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The popularity of the document specification language XML [13] immensely
increased the amount of research concerning structured document databases
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[1]. Such documents are usually abstracted by labeled ordered trees which in
turn are modeled by context-free (CFG) or extended context-free grammars
(ECFG) [2, 7, 15, 22, 23, 26, 37]. ECFGs, in particular, are context-free
grammars that allow arbitrary regular expressions over grammar symbols
on the right-hand side of productions. Such grammars form adequate ab-
stractions of XML Document Type Definitions (DTDs). A crucial differ-
ence between CFGs and ECFGs, is that derivation trees of the former are
ranked, in the sense that the number of children of a node is bounded by
some constant, while those of the latter are not. In Figure 1, an example is
depicted of an XML document corresponding to the DTD of Figure 2. Fig-
ure 3 and 4 show the corresponding abstractions. A main task in document
transformation and information retrieval is locating subtrees satisfying some
pattern [5, 6, 12, 27, 28, 33, 34]. Therefore, unary queries, i.e., queries that
map a tree to a set of its nodes, play an important role in the context of
structured document databases.

Our goal is to understand how the natural and well-studied computation
model of tree automata [20, 45] on both ranked and unranked trees, can be
used to compute such unary queries. We abstract away from the grammar
by considering documents simply as ranked or unranked trees over some
alphabet. This is no loss of generality, as tree automata can easily determine
whether the input tree is a derivation tree of a given (E)CFG [20, 32, 36,
35]. We define a query automaton (QA) as a two-way deterministic finite
automaton over trees that can select nodes depending on the state and the
label at those nodes. A QA can compute queries in a natural way: the result
of a QA on a tree consists of all those nodes that are selected during the
computation of the QA on that tree.

First, we stress that the query automata we consider are quite different
from the tree acceptors studied in formal language theory [20]. For one thing,
two-way tree automata are equivalent to one-way ones [31], but it is not so
difficult to see that query automata are not equivalent to bottom-up ones.
Indeed, a bottom-up QA, for example, cannot compute the query “select all
leaves if the root is labeled with ¢”, simply because it cannot know the label
of the root when it starts at the leaves. A second difference is that we consider
both ranked and unranked trees. Unranked trees only recently received new
attention in the context of SGML and XML. Based on work of Pair and
Quere [38] and Takahashi [42], Murata defined a bottom-up automaton model
for unranked trees [32]. This required describing transition functions for an
arbitrary number of children. Murata’s approach is the following: a node is



<bibliography>
<book>
<author>
S. Abiteboul
</author>
<author>
R. Hull
</author>
<author>
V. Vianu
</author>
<title>
Foundations of Databases
</title>
<publisher>
Addison-Wesley
</publisher>
<year>
1995
</year>
</book>
<article>
<author>
E. Codd
</author>
<title>
A Relational Model of Data for Large Shared Data Banks
</title>
<journal>
Communications of the ACM
</journal>
<year>
1970
</year>
</article>
</bibliography>

Figure 1: Example of an XML document describing bibliographic informa-
tion.
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<!ELEMENT

<!ELEMENT

<!ELEMENT

<!ELEMENT

<!ELEMENT

<!ELEMENT

<!ELEMENT

<!ELEMENT

bibliography (book | article)+>

article (author+, title, journal, year)>
book (author+, title, publisher, year)>
author PCDATA>

title PCDATA>

journal PCDATA>

year PCDATA>

publisher PCDATA>

Figure 2: A DTD for the XML document in Figure 1

bi bl i ogr aphy

book article

/N/\

aut hor aut hor aut hor ti tI e publ i sher year aut hor ti tI e i our nal year

S. Ablleboul R HJII V. Vianu Found Addi son- Vsl ey 1995 E. Oodd Arelati onal . Qmm 1970

Figure 3: Tree representation of the XML document in Figure 1.



bibliography — (book + article)™

article —> author™ - title - journal - year
book — author™ - title - publisher - year
author — (a+---+2)*

title — (a+---+2)*

journal — (a+--+2)"

year — (a+--+2)"

publisher — (a+---+2)7"

Figure 4: An extended CFG representing the DTD of Figure 2.

assigned a state by checking the sequence of states assigned to its children
for membership in a regular language. In this way, the “infinite” transition
function is represented in a finite way. Briiggemann-Klein, Murata and Wood
initiated an extensive study of tree automata over unranked trees [9]. They
showed that many results carry over to the unranked case. Surprisingly, in
the context of query automata there is a discrepancy between the ranked and
the unranked case. Indeed, we show that in the unranked case various QA
formalisms accept the same class of tree languages,! while not computing
the same class of queries. This indicates a substantial difference between (1)
looking at automata from a formal language point of view (i.e., for defining
tree languages) and looking at automata from a database point of view (i.e.,
for computing queries) (i) automata on ranked and unranked trees.

In Section 2, after introducing the necessary definitions, we first recall the
proof of Biichi’s Theorem [10] stating that a string language is regular if and
only if it is definable in MSO, and then generalize this to query automata
on strings in Section 3. Here, a query automaton on strings is a two-way
deterministic automaton extended with a selection function. This approach
allows us to recall some important proof techniques in an easy setting, which
then later will be generalized to obtain our main results. These techniques
can be summarized as follows: (i) the definition of an automaton in MSO by,
essentially, guessing states and verifying their consistency with the transition
function; (i7) capturing the behavior of two-way automata by means of be-
havior functions; and (7ii) computing MSO types by automata. We conclude
this section by recalling how bottom-up tree automata can compute MSO

LA tree language is a set of trees. We say that a QA accepts a tree if the underlying
tree automaton accepts it.



types.
In Section 4, we consider QAs over ranked trees, i.e., trees with a fixed

bound on the number of children that a vertex might have. A QA" (r stands
for ranked) is a two-way deterministic tree automaton? as defined by Moriya
[31] extended with a selection function. We show that these automata can
compute exactly the unary queries definable in monadic second-order logic
(MSO).

Next, in Section 5, we consider automata on unranked trees. A first ap-
proach to define query automata for unranked trees, is to add a selection
function to the two-way deterministic tree automata over unranked trees
defined by Briiggemann-Klein, Murata and Wood [9]. We denote these au-
tomata with QA" (u stands for unranked). Although these automata can
accept all recognizable tree languages, they cannot even compute all unary
queries definable in first-order logic. Intuitively, when the automaton makes
a down transition at some node v, it assigns a state to every child of v;
although every child knows its own state, it cannot know in general which
states are assigned to its siblings. This means that in the unranked case very
little information can be passed from one sibling to another. To resolve this,
we introduce stay transitions where a two-way string-automaton reads the
string formed by the states at the children of a certain node, and then outputs
for each child a new state. An automaton making at most one stay transition
(or, equivalently, a constant number of stay transitions) for the children of
each node is a strong QA" (SQA"). We show that these automata compute
exactly all MSO-definable queries. Thus, while QA" and SQA" recognize
the same tree languages, they do not compute the same queries. The re-
striction on the number of stay transitions is necessary. Without any such
restriction, SQA“s could simulate linear space Turing Machines.

Testing non-emptiness, containment, and equivalence of queries are fun-
damental operations in the field of query optimization [3]. While these
problems are in general usually undecidable, their language-theoretic counter
parts are well-known to be decidable. Therefore, we investigate in Section 6
the complexity of the following three problems: (i) Given a QA, is there a
tree for which there is a node that is selected? (non-emptiness); (ii) Given
two QAs, is the query computed by one contained in the query computed by
the other? (containment); and (iii) Given two QAs, do they compute the

2These automata are very different from the (alternating) tree-walking automata used
in, e.g., [46].



same query? (equivalence). One cannot hope to do better than EXPTIME
for these decision problems, as non-emptiness of two-way deterministic tree
automata over ranked trees, i.e., even without selecting nodes, is already
complete for EXPTIME.

We show that the non-emptiness, the containment, and the equivalence
problem of all query automata studied in this paper are in EXPTIME.

We present some concluding remarks in Section 7.

2 Basics of logic and automata on strings and
trees

In this section we recall some basic facts on MSO and use them to reprove
Biichi’s Theorem [10] stating that a string language is regular if and only if it
is definable in MSO. This approach allows us to introduce various techniques
related to MSO and automata in an easy setting which we will generalize to
obtain expressiveness results for query automata. Specifically, we recall how
Ehrenfeucht games facilitate reasoning on MSO-equivalence types. These
types constitute the building blocks of the simulation of MSO formulas in
later sections. Finally, we define bottom-up tree automata and reprove the
generalization of Biichi’s Theorem to trees obtained by Doner, Thatcher and
Wright [16, 43].

Before we start, we make the following conventions. We denote by N the
set of positive natural numbers. Further, if S is a set then we denote by |S|
its cardinality.

2.1 Monadic second-order logic

A wocabulary T is a finite nonempty set of constant symbols and relation
names with associated arities. As usual, a 7-structure A consists of a finite
set dom(.A), the domain of A, together with

e an interpretation R4 C dom(A)" for each relation name R in 7; here,
r is the arity of R; and
e an interpretation ¢ € dom(A) for each constant symbol in 7.

When 7 is clear from the context or is not important, we just say structure
rather than 7-structure. Sometimes, when the structure A is understood, we
abuse notation and write R for the relation RA.



Example 2.1 Let 7 be the vocabulary consisting of a binary relation symbol
FE and two constants min and max. Let w be the 7-structure with domain
dom(w) := {1,... ,n}, E¥ = {(i,i+1) | i € {1,... ,n— 1}}, min® =1,
and max® :=n. Then w represents a chain of length n, where min and max
are interpreted by the first and the last element, respectively. [ |

Monadic second-order logic (MSO) allows the use of set variables ranging
over sets of domain elements, in addition to the individual variables ranging
over the domain elements themselves as provided by first-order logic. We
will assume some familiarity with this logic and refer the unfamiliar reader
to the book of Ebbinghaus and Flum [17] or the chapter by Thomas [45].

Example 2.2 We give an example of an MSO formula. As usual we denote
set, variables by capital letters and first-order variables by small letters. Let
¢ be the following MSO sentence over the vocabulary of Example 2.1:

(3X) (X (min) A

A =X (max)).

This formula defines the chains of even length. Indeed, for each chain,
the set variable X can only be interpreted by the set of elements occurring
on odd positions and the formula becomes true only if the last element does
not belong to X. [}

In the following we will make use of some basic facts about MSO. For a
tuple @ = ay, ... ,a, of elements in A, we write (A,a) to denote the finite
structure that consists of A with a,, ..., a, as distinguished constants. Let
A and B be two structures, let @ and b be tuples of elements in A and B,
respectively, and let k be a natural number. Then we write (A, a) =M%° (B, b)
and say that (A, @) and (B, b) are =M5C-equivalent, if for each MSO sentence
@ of quantifier depth at most k it holds

Aa)Ee & (B Ee

That is, (A, @) and (B, b) cannot be distinguished by MSO sentences of quan-
tifier depth (at most) k. It readily follows from the definition that =}5C is



an equivalence relation. Moreover, =M5C-equivalence can be nicely charac-

terized by Ehrenfeucht games.

The k-round MSO game on two structures (A, a) and (B,b), denoted by
GMSO(A, a; B,b), is played by two players, the spoiler and the duplicator,
in the following way. In each of the £ rounds the spoiler decides to make
a point move or a set move. If the i-th move is a point move, then the
spoiler selects an element ¢; € dom(A) or d; € dom(B) and the duplicator
answers by selecting one element of the other structure. When the i-th move
is a set move, the spoiler chooses a set P; C dom(A) or @; C dom(B)
and the duplicator chooses a set in the other structure. After &£ rounds
there are elements c¢y,...,c, and dy,...,d; that were chosen in the point
moves in dom(A) and dom(B) respectively and there are sets Pi,..., P,
and Q1,...,Q, that were chosen in the set moves in dom(A) and dom(B),
respectively. The duplicator now wins this play if the mapping which maps
¢; to d; is a partial isomorphism from (A, @, Py, ..., P,) to (B,b,Q1,... ,Qy).
That is, for all  and j, ¢; € P; iff d; € @}, and for every atomic formula ¢(Z)
containing no set variable, A = ¢[¢, a] iff B = ¢l[d, b).

We say that the duplicator has a winning strategy in GYS°(A, @; B, b), or
shortly that she wins GMSCO(A, @; B, b), if she can win each play no matter
which choices the spoiler makes.

The following fundamental proposition is well known (see, e.g., [17] for a
proof).

Proposition 2.3 The duplicator wins G5 (A, a; B, b) if and only if
(A, a) =°° (B, b).

It is well known that, for each k, the relation =M5° has only a finite
number of equivalence classes. We denote the set of these classes by @
and refer to the elements of ®; by =M5C-types. We denote by 7M5°(A, a)
the =M5O_type of a structure A with the elements in @ as distinguished
constants thus, 7M59( A, @) is the equivalence class of (A, a) w.r.t. =M5°. By

M50 A) we denote the =M5C-type of the structure A without dlstlngmshed
elements. It is often useful to think of 7M59 (A, @) as the set of MSO-sentences
of quantifier depth & that hold in (A, a). That is, we also view 7M59(A, a) as
the set {¢ | (A4,a) &= ¢} of MSO sentences of quantifier depth k As =150
is finite, upon logical equivalence, there are only a finite number of MSO
sentences of quantifier depth k.



Equivalence types will be the main tool to simulate MSO formulas by
automata. To illustrate their usage, we will recall how they can be employed
to prove Biichi’s Theorem [10].

