
Typed Query Languages for

Databases Containing Queries�

Frank Neveny

Limburgs Universitair Centrum

fneven�luc�ac�be

Dirk Van Gucht

Indiana University

vgucht�cs�indiana�edu

Jan Van den Bussche

Limburgs Universitair Centrum

vdbuss�luc�ac�be

Gottfried Vossen

University of M�unster

vossen�uni�muenster�de

Abstract

This paper introduces and studies the relational meta algebra� a statically typed
extension of the relational algebra to allow for meta programming in databases� In
this meta algebra one can manipulate database relations involving not only stored
data values �as in classical relational databases� but also stored relational algebra
expressions� Topics discussed include modeling of advanced database applications
involving �procedural data�� desirability as well as limitations of a strict typing dis�
cipline in this context� equivalence with a �rst�order calculus� and global expressive
power and non�redundancy of the proposed formalism�

� Introduction

Various advanced database systems� such as active and object�oriented systems� as well
as the data dictionaries of standard relational database systems� provide the function�
ality of �stored procedures�� The potential functionality of such systems was already
envisaged by Stonebraker and his collaborators in the ���s �	
� 		�� However� little work
has been done on formal models providing logical foundations for such systems� Indeed�
current systems approaches treat stored procedures simply as string values� Only the
special case of �schema querying� has received a signi�cant amount of attention e�g��
���
����

The purpose of the present paper is to contribute towards these needed logical foun�
dations� by proposing and studying an extension of the relational algebra to allow for
meta programming� The proposed relational meta algebra� denoted byMA� extends the
relational algebra with four new operators for computing with relations in which not
only ordinary data values� but also relational algebra expressions can be stored� The
�rst new operator is extract� used to extract subexpressions from stored expressions�
The second is rewrite� used to rewrite subexpressions according to certain patterns as

�Work supported by NATO Collaborative Research Grant ������� A preliminary version of this work
was presented at the ��th ACM Symposium on Principles of Database Systems� Seattle� WA� ���	�

yResearch Assistant of the Fund for Scienti
c Research� Flanders�

is familiar from algebraic query optimization�� The third is wrap� used to convert data
values to relational algebra expressions�

The fourth and most important new operator of MA is eval� used to dynamically
evaluate stored expressions� A fundamental property one wants to achieve is type safety

of eval� in the sense that this dynamic evaluation never results in a run�time error�
To guarantee type safety� the operators extract and rewrite are carefully calibrated
so that they preserve syntactical correctness and so that the type of the expressions
resulting from their manipulations is determined statically�

The type system we put on MA is an adaptation of the simple two�level type sys�
tem discussed by Sheard and Hook in the context of Meta�ML �	��� We type ordinary
relations by their width� relational algebra expressions by the type of their result rela�
tions� and relations containing relational algebra expressions by typing the columns as
containing either ordinary data values or expressions of a designated type� Expressions
of MA� �nally� are again typed by the type of their result relations which may contain
expressions��

The contents of this paper are summarized as follows� We begin by recalling the
necessary de�nitions concerning relational databases and relational algebra� and intro�
duce our extension of the relational database model to allow for stored relational algebra
expressions in relations Section 	�� Then we introduce the operators ofMA Section ��
and give examples of interesting queries de�nable in MA Section ��� After that� we
investigate the expressive power of our formalism Section ��� Speci�cally� we establish
the following results�

� We present a many�sorted �rst�order calculus whose �safe� fragment is equivalent
to MA� thus extending Codd�s classical theorem on the equivalence of relational
algebra and calculus ����� This result is a generalization of Ross� �
��� who worked
in a model allowing only relation names� not general algebra expressions� to be
stored in relations�

	� We illustrate an interesting limitation on the expressive power of MA� due to
its inherently typed nature� there are computationally extremely simple queries�
well�typed at the input and output sides� which are nevertheless not de�nable in
MA� intuitively because their computation requires untyped intermediate results
which cannot be represented by a meta algebra computation�� The equivalence
with the calculus allows an elegant model�theoretic proof of this observation�

�� We show thatMA is a conservative extension of the relational algebra� in the sense
that as far as queries over ordinary relations not containing stored expressions�
are concerned� MA is no more expressive than the relational algebra��

�� We give a rigorous proof of the intuitively clear fact that eval is a primitive
operator� it cannot be simulated using the other operators� This stands in contrast
to the situation in a complete programming language such as Lisp �
�� where eval
is clearly de�nable in Lisp without eval and thus not primitive� Also the other
operators of MA are shown to be primitive�

�Generalizations of Codd�s theorem to extensions of the relation model have always been a popular
research topic �e�g�� ��� ��� �� ��� ����

�Analogous conservative extension properties are known for complex object databases ��� ��� ���
and spatial databases ����

	

The present paper is a follow�up on an earlier paper by three of us �	��� There�
we studied the expressive power of evaluating stored relational algebra programs in a
completely untyped setting� Relational algebra programs were encoded in data relations�
and the standard operators of the relational algebra were used to manipulate these
�program relations�� This approach resulted in a powerful� but di�cult to use� query
language called the re�ective relational algebra �RA�� Our main result was that by
adding eval to the relational algebra much more queries on classical relational databases
become de�nable� This stands in contrast to the conservative extension property ofMA
with respect to the standard relational algebra we prove here� In fact� our motivation for
the work reported in this paper was the desire to understand the situation where typing
and type safety are mandatory� and to design a formalism that is more programmer�
friendly than RA�

Two obvious directions for further research left open by our work are �i� to exper�
iment with how our model for typed meta database programming can be applied in
practice� and �ii� to better understand the precise expressive power of the relational
meta algebra� Concerning �i�� it could be interesting to try to integrate our model into
the SQL� or OQL context� Concerning �ii�� a concrete open problem is whether or not
the query �give all expressions of maximal length stored in relation R� is expressible in
the relational meta algebra�

� Relations� expressions� and meta relations

��� Relational databases and relational algebra

Assume a su�ciently large supply of relation names is given� where each relation name
has an associated arity a natural number�� To denote that relation name R has arity
n we write R � n� A database schema is a �nite set of relation names�

Assume further a universe V of data values is given� A relation of arity n is a �nite
subset of Vn� An instance of a database schema S is a mapping I on S which assigns
to each relation name R � n � S a relation IR� of arity n�

Fix a schema S� We denote the set of relational algebra expressions over S by A�
Each expression has an arity� as for relation names� to denote that expression e has arity
n we write e � n� Formally�

� For each v � V� fv�g �
 is in A�

� Each S � n � S is in A�

� If e� � n and e� � n are in A� then so are e� � e�� � n and e� � e�� � n�

� If e� � n� and e� � n� are in A� then so is e� � e�� � n� � n��

� If e � n is in A� then so are

� �i�je� � n� where i� j � f
� � � � � ng� and

� �i������ipe� � p� where i�� � � � � ip � f
� � � � � ng�

Given an instance I of S� an A�expression e � n over S evaluates to a relation of
arity n� which we denote by ��e��I � in the well�known manner�

�

� ��fv�g��I is the constant one�column one�tuple relation fv�g�

� ��R��I �� IR��

� ��e� � e���
I �� ��e���

I � ��e���
I �

� ��e� � e���
I �� ��e���

I � ��e���
I �

� ��e� � e���
I �� fx�� � � � � xn� � y�� � � � � yn�� j x�� � � � � xn�� � ��e���

I � y�� � � � � yn�� �
��e���

Ig�

� ���i�je���
I �� ft � ��e��I j ti� � tj�g�

� ���i������ipe���
I �� fti��� � � � � tip�� j t � ��e��Ig�

For selection and projection� the notation �ti�� stands for the value of tuple t in col�
umn i�

Example ��� Suppose S � fS � 	� T � 	g� Consider the A�expression e � 	 �
��������S � T � over S� For any instance I of S� which assigns concrete binary re�

lations IS� and IT � to S and T � the binary relation ��e��I equals the composition of
IS� and IT ��

Value selection can be expressed by combining the other operators� for example�
����John�S� can be expressed as ��������S � f�John��g��

Note that in a projection �i������ip � p is allowed to be �� in which case we obtain a
nullary relation� A nullary relation can contain the empty tuple� or it can be empty�
these two cases are usually taken to represent the Boolean values true and false� Hence�
nullary expressions can be used to express Boolean queries�

��� Extending the model

We want to extend the basic relational database model to allow not only data values�
but also relational algebra expressions to be stored in relations� Thereto� the simple
type system based on arities has to be extended �rst�

De�nition ��� A type is a tuple � � ���� � � � � �n�� where each �i is either the symbol ��
or is of the form hmi� where m is a natural number� In the �rst case� we say that i is a
data column of � � in the second case� we say that i is an expression column of � �

We can now de�ne typed tuples� and relations� containing expressions as follows�

De�nition ��� Let S be a schema� and let � � ���� � � � � �n� be a type� A tuple of type
� over S is a tuple x�� � � � � xn�� such that for each i �
� � � � � n�

� if �i is � then xi is a data value i�e�� an element of V��

� if �i is hmi then xi is an A�expression over S� of arity m�

A relation of type � over S is a �nite set of tuples of type � over S�

�

Note that a relation of type ��� � � � � �� n zeros� is an ordinary relation of arity n�
In the kind of systems we intend to model� there will be two kinds of relations�

First� we have ordinary relations containing only data values� the schema consisting of
the names of these relations is called the object�level schema� Second� we have relations
containing both data values and A�expressions over the object�level schema� the schema
consisting of the names of these relations is then called the meta�level schema� Formally�

De�nition ��� � A meta�level schema is a �nite set of relation names� where each
relation name has an associated type� To denote that a relation name R has type
� we write R � � �

� Let M be a meta�level schema� and let S be a schema disjoint from M i�e��
having no relation names in common�� An instance of M over S is a mapping J
on M which assigns to each relation name R � � � M a relation of type � over
S� The pair S�M� is called a combined schema� in which S is referred to as the
object�level schema�

� Finally� an instance of a combined schema S�M� is simply the union of an instance
of S and an instance ofM over S� We refer to such unions as combined instances�

Example ��� Let S be the schema of some database which is queried by several users�
such as that of a bookstore on the Internet� Queries are represented as A�expressions
over S� Suppose we want to monitor the usage made of the database by the users� Then
we may want to maintain a meta�level relation Log of type ��� hni�� containing pairs
u� q�� where u is a username and q is a query u has posed� The expression column hni
indicates that we focus on queries of some �xed arity n� In this simple example� the
object�level schema is S� an instance of S gives the concrete contents of the relations
named in S� The meta�level schema M contains Log and possibly other meta�level
relation names�� an instance ofM over S gives the concrete contents of the relation Log

and possibly of others��

� The relational meta algebra

The relational algebra is a core language for de�ning queries on ordinary instances� We
now want to have a similar formalism for de�ning queries on combined instances�

First� note that the �ve operators of the relational algebra can be canonically ex�
tended to work on meta�level relations as well as on ordinary� object�level relations� For
instance� if R � �h�i� h�i� is the name of a relation storing pairs of expressions of arity ��
we can write ����R� to retrieve those pairs from R with identical �rst and second com�
ponents� However� the relational algebra operators do not recognize stored expressions
as such� they are treated as abstract data values�

Hence� the �ve relational algebra operators are a good start� but additional opera�
tors are needed� We propose four new operators� extract� to extract subexpressions
out of stored expressions� rewrite� to rewrite subexpressions of� stored expressions�
wrap� to convert data values into expressions� and eval� to dynamically evaluate stored
expressions� So� extract� rewrite and wrap work syntactically on stored expressions�
while eval works semantically� Adding these four operators to the relational algebra
yields what we believe is the functionality one should expect from a core meta query
language�

�

��� Syntax

We now formally de�ne the expressions of the relational meta algebra� Each expression
has a type� derived from that of its subexpressions� to denote that expression e has type
� we write e � � �

De�nition ��� Fix a combined schema S�M�� The setMA of relational meta algebra
expressions over S�M� is the smallest set satisfying�

� For each v � V� fv�g � ��� is in MA�

	� Each relation name S � n � S is in MA� and is of type ��� � � � � �� n zeros��

�� Each relation name R � � �M is in MA�

�� If e� � � and e� � � are in MA� then so are e� � e�� � � and e� � e�� � � �

�� If e� � � and e� � � are in MA with � � ���� � � � � �n� and � � ���� � � � � �m�� then so
is e� � e�� � ���� � � � � �n� ��� � � � � �m��

�� If e � � is in MA with � � ���� � � � � �n�� then so are

� �i�je� � � � where i� j � f
� � � � � ng such that �i � �j� and

� �i������ipe� � ��i� � � � � � �ip �� where i�� � � � � ip � f
� � � � � ng�

�� If e � � is inMA with � � ���� � � � � �n� and i is a data column of � �� then wrapie� �
���� � � � � �n� h
i� is in MA�

�� If e � � is inMA with � � ���� � � � � �n� and i is an expression column of � � then the
following expressions are also in MA�

� extracti�me� � ���� � � � � �n� hmi�� where m is a natural number�

� rewrite�onei����e� and rewrite�alli����e�� both of type ���� � � � � �n� �i��
where �� � is a rewrite rule over S with respect to � to be de�ned shortly��
and

� evalie� � ���� � � � � �n� �� � � � � �� � zeros�� where � is given by �i � h�i�

��� Rewrite rules

To �nish the above de�nition we need to de�ne the system of rewrite rules on which the
rewrite operators are based� Thereto the classical notion of a term rewrite rule �
	�
must be adapted to our setting�

Let S be a schema and let � � ���� � � � � �n� be a type� Let C � f
� � � � � ng be the set
of expression columns of � � and for j � C let �j be given by �j � h�ji�

De�nition ��� A rewrite rule over S with respect to � is a rule of the form �� �� where
� and � are A�expressions of the same arity� over the augmented schema S�f�j j j � Cg�
Here� each �j is an expression variable of arity �j� We call � and � patterns with respect

to � �

An expression variable �j is formally nothing but a specially reserved relation name of
arity �j� intuitively it should be thought of as a placeholder for subexpressions of arity
�j�

�Recall De
nition ��� for the notions of data and expression column�

�

��� Semantics of the relational meta algebra

In the context of a given combined instance K of S�M�� an MA�expression e � � over
S�M� evaluates to a relation ��e��K of type � � We only de�ne ��e��K for cases � and � of
De�nition ��
� the �rst � cases are completely analogous to the semantics of the standard
relational algebra�

� ��wrapie���
K �� fx�� � � � � xn� xi� j x�� � � � � xn� � ��e��Kg�

� ��extracti�me���
K �� fx�� � � � � xn� x� j x�� � � � � xn� � ��e��K and x is a subexpression�

of xi that is of arity mg�

� ��rewrite�onei����e���
K �� fx�� � � � � xn� x� j x�� � � � � xn� � ��e��K and x is obtained

from xi by replacing one occurrence of f�� as a subexpression in xi by f��g�
Here f is the mapping on the expression variables occurring in the rewrite rule
de�ned by f�j� �� xj�

� ��rewrite�alli����e���
K is de�ned similarly� but now every occurrence of f�� in

xi is replaced by f���

� ��evalie���
K �� fx�� � � � � xn� y�� � � � � y�� j x�� � � � � xn� � ��e��K and y�� � � � � y�� �

��xi��
Ig�

Note that each operator extends each tuple with the result for that tuple� so that the
relationship between input and output is preserved�

AnMA�expression e � � over S�M� de�nes a mapping ��e�� from the set of combined
instances of S�M� to the set of relations of type � � Such a mapping is called a query

over S�M� of type � �
We now give some examples to illustrate the de�nition of the semantics of the basic

operators of the meta algebra�

Example ��� We use the combined schema S�M�� where S � fS � 	� T � 	� U � 	g
and M � fR � ��� h�i� �� h	i�g� Let K be a combined instance where KR� equals

a ����S�� ����T � d S

b ����S � T � � S � S� e U

c ���������������	S � T � S�� f S

� wrap�R� equals

a ����S�� ����T � d S a�
b ����S � T � � S � S� e U b�
c ���������������	S � T � S�� f S c�

	� extract���R� equals

�By subexpression we mean direct and indirect ones� So the subexpressions of ���������R � S� are
the expression itself� �����R� S�� R� S� R� and S�

�

a ����S�� ����T � d S ����S�� ����T �
b ����S � T � � S � S� e U ����S � T � � S � S�
b ����S � T � � S � S� e U ����S � T �
b ����S � T � � S � S� e U S � S

b ����S � T � � S � S� e U S � T

c ���������������	S � T � S�� f S ���������������	S � T � S��
c ���������������	S � T � S�� f S T � S

�� rewrite�one�����T R� equals

a ����S�� ����T � d S ����T �� ����T �
c ���������������	S � T � S�� f S ���������������	T � T � S��
c ���������������	S � T � S� f S ���������������	S � T � T ��

�� rewrite�all�����T R� equals

a ����S�� ����T � d S ����T �� ����T �
b ����S � T � � S � S� e U ����S � T � � S � S�
c ���������������	S � T � S�� f S ���������������	T � T � T ��

�� The above results are independent of the values KS� and KT �� This is of course
not so for the eval operator� which evaluates expressions over the object�level
relations� For example� if KS� and KT � are the following relations

S

x y

x x

T

u u

u x

then eval�R� equals

a ����S�� ����T � d S x x u u

b ����S � T � � S � S� e U x y u x

b ����S � T � � S � S� e U x x u x

b ����S � T � � S � S� e U x y x y

b ����S � T � � S � S� e U x y x x

b ����S � T � � S � S� e U x x x y

b ����S � T � � S � S� e U x x x x

c ���������������	S � T � S�� f S x y u x

c ���������������	S � T � S�� f S x x u x

�

��� Derived operators

We next exhibit a variety of derived operators that can be expressed in the meta algebra
in a similar way operators like semi�join and division can be expressed in the standard
relational algebra� These derived operators illustrate the expressive power of the meta
algebra and will turn out useful in various contexts considered below�

We �rst de�ne the construct operator which constructs new relation algebra ex�
pressions from relation algebra expressions stored in relations� This derived operator
is very convenient for manipulating relation algebra expressions� as is illustrated in the
examples in the next section� Moreover� this operator is used heavily in its most simplest
form in the proof of Theorem ����

At �rst sight� the pattern matching mechanism of the meta algebra seems rather
limited� since��variables in patterns can only be instantiated byA�expressions occurring
as components in tuples in relations� Therefore� we introduce a more liberal notion of
patterns where variables can be instantiated by arbitrary A�expressions� and de�ne
extract� rewrite�one and rewrite�all operators with such patterns�

Finally� building further on the previous derived operators� we de�ne derived opera�
tors selecting tuples matching some pattern� Clearly� the latter operators are useful to
check whether a certain A�expression occurs as a subexpression of a component of some
tuple� they are used as such in the examples of the next section�

����� Construct

The �rst operator constructs new relational algebra expressions from relational algebra
expressions stored in relations� Let R � � be a relation with � � ���� � � � � �n�� and let
� � m be a pattern over S with respect to � � Then construct�R� is the relation of type
���� � � � � �n� hmi� consisting of all tuples x�� � � � � xn� fx������xn���� where x�� � � � � xn� � R

and f is the mapping on the expression variables occurring in � de�ned by f�j� �� xj�

Example ��� Let R be as in Example ���� Then construct
����
������R� equals

a ����S�� ����T � d S ����S�� ����T �� � S � S�
b ����S � T � � S � S� e U ����S � T � � S � S�� � U � U�
c ���������������	S � T � S�� f S ���������������	S � T � S�� � S � S�

and construct��������
������R� equals

a ����S�� ����T � d S ��������S � S�
b ����S � T � � S � S� e U ��������U � U�
c ���������������	S � T � S�� f S ��������S � S�

The construct operator can be expressed in the meta algebra� For any v � V�
de�ne vm � m as the relational algebra expression

fv�g � fv�g � � � �� fv�g� �z �
m times

�

�

We then denote by evm the meta algebra expression

��extract��mrewrite�one��
v����
vm�wrap�fv�g�

of type �hmi� which constructs the relation fvm�g� The operator construct�R� now
equals

�������n�n��rewrite�alln���vm��R � evm��

For any relational algebra expression e� we denote by hei the expression

��constructefv�g��

for some arbitrary data value v� We denote the induced operator by h�i� This derived
operator will be used in the proof of Theorem ����

����� Generalized patterns

Next we generalize patterns with new expression variables� so�called 	�variables� These
expressions variables are instantiated by arbitrary subexpressions� in contrast to the ��
variables which are only instantiated by expressions occurring as components of tuples
in relations�

So assume given additional expression variables of all possible arities� denoted by a
possibly subscripted 	� Generalizing De�nition ��	� a generalized pattern over a schema
S with respect to a type � is a relational algebra expression over the augmented schema
S � f�j j j � Cg � V� where V is a set of 	�variables� A generalized rewrite rule over
S with respect to � is of the form � � �� where � and � are now generalized patterns
such that all 	�variables in � occur in �� C and the �j are as in De�nition ��	�

We now de�ne extract� rewrite�one and rewrite�all operators in terms of these
generalized patterns and show that they can be simulated in the meta algebra�

Let R � � be a relation with � � ���� � � � � �n�� let i be an expression column of � �
and let � � m be a generalized pattern� Then extracti��R� is the relation of type
���� � � � � �n� hmi� consisting of all tuples x�� � � � � xn� f���� where x�� � � � � xn� � R and f

is a mapping on the expression variables of � such that

� f�� is a subexpression of xi�

� 	 and f	� are of the same arity� for each 	 in �� and

� f�j� � xj � for each j � C�

Example ��� Let S � fS � 	� T � 	g and let R be the following relation of type �h	i� h�i��

T ����T �� ����S�
S ����T � S� � T � T �

Then extract������
��R�� where the arity of 	 is 	� yields the following relation�

T ����T �� ����S� ����T �
T ����T �� ����S� ����S�

�

The operator extracti��R� can be expressed in the meta algebra� Suppose � con�
tains the 	�variables 	�� � � � � 	r where for each j �
� � � � � r� 	j is of arity sj� Let R

� be
the expression

extracti�sr � � � extracti�s�extracti�mR��

Then extracti��R� is expressed by

�������n���n�r���n��construct��R
���

where �� is obtained from � by replacing each 	j by �n�j �
Let R � � be a relation with � � ���� � � � � �n�� let i be an expression column of

� and let � � � be a generalized rewrite rule over S with respect to � � Then
rewrite�onei����R� is the relation of type ���� � � � � �n� �i� consisting of all tuples x�� � � � �
xn� x�� where x�� � � � � xn� � R� f is a mapping on the expression variables occurring in
� such that

� f�� is a subexpression of xi�

� 	 and f	� are of the same arity� for each 	 in �� and

� f�j� � xj � for each j � C� and

x is obtained from xi by replacing one occurrence of the subexpression f�� in xi by
f���

The restriction that all 	�variables of � also have to occur in � makes sure that each
mapping f on the variables of � uniquely determines f���

Example ��� Consider relation R from Example ��� again� Then

rewrite�one����SR��

where the arity of 	 is 	� equals

T ����T �� ����S� ����S�� ����S�
T ����T �� ����S� S � ����S�
T ����T �� ����S� ����T �� ����S�
T ����T �� ����S� ����T �� S

S ����T � S� � T � T � ����S � S� � T � T �
S ����T � S� � T � T � ����T � S� � T � T �
S ����T � S� � T � T � ����T � S� � S � T �
S ����T � S� � T � T � ����T � S� � T � S�

and the expression rewrite�one�����������
�����R�� where the arity of 	 is 	� yields

T ����T � S� � T � T � ��������T �� S� � T � T �
T ����T � S� � T � T � ����T � S� � ����T �� T �

To show that a rewrite operation involving generalized rewrite rules can be expressed
in the meta algebra� consider rewrite�onei����R�� where 	�� � � � � 	r are the 	�variables
that occur in �� � and for j �
� � � � � r� 	j is of arity sj� Let R

� be the expression

extracti�sr � � � extracti�s�R��

Then rewrite�onei����R� is expressed by

�������n�n�r��rewrite�onei������R
���

where �� ��� is obtained from � �� by replacing each variable 	j by �r�j�
Let R � � be a relation with � � ���� � � � � �n�� let i be an expression column of

� and let � � � be a generalized rewrite rule over S with respect to � � Then
rewrite�alli����R� is the relation of type ���� � � � � �n� �i� consisting of all tuples x�� � � � �
xn� x�� where x�� � � � � xn� � R� f is a mapping on the expression variables occurring in
� such that

� f�� is a subexpression of xi�

� 	 and f	� are of the same arity� for each 	 in �� and

� f�j� � xj � for each j � C� and

x is obtained from xi by replacing all occurrences of the subexpression f�� in xi by
f���

Example ��	 Consider relation R from Example ���� Then rewrite�all����SR��
where the arity of 	 is 	� equals

T ����T �� ����S� ����S�� ����S�
T ����T �� ����S� S � ����S�
T ����T �� ����S� ����T �� ����S�
T ����T �� ����S� ����T �� S

S ����T � S� � T � T � ����T � S� � T � T �
S ����T � S� � T � T � ����S � S� � S � S�

Now rewrite�alli����R� is expressed by

�������n�n�r��rewrite�alli������R
���

where �� ��� is obtained from � �� by replacing each variable 	j by �r�j� and R� is
as above�

����� Matching

Our last two derived operators are straightforward abbreviations of expressions using
extract� For a relation R � ���� � � � � �n�

	

� De�ne
matchi��R� �� �� � � � �n�i�n��extracti��R��

This operator selects all tuples t for which the pattern � matches ti��

	� De�ne
submatchi��R� �� �� � � � �nextracti��R��

This operator selects all tuples t for which the pattern � matches a subexpression
of ti��

Note that the de�nitions stated above do not give immediate rise to e�cient implemen�
tations� there are more direct ways to implement matching and sub�matching� A similar
remark applies to the other derived operators presented in this section�

� Applications of the relational meta algebra

In this section we discuss several applications of the meta algebra which also serve to
illustrate its expressive power� To this end� we will �rst introduce an example situation
already hinted upon in Example 	���

��� An example

Consider the schema S of a bookstore database which can be queried by users over the
Internet� The bookstore puts relations it gets from publishers into this database� but
the database administrator does some integration of these relations into views before the
database goes on�line� The bookstore provides access to several such prede�ned views�
at the same time� it wants to monitor the usage made of the database by users�

More speci�cally� let schema S contain publisher�speci�c information such as the
following� Publisher A has a distinct relation for each subject area he is active in� e�g��
ACompSci for computer science books� AMath for mathematics� APhys for physics and
so on� Each of these relations keeps track of subarea� author� title� price� and ISBN�
Publisher B provides one relation BSubject for information on subject� area and ISBN�
another relation BBook speci�es ISBN� price� title� and author� So S � fACompSci�

AMath� APhys� BSubject� BBook� � � � g�
We assume querying is done through a prede�ned form into which selection criteria

can be entered� The form provides access to views such as all computer science books� all
books� all database books� etc� Views de�nitions and queries over these views are naturally
formalized as A�expressions over S� For example� the view regarding �databases� could
be de�ned as follows�

�������	����databases� ACompSci�
� �	����������computer science� ��� �pers� prog� lang�� BSubject � BBook �

� ����computer science� ��� �info� systems� BSubject � BBook���

Similarly� the view regarding �all� could have the following de�nition�

�������	ACompSci� � �	������BSubject � BBook ��

�

Notice that we make use of shorthand notations here� for example� the natural join is
not formally part of the relational algebra but is a well�known short�hand�

For the purposes mentioned above� the bookstore maintains the meta schema M �
fViews� Logg� where both meta relations are of type ��� h�i�� Views contains pairs n� e�
where n is the name of a view and e is the expression of arity �� de�ning the view�
Whenever a user poses a query� such as �show all books by author Smith�� an entry in
relation Log is made� which contains pairs u� q� where u is the name of a user and q is
a query u has posed�

��� View management queries

We now give several examples of how to use the meta algebra to express view manage�
ment queries� For the sample application described above� suppose that publisher A
changes the name of relation ACompSci to ACS� a corresponding update of all entries
in relation Views can be done by

����rewrite�all��ACompSci�ACS Views��

The next query retrieves all views that do not use relations from publisher B�

Views �
�
R�R

submatch��RViews���

where R denotes the set of all relations from publisher B� With the following meta
algebra query we can select those pairs of views that evaluate to the same relation�
based on the current state of the database�

����Views �Views�� ����eval	construct
�������
������Views �Views�

This query constructs an expression computing the symmetric di�erence of two views
and evaluates it� The resulting pairs are of views that are distinct� hence the application
of the di�erence operator to get the equal i�e�� non�distinct� pairs�

Adding� a new view can be done easily� If e is the de�nition of a new view called
�logic�� then we add �logic��� hei� to Views�

Now suppose publisherA ships� in a meta�relation Updates� pairs of the form eR� R��
where R is the name of a relation coming from publisher A� and eR is an expression
that evaluates to a new content for relation R� For example� a pair in relation Updates

could be

ACompSci � f�AI��g � � � ��� � � �� � f�Java��g � � � ��� � � �� � ACompSci �

To �nd out which views will be a�ected by these updates� provided they have not yet
been applied� we can use the following meta algebra query�

��eval��	�construct
�������
�����������rewrite�all�������

rewrite�all�������Updates �Updates �Views��

This query tentatively replaces each relation appearing in a view de�nition by its up�
dated version� Then the old and the new view are compared in the same way as already
done earlier�

�

Similar techniques can be used to express query expansion� given a set of queries
over the views� expand the view names by their de�nition� We leave this as an exercise
to the reader�

Finally� suppose we want to compute all pairs x� y� such that x is an expression
stored in Views and y � 	 is a subexpression of x occurring at least twice in x� The naive
attempt

��������extract���extract���Views�

is incorrect� to distinguish di�erent occurrences of the same subexpression we have to
mark them in some way� This can be done using rewrite�one� Assume we have some
dummy relation name D � S of arity �� An occurrence x of a subexpression can now be
�marked� by rewriting it into x�D� So if mark is the following meta algebra expression�

������rewrite�one��������Dextract���Views��

then the wanted query is expressible as

������������	����mark� mark��

��� Queries on queries

We next illustrate how the meta algebra can be used to query the queries stored in the
Log relation� in order to �nd out the behavior of the users of the Internet site�

If we want to see for every user u the results of all queries posed by u as recorded
in Log� evaluated on the current instance� we simply write

�������	��eval�Log��

To determine all queries that gave no result� we use

��Log�� ��eval�Log��

To �nd out all users that used relation ACompSci in a query but never relation
AMath� the following expression can be used�

��submatch��ACompSci Log�� ��submatch��AMathLog��

The following query expression will return the union of the results of the queries posed
by user Jones�

�����	��eval�����Jones�Log��

To obtain the intersection of the results of the queries posed by Jones� the following
can be done� Let adom be the relational algebra expression that computes the active
domain of the database� Then the query is expressed by

�����	��eval�����Jones�Log�� ���	����eval�constructadom���
����Jones�Log��

The next query retrieves the items that occur as a result in at least two queries posed
by Jones�

�������eval	construct���������Jones�	���	����Log � Log��

The last query returns all the data values appearing as constants in queries asked by
Jones�

�����	extract�������Jones�Log� � wrap� adom���

�

� Expressive power of the relational meta algebra

��� An equivalent calculus

Codd�s classical theorem ��� �� 	�� says that the queries expressible in the relational
algebra are precisely the queries de�nable in �rst�order logic in this context referred to
as the relational calculus�� We now show how this equivalence can be extended to the
meta algebra by introducingMC� the relational meta calculus� This equivalent calculus
will also prove to be helpful in establishing properties of the expressive power of the
meta algebra see Sections ��	 and �����

Fix a combined schema S�M�� Our calculus uses two kinds of variables� data
variables and expression variables� Data variables will range overV the universe of data
values�� Expression variables have an associated arity and range over the A�expressions
over S of that arity�

Terms are de�ned as follows�

� data variables and data values are terms of sort ��

� an A�expression over the augmentation of S with a �nite set of expression variables
is a term of sort hni� where n is the arity of the expression� and

� an expression of the form x�� where x is a data variable or a data value� is a term
of sort h
i�

Atomic formulas can be of one of the following forms�

� Sx�� � � � � xn�� where S � n � S and each xi is a data variable�

� Rt�� � � � � tn�� where R � ���� � � � � �n� �M and each ti is a term of sort �i�

� t� � t� and t�
 t�� where t� and t� are terms of the same expression sort�

� rewrite�onet�� t�� t�� t�� and rewrite�allt�� t�� t�� t��� where t�� � � � � t� are terms
such that t� and t�� and t� and t� have the same expression sort� respectively� and

� evalt� x�� � � � � xn�� where t is a term of sort hni and x�� � � � � xn are data variables�

Formulas� �nally� are built from atomic formulas in the standard manner using Boolean
connectives and quanti�ers� The set of all formulas is denoted by MC�

Assume given an MC�formula 	� a combined instance K � I�J � of S�M�� and a
valuation
 of the free variables of 	mapping data variables to data values and expression
variables to A�expressions over S of the right arity� The truth of 	 in K under
� denoted
by K j� 	�
�� is de�ned in the standard way given the following semantics for the above
terms and predicates�

� the term
x�� equals the constant A�expression
x���

� t�
 t� means that
t�� is a subexpression of
t���

� rewrite�onet�� t�� t�� t��� respectively rewrite�allt�� t�� t�� t��� means that
t��
is obtained from
t�� by replacing one� respectively every� occurrence of
t�� in

t�� by
t��� and

�

� evalt� x�� � � � � xn� means that x�� � � � � xn� is in the result of evaluating ��
t���I �

An MC�formula 	 with free variables x�� � � � � xn of sorts ��� � � � � �n� respectively� de�nes
the query q of type ���� � � � � �n� de�ned by qK� � f
x��� � � � �
xn�� j K j� 	�
�g� Of
course this is only well�de�ned if qK� is �nite for every K� However� a syntactical
restriction called safety can be put on MC�formulas such that �niteness is guaranteed�
Our de�nition of safety is a natural extension of the de�nition given by Ullman �	�� for
the classical relational calculus�

De�nition ��� A meta calculus formula is safe if�

� It does not contain ��

� Any subformula of the form 	�� is such that 	 and � have the same free variables�

� Let � be a maximal subformula of the form �� � � � �n� Maximal in the sense
that there is no longer subformula of the form � � or � ��� Then we must be
able to deduce that every free variable of � is limited using the following deduction
rules� If x is a data variable then x is limited if

� x occurs free in one of the �s that is not negated i�e�� not of the form ��
and that is not x � y or eval�

	� one of the �s is of the form x � v� where v � V�

�� one of the �s is of the form x � y and y is already limited�

�� one of the �s is of the form x� � y� where y is already limited� or

�� one of the �s is of the form evalt� y�� � � � � ym�� where x is one of the ys and
all variables occurring in t are already limited�

If x is an expression variable� then x is limited if

�� x occurs free in one of the �s that is not negated i�e�� not of the form ��
and that is not of the form t� � t�� t�
 t�� rewrite�one� rewrite�all� or
eval�

�� one of the �s is of the form t� � t� or t� � t�� where x occurs in t� and all
the variables occuring in t� are already limited�

�� one of the �s is of the form t�
 t�� where x occurs in t� and all the variables
of t� are already limited�

�� one of the �s is of the form y� � x� where y is already limited� or

�� one of the �s is of the form rewrite�onet�� t�� t�� t�� or rewrite�allt�� t�� t��
t��� where x occurs in t� and all variables occurring in t�� t� and t� are already
limited�

Before we prove that the meta algebra and the safe meta calculus are equivalent we
show how some of the example queries in Section � can be expressed in this calculus�

Example ��� The query that changes in each view de�nition the name of relation
ACompSci to ACS �

	x� y� � �z�Viewsx� z� rewrite�allz�ACompSci �ACS � y���

�

The query that retrieves the pairs of views that evaluate to the same relation�

	x� y� � �v��w�Viewsx� v� Viewsy� w� ��z�evalv� �z�� evalw� �z����

The query that selects all users that have used the relation ACompSci in a query but
never relation AMath�

	x� � �y�ACompSci
 y Logx� y�� ��y�AMath
 y Logx� y���

The query that returns the intersection of the results of the queries posed by user Jones�

	�x� � �y�LogJones � y�� evaly� �x���

We now show�

Theorem ��� The meta algebra and the safe meta calculus are equivalent�

Proof� It is very easy to construct for every meta algebra expression an equivalent safe
meta calculus formula� The proof goes along the lines of the well known proof that the
standard relational algebra can be expressed in the safe relational calculus ��� 	�� and is
therefore omitted�

The essential part of the proof of the other direction is the construction� for any
safe calculus formula 	�x�� of an algebra expression dom� such that on any instance K

and for any valuation
� K j� 	�
� implies
�x� � ��dom���
K� In the well�known proof

of the simulation of the standard relational calculus by the standard relational algebra�
dom� is simply the expression computing the active domain� In our case� however� new
expressions can be generated by calculus expressions� so the de�nition of dom� is a bit
more complicated�

Let 	 be a meta calculus formula� De�ne dom���
� as the meta algebra expression that

computes the union of the set of data values in the active domain with the set of data
values occurring in 	� Let p be the maximum arity of a term occurring in 	� let T be
the set of all terms occurring in 	� and let T ground be the set consisting of all ground
terms that are subexpressions of terms occurring in 	� For j �
� � � � � p� de�ne the meta
algebra expression domhji��

� of type �hji� by

domhji��
� ��

�
fhei j e � hji � T groundg

�
�
f��R� j R � ���� � � � � �k� �M� � � f
� � � � � kg and �� � hjig�

For i �
� de�ne the meta algebra expression dom��i��
� of type ��� by

dom��i��
� ��

�
f�k��eval�dom

h�i�i
� � j � � f
� � � � � pg and k � f
� � � � � �gg�

de�ne the meta algebra expression domh�i�i��
� of type �h
i� by

domh�i�i��
� �� domh�i�i

�

�
Sp
��� ��extract���dom

h�i�i
� �

�
Sp
��� ��rewrite�one�������dom

h�i�i
� � domh�i�i

� � domh�i�i
� �

�
Sp
��� ��rewrite�all�������dom

h�i�i
� � domh�i�i

� � domh�i�i
� �

� ��wrap�dom
��i
� �

� U h�i�i�

�

where U h�i�i is the union of the expressions hte�� � � � � en�i such that tx�� � � � � xn� �
 �
T � n �
� and for each � �
� � � � � n� x� is an expression variable of sort hj�i and
e� � domhj�i�i

� � Finally� for i �
 and j �� 	� � � � � p� de�ne the meta algebra expression

domhji�i��
� of type �hji� by

domhji�i��
� �� domhji�i

�

�
Sp
��� ��extract��jdom

h�i�i
� �

�
Sp
��� ��rewrite�one�������dom

hji�i
� � domh�i�i

� � domh�i�i
� �

�
Sp
��� ��rewrite�all�������dom

hji�i
� � domh�i�i

� � domh�i�i
� �

� U hji�i�

where U hji�i is the union of the expressions hte�� � � � � en�i such that tx�� � � � � xn� � j �
T � n �
� and for each � �
� � � � � n� x� is an expression variable of sort hj�i and
e� � domhj�i�i

� �
Let m be the number of occurrences of variables in 	� Then de�ne for j �
� � � � � p�

domhji
� �� domhji�m

� � If � � ���� � � � � �k� then de�ne dom�
� as the meta algebra expression

dom��
� � � � � � dom�k

� �

A proof of the following lemma can be found in Appendix A�

Lemma ��� For any safe MC�formula 	x�� � � � � xk�� where each xi is of type �i� and

for any valuation
� if K j� 	�
� then
xi� � ��dom�i
� ��

K for all i � f
� � � � � kg�

For each safe meta calculus formula 	�x�� we construct a meta algebra expression
e� such that for every instance K and for every valuation
� K j� 	�
��
�x� � ��e���

K�
W�l�o�g�� we assume only terms that are variables appear in atomic formulas that are not
equalities and that all variables appearing in the same occurrence of an atomic formula
are di�erent� Furthermore� we assume that all equalities are of the form x � t where x
is a variable and t is a term� In the following� every variable xj is of sort hiji�

We transform all subformulas � by the following inductive process�

� If � � R�x�� where R � S �M� then e� �� R�

	� If � � x� � tx�� � � � � xn� then

e� �� �������n�����n��constructt�dom
�hi�i�����hini�
� ��

where t� is the pattern obtained from t by replacing each xj by �j���

�� If � � x�
 x� then e� �� ����extract��i�dom
�hi�i�
� ��

�� If � � rewrite�onex�� x�� x�� x�� then

e� �� rewrite�one�������dom
�hi�i�hi�i�hi�i�hi�i�
� ��

�� If � � rewrite�allx�� x�� x�� x�� then

e� �� rewrite�all�������dom
�hi�i�hi�i�hi�i�hi�i�
� ��

�� If � � evalx�� y�� � � � � yn� then e� �� eval�dom
�hi�i�
� ��

�

�� If � � ���x�� � � � � xn� then e� �� dom�hi�i�����hini�
� � e�� �

�� If � � �� � �� then e� �� e�� � e�� �

Remark ��� It follows from the above proof that any meta algebra expression is equiv�
alent to one where every rewrite operator uses patterns that consists of only boxes� i�e��
every rewrite operator is of the form rewrite�onei��j��k or rewrite�alli��j��k �

��� Limitations of the typed approach

The meta algebra and the meta calculus are strictly typed formalisms� It is impossible
to de�ne relations with columns containing expressions of di�erent arities� However� we
can give an example of a natural and simple query that seems to have the property that
computing it really requires such untyped intermediate results�

Theorem ��� Let R � �h
i� � M� Let q be the query of type �h
i� de�ned as follows�

given an instance K� qK� is the set of expressions in KR� that are of the form ��� � ���
This query is not de�nable in the meta algebra�

Proof� The equivalence of the meta algebra with the meta calculus allows an elegant
model�theoretic proof of this theorem� The A�expressions over a schema S form a
structure in the sense of mathematical logic �
��� consisting of the relation names in S as
constants� the operators as functions� and the relations
 subexpression�� rewrite�one�
and rewrite�all� This structure is many�sorted� for example� we do not have one single
function � but rather have a separate one �n�m of sort hni� hmi� � hn �mi for all
arities n and m�

Now suppose� for the sake of contradiction� that there is an MC�formula 	 de�ning
the query q from the theorem� Since the query is independent of the object�level instance
we can as well assume that all object�level relations are empty� Hence� we may assume
without loss of generality that 	 neither uses data variables� object�level relation names�
nor eval�

So 	 is essentially a �rst�order logic formula� evaluated over the above�described
structure of A�expressions� call it E � expanded with a relation R of sort h
i� Let n be
strictly larger than the arity of any term occurring in 	� Then 	 looks only at Ej	n� the
restriction of E to sorts hmi with m � n�

De�ne the following function f on A�expressions e� fe� is obtained from e by
replacing each occurrence of a subexpression of the form ��e

��� where e� is n�ary� by
��e

��� and conversely� replacing each occurrence of a subexpression of the form ��e
���

where e� is n�ary� by ��e
��� This function is an automorphism of Ej	n� It maps ��S

n�
to ��S

n� and back� where Sn stands for S � � � � � S n times��
Hence� on an instance in which R consists of the two expressions ��S

n� and ��S
n��

the query de�ned by 	 will either contain both expressions in the result� or none of
them� since �rst�order logic formulas cannot distinguish between automorphic elements�
This yields the desired contradiction� since ��S

n� is not of the form ��� � ���

Theorem ��� o�ers the most challenging direction for further research� How can our
formalism in particular its type system� be generalized so that queries of the kind

	�

mentioned in the theorem become expressible� at the same time not giving up on type�
safety of eval�

Note that Theorem ��� may be compared to a similar situation in the design of
computationally complete query languages� The language QL� proposed and studied
by Chandra and Harel ���� is an adaptation of the relational algebra designed to work
with �untyped� relations of variable width� to which a while�loop construct is added�
QL is computationally complete� If� however� the ordinary �typed� relational algebra
is extended with while�loops� one gets a language whose expressiveness remains within
PSPACE ��� ���

Another situation to which Theorem ��� may be compared to is that of the lambda
calculus� Functions on the natural numbers� encoded as functions on Church numerals�
are typed� But again the computation of many such functions requires intermediate re�
sults that are untyped� in the untyped lambda calculus all partial recursive functions are
de�nable� while in the simply�typed lambda calculus only a restricted class of functions�
the so�called extended polynomials� are de�nable ���
���

��� Non�redundancy

A natural question to ask is whether the meta algebra is non�redundant� i�e�� whether
each operator provided in the meta algebra is primitive not expressible using the other
operators��

As a matter of fact� we obtain the following theorem�

Theorem ��	 The meta algebra is not redundant�

Regarding primitivity of the �ve relational algebra operators� it is easily seen and
well known that each of them is primitive within the standard relational algebra� Of
course this does not automatically imply primitivity within the meta algebra� The latter
follows nevertheless because the meta algebra admits a conservative extension property

which we prove in the next section� In Appendix B we give detailed� but technical�
proofs of the primitiveness of wrap� extract� rewrite�one and rewrite�all�

We now show the primitivity of eval� The equivalence with the meta calculus allows
for an elegant model�theoretic proof� We make use of the structure E of A�expressions
introduced in Section ��	� Let S � fE � 	� U �
g and M � fQ � �h�i�g� De�ne the
instance I of S by IE� � f
� 	�g and IU� � f
�g� For any natural number m�
de�ne the instance Jm

