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Abstract

We consider “generic” (isomorphism-invariant) queries on rela-
tional databases embedded in an infinite background structure. As-
sume a generic query is expressible by a first-order formula over the
embedded domain that may involve both the relations of the database
and the relations and functions of the background structure. Then
this query is already expressible by a first-order formula involving just
an auxiliary linear ordering as background structure. We present an
elementary proof of this fact.
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One of the leading themes of research in database theory is that of queries
and query languages [AHV94]. Usually, one works in the relational model
where a database is viewed as a finite structure over some fixed relational
vocabulary (called the database schema). A query then is a mapping which
associates with each database a finite relation on its domain, of some fixed
arity. Not any such mapping makes sense as a query, however: a basic
consistency criterion required of queries is that they are compatible with
isomorphisms. Indeed, two isomorphic databases are meant to represent the
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same information content and should not be distinguished [AU79, CHS80].
This consistency criterion is called the genericity of queries.

A fundamental way of expressing a query is by means of a first-order
formula over the database schema, which uniformly defines on each database
the answer relation of the query as applied to that database. The class of
queries thus obtained is the class FO of all first-order queries. Note that first-
order queries are indeed generic, since logical formulae cannot distinguish
between isomorphic structures.

One can extend the class of first-order queries by allowing the defining for-
mula to use extra information which is not properly part of the database. One
basic example of this is to use formulae over the database schema extended
with the binary relation symbol < for a linear order. One then evaluates
such a formula on a database by first extending the database with a linear
ordering on its domain. Of course, in order not to violate genericity, the
formula must satisfy the consistency criterion that its result is independent
of the particular ordering chosen. We call such formulae order-invariant. Al-
though order-invariance is recursively undecidable, we can still consider the
class FO[<] of queries defined by order-invariant formulae.

FO is trivially included in FO[<], and it is known that this inclusion is
strict; see for instance [AHV94, Excercise 17.27]. One may ask whether there
are other kinds of extra background structure, besides linear order, which
further increase the expressive power of FO in this manner. In this note, we
show that the answer, in a precise and rather general sense, is negative.

Specifically, we formalize the idea of “providing extra information” by
fixing an arbitrary infinite structure A over some finite vocabulary 7 (with
7 disjoint from the database schema), and using formulae over the database
schema extended with the symbols in 7. One then evaluates such a formula
by embedding the database in A. Again, in order not to violate genericity,
we restrict to formulae which — in spite of the external auxiliary structure —
define a result that is independent of the particular embedding chosen. We
call such formulae A-invariant. We thus obtain the class FO[A] of queries
defined by A-invariant formulae.

The framework of FO[<] is slightly different from that of FO[A], since
in the former case the database is extended with extra information while in
the latter case the databases is embedded into it. But this difference is only
formal; if A is simply an infinite linearly ordered set, then FO[A] coincides
with FO[<].



Our result can now be stated as follows:

Theorem 1 For any finite vocabulary T and any infinite T-structure A,

FO[A] is included in FO[<].

To finish this introduction we mention that similar results with interesting
ramifications have meanwhile been obtained independently by Benedikt et
al. [BDLWO6]; see also the remarks at the end. In the remainder of this note
we define the notions discussed above more formally and prove the theorem.

FO queries. Fix some finite relational vocabulary o. We identify the class
of all databases over the database schema o with the class fin]o] of all finite
o-structures. A k-ary query () then is a mapping

fin[o] — fin[cU{Q}]
B —  (B,Q[B])

where Q[B] is a k-ary relation on the domain of B. This mapping has to
satisfy the following condition (genericity): if f: B — C is an isomorphism,
then f maps Q[B] to Q[C], i.e. f also is an isomorphism f: (B,Q[B]) —
(€, Q[eY).

Let ¢(x1,...,xx) be a first-order formula over 0. On each B, ¢ defines a
relation

o[B] :={(a,...,a;) € dom(B)* | B = ¢lay,. .., ]},

which obviously defines a query. The set of queries defined by first-order
formulae in this way is denoted by FO.

Order-invariant formulae. Assume, without loss of generality, that the
binary relation symbol < is not in 0. Let 1(Z) be a formula over the extended
vocabulary o U{<}. If we extend B € fin[o] with a linear ordering on its
domain, we obtain an extended database (B, <F) € fin[cU{<}], on which ¢
defines a relation ¢[B, <”].

If 1[B, <®] happens to be the same no matter which ordering <® we
choose to extend B with, and this holds true for each B, we call ¢ order-
invariant. In this case 1 defines a query on the original, non-extended



databases given by ¢(B) := ¢[B, <5], for each B and some (any) exten-
sion (B, <B) of B. The set of queries defined by order-invariant formulae in
this way is denoted by FO[<].