2.2 Regular string languages

In the following 3. denotes a finite alphabet. A string w = o1 ---0, over X
is a sequence of Y-symbols. We denote the length of w by |w| and for each
i€ {1,...,|w|}, we denote o; by w;. We refer to {1,...,|w|} as the set of
positions of w.

To define sets of strings by MSO formulas, we associate to each string w
over X, a finite structure with domain {1,... ,|w|}, denoted by dom(w), over
the binary relation symbol <, and the unary relation symbols (O, )ex. The
interpretation of < is the obvious one, and for each o € ¥, O, is the set of
positions labeled with a o, i.e., O, = {i | w; = o}. In the following, we will
make no distinction between the string w and the relational structure that
corresponds to it.

For each k and each k-type 0 € &, we fix some string w(f) with

T (w(0)) = 0.

A nondeterministic finite automaton M (NFA) over ¥ is a tuple (S, X, 9, I,
F) where S is finite set of states, d : S x ¥ — 25 is the transition function,
I C S is the set of initial states, and F' C S is the set of final states. We
denote the canonical extension of the transition function to strings by 6*. A
string w € ¥* is accepted by M if 6*(sp, w) € F for an sy € I. The language
accepted by M, denoted by L(M), is defined as the set of all strings accepted
by M. The size of M is defined as |S|+ |X|. As usual, a string language is
reqular if it is accepted by an NFA. If [I| =1 and |§(s,0)| < 1 forall s € S
and o € X, then M is a deterministic finite automaton (DFA) and we treat
0 as a function S x ¥ — S. Additionally, we write sy in the definition of M
when I = {s¢}.

We will reprove Biichi’s Theorem [10] stating that a string language is
regular if and only if it can be defined by an MSO sentence. Here, an MSO
sentence ¢ defines the language {w € ¥* | w = ¢}. The simulation of an
MSO sentence by a DFA will be based on the computation of equivalence
types. To this end we will use the following proposition which in partic-

ular says that 73°(0y---0,_10,) only depends on 77"°°(cy---0,_;) and
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7159(g,,). This observation will be used in the proof of Theorem 2.5 to de-
fine the transition function of the DFA computing the =}°-type of input
strings.

By using the above Ehrenfeucht games and Proposition 2.3, one easily
show the following.

Proposition 2.4 Let k > 0 and let w, v, w' and v' be strings. If w =" v’

and v =59 ', then w-v =% w' - o',

Proof. By Proposition 2.3 it suffices to show that the duplicator wins
G¥MSO (w-v;w'-v"). We already know that she wins the subgames GY5° (w; w')
and GY59(v;0'). The duplicator, therefore, plays in GY°(w - v;w' - v') ac-
cording to his winning strategies in G¥°°(w;w') and G}y (v;v'). We make
this strategy precise, but only consider moves of the spoiler on the string w-v.
Responses to moves where the spoiler picks elements in w’- v’ can be treated
analogously. If the spoiler chooses an element in w (v) then the duplicator
answers according to his winning strategy in GYS°(w;w') (GM5©(v;0")). If
the spoiler makes a set move and chooses P, U P, in w - v, where P, and P,
contain the elements in w and v, respectively, then the duplicator chooses
sets @ and @ in w' and v’ according to his winning strategy in GY°° (w; w')
and GM59(v;v"), respectively.

This is indeed a winning strategy. Let ci,...,c, and dy,...,d, be the
elements chosen in point moves in w - v and w’ - v/, respectively, and let
P,... P, and Qq,...,Q, be the sets of elements chosen in set moves in
w-v and w'-v', respectively. By construction, the mapping ¢ — d restricted
to the different components (w and w', and v and v') is a partial isomorphism
between these corresponding components extended with the sets P and Q.
Hence, it only remains to check that the relation < is preserved between
elements coming from different components. This is always the case, as all
elements of w (w') precede those of v (v'), the duplicator chooses elements
in w' (v") whenever the spoiler chooses elements in w (v), and the duplicator
chooses elements in w (v) whenever the spoiler chooses elements in w' (v').

|

We are ready to prove Biichi’s Theorem [10]:

Theorem 2.5 A language L C X* is regular if and only if it is definable in
MSO.
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Proof. Suppose L is defined by the DFA M = (S,%,6, so, F) with S =
{0,...,n} and sp = 0. We have to find an MSO sentence expressing for
every string w € L(M) that M accepts w. On w, this sentence defines
the run of M on w. Such a run is encoded by pairwise disjoint subsets
Zyy ooy Zn of {1,...,|w|} with the following intended meaning: i € Z; iff
0*(0,wy - - -w;) = j. We say that Z; labels position ¢ with state j. Clearly,
the run is accepting if |w| is labeled with a final state. The sentence ¢ is
then of the form

(32y)...(3Zy,) (@b(ZO,...,Zn)A(Vx)( (Fy)(z < y) \/Z ))

Here, v is the FO formula that defines Zy, ... , Z, as the encoding of the run
of M on the string under consideration. That is, it says that the first position
should be labeled with the state §(0,w;) and that the other labelings should
be consistent with the transition function. These are all local conditions
and can, hence, readily be expressed in FO. The second part of ¢ expresses
that the last element of the input string is labeled with a final state. A
more computational view of ¢ is that, on input w, ¢ first guesses a state
assignment and then wverifies, by means of an FO formula, whether it has
guessed correctly. That is, whether its guesses encode an accepting run of
the automaton.

For the other direction we make use of types. A similar presentation was
given by Ladner [29]. The method presented here is also referred to as the
composition method [44]. Let ¢ be an MSO sentence of quantifier depth
k. Clearly, it suffices to know 7259 (w) to determine whether w = ¢. We
will now show that an automaton on input w can in fact compute 755 (w).
The set of states is @, which is finite for every k. Proposition 2.4 says that
for a string v and a X-symbol o, 75°(vo) only depends on 759 (v) and

759(5). Note that 759(s) only depends on 0. Hence, 7,°°(w) can be
computed from left to right: the initial state is 72159 (¢), that is, the =M5C-
type of the empty string; and, if the =}°-type of the string seen so far is ¢
and the next symbol is o, then the automaton moves to state TM5° (w()o).
By Proposition 2.4, it does not matter which representative of the =}5°-
equivalence class 6 we take. Finally, the automaton accepts if ¢ € 6 Wlth 0
the state obtained after reading the last input symbol.

Formally, the automaton M accepting the language defined by ¢ is defined
as M = (®x, X, d, s, F), where so = 70150 (¢), F = {0 € &, | ¢ € 0}, and for
all@ € &, and 0 € %, 6(0,0) = 72159 (w(0)0). |

12



2.3 Regular tree languages

Trees will be denoted by the boldface characters t, s, s{, ..., while nodes of
trees are denoted by v, w, vi, ... . Edges in trees are always directed from
the root to the leaves. We use the following convention: if v is a node of a
tree t, then vi denotes the ¢-th child of v. We denote the set of nodes of
t by Nodes(t) and the root of t by root(t). Further, the arity of a node v
in a tree, denoted by arity(v), is the number of children of v. We say that
a tree t has rank m, for m € N, if arity(v) < m for every v € Nodes(t).
For a node v in t, the set of its children is denoted by children(v). The
subtree of t rooted at v is denoted by t.; the envelope of t at v, that is, the
tree obtained from t by deleting the subtrees rooted at the children of v is
denoted by t,;® and, for each o € X, the tree consisting of just one node that
is labeled with o is denoted by t(o). The depth of a node v is the number
of edges on the path from the root to v. The height of v is the number of
edges on the longest path from v to a leaf. Hence, the depth of the root and
the height of a leaf are zero. We denote the label of v in t by lab¢(v).

We end by introducing the following notation. When o is a symbol in
Y and tq, ..., t, are X-trees, then o(ty,...,t,) is the X-tree graphically
represented by

o

N\
t; t,..

Note that in the above definitions there is no a priori bound on the number
of children that a node may have. In Section 4, we restrict attention to trees of
bounded rank (hereafter simply referred to as ranked trees). In Section 5, we
consider trees without any bound on their rank. To make a clear distinction,
we refer to the latter as unranked trees.

It remains to specify the logical structures corresponding to -trees. A
Y-tree t can be naturally viewed as a finite structure over the binary relation
symbols F and <, and the unary relation symbols (O, ),cx. The edge relation
E' is the obvious one. The relation < specifies the ordering on the children
for every node v. Finally, for each 0 € X, O, is the set of nodes that are
labeled with a o.

As we did for strings, we fix one particular tree t(f) for each k-type
f € TMSO,

3Note that t, and t, have v in common.
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We first define bottom-up deterministic tree automata and indicate how
they can compute the =}5C-types of trees. This will allow us to reprove
the generalization of Biichi’s Theorem for trees. In the definition below we
use the superscript r to stress that we define automata for ranked trees. All
definitions in the remaining of this section are for X-trees of rank at most m,
for some fixed m.

Definition 2.6 A deterministic bottom-up ranked tree automaton (DBTA")
is a triple B = (Q,%, 4, F'), consisting of a finite set ) of states, a finite
alphabet Y, a set ' C @ of final states, and a transition

function ¢ : [J*, @' XX — Q. The semantics of B on a tree t, denoted by
0*(t), is inductively defined as follows: if t consists of only one node labeled
with ¢ then 6*(t) = 6(0); if t is of the form

N\
tl tna

then 6*(t) = §(6*(t1),...,0%(t,),0). A X-tree t is

accepted by B if 6*(t) € F.

The set of 3-trees accepted by B is denoted by L(B). A set T of Y-trees
is recognizable if there exists a tree automaton B, such that 7 = L(B).

To prove Theorem 2.8, we need a suitable generalization of Proposition 2.4
to trees. The proof of the next proposition is similar to the proof of the latter,
but is a bit more subtle due to the presence of the edge relation F.

Proposition 2.7 Let k be a natural number, o € 33, and let t1, ..., t,, s,
.o, Sy be S-trees. If t; =M5Cs;, fori=1,... ,n, then

o(ty, ..., tn) =5 o(sy,... ,sn).

Proof. We just combine the winning strategies in the subgames G}®°(t;;

s;) to obtain a winning strategy in Gy°°(o(t1,... ,tn);0(S1,... ,8n)) as ex-
plained in the proof of Proposition 2.4. As will be shown below we can as-
sume that the duplicator picks the root in o(sy, ... ,s,) whenever the spoiler

picks the root of o(ti,... ,t,), and vice versa. We show that this strategy is
winning. Suppose that in a play in

GkMSO(a(tl, cestn);o(S1, .-, 8n))

14



the elements ¢ and d are chosen in the point moves in o(t,... ,t,) and
o(s1,...,8y), respectively, and the sets P and @, are chosen in set moves
in o(ty,...,t,) and o(si,... ,s,), respectively. Clearly, the mapping ¢ — d
restricted to the different components is a partial isomorphism between these
corresponding components extended with the sets P and Q. Hence, it only
remains to check that the relations < and E are preserved for elements coming
from different components. We restrict attention to elements in o(ty,. .. ,t,).
Denote the roots of o(tq,... ,t,) and o(sy, ... ,s,) by v and w, respectively.

Let ¢; and c¢; be elements coming from different components t, and t,,
with ¢; < ¢j and a,b € {1,... ,n}. Consequently, ¢; and c¢; are children of v
and a < b. It, hence, suffices to show that d; and d; are the roots of s, and
Sp, respectively.

First note the following. If the spoiler picks the root of t, in his [-th
move, with [ < k, in GY®°(t,;s,), then the duplicator is forced to answer
with the root of s,. Indeed, if she does not do so and picks another node,
say e, then in the next round the spoiler just picks the parent of e to which
the duplicator has no answer.

Since ¢; and ¢; come from different components, the duplicator and the
spoiler never play k rounds in the subgames G5°(t,;s,) and GY5O(ty;sp)-
That is, in the subgames GM5°(t,;s,) and GY¥5°(t,;s;), the elements ¢; and
c; are chosen before the k-th round. By the above argument, this means that
d; and d; have to be the roots of s, and s, respectively. Therefore, d; < d;
as required.

Concerning E, we only have to consider the case where ¢; = v and ¢; is
a child of v. By a similar argument as before it follows that d; has to be a
child of w. [ |
By the previous proposition, the =}°-type of a tree only depends on the
=M50_types of the subtrees rooted at the children of the root. This suggests a
mechanism to compute =M5C-types of trees in a bottom-up way. Indeed, we
get a bottom-up automaton for this purpose if we choose the set of states @,
and the transition function as follows: for every o € %, §(0) = 7M50(t(0))
and for 0y, ... ,0, € &, 6(0y,. .. ,0,,0) =750 (t(6,),...,t(0,))). Propo-
sition 2.7 guarantess that, as it is the case for strings, it does not matter which
representatives of the =}-equivalence classes 0, ..., 6, we take. A tree
automaton, in turn, can again be defined in MSO by guessing states and
then verifying in FO the consistency with the transition function. This leads
to the following theorem obtained by Doner, Thatcher and Wright [16, 43].
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Theorem 2.8 A tree language is recognizable if and only if it is definable in
MSO.

For later use, we show that a bottom-up tree automaton also can compute
the type 72159 (t, root(t)) of each input tree t. Therefore, we need the follow-
ing proposition. Actually, we only need the second item of Proposition 2.9,
the other items will be used in Section 4.3.

Proposition 2.9 Let k be a natural number, t and s be two trees, v be a
node of t and w be a node of s both of arity n.