� over M by Jm
� Q� � f�
��E

m� � U�g and de�ne Jm
� by

Jm
� Q� � f�
��E

m� � U�g� For any natural number m and i � f
� 	g de�ne the
combined instance Km

i � I�Jm
i �� Then� for all m� ��eval�Q���

Km
� �� ��eval�Q���

Km
� �

We now proceed like in Section ��	� Suppose� for the sake of contradiction� that there
is anMA�expression 	 without eval that expresses the query evalQ�� By Theorem ���
there exists an equivalent MC�sentence 	� Moreover� 	 does not contain eval� So 	

is a �rst�order logic formula over E expanded with the relations E� U and Q� Let n be
strictly larger than the arity of any term occurring in 	� Then 	 looks only at Ej	n� the
restriction of E to sorts hmi with m � n�

De�ne the following function f on A�expressions e� fe� is obtained from e by replac�
ing each occurrence of a subexpression of the form ��e

��� where e� is n�ary� by ��e
���

and conversely� replacing each occurrence of a subexpression of the form ��e
��� where e�

is n�ary� by ��e
��� This function is an automorphism of Ej	n� It maps �
��E

n� � U�
to �
��E

n� � U� and back�

	

The structures Ej	n�K
n
� � and Ej	n�K

n
� � are isomorphic via f

�� where f � is the iden�
tity on I and is de�ned as f on A�expressions� Since �rst�order logic cannot distinguish
between isomorphic structures� we have that 	 holds in the instance Km

� if and only if
	 holds in the instance Km

� � This yields the desired contradiction�

��� Conservative extension

In this section� we prove that the meta algebra provides no power above that of the
relational algebra if only classical queries not involving meta�level relations are under
consideration� More concretely� we show�

Theorem ��
 Let S be a schema and let q be a query over S� �� of type ��� � � � � �� �n
zeros�� If q is de�nable in the meta algebra then q is already de�nable in the relational

algebra�

We prove this theorem in two lemmas� To state the �rst lemma� we introduce the
following notions� Let D be a schema consisting of unary relation names only� We call
such a schema a �dummy schema�� Dummy relation names will serve as representatives
of relational algebra expressions of the form v� with v � V� Let � � ���� � � � � �m� be a
type� A column assignment of D in � is a function � � D � f
� � � � �mg such that for
every D � D� �D� is a data column� A column sequence of � is a sequence i�� � � � � in�
with i�� � � � � in � f
� � � � �mg� We denote the type ��i� � � � � � �in � by �i������in��� Let � be a
column assignment of D in �� and let � be a column sequence of �� For any meta�relation
R of type � containing A�expressions over the schema S�D� de�ne the following relation
of type �
���

���
R� �� �
R
���

where

R� �� fx��� � � � � x
�
m� j x�� � � � � xm� � R and for each i �
� � � � �m�

x�i is obtained from xi by replacing each occurrence of a name D � D

by the expression x�
D��g

If I is an instance of S then we extend I to an instance ID of S�D by setting IDD� �� �
for each D � D� We denote the relational algebra extended with the h�i operator by
Ah�i�	

Lemma ��� Let e � � � with � � ���� � � � � �n�� be a meta algebra expression over S� ���
There exists

� a dummy schema De�

� a natural number me�

� an Ah�i�expression �e � �� with � � ���� � � � � �me �� over the combined schema S �
De� ���

� a column assignment �e of De in ��

�The operator h�i is de
ned in Section ������

		

� a column sequence �e of � such that �
e�� � � �

� a �nite set Ae of A�expressions over S � De�

such that for any instance I of S

� ��e��I � ��e�
e���e��
ID�� and

� for every expression column j� ���j�e���
ID � Ae�

Proof� The proof proceeds by induction on the structure of e� Suppose e is an MA�
expression as in the lemma� for which we assume the lemma already holds� Let Ve be
the set of all data values that appear as constant expressions in expressions in Ae� let
E be an equivalence relation on De� and let � be a partial� injective function from E�
equivalence classes into Ve� We call E� �� an instantiation of e� For any D � De� if the
value of � on D�s equivalence class in E equals v � Ve� then we also write �D� � v�
If � is unde�ned on D�s equivalence class� then we also write �D� � �� Intuitively� if
�D� � v� then D is a representative of the constant expression v�� and if �D� � ��
then D is a representative of a constant expression v�� for some data value v� appearing
in the database but not in Ve� The equivalence relation E then speci�es which dummy
relation names represent the same constant expression� We now de�ne �E�� as the
smallest equivalence relation on A�expressions over S � De such that�

� For D�D� � De� if D�D�� � E� then D �E�� D
��

� For D � De and v � V� if �D� � v� then D �E�� v��

� For expressions e� and e� and any unary A�operator op� if e� �E�� e�� then
ope�� �E�� ope���

� For expressions e�� e�� e�� e� and any binary A�operator op� if e� �E�� e� and
e� �E�� e�� then e� op e� �E�� e� op e��

We then introduce the following notations�

� The sequence consisting of all selection operators in

f��e
D���e
D�� j D�D�� � Eg

or
f��e
D����e
D�� j D�D�� � De �De��Eg

is denoted by �eE �

� For any D � De such that �D� � �� we denote the sequence consisting of all
selection operators in

f��e
D���v j v � Veg

by �e��D� If �D� �� �� we de�ne �e��D as ��
e�
D���
D��

� The sequence consisting of all �e��D with D � De is denoted by �e��

We can now start with the actual proof� In the following� we denote the jth element
of a column sequence � by �j�� The cases where e � v� or e � R� with R � S� are
trivial�

	�

� e � wrapie
��� De�ne �e �� �e� � hD�i� where D� �� De� � me �� me� �
� De ��

De� � fD
�g� for each j �
� � � � � n de�ne

�ej� ��

�
�e�j� if

 j � n�
m�

e �
 if j � n�

for each D � De de�ne

�eD� ��

�
�e�i� if D � D��
�e�D� otherwise�

and de�ne Ae �� Ae� � fD
�g�

� e � �i������ipe
��� �e �� �e� � me �� p� De �� De� � for j �
� � � � � p� de�ne �ej� ��

�e�ij�� �e �� �e� � and de�ne Ae �� Ae� �

� e � e� � e�� We assume the following�

� �e� � �e� if not� we rearrange columns in �e����

� me� � me� suppose me� � me� � then take a new dummy relation name D
and rede�ne �e� as �e� � hDi � � � �� hDi me� �me� times��� and

� De� �De� � ��

De�ne �e �� �e� ��e� � me �� me� � De �� De� �De� � �e �� �e� � �e �� �e� ��e� � and
Ae �� Ae� �Ae� �

� e � e� � e�� We assume De� �De� � �� Let e� be of arity n� and e� of arity n��
De�ne �e �� �e� � �e� � me �� me� �me� � De �� De� �De� � for i �
� � � � � n� � n��
de�ne

�ei� ��

�
�e�i� if

 i
 n��
�e�i� �me� if n� �

 i
 n� � n��

for each D � De de�ne

�eD� ��

�
�e�D� if D � De� �
�e�D� �me� if D � De� �

and de�ne Ae �� Ae� �Ae� �

� e � �i�je
��� If i and j are data columns this is easy� So suppose i and j are

expression columns with �i � �j � h�i� de�ne �e as�
f�e

�

� �
e�

E�
e�
i��t��
e�
j��t��e�� j

E� � an instantiation of e�� t� � � � Ae� � t� � � � Ae� � and t� �E�� t�g�

De�ne me �� me� � De �� De� � �e �� �e� � �e �� �e� � and de�ne Ae �� Ae� �

� e � e� � e�� As in the case e � e� � e�� we can assume that �e� � �e� � me� � me�

and De� �De� � �� Let I denote the set of data columns in � � Then de�ne �e as

�e� � �������me�

�
��V

i�I

e�
i��me��
e�
i�

�e� � �e�� �
�
i��I

���e� 	i
�me���e� 	i

e��e��

�
A �

De�ne me �� me� � De �� De� � �e �� �e� � �e �� �e� � and Ae �� Ae� �

	�

� e � rewrite�onei����e
��� By Remark ��� we can assume that � � �j and

� � �k� Let �i � h��i� �j � h��i� and �k � h��i� De�ne �e as�
f�e

�

� �
e�

E�
e�
i��t��
e�
j��t��
e�
k��t��e��� T
t��t��t�
E�� j t� � �� � Ae� �

t� � �� � Ae� � t� � �� � Ae� � and E� � is an instantiation of e�g�

where

T
t��t��t�
E�� �

�
fht�i j t� is obtained by replacing in t�

a subexpression t by t� for some t �E�� t�g�

De�ne me �� me� �
� De �� De� � for k ��
� � � � � n� de�ne

�ek� ��

�
�e�k� if

 k � n�
me� �
 if k � n�

de�ne �e �� �e� � and de�ne Ae as the union of A
�
e with all the T

t��t��t�
E�� s that appear

in �e�

� e � rewrite�all� similar to the previous case�

� e � extracti�me
��� Let �i � h�i� De�ne �e as�

f�
e�
i��t�e��� T t j t � � � Ae�g�

where T t � fht�i j t� � m is a subexpression of tg�

De�ne me �� me� �
� De �� De� � for k ��
� � � � � n� de�ne

�ek� ��

�
�e�k� if

 k � n�
me�� �
 if k � n�

de�ne �e �� �e� � and de�ne Ae as the union of Ae� with all the T ts that appear in
�e�

� e � evalie
��� Let �i � h�i� and let the arity of e� be n�� so n � n� � �� De�ne

De �� De� � me �� me� � �� for k ��
� � � � � n�� de�ne �ek� �� �e�k�� and for
k ��
� � � � � �� de�ne �en