A-invariant formulae. Let 7 be a finite vocabulary disjoint from o. We
do not require 7 to be relational, 7 may contain functions and constants.
Let A be any fixed infinite 7-structure. An embedding of B € fin[o] into
A is given by an injection p:dom(B) — dom(A). We expand A with the
isomorphic image p(B) of B, and also introduce a new unary relation U to
denote the image of dom(B) under p as a subset of dom(.A). We thus obtain
a structure (A, u(B)) over the combined vocabulary o Ut U{U}.

Let x(z) be a first-order formula over o U7. We use x to define a relation
on dom(B), denoted by x[B, ], as follows:

X[B, u] = {a € dom(B) | (A, u(B)) = x"[u(a)]}.

The superscript U in Y denotes relativization to the embedded domain of
B, U = p(dom(B)), which means that the quantifiers in x are restricted to
range only over this embedded domain. This is an essential restriction in
the setup. We indicate in an example below that without this restriction the
main theorem is no longer valid. Note, however, that even this restricted use
of the background structure, though it does not give access to all its elements
via direct quantification, still gives access to outside elements exactly in as
far as these are parameterized through terms (of vocabulary 7) from within
the embedded domain.

If x[B, p] is the same no matter which embedding i we choose, and this
for each B, then we call y A-invariant. In this case x defines a query on
databases over o given by x[B] := x[B, u|, for some (any) embedding p of
B into A. The set of queries defined by .A-invariant formulae in this way is
here denoted by FO[A].

Towards our proof, we next present two little lemmas.

Lemma 1 Let 7 = {<} and let A be a T-structure such that <* is a linear
ordering of dom(A). Then FO[A] equals FO[<].

Proof. Let B be a database. The orderings of B are precisely the inverse
images of < under embeddings of B into A. Hence, a formula ¢ over cU{<}
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is order-invariant iff it is A-invariant. Furthermore, if v is order-invariant
and p is an embedding of B into A, then for any a € dom(B),

(A 1(B) E o u@)] &  (Bu' (<) E vl

so that ¢ defines the same query regardless of whether it is considered as

an order-invariant formula or as an A-invariant one. Hence, FO[A] equals
FO[<]. ]

Lemma 2 Let A and A’ be two elementarily equivalent T-structures. Then
FO[A] equals FO[A’].

Proof. Let x(%), Z = (z1,...,2), be a formula over o U 7. Let B € fin[o]

and let a € dom(B), @ = (aj,...,ax). Associate to each d € dom(B) a

different variable y; not already occurring in x and think of d — y,; as an

intended interpretation that associates each element with “its” variable. We
B,a B,a .

define two sentences " and x5 over T in several steps as follows:

1. First, we define a quantifier-free formula x®(Z, (y4)dedom(s)) in vocabu-
lary 7 as follows. Replace each atom of the form Rt in y, with R € o,

by
V t=19a
deRB

where §; is shorthand for the tuple (yq,,...,yq,) if d = (dy,...,d}).
Then any existential quantifier dz is replaced by the disjunction over
all instantiations y, for x in the quantified formula. Correspondingly,
any universal quantification Vx is replaced by the conjunction over all
instantiations y, for x.

2. Let x®% be the result of substituting 7z = (Ya,, - - -, Ya,) for the free

variables T = (z1,..., ) in XP(Z, (Ya)dedom(s))-
3. Put  xo" = (Vyd)dedom(B)( Nva # yo — XB’E)
dtd'
X3¢ = (Elyd)dedom(B)( Nva # ya A XB’E)
dtd'

The following are readily verified, for any 7-structure C:



o C = x5 if and only if a € x[B, 4 for all embeddings p of B into C;
o C = x5%if and only if @ € x[B, y] for some embedding y of B into C.

The lemma now follows: if y is A-invariant then it is also A’-invariant.
Indeed,

X is A-invariant < A E (" — xo%) for each (B, a)
s A EOE"—=x5Y  for each (B,a)

& x is A'-invariant.

The second equivalence holds because A and A’ are elementarily equivalent,
the first and third by the two above-stated properties.
For A-invariant x, if a € x[B] on A then a € x[B] on A’. Indeed,

acx[B omnA o AEx5*
& AEx"
& a€x[B] onA.

We also make use of the Ehrenfeucht-Mostowski Theorem on first-order
indiscernibles, which is an important consequence of Ramsey’s Theorem and
compactness, much used in classical model theory, cf. [H93, CK90].

A linearly ordered subset I of dom(.A) — think of it as a linear order
T = (I, <) embedded into A —is called a chain of indiscernibles in A if for any
formula ¢(xq,...,x,) over 7 and any two increasing sequences ¢; < - -+ < ¢
and d; < --- < dj, from I it is true that

A):¢[Cl,...,0k] <~ A):¢[d1,,dk]

In other words, truth in A of a formula ¢(z1,...,x) on a tuple ay, ..., a; of
elements in I depends only on the way these elements are ordered by <.