1. If (ty,v) =59 (54, W) and (ty,v) =9 (sw,w) then (t,v) ="5°
(s, w).

2. If laby(v) = labg(w) and (ty;, vi) =5C (syi, wi) for i = 1,...,n,
then (ty,v) =M5° (sy,w).

3. Letie{l,... ,n}. If
o (t,v) = (5w, W),
e laby(vi) = laby(wi), and
o (tvj, Vi) = (swy, W), for j € {1,...,n} —{i},
then (tyi, vi) =° (Swi, Wi).

Proof. The proofs of all three statements are very similar. The basic idea is
to combine the winning strategies of the duplicator on the respective subtrees
into a winning strategy on the whole structures like in the case of strings in
Proposition 2.4. We focus on the third case where there are altogether n 41
subgames including the trivial game in which one structure consists only of
vi and the other of wi. The winning strategy in the game on (t;, vi) and
(Swi, Wi) just combines the winning strategies in those n + 1 subgames. At
the end of the game, the selected vertices define partial isomorphisms for all
pairs of respective substructures. To ensure that they also define a partial
isomorphism between the entire structures one only has to check the relations
< and FE between the chosen elements, and vi and wi. The preservation of
< and E between chosen elements can be verified as in the proof of Propo-
sition 2.7. Additionally, we have to check that for every corresponding pair
of chosen nodes ¢ and d: ¢ < vi iff d < wi, vi < ¢ iff wi < d, and E(c, vi)
iff E(d,wi). This follows immediately, as all siblings and the parents of
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vi and wi are distinguished constants, and only elements of corresponding
substructures are chosen. [ |

We will use the following lemma in Section 4.3.

Lemma 2.10 Let k be a natural number. There exists a DBTA™ B =
(Q,%,0, F) such that 6*(t) = 7M5°(t, root(t)), for every tree t.

Proof. We apply the same bottom-up technique as in the proof of Theo-
rem 2.8. Only now we make use of Proposition 2.9(2) rather than Propo-
sition 2.7. Define @ as ®;. Here we take @) as the set of =}5C-types
of trees with one distinguished node. Further, define the transition func-
tion as follows: for every o € %, 6(0) = 7259(t(0),root(t(0))) and for
0,01,...,0, € ®y, 6(01,...,0,,0) =0 iff there exists a tree t with a node v

of arity n such that 75 (ty,v) = 6 and 759 (ty;, vi) = 6;, fori = 1,... ,n.
By Proposition 2.9(2), it does not matter which members ty1, ... , ty, of the
=M50_equivalence classes 01, ... , 0, we take. |

3 Query automata on strings

To warm up, we start with query automata on strings. These are simply two-
way deterministic automata extended with a selection function. Again, this
approach allows us to introduce some important proof techniques in an easy
setting which then later will be generalized to obtain our main results. In
particular, we recall the important notion of behavior functions and reprove
a surprising lemma on two-way automata by Hopcroft and Ullman.

We first define queries. In this article, a query is a function @ that maps
each structure A to a unary relation over its domain. MSO can be used to
define queries in a straightforward way: if p(z) is an MSO-formula then ¢(x)
defines a query Q via

Q(A) = {a | A= ¢la]}.

We next define two-way automata over strings.

To prevent such automata from falling of the input string, we will always
feed them with strings of the form > w; ---w, < where > and < are new
symbols not appearing in 3. We require that automata never move to the
left from a > and to the right from a <.
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Definition 3.1 A two-way deterministic finite automaton (2DFA) is a tuple
M = (5,3, 50,0, F, L, R), where

S is a finite set of states;

So is the initial state;

F' is the set of final states;

L is a subset of S x (X U {<}), Ris a subset of S x (XU {>}) and L
and R are disjoint; and

0 consists of the transition functions é,. and d_,; in particular, 6. :
L — S is the transition function for left-moves and d_, : R — S is the
transition function for right-moves.

A configuration of M is a member of S x N, i.e., a pair consisting of a state
and a position. For a string w, a run of M is a sequence (s1,71) - .. (Sm, jm)
of configurations such that for allt =1,... ,m,

L ]Z € {1a a|w|}a
o if (s;,w;,) € L then s;41 = 6. (s;,wj;) and ji11 = j; — 1; and
o if (s;,w;,) € R then s;41 = 0, (s;, wj;) and ji41 = j; + 1.

A run (s1,71) - - (Smy Jm) 18 the run of M on input w, if s; is the initial state
of M, s, € F and there is no transition possible from (sp,, w;,, ).

We will only consider 2DFAs that always halt. This is a decidable prop-
erty. Indeed, as we will show in the proof of Theorem 3.9, the behavior of
a 2DFA M can be defined in MSO. It is then not difficult to write an MSO
sentence that is satisfiable iff M does not terminate on at least one input
string. It is well known that satisfiability of MSO on strings is decidable [45].
Clearly, any 2DFA can be modified such that it always halts at the end-
marker. For convenience, we will assume each 2DFA is as such. A query
automaton is now just a 2DFA extended with a selection function:

Definition 3.2 A query automaton M on strings (QA*™™) is a tuple (S, %,
S0, 0, F, \), where (S, %, sq,0, F) is a 2DFA, and X is a mapping A : S x ¥ —
{L,1}.
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We say that M selects position i € {1,... ,|w|} if the run (s, jo), - - - , (Sm,
Jm) of M on w is accepting and A(s;,w;) = 1 for an | € {0,...,m} with
J1 = 1. That is, 7 is selected by M if M selects ¢ at least once; M does not
need to select 7 every time it visits this position. In particular, when the run
is not accepting, no position is selected. The query expressed by M on w is
defined as M(w) :={i € {1,...,|w|} | M selects i}.

Remark 3.3 Although 2DFAs are equivalent to one-way DFAs (see, e.g.,
Shepherdson [41] or Hopcroft and Ullman [25]), not all QA*™s are equiva-
lent to a QA*™ that can move in only one direction. Consider for example
queries of the following kind: select the first and last symbol if the string
contains the letter o. This query is not computable by a QA’"™ that only
moves in one direction. Indeed, when started on the first position, the one-
way query automaton already has to decide whether it should select without
having seen the input. The same holds when it is started on the last position
and it only can move from right to left. [ |

We illustrate the previous definitions with an example.

Example 3.4 We give an example of a QA*™™ computing the query: select
every position labeled with 1 occurring on an odd position when counting
from right to left starting at the right end of the input string. Define M =
(S, X%, 59,0, F, \) with

o ¥ =A{0,1};
o S = {SOaSIaSQ};
o ['={s1,s9};

R={s} x{0,1,>};

L = {s1,s2} x {0,1,<};

6(50,>) = 0(50,0) = 0 (s0,1) = s0;

(80, <) = 515 0¢-(51,0) = (51, 1) = 895 0 (52,0) = (52, 1) = 813
and

forall s € S and a € X3, A(s,a) =1 iff s=s; and a = 1.
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The automaton operates as follows. First it walks to the right endmarker
using state sg. Hereafter, it returns to the left endmarker alternating between
the states s; and s,. A position is assigned the state s; (sq) if it occurs on
an odd (even) position when counting from the right endmarker (endmarker
not included). The run on input w => 0110 < is the sequence

(80, 1)(80, 2)(80, 3) (80, 4) (80, 5) (So, 6) (81, 5) (82, 4) (81, 3) (82, 2)(81, 1)

Hence, only position 3 is selected. This query automaton does not end at
the right endmarker. However, it can easily be modified to do so. [ |

Before generalizing Biichi’s Theorem to query automata, we define two-
way deterministic finite automata that output at each position one symbol
of a fixed alphabet rather than just 0 or 1 as is the case for query automata.
Such automata will turn out useful in the proof of Theorem 3.9 and will be
essential for the capturing of MSO by query automata on unranked trees in
Section 5.

Definition 3.5 A generalized string query automaton (GSQA) M is a tuple
(Sa Za S0, 5: F: )‘a F)a

where (S, 50,0, F) is a 2DFA, T is a finite output alphabet, and A is a
function from S x ¥ to ' U{L}. We always assume | ¢ I'.

We will only consider GSQA that output at each position of the in-
put string exactly one I'-symbol different from | and which always halt.
Therefore, for each position i of a string w, we denote by M (w,i) the
unique symbol output by M at position i. By M(w) we denote the string
M(w,1)--- M(w, |w|). Let f be a length preserving function from ¥* to I'*.
We say that f is computed by a GSQA M if M(w) = f(w) for all strings w.

The condition that a GSQA outputs exactly one I'-symbol different from
1 at each position is not essential for the results in this paper. We could
also just have taken M (w,1) as the last I'-symbol different from L output at
position 7. The former automata are just easier to work with.

Example 3.6 We modify the QA*"™ of Example 3.4 into a generalized
query automaton. To this end, we redefine A as the function A : S x ¥ —
{0,1, %, L} as follows:

)‘(807 0) - 01 )‘(SOa 1) = Oa
)‘(8170) = 01 )‘(Sla 1) = *]
)‘(827 O) = 07 )\(827 1) =1
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This automaton just copies the input string, but replaces every symbol 1
with * when it occurs on an odd position when counting from right to left
from the endmarker. Thus, M (> 0110 <) => 0% 10 <. |

We generalize Biichi’s Theorem to query automata. In this proof we will
introduce the concept of behavior function* which will play a major role
in Sections 4, 5, and 6. Additionally, we use a remarkable lemma due to
Hopcroft and Ullman [24] on two way automata which will turn out to be
crucial in Sections 4 and 5.

We first provide a suitable generalization of Proposition 2.4.

Proposition 3.7 Let k be a natural number, let w and v be strings, let
ie€{l,...,|lwl}, and let j € {1,...,|v|]}. If (w1 w;i) =5C (vr---v;,7)
and

(Wi + Wi, 1) =R (v vy, 1),

then (w, 1) =59 (v, j).
Proof. We just combine the winning strategies in the subgames
GkMSO(wl S Wi, 10 'Ujuj)

and GY9(w; -+ + - wyy|, 1;v; - - - v}y, 1) to obtain a winning strategy in the game
GM5O(w, 45, 5), like in the proof of Proposition 2.4. We have to be a bit
careful as position ¢ and j in w; - - - w),| and vy - - - v}, TEspectively, occur in
both subgames G}*° (w1 - - - w;, i;v1 - - - v, j) and

MSO .
G (wg - - W)y 1505+ - - vy, 1).

However, the combined strategy is well defined on these positions: the dupli-
cator picks position ¢ (j) when the spoiler picks position j (¢) as she does so in
both subgames, simply because the common positions occur as distinguished
constants in the subgames. [ |

Using the above proposition we obtain the following lemma:

Lemma 3.8 Letk be a natural number. There exists a DFA M = (S, %, so, 6,
F) such that 6*(w) = 759 (w, |wl), for every string w.

“We note that Shepherdson [41] already used behavior functions to simulate two-way
automata by one-way ones.
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Proof. The automaton M just works like the automaton in the proof of The-
orem 2.5. The only difference is that it has to take the distinguished constant
into account. Therefore, M has @, U {so} as set of states where sq is the
start state and where @y, is the set of =M5C-types with one distinguished po-
sition. By Proposition 3.7, 7M5° (wo, |w| + 1) only depends on 759 (w, |wl)

and 7M59(4,1). Note that the latter only depends on o. So, the transi-

tion function ¢ is defined as follows: for each o € X, §(sp,0) = 7759(0, 1)
and for each 0 € @, §(0,0) = 75°(wo, jw| + 1) where w is a string with

7w, [w]) =6, "
We are now ready to prove the main result of this section.

Theorem 3.9 A query is computable by a QA if and only it is definable
wmn MSO.

Proof. Let M = (S,%, 50,0, F, \) be a QA*™™_ We will construct an MSO
formula ¢(z) that defines the query computed by M.

In the case of a one-way DFA M’ the state assumed by M’ at each
position of the input string completely determined the behavior of M’'. Ac-
cordingly, we simulated M’ in the proof of Theorem 2.5, by simply guessing
this state assignment. Now, we do not only have to describe the behavior of
a two-way automaton, but we also have to know which positions it selects.
Therefore, we define the following partial functions for M on a string w. If
i € {1,...,|w|} then the behavior function opw; - S — S is defined as
(s if (s,w;) € R
s' if (s,w;) € L and whenever M

c o (s) =4 starts its computation on w at
w1 W4 L o). .. ]
position 7 in state s then s’ is
the first state in which it re-
\ turns at i.
We need one more notion. For each ¢ = 1,... ,|w]|, the set of states assumed

by M at i is defined as Assumed(w,7) := {s; | | € {1,...,m} and j, = i}
with (s1, 1) - - (Sm, jm) the run of M on w.

For each position ¢ of the input string w the formula ¢ guesses the function

wrw;> the set Assumed(w,7), and the first state in which M reaches i,

denoted by first(w, ). Formally, the formula guesses sets Z; p s for all partial
functions f : S — 5, sets B C S, and s € S, with the intended meaning:
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i € Zsps iff f = fs . ., B=Assumed(w,i) and s = first(w, 7). Note that
the number of sets Z g is bounded, independently of w. The correctness
of these guesses is easily verified in FO since they are determined by local
consistency checks only. To see this we introduce the following definitions.
For each partial function f : S — S and state s € S, let States(f,s) be
the smallest set containing s and if s’ € States(f, s) then f(s') € States(f,s).
That is, if M has reached position i in state s then States(fy, .., s) is the set
of states in which M visits position ¢ before making a right move at 7. There
are now two possibilities. Either there exists a state s’ € States(fy, ___wi,s)
with (s, w;) € R or there does not. The second case indicates that M starts
to cycle, while the first case means that M makes its next right move at
position 7 in state s’. Hence, we define right(f, s,0) = s’ with s’ € States(f, s)
and (s',0) € R if such an s exists. Otherwise, right(f,s,o) is undefined.
We now have enough terminology to show that the consistency checks only

depend on local information.

1. first(w, 1) = so;

2. fori=1,...,|w|-1, wrwiy, O0Ly depends on fiv . w; and w;4 1, and
first(w, 7 + 1) only depends on first(w,4), w; and f .. Specifically,
fori=1,...,|w|—1 and for all s € S,

- (s) = s if (s,w;+1) € R
W1 Witl O (right ( wopewi de (s, wit1), wi) ,w,-) otherwise.
We use the convention that f; .., (s) is undefined whenever

I‘lght( h 5&(8, wi+1)a wl)

w1 --w; ?

or §_, is undefined. Further,

first(w,i+ 1) = ., (right ( . first(w, 7), wi) ,wi) ;

w1 -w;?

3. Assumed(w, |w|) only depends on first(w, jw|) and f- Specifi-

wl-..wlw‘ -
cally,
Assumed(w, |w|) = States ( - first(w, \w\)) ;

'wl'"w|w|’

and
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4. for i = 1,...,|w| — 1, Assumed(w, ) only depends on fi . . . wis1,
first(w, 1), and Assumed(w, i+ 1). Specifically, for i = 1,... ,|w| — 1,
Assumed(w, 1) = States( [, ..., first(w, 7))

01w
U U{States( < s S) | 38’ € Assumed(w, i + 1)

Wy -w;

A6 (8 wipq) = s}
The above conditions uniquely determine first(w, 7), fy, ..., and Assumed (w,
i), for each i. Intuitively, the states first(w,i) and the functions f* are fixed
from left to right, whereafter the sets Assumed are fixed from right to left.
Clearly, these conditions can be checked in FO. Finally, ¢ verifies whether
M halts in an accepting state (this only depends on Assumed(w, |wl|)) and,
if so, selects those positions ¢ that are selected by M which now only depend
on the sets Assumed(w, 7)s.

Conversely, let ¢(z) be an MSO formula of quantifier depth k. We will
describe an automaton N computing the query defined by ¢. In particular,
N computes 7359 (w, 1) for every position 4 of the input string w, which, by
Proposition 3.7, only depends on 75759 (wy « - - w;, 1) and 75 (w; - - - Wy, 1).

We start with the (one-way) DFA M; of Lemma 3.8 to compute

T,iVISO (wy - - - w;, 1)

and its right-to-left variant Ms to compute

Tli\/ISO(wi .. -w‘w|, 1).
A powerful and surprising lemma by Hopcroft and Ullman [24, 4] allows us to
combine M; and M, into an automaton N that does exactly what we want.
Adapted to our setting, the lemma says the following:

Lemma 3.10 Let M, = (P, %, 61, po, 1) be a left-to-right deterministic au-
tomaton on strings and let My = (Q,%, 09,0, F2) be a right-to-left one.
There exists a generalized query automaton A that outputs, at each posi-
tion of the input string, the pair (p,q) of states that My and My take at this
position, respectively. That is, on input w, A outputs for position i the pair
(87 (poy w0, 83 (o, Wi - w3)).

The result now readily follows since N can first simulate M; and M, as
stated in Lemma 3.10 and then select every position ¢ for which it would
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output a pair (1, 6;) such that there exists a string v and a position j with
TS0(uy - vy, ) = B, 7Oy -1, 1) = B, and v = g[j].
For the sake of completeness and since Lemma 3.10 will be used again
later on, we sketch a proof of it based on the survey paper of Engelfriet [18].
The automaton A first computes 05 (po, w) by walking to the right end of
w while simulating M;. When it reaches the endmarker it goes one step to
the left and outputs the pair

(5ik(p07 w)a 62((]0: w\w|))a

and starts to walk back to the left endmarker of w while simulating Ms. The
difficulty, however, is to maintain 07 (pg, w1 - - - w;), for each position . We will
describe a general method for doing this. Therefore, let p = 6% (po, w1 - - - w;)
and assume that A has output the pair (p,q) at the i-th position of w.
We now show how A computes 5 (po, ws - --w;_1) from p. Suppose, {p’ |
o0 (p',w;)) =p} ={p1,--.,pr}. That is, {p1,...,px} is the set of states from
which A could have reached p by reading w;. If ¥ = 1 then there is no
problem. Hence, assume k& > 2. Then A simulates M; backwards from each
state in {p1, ..., pr} simultaneously. That is, when it arrives at position j it
knows for each p; € {p1,...,pi} the set of states y(p;, wji1---w;i—1) = {p' |
07 (P, wjq1 -+ -wi—1) = pi}. Note that these y-sets are pairwise disjoint.

This computation continues until one of the two following conditions oc-
curs.

1. If at position j all y-sets become empty except one (say v(pi, wj41---
w;_1)), then p; is the state we were looking for.

2. If A arrives at the beginmarker then the required state is the one whose
~v-set contains the start state.

Now A “knows” the correct state p; of My at position ¢. The only remain-
ing problem is that it is now at some position j and has to find its way back
to position 7. By the construction above, one step before A found out about
p (at position j + 1), there had been at least 2 different sets of states from
which M reaches p at position i (after reading w;). The key idea is that i
is exactly the position where two computations of M7, that start at position
j + 1 in two states from two of these sets, flow together into the same state
(in this case the state p). Hence, on its way to the left, A always remembers
two states from different y sets from the position before (right) and starts its

25



way back to position i by simulating the behavior of M; from position j + 1
beginning with these two states. [ |

We note that Lemma 3.10 is also used extensively by Engelfriet and
Hoogeboom [19] to prove connections between MSO definable string trans-
ductions and deterministic two-way finite state transducers.

4 Query automata on ranked trees

After the excursion on strings, we turn to trees. Specifically, we define query
automata for trees simply as two-way deterministic tree automata extended
with a selection function. We will show that in the case of ranked trees such
automata compute exactly the queries definable in MSO. Surprisingly, in the
unranked case, we have to add more to capture exactly MSO.

We borrow some notation from Briiggemann-Klein, Murata and Wood [9]
for the following definitions. All definitions in this section are for X-trees with
rank at most m, for some fixed natural number m.

4.1 Two-way tree automata

We use the definition of a two-way tree automaton by Moriya [31].

Definition 4.1 A two-way deterministic ranked tree automaton (2DTA") is
a tuple
A = (Q’ E) F7 87 5)7

where () is a finite set of states, F' C @ is the set of final states and s € @) is
the initial state. There are disjoint subsets U and D of Q x X (U corresponds
to up transitions and D to down transitions) such that djeas : D — @ is the
transition function for leaves,’ 8,,; : U — @ is the transition function for
the root, oy : U* — () is the transition function for up transitions, and
0, : D x{l,...,m} — QF is the transition function for down-transitions.
For each i <m, 6,(q,a,1) is a string of length q.

We introduced the disjoint sets U and D to avoid collision between up and
down transitions. We come back to this after having defined the computation
of 2DTA"s. To this end, we introduce the following notions. A cut of t is

5Note that leaves can also take part in up transitions.
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a subset of Nodes(t), that contains exactly one node of each path from the
root to a leaf. A configuration of A on t is a mapping c: C' — @) from a cut
C of t to the set of states of A.

If v is a node of t, then children(v) denotes the set of children of v. Let ¢ :
C — @ be a configuration. If children(v) C C, then formally c(children(v))
is a subset of ). We overload this notation so that ¢(children(v)) also denotes
the sequence of states in () which arises from the order of v’s children in t.
If children(v) = vy,...,v, (in order) then define 7(c,v) as the sequence
(c(v1),labg(vy)) -« - (e(vy), labg(vy)).

The automaton A operating on t makes a transition between two config-
urations ¢; : C; — @ and ¢y : Cy — @, denoted by ¢; — ¢y, iff it makes an
up transition, a down transition, a leaf transition or a root transition:

1. A makes an up transition from c; to cy if there is a node v such that
(i) children(v) C C4,
(ii) Cy = (Cy — children(v)) U {v},
(iii) ¢ (7T(01, v)) = ¢2(v), and
) ¢

(iv) ¢ is identical to ¢y on Cy N Co.

=

2. A makes a down transition from c¢; to ¢, if there is a node v such that

(i

(ii
(iii
(i

3. A makes a leaf transition from c¢; to co if there is a leaf node v such
that
(i) v € Cy,
(ii) Cy = Cy,
(iii) 6]eaf(61( ),labg(v)) = ¢a(v), and
(iv) ¢; is identical to ¢ on Cy — {v}.

v e,
Cy = (Cy — {v}) U children(v),
9, (c1(v),labg(v), arity(v)) = co(children(v)), and

1 1s identical to ¢y on C; N Cl,.

)
)
i)
v) ¢

4. A makes a root transition from c; to ¢y if
(i) Ci = {root(t)},
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(ii) Cy = (4, and
(ii1) Oroot(c1(root(t)), labg(root(t))) = co(root(t)).

The configuration ¢ : C' — @ with ¢(root(t)) = s (and hence C' = {root(t)})
is the start configuration. Any configuration with c(root(t)) € F is an accept-
ing configuration. This means that a 2DTA" starts at the root and returns
there to accept the tree. A run is a sequence of configurations cy,... ,cp,
n > 1, such that ¢; — --- — ¢, and ¢ is the start configuration. A run is
mazximal if there does not exist a ¢ such that ¢, — ¢. A run is accepting if it
is maximal and if ¢, is an accepting configuration.

It should be noted that, although there are usually many different runs
for the same tree, for all nodes the sequence of states in which they are visited
is the same in all these runs. Indeed, the disjointness of ) x ¥ into U and
D makes sure that a node labeled with a certain state cannot make an up
transition in one run and a down transition in another run. Therefore it is
justified to consider the behavior of these automata as deterministic. For this
reason, we will refer to the run of A on a tree rather then the more correct
a run of A.

A 2DTA" A accepts a tree t if the run of A on t is accepting; A accepts
a tree language T if it accepts exactly every tree in 7.

Note that A can run forever on an input tree t. In this case the run
of A on t is infinite and therefore not accepting. We, however, will only
consider automata that always terminate on every input. This is a decidable
subclass. Indeed, later we show that the behavior of A can be defined in
MSO. One then can construct an MSO sentence that is satisfiable iff A does
not terminate on at least one tree. Since satisfiability of MSO sentences on
trees is decidable [45], it follows that deciding whether a 2DTA" halts on
every input is also decidable.

We illustrate the above definitions with an example.

Example 4.2 Consider trees that represent Boolean circuits consisting of
AND and OR gates having two inputs and one output. The represented
Boolean function is evaluated from the leaves to the root. We define a 2DTA"
accepting all trees that evaluate to a 1. For ease of exposition, we only
consider full binary trees that indeed represent Boolean circuits. That is,
internal nodes are labeled with AND and OR, and leaves are labeled with 0
and 1. Define the 2DTA"

A = (Q’ Z = {AND’ OR7 0’ 1}7 F7 87 6)?
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with Q@ = {s,u} U{0,1}* D = {s} x ; U = {u, (0,0), (0,1),(1,0), (1,1)} x
Y, F = {1}; and for 0 € X,4,j,11,j1,02,J2 € {0,1}, and op,op,,op, €
{AND, OR}, define

1. 0,(s,0,2) = (s,5);

V]

. 6leaf(37 U) =U;

. 5T((uai)’ (uaj)) = (Z,]),

. 64(((41, 41),0p1), (42, J2), 0Ps)) = (41 Op; J1,i2 OPy Jo); and

W

ot

6r00t((7:7j)7 Op) = Z Op .7

Here, + AND j and ¢ OR j define the standard Boolean functions. The
automaton first walks to the leaves (1); at the leaves it changes state s into
state u (2); hereafter, A assigns the state (i, j) to nodes of height 1 where 7 is
the label of their first child and j is the label of their second child (3); from
then on, A assigns to each inner node the pair (7, ) € {0,1}?, where 7 and j
are the result of the evaluation of the left and right subtree of this node (4);
finally, the root is assigned the value of the tree (5). |

To obtain a more uniform two-way tree automaton we have let all tran-
sitions depend on the state and the label of the nodes from where this tran-
sition originates. That is, up transitions depend on the labels and the states
of the children of the node the automaton heads to, while a down transition
depends on the state and the label of the parent node. Up transitions of
the one-way tree automata defined in Section 2.3 differ from these in that
they depend on the states at the children and the label of the parent. Each
two-way tree automaton can readily simulate a one-way one. Indeed, let
B = (@pB,%,05, Fp) be a bottom-up deterministic tree automaton. For ease
of exposition assume all transitions of B are defined. Then define the two-
way automaton A simulating B as follows. First, A runs to the leaves of
the input tree t. From thereon it uses functions f : ¥ — ()p as states
with the following intended meaning: A assigns f to a node v such that
05 (ty) = f(o) whenever laby(v) = . Thus to each leaf A assigns the state
f with f(o) = d0p(o) for each 0 € X, and up transitions are defined as
follows: 8(f1,01,-.-, fn,00) = f with f(o) = dg(fi(o1), ..., fa(on),0) for
every o € . Furthermore, A accepts when f(labg(root(t))) € Fp where f is
the state assigned to the root.
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4.2 Query automata

A ranked query automaton is simply a two-way deterministic tree automaton
over ranked trees extended with a selection function.

Definition 4.3 A ranked query automaton (QA") is a tuple A = (Q, X, F, s,
9, A), where (Q,%, F,s,0) is a 2DTA" and X is a function from @ x ¥ to
{L,1}; X is the selection function.

We define the semantics of a QA" A. If t is a tree and v is a node of t, then
A selects v in configuration ¢ : C — @, if v.€ C and A(¢(v),labg(v)) = 1.
A selects v if the run c¢q,... ,c, of A on t is accepting and if there is an
i € {1,...,n} such that v is selected by A in ¢;. The query computed by A
is defined as A(t) := {v € Nodes(t) | A selects v}. Furthermore, A accepts
the tree language that is accepted by the underlying tree automaton.

Example 4.4 An automaton selecting all nodes evaluating to 1 in a Boolean
circuit, is obtained from the automaton of Example 4.2 by changing F' to )
and adding the selection function A defined by, for 7,5 € {0,1} and op €
{AND, OR}, A((4,4),0p) :==1iff i op j = 1. [

Remark 4.5 Although two-way deterministic tree automata are equivalent
to deterministic bottom-up tree automata (see, e.g., Moriya [31]), not all
query automata are equivalent to deterministic query automata that are only
top-down or only bottom-up. Consider for example queries of the following
kind: select the root if there is a leaf labeled with o and select all leaves if the

root s labeled with o.
In other words: two-way and one-way query automata are equivalent with
respect to defining tree languages but not with respect to computing queries.
|

In preparation of the proof of Lemma 4.7, we extend the notion of a
behavior function used in the proof of Theorem 3.9 to two-way tree automata.

Definition 4.6 Let A be a QA" with state set Q. The behavior function
f&:Q — Q of Aon a tree t is the partial function defined as follows

(¢ if (¢,labg(root(t))) is in U

q' if (g,labg(root(t))) is in D and
AfN whenever A starts its compu-
0 () = tation on t in state ¢ then ¢
is the first state in which it re-
L turns at root(t).
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It should be noted that, as we always assume that automata do not enter
infinite cycles, f#(q) = ¢ always implies that (g, lab;(root(t))) € U. We call
a partial function f from @ to Q) admissible, if the graph of f contains no
(directed) cycles of length > 1. If ¢y, ..., ¢, is the run of A on t, then the
set of states A assumes at a node v is defined as

Assumed?(t,v) := {¢;(v) | i € {1,... ,n} and v belongs to the cut of ¢;}.

We introduce some more notation. If fi, ..., f, are admissible functions
from @ to @ and ¢ € @), then the set of states reachable from ¢ by using
the functions fi,..., fn, denoted by States(fi, ..., fa,q), is the smallest set
of states containing ¢ and closed under applications of every f;. We define
up(f,q) as the unique state ¢’ in States(f, ¢) for which f(¢') = ¢'. If there is
no such state, then up(f, ¢) is undefined. Intuitively, when f corresponds to
the behavior function f¢!, then up(/f, g) is the state in which A makes an up
transition at v when started at v in state q.

4.3 Expressiveness

We characterize the expressiveness of ranked query automata in terms of
MSO. First, we show how the query computed by a ranked query automaton
can be defined in MSO.

Lemma 4.7 Every query computed by a ranked query automaton can be de-
fined in MSO.

Proof. Let A = (Q,%, F,s,0, ) be a QA". Like in the proof of Theorem 3.9,
we will construct an MSO formula that guesses sets and then verifies the
consistency of these sets. We make use of the sets Zy g, where f is a partial
mapping f : Q@ — @ and B C (). On input t they have the following intended
meaning: a node v € Z; 5 iff f = f¢, and B = Assumed” (t,v). Again, like
in the proof of Theorem 3.9, the correctness of these guesses is easily verified
in FO since they are determined by local conditions only. Indeed,

1. the behavior function of every leaf node only depends on its label;

2. the behavior function of every non-leaf node v with n children only
depends on f , ..., f& labg(vl), ..., laby(vn), and labg(v). Specif-
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ically, let v be a node of t of arity n. Then, for every ¢ € @,

q if (g,laby(v)) € U
fA (q) :: ql if (Qa la’bt(v)) ¢ U’ 5¢(q7 labt(v)) = (Q1, P ,qn) and
" S (up(fe,,, @), labe(v1), ... up(fi,, . dn), labt(vn)() ):
q'; %

We use the convention that f¢!(g) is undefined whenever in (x), 4, d3,
or one of the up(f¢ ,¢;) is undefined;

3. Assumed” (t,root(t)) only depends on f#, the label of the root, and
the start state. Specifically,’

Assumed” (t, root(t)) = States(f{, droot (-, labe (root(t))), s);

4. for every non-root node v¢ in t, the set AssumedA(t, vi) only depends
on Assumed”(t,v), the label of v, and the behavior function of vi.
Specifically, let v be a node with n children. Then’

Assumed”(t, vi) = U{States(ft‘i‘,i,q) |
3¢’ € Assumed”(t,v) A 6, (g, labe(v)).i = ¢}.

The above conditions uniquely determine the behavior functions and the
sets Assumed. In particular, the behavior functions are fixed bottom-up,
whereafter the sets Assumed are fixed top-down. Furthermore, the above
conditions can clearly be expressed in FO. Together with the verification of
these conditions, the formula verifies whether A halts in an accepting state
(this only depends on f{) and, if so, selects those nodes that are visited in a
selecting state, which now only depends on the B’s. [ |

For the proof of the other direction we construct an automaton com-
puting, for some fixed k, the type 7M5°(t,v) for each node v of the input
tree.

Theorem 4.8 A query is computable by a ranked query automaton if and
only if it is definable in MSO.

6Here, for each 0 € ¥, droot (-, o) is the function mapping each ¢ to dyoot(q, o).
"We denote by 4, (g, labg(v)).i the i-th entry of 6, (g, labg(v)).
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Proof. The only-if direction is given in Lemma 4.7.

For notational simplicity we describe the proof of the other direction
only for trees of rank 2. The proof of the general case is a straightforward
generalization.

Let ¢(z) be an MSO-formula of quantifier depth k. We describe a QA"
that computes the query which is defined by ¢. The automaton has to find
out, for each vertex v of a tree t, whether t = ¢(v). This depends only
on TM59(¢, v), the =M5_type of the structure (t,v). By Proposition 2.9(1),
M50 (t,v) is uniquely determined by 759 (t,,v) and TM5C(t,,v). Hence,
the QA" only has to compute TH5°(ty, v) and 759 (t,, v) to decide whether
v should be selected. We first describe an algorithm that computes these
=M50_types for every node of a complete binary tree. Next we explain how
this algorithm can be translated to a QA". Finally, we sketch how the QA"
has to be modified to deal also with possibly non-complete trees.

(i) The underlying algorithm of the QA" for complete binary trees is
outlined in Figure 5.

(7i) All objects computed by the algorithm in Figure 5 are of bounded size,
depending only on ¢ and not on the size of t. Hence, a QA" can store them
in its state. To simulate the outer loop of the algorithm a QA" can proceed in
cuts that consist of all vertices of level .8 It follows from Proposition 2.9 that
steps 2, 3 and 5 only involve the application of fixed finite functions. Hence
steps 2-5 can be performed in parallel at all vertices of the same depth i.
Step 1 is the only one that involves non-local computation. We next discuss
this step.

The type 7,"5°(tw, W) can be computed in a bottom-up fashion for a
subtree ty, of t. Indeed, we just use the automaton of Lemma 2.10. As
discussed at the end of Section 4.1 this automaton can be readily simulated
by a two-way automaton that now starts at w. The problem, however, is to
detect when the root of the subtree t,, i.e., the starting point, is reached.

Our QA" remembers this starting point by a kind of pebbling trick. To
compute 7259 (ty1,v1) and 75O (ty9,v2) it first makes a down transition:
to v2 the automaton assigns a U-state which keeps 7759 (t,, v) in mind and
waits until the computation in the left subtree has finished. To this end,
the QA" goes down to the leaves of ty; and computes T,lc\’[so(tvl, v1) in one
bottom-up traversal as described above. It “recognizes” that the subtree-

81t should be noted that we are describing here only one special run of the automaton.
But, as mentioned before, all possible runs are equivalent.
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Input:

t

Compute 75759 (£r00(t), root(t)) and 7,75 (t, root(t)),
for 7 := 0 to depth of t do

begin

for all vertices v of level 7 do
begin
% the root is level 0
% 759 (ty,v) has already been computed

MSO

% now compute T5° (ty, V)

1.

end
end

Compute 70150 (ty1, v1)
Compute 70150 (ty9, v2)

. Compute 7,5°(ty, v) from laby(v), 72759 (ty1,v1),

and 7M50 (ty9, v2)

. Compute 7,5°(t,v) from 7.75°(ty, v) and 750 (t, v)

Deduce from 7)59(t,v) whether t = ¢(v) holds
If so, select v

. Compute 7559 (1, v1) and 750 (t,9, v2) from

70 (. v), 750 (ty1, v1) and 750 (tys, v2)

Figure 5: The algorithm for computing the query defined by ¢(x) over com-
plete binary trees.
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evaluation is finished by meeting the U-state at v2. Next it makes an up
transition, followed by a down transition. Hereafter, v1 has a U-state which
contains 750 (ty, v) and 759 (ty1, v1), and waits for the termination of the
evaluation of the right subtree which is done analogously to the case of the
left subtree. This finishes the description of the QA" for the case of complete

binary trees.

(7i1) We now explain how a QA" can deal with non-complete binary trees.
We cannot use the above described pebbling trick when a node v has only
one child. To remedy this we make use of Lemma 3.10. If a node v has only
one child (while its parent node p has at least two children), then we view
the part of the tree between v and the first descendant w of v with more
than one child (or no child) as a string, where p and w play the role of begin
and endmarker, respectively. Since w has more than one child or is a leaf,
we can compute TH59(ty, w) inductively.

Consider the deterministic string automata M; and M, where, for all ver-
tices ¢ between p and w, M; computes 759 (%, ¢) starting from 759 (%, v)
and M, computes 7"5°(t., ) starting from 75°(ty, w). On the string be-
tween p and w the QA" then behaves as the two-way string automaton that
combines the two automata M; and M, as specified in Lemma 3.10.

Hereafter, the automaton walks to w arriving there in state 759 (ty,, w)
and continues.

If we consider m-ary trees, then in step (1) we just need to compute
50 (ty1), ..., TBO(tyy), where n is the arity of v. Because n < m and m
is fixed, we can compute these one after the other. Steps (2-5) again consist
of the application of fixed finite functions. [ |

5 Query automata on unranked trees

We next turn to query automata over unranked trees. Surprisingly, the
equivalence with MSO obtained in the previous section does not generalize
smoothly to unranked trees. Indeed, to obtain the expressiveness of MSO we
have to add so-called “stay transitions” to our model.

5.1 Tree automata over unranked trees

We start by recalling the definition of bottom-up tree automata over un-
ranked trees.
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Definition 5.1 A nondeterministic bottom-up unranked tree automaton, de-
noted by NBTA", is a tuple B = (@, X, F,, 0), where @ is a finite set of states,
F C @ is the set of final states, and ¢ is a function Q x ¥ — 29" such that
d(g,a) is a regular language for every a € ¥ and ¢ € ). The semantics of B
on a tree t, denoted by ¢*(t), is defined inductively as follows: if t consists
of only one node labeled with a then 6*(t) = {q | € € §(¢,a)}; if t is of the

form
a

S\
t1 tna

then

0"(t) ={q | 3¢1 € 6"(t1),... , 3gn € 0"(t,) and g1 -+ - gy € (g, 0)}

A tree t over X is accepted by the automaton B if §*(t) N F' # (). The tree
language defined by B, denoted by L(B), consists of the trees accepted by
B. A tree language T is recognizable if there exists a NBTA* B such that
T = L(B).

Note that we use recognizable both for ranked as well as unranked trees.
It will always be clear from the context, however, whether we are considering
ranked or unranked trees. We represent the string languages (g, a) by NFAs.
The size of B then is the sum of the sizes of ), 3, and the NFAs defining
the transition function.

We need the following lemma in Section 6. Its proof is a straightforward
generalization of the ranked case (see, e.g., the survey paper by Vardi [46]).

Lemma 5.2 Deciding whether the tree language accepted by an NBTA 1is
non-empty s in PTIME.

Proof. Let B = (Q, %, F,0) be an NBTA*. We inductively compute the set
of reachable states R defined as follows: ¢ € R iff there exists a tree t with
q € 6*(t). Obviously, L(B) # 0 if and only if RNF # (). Define for all n > 0,

R = {geQ|FaeX:c€d(qa)};
R,i1 = {¢g€Q]|Jae€X:d(g,a)NR;#0}.

Note that for all n, R, C R,,;1 C Q. Hence, Rjg = Rjg+1. Thus, define R
as Rg|.
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Clearly, R; can be computed in time linear in the size of B. Since testing
non-emptiness of (¢, a) N R} can be done in time polynomial in the sum
of the sizes of these (see, e.g., [25]), each R, can be computed in time
polynomial in the size of B. This concludes the proof of the lemma. [ |

A deterministic bottom-up unranked tree automaton, abbreviated by
DBTA", is an NBTA" as above where 6(g,a) N §(¢',a) = 0 for every a € &
and ¢,q¢ € @ with g # ¢'.

We mention that a detailed study of tree automata over unranked trees
has been initiated by Briiggemann-Klein, Murata and Wood [9, 32].

We next generalize Theorem 2.8 to unranked trees by showing that an
unranked tree language is recognizable if and only if it is definable in MSO.
A DBTA" B can be defined in MSO in the usual manner: the MSO sentence
defining the behavior of B just guesses states and verifies the consistency of
its guesses with the transition function. The latter can now no longer be done
in FO, as was the case for ranked trees, because the transition functions are
now determined by regular languages. However, by Theorem 2.5 this check
can be readily done in MSO.

For the other direction, we again show that the =M5-type of a tree can
be computed by a DBTA B = (®,%, 6, F), for some fixed k. The idea
is the same as for the ranked case. Again, the type of the children of a
node v of a tree t plus the label of v determine 75"°°(t,). The problem
is that now, as there is no bound on the number of children of a vertex,
the correspondence between the children’s types and the type of the whole
subtree is no longer given by a finite function, as was the case for ranked trees.
Instead, this correspondence is controlled by a regular language. Therefore,
for each 0 € ¥ and 0 € &y, we define §(0,0) as the set of strings 6, ---6,
where for ¢ = 1,...,n, 0; € ®,, and whenever for a tree t and a node v
labeled with ¢ with n children, 74(ty;) = 6;, for each i = 1,...,n, then
Tk(tv) = 0. We now show that (6, 0) is indeed a regular language. To this
end we state the following proposition.

Proposition 5.3 Let k be a natural number, o € X3, and let t1, ... , t,, s,
., Sm, t, 8 be trees. If o(ty,...,t,) =5 o(sy,... ,8,) and t =50 s,
then o(t,... ,tn,t) =M5C o(sy, ... ,sp, ).

Proof. The proof is almost identical to the proof of Proposition 2.7. We
just combine the winning strategies in the subgames

GkMSO(a(tl, ceytn);0(S1, -0 Sm))
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and GM59(t;s) to obtain a winning strategy in
Gy (o (1, ytn,t);0(S1, .-+ ,8m,8)).

At the end of the game, the selected nodes define partial isomorphisms for
all pairs of respective substructures. To ensure that they also define a partial
isomorphism between the entire structures one only has to check the relations
E and < between selected nodes coming from different substructures. There
is only one technicality in showing this. To this end, we note the following.
If the spoiler picks the root of a t, (a € {1,...,n}) in his I-th move with
[ <kin GYSO(o(ty,... ,tn);0(S1,- .. ,8m)), then the duplicator is forced to
answer with the root of an s, (b € {1,...,m}). Indeed, if she does not do so
and picks another node, say e, then in the next round the spoiler just picks
the parent of e to which the duplicator has no answer. The same holds when
the spoiler picks the root of t, then the duplicator is forced to pick the root
of s.

Suppose in a play elements ¢; and c¢; are chosen such that ¢; < ¢;, ¢; is the
root of a t,, and c¢; is the root of t, then the above discussion implies that
d; is the root of a s, and d; is the root of s simply because they are picked
before the k-th move in their subgames. Hence, d; < d;, as had to be shown.

Suppose in a play ¢; and ¢; are chosen such that ¢; is the root of o(t4, ...,
t,,) and c¢; is the root of t. Then, E(c;,¢;). By a similar argument as above,
it can be shown that d; has to be the root of o(sy,... ,sn) and d; has to be
the root of s. Hence, E(d;,d;). ]

The above proposition implies that we can compute the =M5°-type of a
tree o(ty, ... ,t,), by incrementally reading the ="°-types of the t;, start-
ing from the state 75°(c). Indeed, define My, = (P, Pk, sur, Oar, Far)
where sy = {T]ivlso(a')}, Fy = {(9}, and for each 91,92 € (bk;, 6M(01702) =

59 (a(ty, ... ,tn,t)) where t1, ..., t,, and t are trees such that

T]%:VISO(O'(tl, e ;tn)) = 01

and 7359(t) = ;. Now clearly, L(M,,) = 6(6, o).
From the above the following theorem readily follows.

Theorem 5.4 An unranked tree language is recognizable if and only if it is
definable in MSO.
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In Section 5.4, we will be needing a tree automaton computing the type
M50 (¢, root(t)) for each input tree. Such an automaton is just a slight exten-
sion of the automaton discussed above. To show this we have the following
proposition. To be precise, we only need item 2, the other items are used in

Section 5.4. We abbreviate 7,59 (t, root(t)) by 7215 (t, root).

Proposition 5.5 Let k be a natural number, o be a label, t and s be two

trees, v be a node of t with children vy,... ,v,, and w be a node of s with
children wy, ..., wWy,.
1. If (ty,v) =59 (54, w) and (ty,v) =50 (sw,w), then (t,v) =50
(s,w).
2. If (0(tyy,--- by, ), r00t) =M50 (0(Sgy, - - -, Sw,,_, ), TOOt) and

(tvn7 Vn) EkMSO (swm? Wm)7
then (ty,v) =89 (sw, w).

3. Let the label of v and w be o. Fori e {1,... ,n} andj € {1,... ,m},
if

o (tv,v) =" (5w, W),

o (0(ty,,-.. by, ,),r00t) =59 (0(Sw;,- - -, Sw,_, ), T0OL),

® (0(tvrys--- ,tv,),TOO) EMSO (0(Swjt1s- - - »Swy),T00t), and
o the label of v; equals the label of w;,

then ( Vi 7VZ) :}XISO (SW] ’ WJ)

Proof. We focus on the third case where there are altogether 4 subgames
including the trivial game in which one structure consists only of vi and the
other of wj. The winning strategy in the game on (ty;, vi) and (Sw;, wj) just
combines the winning strategies in those 4 subgames. At the end of the game,
the selected vertices define partial isomorphisms for all pairs of respective
substructures. To ensure that they also define a partial isomorphism between
the entire structures again one only has to check the relations < and F
between the chosen elements, and the distinguished constants vi and wi.
similarly to the proof of Proposition 5.3, this immediately follows from the
following observation. The distinguished constants in the subgames make
sure that (i) whenever in the game on (ty;, vi) and (Sw;,wj) a child of v

39



(w) is chosen, the duplicator has to reply with a child of w (v); and, (%)
whenever v (w) is chosen, the duplicator has to reply with w (v). |

We will need the following lemma in Section 5.4.

Lemma 5.6 Let k be a natural number. There exists a DBTA" B = (Q, %, 6,
F) such that §*(t) = 759 (¢, r00t(t)), for every unranked tree t.

Proof. Define @) as the set ®;. Here we take @ as the set of =}5°-
types of trees with one distinguished node. For each # € &, and o € ¥,
define 6(6,0) as the regular language defined by the automaton My, =
(g, Pk, Sar, Onr, Far). This automaton is defined as follows:

su = {70 (t(0), r00t) };

Fyr = {0}; and for each 6,0, € &y, 63,(01,6;) = 75°(0(t1,- .. , b4, t), TOOL)

where t, ..., t,, and t are trees such that 7o°°(o(ty,... ,t,),root) = 6,
and 7159(t, root) = 6. By Proposition 5.5(2), it does not matter which
members of the classes 6; and 65 we choose. [ |

5.2 First approach

A first approach to define query automata for unranked trees is to add a
selection function to the two-way deterministic automata for unranked trees
as defined by Briiggemann-Klein, Murata and Wood [9]. However, it will turn
out that these automata cannot even compute all first-order logic definable
queries.

Definition 5.7 A two-way deterministic unranked tree automaton (2DTA")
is a tuple A = (Q,%, F,s,d), where Q, F, s, U, D, 0jear and 00y are as in
Definition 4.1. The transition function for up transitions is now of the form
0+ : U* = @, and the transition function for down transitions is of the form
0, : D x N — Q*. For each (q,a) € D, Li(q,a) := {0,(¢,a,i) | i € N} is
regular; for each j € N, d,(q, a, ) must be a string of length j; and for each
¢ € @ the language L;(q) := {w € U* | 6;(w) = ¢} must be regular. To
assure determinism, we require that L;(q) N Lt+(¢') = 0 for all ¢ # ¢'.

The definitions of configuration, leaf, root, up and down transitions,® run,
and accepting run carry over from QA"s.

9Note that 4§, is uniquely determined by the regular languages L (g, a).
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We next argue that each transition in a run of the automaton takes linear
time. To this end we elaborate on the structure of the regular languages
L,(q,a). Each such language contains for each n € N, at most one string
of length n. Shallit [40] has shown that such languages can be described by
finite unions of regular expressions of the form zy*z, where x, y, and z are
strings. Hence, we can assume all languages L, (g, a) are represented by such
languages. Suppose the automaton makes a down transition in state g at a
node v with label a and arity n. Then all we have to do is look up in L, (g, a)
the string of length n, if it exists. This can clearly be done in time linear
in the size of the input tree when L|(g,a) is represented by finite unions
of regular expressions of the above simple form. We represent all regular
languages L+(¢) by deterministic finite acceptors. Suppose in a configuration
¢ the automaton makes an up transition at the children of a node v. Then
we just have to check for each ¢ whether 7(c,v) (cf. Section 4.1) belongs to
L+(q). This can also be done in time linear in the size of the input tree.

Each two-way tree automaton can readily simulate a one-way one. In-
deed, let B = (@p,2,0p, Fp) be a bottom-up deterministic tree automaton
over unranked trees. For ease of exposition assume all transitions of B are de-
fined, that is, for each ¢; - - - g, € @)} there exists ¢ € () and o € X such that
G qn € 0p(q,0). Then define the two-way automaton A = (Q, %, F, s, )
simulating B as follows. First, A runs to the leaves of the input tree t.
From thereon it uses functions f : ¥ — @p as states with the following
intended meaning: A assigns f to a node v such that 05(ty) = f(0) when-
ever labg(v) = 0. Thus to each leaf A assigns the state f with f(o) = ¢
such that € € dp(g,0) for each o € ¥. Up transitions are defined as fol-
lows: (f1,01) - (fn,0n) € Lt+(f) whenever for every 0 € ¥ we have that
fi(o1) - -+ fu(on) € 6B(q,0), where f(o) = q. Clearly, each Ly(f) is regular.
Furthermore, A accepts when f(labg(root(t))) € Fp where f is the state
assigned to the root.

Definition 5.8 An unranked query automaton (QA") is a tuple A = (Q, %,
F,s,6,)), where (Q, %, F,s,6) is a 2DTA" and X is a mapping A : Q X ¥ —
{L,1}.

The query computed by a QA" and the tree language defined by a QA"
are defined analogously to QA"s.

Example 5.9 Consider Boolean circuits consisting of AND and OR gates
that have one output but can have an arbitrary number of inputs. The
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following query automaton selects all nodes of the input tree that evaluate
to al. Again, we only consider trees as inputs that represent Boolean circuits.

Define the QA"A = (@, = {AND, OR, 0,1}, F, s, 6), with
Q = {s,u, all_one, all_zero, mized},
D = {s} x &, U = {u, all_one, all_zero, mized} x ., and F = Q. Define
1. for any natural number n and 0 € X, §,(s,0,n) = s+ -5 (n times);
2. for all 0 € X, Ojeat(s,0) = u;
3. (¢1,01) - (qu,0n) € Ly(all_one) iff for all i € {1,... ,n}

e if ¢; = u then o; = 1;
e if 0; = AND then ¢; = all_one; and

e if g; = OR then ¢; = mized or ¢; = all_one.
4. (q1,01) -+ (gn,0n) € Ly(all_zero) iff for all i € {1,... ,n}

e if ¢; = u then o; = 0;
e if 0; = AND then ¢; = all_zero or ¢; = mized; and

e if g; = OR then ¢; = all_zero.
5. Ly(mized) := U* — (L4(all_one) U Ly(all_zero)).

The automaton first walks to the leaves (1) and then changes state s into
state u (2). Hereafter, it walks back up again assigning to each inner node the
state all_one, all_zero or mized, depending on whether the evaluation of the
subtrees of this node returns only ones, only zeros, or both ones and zeros,
respectively (3-5). Consider for example (3): an internal node is assigned
all_one if all the trees rooted at its children evaluate to 1. That is, first, if a
child is a leaf then it should be labeled with a 1. Next, if a child is labeled
with AND then it should be assigned the state all_one, as all his children
in turn should evaluate to 1. Finally, if a child is labeled with OR then it
should be assigned the state all_one or mized, as at least one of this node’s
children should evaluate to 1.

The selection function is now defined as follows: for all ¢ € () and op € ¥,
A(g,op) = 1 if and only if ¢ = all_one and op € {AND, OR}, or ¢ = mized
and op = OR. [ ]
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Even though QA“s can accept all recognizable tree languages, they cannot
even compute all first-order logic definable queries as is illustrated next.

Proposition 5.10 Unranked query automata cannot compute all queries de-
finable in first-order logic.

Proof. Let ¥ be the alphabet {0, 1}. Consider the query “select all 1-labeled
leaves for which there is no node among their left siblings that is labeled with
a 1”7. Towards a contradiction, suppose there exists a QA" A that computes
this query. Let @ be the set of states of A and let m = |@|. The crucial
observation is that there exist at most m! different sequences of states that
A can take at the root of a tree. We set n:=m!. For i =0,...,n, let t; be
the tree consisting of a root (say, labeled 0) with n + 1 children, where the
first ¢ children are labeled with 0 and the others are labeled with 1. There
now exist 7,5 € {0,...,n} such that j < j' and A goes through the same
sequence of root states for t; and t;. Since for each state and for each arity
there is only one string of states that can be assigned to the children, the set
of states assumed by A at the (j' + 1)-th leaf of t; is the same as the set of
states assumed by A at the (5’4 1)-th leaf of t;». Since both leaves carry a 1,
A selects them both or does not select them at all. This leads to the desired
contradiction. [ |

QA"“s cannot compute the query in the proof of Proposition 5.10 because
they cannot pass enough information from one sibling to another. Indeed,
when the automaton makes a down transition at some node v, it assigns a
state to every child of v; even though every child knows its own state, it
cannot know in general which states are assigned to its siblings. To resolve
this, we introduce in the next section query automata with “stay transitions”.
Such transitions are represented by two-way string-automata which process
the string formed by the states and the labels of the children of a certain
node, and then output a new state for each child.

5.3 Strong query automata

Tree automata with stay transitions are defined next.

Definition 5.11 A generalized two-way deterministic unranked tree automa-
ton (G2DTA") is a tuple A = (Q, %, F, s,0), where Q, F, s, U, D, 0jeat, Oroot
and 0, are defined as in Definition 5.7. Let Uy, and Ugay be two disjoint
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regular subsets of U*. Then §; is a function 04 : Uy, — @ (here the same
conditions apply as in Definition 3.1), and 0_ : Ugay — Q* is the transition
function for stay transitions. We require that this function is computed by
a generalized string query automaton (cf. Definition 3.5).

Most definitions remain the same as for QA“s. Only, we now also have
stay transitions: A makes a stay transition from a configuration ¢; : C; — @
to a configuration ¢y : Cy — @ if there is a node v in t such that

(i) children(v) C (1,

(1) Cy = Cy,

(#i) 6_(m(cq,Vv)) = co(children(v)), and
(iv)

¢ 1s identical to ¢y on C; N Cs.

The above defined automata are much more expressive than MSO. Indeed,
they can for instance simulate linear space Turing Machines on trees of depth
one. Therefore, we restrict them in the following way:

Definition 5.12 A strong two-way deterministic unranked tree automaton
(S2DTA") is a G2DTA" that makes at most one stay transition for the chil-
dren of each node.

In Lemma 5.16 we show that the behavior of a S2DTA" can be defined in
MSO. Tt is then not difficult to construct an MSO sentence asserting that a
particular G2DTA" makes two stay transitions at the children of a particular
node. Since satisfiability of MSO sentences on trees is decidable, again we
can conclude that it is decidable whether a G2DTA" is a S2DTA".

A strong query automaton is an S2DTA" extended with a selection func-
tion.

Definition 5.13 A strong query automaton (SQA") is a tuple A = (Q, %,
F,s,6,)\), where (Q,%, F,s,06) is a S2DTA" and A is a function from @ x X
to {L,1}.
We illustrate the above with an example.

Example 5.14 Recall the query of the proof of Proposition 5.10, select all
1-labeled leaves for which there is no node among their left siblings labeled
with a 1. This query can be computed by a SQA®. Indeed, let A = (Q
, 2, F,s,0,\) be the SQA" with Q@ = F = {s, stay,up,1}, D = {s} x %,
U = {stay,up,1} x X, and where
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o Usay = ({stay} x X)*,

o Up = U* = Upay,

e for each natural number n and o € X, 0,(s,0,n) = s---s (n times),
e for each 0 € X, 01eat(s, 0) = stay;

e )_ is computed by the GSQA that assigns 1 to the first 1-labeled node
and up to the others, and

o Li(up) = up*lup™ + up*.

The automaton walks to the leaves, makes one stay transition, and then
walks back to the root. The selection function is defined as follows: for each
ceYand g€ @, A¢,0)=1iff ¢=1. [

5.4 Expressiveness

We next prove that a query is computable by a SQA® if and only if it is
definable in MSO. But first, we emphasize the remarkable difference between
tree automata and query automata over unranked trees. Indeed, as shown in
the next proposition, stay transitions do not increase the expressiveness with
respect to defining tree languages. However, stay transitions do make a dif-
ference with respect to computing queries, as was shown in Proposition 5.10
and Example 5.14.

Proposition 5.15 Every S2DTA" is equivalent to a 2DTA" accepting the
same tree language.

Proof. This follows directly from Theorem 5.4 above and Lemma 5.16 below.
|

We first generalize Lemma 4.7 to query automata over unranked trees.

Lemma 5.16 FEvery query computed by an unranked query automaton can

be defined in MSO.

Proof. The proof is similar to the proof of Lemma 4.7. We use some of the
notation introduced there. Given an SQA" A = (Q, %, F, s, §), we again guess
sets Z g and check their consistency. On input t these sets have the following
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intended meaning: a node v € Z; 5 iff f = f{ and B = Assumed®(t,v). As
opposed to the proof of Lemma 4.7, the consistency check can no longer be
specified in first-order logic because the correctness of the guesses depends on
the transition functions d+, d; and 6_ which are no longer finite functions, but
are given by regular languages and by a GSQA. However, the correctness can
easily be verified in MSO because, by Theorem 2.6 and Theorem 2.12, regular
languages and GSQAs can be defined in MSO. Further, the correctness of
the behavior functions crucially depends on our assumption that at most
one stay transition can occur at the children of each node. Indeed, suppose
a node v is labeled with transition function f and its n children are labeled
with fi, ..., fo- Then we have to check for all states ¢ and ¢’ with f(q) = ¢’
that'

1. g = ¢ if (¢,1aby(v)) € U;
2. if (¢, lab¢(v)) € D then there exist states qi, ... , g, such that
0,(¢,0,m) = q1-
and either

(a) foreachi € {1,...,n}, up(fi,q) € U: in this case we should have
5+((up(f1,q1),01) -+ - (up(fn, Gn), o)) = ¢';

or
(b) foreachi e {1,...,n}, up(fi, ¢;) € Ustay: in this case there should
exist ¢f, ..., g, with
(5—((up(f17 Q1)a 0-1) e (up(fna QTL)a Un)) = q; e Q;u
and

5T(up(fla QD, Ul) T (up(fna qln)a O'n)) = ql'

Finally, if f(g) is undefined then §,(g, o, n) should be undefined; or in

case (2&) 5T((up(f1a QI)a Ul) e (up(fna QTl)a Un)) or one Of the up(fia QZ)
should be undefined; in case (2b)

6—((up(f1,q1),01) - - (DP(fn, @), o)),

10As in the ranked case, States(fi,...,fn,q) is the smallest set of states containing ¢
and closed under applications of every f;. We then define up(f, ¢) as the unique state ¢’
in States(f,q) for which f(q') = ¢'. If there is no such state, then up(f,q) is undefined.
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0+(up(f1,41),01) - - - (up(fn; 4,,), 0n)), or one of the up(f;, ¢;) or up(fi, ¢;)
should be undefined.

From our assumption that an SQA* can make at most one stay transition at
the children of each node, it follows that the case distinctions (2a) and (2b)
suffice. n

We are now ready to prove the main result of this section.

Theorem 5.17 A query is computable by a SQA™ if and only if it is definable
in MSO.

Proof. The only-if direction was given in Lemma 5.16.

Let ¢(z) be an MSO-formula of quantifier depth k. We describe an SQA™
that computes the query which is defined by ¢. This automaton has to find
out, for each node v of a tree t, whether t = ¢[v]. This depends only on
159(t, v), which in turn, by Proposition 5.5(1), depends only on 7359 (%, v)
and 759(t,,v). The case where trees can also have nodes with one child
can be treated as in the proof of Theorem 4.8; hence, we can assume that all
inner nodes have more than one child. In Figure 6, we describe an algorithm
that evaluates ¢.

The =M5O-type of a subtree (tw,w) can be computed in a bottom-up
manner by the automaton of Lemma 5.6. This automaton can be transformed
to an equivalent two-way automaton as discussed at the end of Section 5.2.
Note that the two-way automaton starts at w.

Step 1 is now done in two phases. We re-use the pebbling idea from the
proof of Theorem 4.8. First, the automaton makes a down transition. All
children of v, besides v1 enter a U-state which remembers 775 (t,, v) and
waits until the computation in the subtree t; has finished. The =}5C-type
of this subtree is computed bottom-up. The automaton “recognizes” that the
subtree-evaluation is finished by meeting the U-states at the siblings of v1.
Next it makes an up transition, followed by a down transition. After this, v1
has a U-state which remembers 7)€ (t,, v) and 7759 (ty1,v1) and waits for
the termination of the evaluation of the other subtrees which are computed
in parallel. This evaluation simultaneously computes 7,"5°(ty;, vj), for each
j>1.

Step 2 is just a special case of step 1. Indeed, since the types of the
subtrees of t, are present at the children of v, they can be combined to the
type of t, by making an up transition. Step 3 and 4 only involve information
that is available at vertex v.
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Input: t
Compute 7 (tro0ts), 100t (t)), 735 (¢, r00t (t))
for 7 := 0 to depth of t do

begin

for all vertices v of level 7 do

begin
% the root is level 0
% the type of (ty,v) has already been computed
% now compute the type of (ty,Vv)

= W=

end

end

for j =1,...,arity(v) do compute 715°(ty;, vj)
Compute 75°(ty,v) from labg(v) and the 7759 (ty;, v7)
Compute 7M50(t, v) from 7M50(t,,v) and 7159 (ty,v)
Deduce from 7M59(t,v) whether ((v) holds
If so, select v
for j=1,..., arity(v) do
Compute 7759 (ty;, vj) from 7550 (t,,v) and the 7,59 (ty;1, vj')

Figure 6: The algorithm for computing the query defined by ¢(z) over un-
ranked trees.
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It then only remains to show how step 5 can be done by an SQA®. It
should be noted that after the up transition of step 2 the information about
the types of the subtrees of v is lost. Therefore the SQA" first recomputes
the =5O-types 759 (ty;,vJ), as described above (also keeping 7359 (ty, v)
in mind).

We now show that there is a GSQA B computing the sequence

o0 (by1, V1) -+ - 70 (b, V)
on input
(TIIC\/ISO (Ea V), Tlivlso(tvl’ Vl)) U (TIIC\/ISO (Ea V), Tlivlso(tvnv Vn))7

for a tree t and v a node of t of arity n. Let o be the label of v. Then,

by Proposition 5.5(3), for each i = 1,... ,n, TM5°(%,;,vi) only depends on
50 by, v), 590 (ty1,- - -, ty(i—1)), V), labg(vi) (which depends only on
59 (tys, vi)), and 759 (0 (by(is1)s - - - byvn), V)-

Now, B is defined as the automaton combining, as specified in Lemma 3.10,
the automata B; and B,, where B; computes 7,5° (0 (ty1 . .. tyi—1)),v) and
Bs computes 7559 (0 (ty(i+1) - - - tvn), V). So, at each position ¢ the automaton
B has enough information to output 7o75° (ty;, vi).

Hence, step 5 can be done by recomputing the -types Tk (tv;, v) (in
the same way as in step 2) and making one stay transition. [ |

—_MSO
=k

Remark 5.18 Allowing an SQA" to make any constant number of stay tran-
sitions at the children of each node does not increase the expressiveness of
the formalism. Indeed, like in the proof of Theorem 5.17 such an automaton
can be simulated in MSO.

6 Decision problems

Optimization of queries is one of the most studied subjects in database the-
ory [3]. It involves, for instance, the rewriting of given queries into equiva-
lent ones that can be evaluated more efficiently, as also the detection of sub-
queries that always evaluate to the empty set. Checking equivalence and non-
emptiness of queries are, therefore, fundamental operations. Although the
general problem of deciding whether two queries are equivalent or the result
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of a query is always empty, is usually undecidable, their language-theoretic
counter parts, equivalence and emptiness of automata, are well-known to be
decidable. We next establish the complexity of these decision problems for
our automata who express queries. The above mentioned problems, as well
as a related one, are defined as follows:

Non-emptiness: Given a query automaton A, is there a tree t such that

A(t) # 07

Containment: Given two query automata A; and A,, is the query com-
puted by A; contained in the query computed by As? That is, is
Aq(t) C Ay(t) for all trees t?

Equivalence: Given two query automata A; and A,, do they compute the
same query? That is, is A;(t) = A(t) for all trees t?

We show that these problems are EXPTIME-complete for QA"s, QA%s
and SQA"s. EXPTIME-hardness of all these problems follows from EXP-
TIME-hardness of the non-emptiness problem for QA"s. EXPTIME-mem-
bership follows from EXPTIME-membership of the non-emptiness problem
for SQA“s, since we will show that containment and equivalence can be
reduced to non-emptiness in polynomial time and query automata on ranked
trees are special cases of query automata on unranked trees.

The size of an SQA™ is the sum of the sizes of the DFAs representing the
up transitions and Ug,y, the sizes of the automata for the stay transitions,
the sizes of the regular expressions representing the down transitions, and
the size of the set of states of the SQA¥. We point out in the proof of
Theorem 6.3, why we need DFAs, as opposed to NFAs, for the representation
of up transitions.

We start by observing that deciding whether the tree language defined
by a 2DTA" is non-empty is EXPTIME-hard. We use a reduction from
the TWO PERSON CORRIDOR TILING which is known to be hard for
EXPTIME [11].

For natural numbers n and m we view {1,... ,n}x{1,...,m} as arectan-
gle consisting of m rows of width n. Let T' be a finite set of tiles, let H,V C
T x T be horizontal and vertical constraints, and let b = by,... by, t =
t1,... ,tn € T™ be the bottom and the top row. A corridor tiling from b to ¢
is a mapping A : {1,...,n} x{1,... ,m} — T, for some natural number m,
such that
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e the first row is b, that is, A(1,1) = by, ..., A(1,n) = by;

e the m-th row is ¢, that is, A\(m, 1) =t1, ..., A(m,n) = ty;

e fori=1,...,n—1land j=1,...,m, (A(4,74),A(i+1,7)) € H; and
e fori=1,...,nand j=1,..., m—1, (A(4,7),\4,j+1)) eV.