��k� �� me� �k� De�ne �e �� �e� and Ae �� Ae� � Let t � �
be a relational algebra expression over S � De� We construct an Ah�i�expression
�te such that for any I�

��e�
e���te��
ID� � ��evali�

�e�
e���
e�
i��t�e����
ID���I �

The construction goes by induction on the structure of t�

� t � v� or t � S� de�ne �te as �
e�
i��t�e� � t��

� t � D� de�ne �te as �������me� ��e�
D��
e�
i��t �e��

� t � �i������ipt
��� de�ne �te as �������me� �i��me� �����ip�me�

�t
�

e �

� t � �j�j�t
��� de�ne �te as �j�me��j

��me�
�t

�

e �

	�

� t � t� � t�� Let the arity of t� be m� and let the arity of t� be m�� De�ne �
t
e

as

�������me��m����me��m����������me��m��m�

me��
i��

�i�i�me��m��
t�
e � �t�e ��

� t � t� � t�� Let the arity of t be m� De�ne �te as

�t�e � �������me��m

me��
i��

�i�i�me��m�
t�
e � �t�e ��

Now� de�ne �e as
S
f�te j t � � � Ae�g�

We prove a normal form for Ah�i�

Lemma ���� Assume every meta�level relation is of a type having only expression

columns� Then every Ah�i�expression e is equivalent up to reordering of columns�� to

a union of 	base expressions
� of the form �e � re� where �e is a relational algebra ex�

pression and re is of the form ht�i � � � � � htni�

Proof� The proof proceeds by induction on the structure of e� The lemma trivially
holds for the base case where e � S with S � S �M� e � v� with v � V� or e � he�i�
In the following� E�� E� and E

� are sets of base expressions�

� If e �
S
E �

S
E � then e is clearly in the right form�

� If e �
S
E �

S
E � then e is equivalent to�

f�e� � �e� � re� � re� j e� � E�� e� � E�g�

� If e � �i������ip
S
E � then e is equivalent to

�
f�S��e

��� �S�re
�� j e� � E �g�

where
S� � fij j j � f
� � � � � pg and ij is a data columng

and
S� � fij j j � f
� � � � � pg and ij is an expression columng�

� If e � �i�j
S
E �� then e is equivalent to�

f�i�j�e��� re� j e
� � E �g

if i and j are data columns� otherwise� e is equivalent to�
f�e� � �i�jre�� j e

� � E �g�

�Note that reordering of columns is expressible using projection�

	�

� If e �
S
E� �

S
E� then it su�ces to show that the di�erence of two sets of base

expressions can be represented by a set of base expressions� Since
S
E� �

S
E�

can be written as
S
fe� �

S
E� j e� � E�g� we only have to show that e� �

S
E� is

equivalent to a set of base expressions� We prove the latter by induction on the
size of E��

� If E� � fe�g then e��e� is equivalent to �e�� �e���re��� �e�� re��re����

� If E� � fb�� � � � � bng then e� � E� can be written as e� �fb�� � � � � bn��g�� bn�
By the inductive hypothesis� this is equivalent to fc�� � � � � cmg � bn for some
base expressions c�� � � � � cm� This expression can then be rewritten as c� �
bn� � � � � � cm � bn�� by the inductive hypothesis we get the result�

Proof of Theorem ��
� Let q be de�ned by the meta algebra expression e� By applying
Lemma ��� and Lemma ��
�� e is equivalent to a union of base expressions e�� Now�
since the output of e contains no expression columns� e� is equivalent to a relational
algebra expression�

References

�
� H� Abelson� G� J� Sussman� and J� Sussman� Structure and Interpretation of Com�

puter Programs� MIT Press� second edition�
����

�	� S� Abiteboul and C� Beeri� On the power of languages for the manipulation of com�
plex objects� The VLDB Journal� �����	������
���� Originally INRIA Research
Report ����
����

��� S� Abiteboul� R� Hull� and V� Vianu� Foundations of Databases� Addison�Wesley�

����

��� H�P� Barendregt� The Lambda Calculus� North�Holland�
����

��� C� Beeri and T� Milo� On the power of algebras with recursion� In Proceedings of

the ��� ACM SIGMOD International Conference on Management of Data� volume
		�	 of SIGMOD Record� pages �������� ACM Press�
����

��� A� Chandra and D� Harel� Computable queries for relational data bases� Journal

of Computer and System Sciences� 	
	��
���
���
����

��� A� Chandra and D� Harel� Structure and complexity of relational queries� Journal
of Computer and System Sciences� 	�
�����
	��
��	�

��� W� Chen� M� Kifer� and D�S� Warren� HiLog� A foundation for higher�order logic
programming� Journal of Logic Programming�
����
���	���
����

��� E� Codd� Relational completeness of data base sublanguages� In R� Rustin� editor�
Data Base Systems� pages ������ Prentice�Hall�
��	�

�
�� H�B� Enderton� A Mathematical Introduction to Logic� Academic Press�
��	�

�

� M� Gyssens� J� Paredaens� and D� Van Gucht� A grammar�based approach towards
unifying hierarchical data models� SIAM Journal on Computing� 	����
����

���

����

	�

�
	� J��W� Klop� Term rewriting systems� A tutorial� Bulletin of the EATCS� �	�
���

���
����

�
�� A� Klug� Equivalence of relational algebra and relational calculus query languages
having aggregate functions� Journal of the ACM� 	���������
��
��	�

�
�� L�V�S� Lakshmanan� F� Sadri� and I�N� Subramanian� On the logical foundations
of schema integration and evolution in heterogeneous database systems� In S� Ceri�
K� Tanaka� and S� Tsur� editors� Deductive and Object�Oriented Databases� volume
��� of Lecture Notes in Computer Science� pages �
�
��� Springer�Verlag�
����

�
�� G� Ozsoyoglu� Z�M� Ozsoyoglu� and V� Matos� Extending relational algebra and
relational calculus with set�valued attributes and aggregate functions� ACM Trans�
actions on Database Systems�
	���������	�
����

�
�� J� Paredaens� J� Van den Bussche� and D� Van Gucht� Towards a theory of spatial
database queries� In Proceedings �th ACM Symposium on Principles of Database

Systems� pages 	���	��� ACM Press�
����

�
�� J� Paredaens and D� Van Gucht� Converting nested algebra expressions into at
algebra expressions� ACM Transactions on Database Systems�
�
��������
��	�

�
�� K� Ross� Relations with relation names as arguments� Algebra and calculus� In
Proceedings ��th ACM Symposium on Principles of Database Systems� pages ����
����
��	�

�
�� H� Schwichtenberg� De�nierbare Funktionen im ��Kalk!ul mit Typen� Arch� Math�
Logik Grundlagenforsch��
������

��

��
����

�	�� T� Sheard and J� Hook� Type safe meta�programming� Manuscript� Oregon Grad�
uate Institute�
����

�	
� M� Stonebraker et al� QUEL as a data type� In B� Yormark� editor� Proceedings
of SIGMOD �� Annual Meeting� volume
��	 of SIGMOD Record� pages 	���	
��
ACM Press�
����

�		� M� Stonebraker et al� Extending a database system with procedures� ACM Trans�

actions on Database Systems�
	�����������
����

�	�� D� Suciu� Bounded �xpoints for complex objects� Theoretical Computer Science�

��
�	��	����	��
����

�	�� J� Ullman� Principles of Database and Knowledge�Base Systems� volume I� Com�
puter Science Press�
����

�	�� J� Van den Bussche� D� Van Gucht� and G� Vossen� Re ective programming in the
relational algebra� Journal of Computer and System Sciences� �	����������� June

����

�	�� L� Wong� Normal forms and conservative extension properties for query languages
over collection types� Journal of Computer and System Sciences� �	�����������

����

	�

Appendix A

We now prove Lemma ���� The proof proceeds by induction on the nesting depth of
maximal conjunctions in 	� The base case of this induction is that of a conjunction
consisting of atomic formulas only� which we can directly treat as a special case of the
general case�

Since 	 is safe� for each free variable x in each maximal conjunction � of 	� there
exists a proof for the limitedness of x� We next de�ne the depth of x in � with respect
to this proof� If x is shown to be limited by an application of rule j then we just say
that x is derived by rule j� We say that

� x is of depth
 if x is derived by rule
� or �� and � is an atomic formula� or x is
derived by rule 	�� or x is derived by rule �� with t� � x and t� a ground term�

� x is of depth n�

� if x is derived by rule
� or ��� � is of the form �� � ��� and n �
 is the
maximum of the depths of x in �� and ���

� if x is derived by rule
� or ��� � is of the form �y���� and n�
 is the the
depth of x in ���

� if x is derived by rule ��� �� or �� and y is of depth n�

� if x is derived by rule �� and the maximal depth of a variable in t is n�

� if x is derived by rule �� or �� and the maximal depth of a variable in t� is
n�

� if x is derived by rule
��� where the maximal depth of a variable in t�� t�
or t� is n�

Clearly� the depth of every variable is bounded by the number of occurrences of variables
in 	�

Let � be a subformula of 	 consisting of conjunctions that cannot be enlarged�
W�l�o�g�� we assume only terms that are variables appear in atomic formulas that are
not equalities� Furthermore� we assume that all equalities are of the form x � t where
x is a variable and t is a term�

We now show that if K j� ��
� then
x� � ��dom��n
� ��K� for every variable x of sort �

and depth n� We do not have to discuss variables that are derived by rules
� or ��
where � is a disjunction or is of the form �y� � � �� we then already may assume that

x� � ��dom��n

� ��K�

� If x is a data variable of depth
� then
x� is a data value that occurs in the active
domain� or
x� appears as a constant in 	� Hence�
x� � ��dom���

� ��K�

	� If x is an expression variable of sort h�i that is of depth
� then
x� is an A�
expression that occurs in the active domain� or
x� occurs in 	� Hence�
x� �
��domh�i��

� ��K�

Let n be a natural number greater than
�

� If x is a data variable of depth n�
 then we consider the following cases�

	�

� If x is derived by rule ��� then
x� �
y� � ��dom��n
� ��K � ��dom��n��

� ��K�

� If x is derived by rule ��� then
x�� �
y� and
y� � ��domh�i�n
� ��K� Hence�

x� � ����eval�dom
h�i�n
� ����K � ��dom��n��

� ��K�

� If x is derived by rule ��� then clearly
x� � ��dom��n��
� ��K�

	� If x is an expression variable of sort � that is of depth n�
� then we consider the
following cases�

� If x is derived by rule ��� then
x� � t�
x��� � � � �
xn��� where for each
i �
� � � � � n� xi is of sort �i and
xi� � ��dom�i�n

� ��K� By de�nition of U ��n�

x� � ��U ��n��K � ��dom��n��
� ��K�

� If x is derived by rule ��� then x
 y appears as a conjunct in ��
x� is
a subexpression of
y�� and
y� � ��dom� ��n

� ��� where y is of sort � �� By

de�nition of dom��n��
� �
x� � ��dom��n��

� ��K�

� If x is derived by rule ��� then
x� �
y�� and
y� � ��dom��n
� ��K� Hence�

x� � ����wrap�dom
��n
� ���K � ��dom��n��

� ��K�

� If x is derived by rule
��� then rewrite�oney�� y�� y�� x� or rewrite�ally��
y�� y�� x� appears as an atomic formula in �� By de�nition of dom��n��

� �

x� � ��dom��n��
� ���

Appendix B

We now show the primitiveness of the wrap� extract� rewrite�one and rewrite�all

operators� In the following� if op denotes an operator of MA� then MA�fopg denotes
the fragment of MA without the operator op�

B�� Wrap

We start with wrap�

Lemma B�� Let e � � be an expression of MA � fwrapg over an empty meta�level

schema� let � � ���� � � � � �n� be a type� and let C � f
� � � � � ng be the set of expression

columns of � � Then there exists a �nite set Ae of A�expressions such that for every
instance K and j � C� ���je���

K � Ae�

Proof� The proof proceeds by induction on the structure of e� If e � e� op e�� where
op is � or �� then Ae �� Ae� �Ae� � If e � e� � e� then Ae �� Ae� � If e � ope��� where
op is � or � then Ae �� Ae� � If e � extracti�me�� then

Ae �� Ae� � fs j s � m is a subexpression of s� and s� � Ae�g�

If e � rewrite�onei����e�� then� by Remark ���� we can assume that � � �j and
� � �k� De�ne

Ae �� Ae� � fs� j s� � �� � Ae� � s� � �� � Ae� � s� � �� � Ae� � s� � �� � Ae� � and

s� is obtained from s� by replacing one occurrence of s� by s�g�

��

where the ith column and the jth column of e� are of arity �� and �� respectively� The
case where e � rewrite�alli����e�� is similar to the previous one�

Let S be the object�level schema fS �
g and let the meta�level schema be empty�
Suppose there is an expression e of MA�fwrapg that is equivalent to wrap�S�� Then
choose a v � V such that v� �� Ae� where Ae is as de�ned in the previous lemma� Let Kv

be the instance where KvS� � fv�g� Then v� � ��wrap�S���
Kv � but v� �� ��e��Kv � Ae�

Hence� e cannot be equivalent to wrap�S��

B��� Extract

We now show the primitivity of the extract�operator�
Let S � fS �
g� and M � fR � �h	i�g� De�ne for each natural number n the

relational algebra expression en � 	 as

������ � � � ��� �z �
n times

S�� S�

Let Kn be the combined instance where ��S��Kn � � and ��R��Kn � feng� Clearly�
��extract���R���

Kn is the relation

en ������ � � � ��� �z �
n times

S�

en ���� � � � ��� �z �
n�� times

S�

���
���

en ����S�
en ��S�
en S

The following lemma says that this cannot be the case for an expression in MA �
fextractg� thus proving that extract is primitive�

Lemma B�� Let e be an expression of MA� fextractg� There exists a constant ce
such that for every natural number i� if

������ � � � ��� �z �
i times

S�
�

occurs as an entry of a tuple in ��e��Kn then i � ce�

Proof� The proof proceeds by induction on the structure of e�

� If e � S� e � fv�g� or e � R then ce ��
�

� If e � e� op e�� where op is � or �� then ce �� maxfce� � ce�g�

� If e � e� � e� then ce �� ce� �

� If e � ope��� where op is �� �� eval� or wrap� then ce �� ce� �

�

� Let e � rewrite�allj����e
��� with e� � ���� � � � � �n��If �j �� h
i� we set ce �� ce� � If

�j � h
i� but � is not of the form

i� ������ � � � ��� �z �
m times

S�� or

ii� ������ � � � ��� �z �
m times

�k�� with

 k
 n�

note that m can be zero� again ce �� ce� �

If �j � h
i and � is of the form i�� then ce �� ce� �m� If � is of the form ii� and
�k �� h
i� again ce �� ce� � Finally� if �k � h
i� then ce �� ce� � ce� �m�

� The case e � rewrite�onej����e
�� is analogous�

B�� Rewrite�one

We next consider the rewrite�one operator� To this end� let S � fS �
� R �
g� and
let M � fQ � �h
i�g� For each natural number n� de�ne en � n as the relational algebra
expression

R� R� R� � � � � R �R� � � ��� �z �
n times R

�

De�ne Kn as the combined instance where ��R��Kn � ��S��Kn � � and ��Q��Kn � fen�g� It
readily follows that ��rewrite�one��R�SQ���

Kn contains n tuples� The following lemma
shows that for any expression e of MA � frewrite�oneg� the number of tuples in
��e��Kn is always bounded by some constant independent of n� thus proving primitivity
of rewrite�one�

Lemma B�� Let e be an expression of MA � frewrite�oneg� There exist natural

numbers ce and fe� and a sequence of numbers die� such that

�� the number of tuples in ��e��Kn is less than or equal to ce�

�� the number of di�erent data values occurring in ��e��Kn �in data or expression

columns� is less than or equal to fe� and

� for each i� for each t in ��e��Kn � and for each expression column j� the number of

di�erent subexpressions of arity i in tj� is less than or equal to die�

Proof� The proof proceeds by induction on the structure of e�

� If e � fv�g� e � R� or e � S� then ce ��
� fe ��
 and die �� � for all i�

� If e � Q� then ce ��
� fe �� � and

die ��

�

 if

 i
 n�
� otherwise�

� If e � e��e�� then ce �� ce� � ce� � fe �� fe��fe�� and d
i
e �� maxfdie� � d

i
e�
g for all i�

�	

� If e � e� � e�� then ce �� ce� � fe �� fe� � and die �� die� for all i�

� If e � e�� e�� then ce �� ce� � ce� � fe �� fe� � fe� � and die �� maxfdie� � d
i
e�
g for all i�

� If e � ope��� where op is � or �� then ce �� ce� � fe �� fe� � and die �� die� for all i�

� If e � wrape��� then ce �� ce� � fe �� fe� � d
�
e �� maxfd�e� �
g� and die �� die� for all

i �
�

� Let e � rewrite�allj����e
��� where e� is of arity n� Let f be the number of data

values occurring in �� and let di be the number of di�erent subexpressions of � of
arity i� for each i� Then ce �� ce� � fe �� fe� � f � and die �� die� � di for all i�

� If e � extractj�me
��� then ce �� dme� � ce� � fe �� fe�� and die �� die� for all i�

� Let e � evalie
��� and let the i�th column of e� be of type hmi� Then ce ��

ce� � fe��
m� fe �� fe� � and die �� die� for all i�

B��� Rewrite�all

Let Kn be de�ned as in Section ���� Then

��rewrite�all��R�SQ���
Kn

equals the relation	
�

��R� R� R� � � � � R�R� � � ��� �z �

n times R

�� �S � S � S � � � � � S � S� � � ��� �z �
n times S

�

�

� �

The following lemma shows that this cannot be the case for an expression of MA �
frewrite�allg� thus proving primitivity of rewrite�all�

Lemma B�� Let e be an expression of MA� frewrite�allg� There exists a natural

number ce such that for all n �
 every entry in each tuple of ��e��Kn contains less than

ce occurrences of S�

Proof� The proof proceeds by induction on the structure of e�

� If e � fv�g� e � R� e � S� or e � Q then ce �� ��

� If e � rewrite�onei����e
��� s is the number of occurrences of S in �� and k is

the number of expression variables in �� then ce �� maxfs� k � ce� � ce�g�

� If e � extracti�me
��� then ce �� ce� �

� If e � e� op e�� where op is �� �� or �� then ce �� maxfce� � ce�g�

� If e � ope��� where op is �� �� eval� or wrap� then ce �� ce� �

��

