

measure of association between TPP and survival is a generalization of that

proposed above [4]: consider the odds of surviving beyond time t for patients who

have not yet had a PSA progression, and for those who have; the ratio of these

odds is a survival odds ratio. Although the odds of surviving beyond time t

decrease in time for both patients with and without PSA progression, in our

model the ratio of these odds is assumed constant.

This odds ratio is equal to 6.3 (95% confidence interval ¼ 4.4–8.2), which

means that at any point in time the odds of surviving beyond that time are more than

six times higher for patients who have not yet had a PSA progression as compared to

patients who have already had such a progression. Thus, here again, there is a strong

individual-level association between TPP and survival.

At the group level, the effects of liarozole on TPP and on survival were

poorly correlated, with a coefficient of determination R2
trial ¼ 0:22 (standard

error ¼ 0.18) (Fig. 3b). There was a significant benefit of liarozole over control in

terms of time to PSA progression, with a median time of 4.9 months for liarozole

and 3.7 months for control ( p ¼ 0.001).

D. Longitudinal Measurements of PSA as Surrogate for
Survival

Since PSA levels were measured repeatedly over time, it seems natural to make use

ofall these measurements, rather than todefineasinglePSAresponseor time toPSA

progression for each patient.TheStatistical models required to take the longitudinal

nature of the measurements into account are more complex, and the analyses

potentially more sensitive to model assumptions, than for singly measured
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Figure 3 (a) PSA progression is a strong predictor of death in advanced prostate cancer.

At any point in time the odds of surviving beyond that time are more than six times higher

for patients who have not yet had a PSA progression as compared to patients who

have already had such a progression (see text). (b) The treatment effects on survival and

on time to PSA progression show very little correlation in advanced prostate cancer

ðR2
trial ¼ 0:22Þ:
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Figure 4 (a) The mean PSA profiles for cohorts of patients with similar follow-up times

show a tendency for PSA to go down initially (PSA response), and to come up again after a

while (PSA progression). The longitudinal PSA profiles are strongly correlated

with the hazard of death (R2
individual . 0:84 at any point in time). (b) The treatment

effects on survival and on longitudinal PSA show a weak correlation in advanced prostate

cancer ðR2
trial ¼ 0:42Þ:
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endpoints. Such models have been used extensively to study the relationship

between CD4 lymphocytes and survival in patients with AIDS and AIDS-related

complex [31–35].

In our example, the mean PSA levels over time shown in the upper-right-

hand panel of Fig. 1 are not fully informative, because these means were not

calculated on the same patients over time. Indeed, patients who had a PSA

progression left the study, and no longer contributed to the mean PSA after that

time point, thus creating a selection bias in the calculation of the mean. A more

informative way of looking at mean PSA levels over time is to consider cohorts of

patients defined by the time they leave the study (for any reason). Figure 4a shows

four such cohorts, split by treatment group: patients leaving the study within 6

months, between 6 and 12 months, between 12 and 18 months, and between 18

and 24 months (PSA data became too scarce to calculate meaningful means after

24 months). The patterns exhibited by these cohort-specific means show a

tendency for PSA to go down initially (PSA response), and to come up again after

a while (PSA progression).

At the individual level, the PSA longitudinal process was correlated with

the hazard rate, which is the risk of dying at a certain time for a patient who has

survived up until that time. The coefficient of determination between the PSA

process and the hazard rate ðR2
individualÞ is here a function of time that cannot be

easily summarized into a single measure [5]. Suffice to say that R2
individual was

greater than 0.84 at all times to indicate that there was again a strong association,

at the individual patient level, between the evolution of PSA and the hazard of

dying.

At the group level, the effects of liarozole on longitudinal PSA and on

survival were moderately correlated, with a coefficient of determination R2
trial ¼

0:45 (standard error ¼ 0.18) (Fig. 4b). There was a significant benefit of liarozole

in terms of longitudinal PSA ( p ¼ 0.01); in other words, the profiles shown on

Fig. 4a were significantly different between liarozole and control.

V. DISCUSSION

We have illustrated, through an actual example, statistical approaches that may

be useful to study the complex relationships between a biomarker, a clinical

endpoint, and the effects of a treatment on both the biomarker and the clinical

endpoint. Our analyses emphasize the importance of distinguishing between two

types of association: one between the biomarker and the clinical endpoint at the

individual level, the other between the effects of treatment on the biomarker and

on the clinical endpoint at the trial level. Since only two trials were available for

our analyses, we considered country in each trial as the grouping unit of interest.

Table 1 summarizes the measures of association between survival and,
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successively, response to PSA, time to PSA progression, and longitudinal PSA

(rows in Table 1). It appears clearly that PSA does not qualify as an acceptable

surrogate, regardless of how it is analyzed, in spite of its strong associations with

survival at the individual level (second column of Table 1). The associations

between treatment effects at the trial level are all low (third column of Table 1).

Even when the full PSA pattern is taken into account in a longitudinal analysis,

R2
trial is still too low to permit reliable prediction of the effect of treatment on the

clinical endpoint, having observed the effect of treatment on the biomarker.

It is also clear from Table 1 that the trial-level associations are estimated

rather imprecisely, because of the relatively small number of units (centers)

available to estimate treatment effects. In general, the individual-level

associations can be estimated far more precisely, because of the large number

of patients available [1–8].

It should be noted that the methodology we propose is exploratory in nature,

and does not purport to classify a biomarker as a “valid” or “invalid” surrogate for a

clinical endpoint—although if both R2
individual and R2

trial were close to 1, we would

be in a position to claim the surrogate to be acceptable. Indeed, in such a case, the

surrogate would be strongly associated to the clinical endpoint, and any change in

the surrogate would also translate into a corresponding (and predictable) change in

the clinical endpoint. However, caution would still be in order, for neither of these

statistical associations would prove a causal impact of the biomarker on the clinical

endpoint. Moreover, the trial-level association would have been established only

for the treatment comparison at hand, and could be quite different for some new

treatment having a different mode of action.

Table 1 Individual-Level and Trial-Level Measures of Association Between PSA and

Survival in Advanced Prostate Cancer Treated with Either Liarozole or Controla

Individual-level association

between PSA and

survival

[95% confidence interval]

Trial-level association

between treatment effects

on PSA and survival

[standard error]

PSA response Survival odds

ratio ¼ 5.5 (2.7–8.2)

R2
trial ¼ 0:05 ð0:13Þ

Time to PSA

progression

Survival odds

ratio ¼ 6.3 (4.4–8.2)

R2
trial ¼ 0:22 ð0:18Þ

Longitudinal PSA Coefficient of determination

R2(t ) . 0.84 at all times t

R2
trial ¼ 0:45 ð0:18Þ

a The individual-level measures show strong associations between PSA and survival, but the trial-level

measures show weak associations between the treatment effects on PSA and survival, making

PSA a poor surrogate for survival (odds ratio: see text; R2 ¼ coefficient of determination).
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The validation of a biomarker as a surrogate for a clinical endpoint is no

easy task. Many authors have expressed an exceedingly negative view on this

problem. Theoretical criticisms have borne on problems with overly strict

definitions of surrogacy [12,15,20], the validation criteria proposed by Prentice

[12,36], the proportion explained [12,20], computation and modeling difficulties

[37], and the meta-analytic approach [38]. On the practical side, some supposed

surrogates have dramatically failed to predict clinical outcomes [39]. The

approval of the antiarrhythmic drugs flecanaide and encanaide, based on their

controlling arrhythmias rather than long-term mortality, will long continue to

haunt the debates on whether surrogate endpoints can be used to approve new

drugs [15,40]. It seems clear that few, if any, biomarkers will ever qualify as

“valid” surrogates in a strict sense of the word. Even if we adopt the more liberal

view advocated in this chapter, very few, if any, biomarkers will have large

enough values of R2 to qualify as “acceptable” surrogates [41]. In addition,

surrogates that are observed very early on in the course of the disease are the most

interesting ones, but also those least likely to predict distant clinical endpoints

with any acceptable accuracy. In spite of all difficulties, we believe that the

search for surrogates should not be abandoned, for the gains might be too

important in terms of patients and/or time. For some endpoints, such as delayed

toxicities to experimental treatments, the use of surrogates is simply inescapable.

In addition, even if biomarkers always turned out to be poor surrogates, it could

still be useful to quantify their relationships to the clinical endpoints of interest,

because valuable knowledge might well be derived in the process.

A final word on the need for data. The methods presented here require data

from several (possibly many) randomized trials to be available. Access to data

from randomized trials is difficult, especially for phase III trials carried out by

pharmaceutical companies seeking registration of new drugs. We contend that

only way to seriously search for valid surrogate biomarkers is to make these data

fully accessible for statistical analysis and public scrutiny. Once new drugs are

approved, individual patient data from randomized clinical trials upon which the

approval was based should be made publicly accessible, as are data from some

cooperative groups (the AIDS Clinical Trials Group, for instance). Further

analyses of such data in clinical situations of interest may illuminate issues

related to surrogate endpoints that, in the absence of detailed statistical analyses,

would have remained controversial at best, and ignored at worst.
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