In a two person corridor tiling game from b to £, two players, on turn, place
tiles row wise from bottom to top, and from left to right in each row. The
first player starts and each newly placed tile should be consistent with the
tiles already placed. The first player tries to make a corridor tiling from b to
t, whereas the second player tries to prevent this. If the first player always
can achieve such a tiling no matter how the second player plays, then we say
that player one wins the corridor game. A player that puts down a tile not
consistent with the tiles already placed, immediately looses.

TWO PERSON CORRIDOR TILING is the problem to decide, given
a set of tiles T, H,V C T x T, a sequence of tiles b = by,... ,b, and t =
ty,...,t, € T™ whether player one wins the corridor game.

Proposition 6.1 Deciding whether a deterministic two-way ranked tree au-
tomaton accepts any tree is hard for EXPTIME.

Proof. We reduce TWO PERSON CORRIDOR TILING to non-emptiness
of 2DTA". A strategy for player one can be represented by a tree where
the nodes are labeled with tiles. Indeed, if we put the rows of a tiling next
to each other rather than on top of each other, then every branch, i.e., the
sequence of labels from the root to a leaf, of a tree represents a possible tiling.
If we forget about the start row b for a moment, then the odd depth nodes
have no siblings and represent moves of player one and the even depth nodes
do have siblings and represent all the choices of player two. A strategy is
then winning when every branch is either a corridor tiling or is a tiling where
player two made a false move. The 2DTA" A we construct will only accept
trees that correspond to winning strategies for player one. The automaton
essentially only has to check the horizontal and vertical constraints. The
vertical constraints at a node v of the input tree can be checked by moving
up n nodes (the width of the corridor), while the horizontal constraints can
be checked by looking at the tile carried by the parent of v.

We formally define when a tree represents a winning strategy. Take ¥ as
{0,1,2} x {1,... ,n} x T. If a node is labeled with (7, j,¢) and ¢ # 0, then
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this means that player 7 places tile ¢t on the j-th position of the current row.
The case ¢ = 0 is just to define the first n nodes which are labeled with by,

., bp. We say that a X-tree t represents a winning strategy for the first
player if the following holds:

1. t starts with a monadic tree labeled with b. That is, the root carries
the label (0,1, b1), the only child of the root carries the label (0,2, bs),
and so on.

2. If there exists a node of depth n (recall that the root has depth 0) then
there exists only one such node (say v) and additionally laby(v) =
(1,1,t) for some ¢t € T: player one places the tile on the first column
of the second row whenever there is a second row; indeed, b and ¢ can
already form a corridor tiling.

3. For every internal node v of t, if lab¢(p) = (4, 4,t) with ¢ € {1,2} and
p the parent of v, then lab¢(v) = ((¢ mod 2) + 1, (j + 1) mod n, ¢') for
some t' € T'; this means that players one and two place tiles on turn.

4. No two siblings are labeled with the same label; and, nodes correspond-
ing to moves of player one have no siblings.

5. Every alternative of player two should be present: for every node v
with lab¢(v) = (1,7,¢) and for every ¢ € T there is a child w of v
labeled with (2, (j + 1) mod n,t').

6. Each branch extended with # corresponds to a corridor tiling from b to
t or should contain a false move by player two.

The 2DTA" A works on trees of rank n. Let N be |T|+ |H| + |V]| + n.
Clearly (1)-(5) can be checked by A by using a number of states linear in
N. We now consider (6). Suppose A arrives at v. In order to check the
horizontal constraints at v, A already remembered the tile of the parent of
v in its state when it moved down. To check the vertical constraints, A just
has to move up n nodes to get the tile that is placed immediately below the
square corresponding to v. However, moving up requires the cooperation of
all siblings. To this end, A moves through the tree level by level, and for each
level makes n up transitions to get the required tile. Again, only a number

of states that is linear in N is needed. Moreover, A can be computed in
LOGSPACE. n
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To show that non-emptiness for SQA“s is in EXPTIME we use the fol-
lowing device.

A two-way deterministic finite automaton with one pebble is a 2DFA that
has one pebble which it can lay down on the input string and pick back
up later. We refrain from giving a formal definition of such automata as
we will only use them informally in the following to describe algorithmic
computations. Blum and Hewitt [8] showed that such automata can only
define regular languages. We will need the following stronger result obtained
by Globerman and Harel [21, Proposition 3.2].

Proposition 6.2 Fvery two-way deterministic finite automaton M with one
pebble is equivalent to an NFA M' whose size is exponential in the size of M.
In fact, the size of M' can be uniformly bounded by a function p(|X|) - 22050,
where p and q are polynomials, 3 is the alphabet, and S is the set of states
of M. Additionally, M' can be constructed in time exponential in the size of
M.

We are now ready to prove the next theorem.
Theorem 6.3 Non-emptiness of SQA"s is in EXPTIME.

Proof. We describe an EXPTIME algorithm which decides whether the
SQA" A is non-empty. The proof consists of two parts. First, we define
a two-way deterministic unranked tree automaton A’ such that A is non-
empty iff A’ accepts at least one tree (we then also say that A’ is non-empty).
Moreover, the size of A’ is linear in the size of A. Subsequently, we show that
testing non-emptiness of two-way deterministic unranked tree automata is in

EXPTIME. This then implies that non-emptiness of SQA“s is in EXPTIME.

Construction of A’. The two-way deterministic automaton A’ works over
the alphabet XU (X x {1}). On input t, it first checks whether there is exactly
one node with a label in 3 x {1}. This can be done by one traversal of the tree
from the root to the leaves. If there is more than one such node or none at all,
then A’ rejects. Otherwise, A’ walks back to the root and starts simulating
A, that is, it just behaves like A would but without actually selecting nodes.
Let v be the unique node with a label in ¥ x {1}. Then A’ accepts when
A does and when, additionally, A selects v. The latter can be achieved by
keeping a flag in the state of A’ from the moment A selects v. Clearly, the
size of A’ is linear in the size of A.
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Testing non-emptiness of two-way deterministic unranked tree au-
tomata is in EXPTIME. Let A' = (Q,T, F, sq,d) be such an automa-
ton. We construct a nondeterministic bottom-up automaton (NBTA*) B =
(@p,T, Fp,0p) (cf. Section 5.1) whose size is exponential in the size of A’
with the additional property that B is non-empty iff A’ is non-empty. By
Lemma 5.2 we know that testing non-emptiness of NBTA%s is in PTIME.
Hence, testing non-emptiness of two-way deterministic automata is in EXP-
TIME.
The set of states QQp consists of all tuples of the form (f,d, s, o) where

e f:(@Q — (@ is a partial function;
e d:(Q — @ and s: Q — Q are total functions; and
e ogcl.

To describe the intuition behind the components in the states of QQp we
introduce the following notion. A state assignment for a tree t is a mapping
p : Nodes(t) — Q. A state assignment p for t is semi-valid if for every node
v of t of arity n, p(vl)---p(vn) € §(p(v),labg(v)), and for every leaf node
v, € € 0(p(v),labg(v)). We say that a state assignment p for a tree t is valid
iff it is semi-valid and p(root(t)) € F. Clearly, a tree t is accepted by B if
there exists a valid state assignment for it.

The intuition behind the states in () is that for each semi-valid state
assignment p for a tree t, if p(v) = (f,d, s,0) then f = f and laby(v) = o.
The functions d and s are just to facilitate the definition of the transition
function of A" which we define next.

For all n > 1, o € I', and every state (f,d,s,o’) € @,

w = (f1,d1,81,01) "+ (fa, dn, Sn, 0n) € 05((f,d, s,0"),0)
iff
1. o' =0
2. f(q) = q for each q € @ with (¢,0) € U,

3. 0,(¢,0,n) = di(q)---d,(q) for each ¢ € @ with (¢,0) € D and for
which f(q) is defined; there are now two possibilities:
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(a) for each i € {1,...,n}, (fi(di(¢g)),0:) € U: in this case we should
have

0+((f1(di(q)), 01) - - - (fu(dn(q)), on)) = f(9);

or

(b)
(f1(di(9)), 01) - - - (fu(dn(9)); o) € Ustay :

in this case we should have

0-((f1(dr(g)), 1) - - (fu(dn(9)), on)) = 51(q) - - 5n(9),

and

01((f1(s1(9)), 1) - - - (fu(5n(q))), o) = f(a).

If f(q) is undefined then (g, 0, n) should be undefined; or in case (3a)
one of the f;(di(q)) or 64+(f1(di(q))--- fu(dn(g))) should be undefined;

or in case (3b)
(5,(f1(d1(Q)) U fn(dn(Q)))a

0+((f1(51(9));01) - - - (fu(sa(@)), 0n)), or ome of the f;(di(q)) or fi(si(q))
should be undefined.

From our assumption that an SQA" can make at most one stay tran-

sition at the children of each node, it follows that the case distinctions
(3a) and (3b) suffice.

Further, € € 05((f,d, s, o), 0) iff f = fg‘ga) and o = ¢'. Finally, define Fg =
{(f,d,s,o) | States(f, ro0t(*,0),80) N F # O}.'* Tt is now readily checked
that for each semi-valid state assignment p for a tree t, p(v) = (f, d, s, 0) iff
[ = f and laby(v) = 0. By definition of F, we have that A’ accepts t iff
there exists a valid state assignment for t. Consequently, A’ is non-empty iff
B is non-empty.

It remains to show that each dp((f,d,s,o’),0) can be accepted by an
NFA whose size is exponential in the size of A’. We will define a two-
way deterministic automaton M whose size is polynomial in A’ that accepts
d5((f,d,s,0'),0). By Lemma 6.2, M is equivalent to an NFA whose size is
at most exponential in A’.

(1) does not depend on the input;

UHere, for each o € T', droot(+, o) is the function mapping each q to droot(q, 7).

95



(2) does not depend on the input;

(3) For each ¢ € Q with (g,0) € D, we do the following. We only describe
the case where f(g) is defined, the converse case is similar. To test
whether

d,(g,0,m) = di(q) - - - dn(q);

we just simulate the finite union of regular expressions representing
L,(q,0) on the string d;(q) - - - d,,(¢). This can be done by subsequently
trying to match each regular expression in this union. Due to the very
simple form of these regular expressions (namely zy*z) this only needs
a number of states linear in the size of the expressions. Hereafter, M
tests whether

(f1(di(q)),01) -+ (fu(dn(q)), on) € Ustay,

or whether (fi(di(q)),0i) € Ustay for each i € {1,...,n}. This test is
performed by another sweep through the input string w. Depending
on this test M does the following.

(a) M simply simulates the DFA for L4(g); that is, M tests by another
sweep through w whether

(fl(dl(Q))a 01) e (fn(dn(Q))a Gn) € LT(Q);

This only needs a number of states linear in the size of the au-
tomaton for L4(q).

(b) In the second case, M verifies that

0-((fu(dr(9)), 01) - - (fuldn(9)), 9n)) = 51(q) - - 5u(9),

and that

((f1(51(9)); 01) - - - (ful50())), 0n)) € L (g)-

The former can be done by simulating the GSQA for §_. Recall
our convention that each GSQA only outputs one symbol at each
position. The latter can be done by one sweep through the input
string simulating the DFA for L;(g). Again only a linear number
of states in the size of A is needed.
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We briefly come back to why we need DFAs rather than NFAs: in the
case where f(q) is undefined we must check that an up transition is
undefined for a certain sequence of states. When up transitions are
represented by DFAs this is easy: we just simulate the automaton and
see whether it gets stuck. For an NFA, however, this is much harder
as we have to check that all computations are undefined.

We next show how to reduce containment to non-emptiness. Let A; and
Ay be two SQA“s working over Y-trees. Define the SQA* B working over
trees labeled with symbols from the alphabet ¥ U (X x {1}), as follows.
On input t, B first checks whether there is exactly one node with a label
in ¥ x {1}. This can be done by one traversal of the tree from the root
to the leaves. If there is more than one such node or none at all, then B
rejects. Otherwise, let v be the unique node with a label in ¥ x {1}. Then B
walks back to the root, first simulates A; and then Ay, and remembers which
automaton selects v. Recall our convention that we only consider automata
that terminate on every input. If A; selects v and Ay does not, then B selects
v. Otherwise, B does not select anything and halts. Hence, B is non-empty
iff A; is not contained in Ay. As the size of B is linear in the sizes of A;
and A, and non-emptiness is in EXPTIME, it follows that containment is
in EXPTIME. As, clearly, A; is equivalent to A, iff each of the automata is
contained in the other, we have the following theorem.

Theorem 6.4 Equivalence and containment of QA"s, QA"s, and SQA"s is
i EXPTIME.

7 Discussion

We introduced query automata for expressing unary queries on structured
documents. We investigated their expressiveness and established the com-
plexity of several decision problems relevant for optimization. We consid-
ered both ranked and unranked trees. The latter only recently received new
attention in the context of SGML and XML. The theory of automata for
unranked trees has been further developed by Briiggemann-Klein, Murata
and Wood [9], and has been applied by Maneth and Neven [30], Murata [33],
Neumann and Seidl [34], and Neven [35, 36]. In particular, we pointed out
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a subtle difference between query automata on ranked and unranked trees.
Indeed, while the extension of two-way automata on ranked trees with a se-
lection function sufficed to capture all unary MSO queries, we needed special
stay transitions for the unranked case.
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