Ehrenfeucht-Mostowski Theorem For each infinite A there is an ele-
mentarily equivalent structure A" which has an infinite chain of indiscernibles
(of any prescribed order type, in fact).



We shall see below that actually we could employ Ramsey’s Theorem
directly and avoid the passage to an elementarily equivalent structure A’.
The application of the Ehrenfeucht-Mostowski Theorem, on the other hand,
leads to a neat and uniform translation. We are now ready for a very simple
proof of the theorem. For an A-invariant formula, we provide an <-invariant
formula that is equivalent in the sense of defining the same query.

Proof of Theorem 1. By Lemma 2, we may assume without loss of gen-
erality that A itself has a chain Z = (I, <) of indiscernibles.

Let x(%) be A-invariant. We may assume without loss of generality that
in each atomic subformula of x of the form Rt; ...t,, with R € o, every term
t; is a variable. Indeed, we can always replace this subformula by the formula

(F21) ... (Fzm) (R21 - - 2 A }_n\lz =t;).

Note that this replacement is correct even though quantifiers range only over
the domain of the embedded structure. Note also that this replacement serves
to guarantee that no atomic subformula of x contains symbols from both o
and 7.

Consider now an evaluation of y over a finite subdomain included in
I C dom(A). The truth of any atomic subformula ¢(yi,...,yn,) over 7 in
X, when evaluated in a tuple dy,...,d,, of elements of I, depends only on
the way di, ..., d,, are ordered with respect to <. In other words, the truth
depends only on the order type of di,...,d,,." Hence, on Z, each atomic
subformula over 7 is equivalent to a formula over {<}, namely, a disjunction
of order types. Denote by v the formula obtained from x by replacing each
atomic T-subformula by its equivalent formula over {<} in this manner. Note
that ¢ is a formula over o U {<}.

Since y is A-invariant, and since any embedding of a database B into Z is
also an embedding of B into A, ¢ is Z-invariant. Moreover, for any database
B and tuple @ on dom(B), a € x[B] on A if and only if a € ¢[B] on Z. We
thus conclude that the query expressed by y is in FO[Z] (by ¢). Finally, by
Lemma 1, this query then is in FO[<]. |

! An order type on the variables y, . . ., ¥, is a maximal consistent conjunction of atoms
of the form y; < y; and negations thereof.



Remark 1 As the proof really only requires the indiscernibility condition on
T for a finite set of (atomic) formulae, it is not even necessary to invoke the
power of the Ehrenfeucht-Mostowski Theorem. By Ramsey’s Theorem one
may obtain an infinite chain satisfying indiscernibility for a finite collection of
formulae through suitable choice within the given A (this is the route taken
in [BDLWO96]).

We conclude with an example showing that the usual first-order semantics
with unrestricted quantification over the entire background structure behaves
completely differently. Consider the countably infinite random graph R for
the background structure — with vocabulary consisting of a binary edge rela-
tion £ —, into which we embed the finite structure B. It is easily checked that
any monadic second-order formula in the vocabulary of B can in this setting
be captured by an R-invariant first-order formula. We merely replace any
quantification 3X ¢(X) by a quantification Jyd({z|Eyz}). Here ¢p({z|Fyx})
is shorthand for the result of replacing each atom Xwu that may occur in
¢ by the atom Eyu. This replacement is semantically appropriate in the
proposed setting, since for any finite subset U C dom(R) and any X C U,
there is an outside vertex y such that Fyx for x € U if and only if x € X.
This is just an instance, in fact, of the extension axioms that characterize
the random graph [BH79, EF95, H93|. But monadic second-order logic over
finite structures is known to be strictly more expressive than first-order logic
even in the presence of a linear ordering. Consider for instance structures
of monadic vocabulary plus order, so-called word models. Monadic second-
order logic exactly defines those classes of word models that correspond to
regular languages (a theorem of Biichi, Elgot and Trakhtenbrot), while first-
order logic only defines those that correspond to star-free regular languages
(McNaughton and Papert), see for instance [T82].

This shows that the inclusion claim of Theorem 1 does not hold in gen-
eral, if unrestricted first-order quantification over the background structure
is admitted. It also immediately suggests the question under which model
theoretic requirements on the background structure (or rather, according to
Lemma 2, on its first-order theory) the inclusion does go through in this
stronger sense after all. Note that the above example immediately suggests
sparseness conditions on definable sets. One known positive case was that of
the additive arithmetic of the reals investigated in [PVV95]. Several people,



including the present authors, have conjectured that among linearly ordered
background structures o-minimality [PS86] might give a sufficient condition.
This conjecture has meanwhile been proved by Benedikt et al. [BDLW96] in
a slightly different setting.
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