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Abstract. We survey some recent developments in the broad area of
automata and logic which are motivated by the advent of XML. In par-
ticular, we consider unranked tree automata, tree-walking automata, and
automata over infinite alphabets. We focus on their connection with logic
and on questions imposed by XML.

1 Introduction

Since Codd [11], databases have been modeled as first-order relational struc-
tures and database queries as mappings from relational structures to relational
structures. It is, hence, not surprising that there is an intimate connection be-
tween database theory and (finite) model theory [58, 60]. As argued by Vianu,
finite model theory provides the backbone for database query languages, while
in turn, database theory provides a scenario for finite model theory. More pre-
cisely, database theory induces a specific measure of relevance to finite model
theory questions and provides research issues that, otherwise, were unlikely to
have risen independently.

Today’s technology trends require us to model data that is no longer tabular.
The World Wide Web Consortium has adopted a standard data exchange format
for the Web, called Extended Markup Language (XML) [14], in which data is
represented as labeled ordered attributed trees rather than as a table. A new
data model requires new tools and new techniques. As trees have been studied
in depth by theoretical computer scientists [24], it is no surprise that many of
their techniques can contribute to foundational XML research. In fact, when
browsing recent ICDT and PODS proceedings,1 it becomes apparent that a new
component is already added to the popular logic and databases connection: tree
automata theory. Like in the cross-fertilization between logic and databases,
XML imposes new challenges on the area of automata and logic, while the latter
area can provide new tools and techniques for the benefit of XML research.
Indeed, while logic can serve as a source of inspiration for pattern languages
or query languages and as a benchmark for expressiveness of such languages,
the application of automata to XML can, roughly, be divided into at least four
categories:
1 ICDT and PODS are abbreviations of International Conference on Database The-

ory and Symposium on the Principles of Database Systems, respectively. The fol-
lowing links provide more information: http://alpha.luc.ac.be/~lucp1080/icdt/
and http://www.acm.org/sigmod/pods/.



– as a formal model of computation;
– as a means of evaluating query and pattern languages;
– as a formalism for describing schema’s; and
– as an algorithmic toolbox.

In this paper, we survey three automata formalisms which are resurrected by
recent XML research: unranked tree automata, tree-walking automata, and au-
tomata over infinite alphabets. Although none of these automata are new, their
application to XML is. The first two formalism ignore attributes and text values
of XML documents, and simply take finite labeled (unranked) trees as an ab-
straction of XML; only the last formalism deals with attributes and text values.
For each of the models we discuss their relationship with XML, survey recent
results, and demonstrate new research directions.

The current presentation is not meant to be exhaustive and the choice of
topics is heavily biased by the author’s own research. Furthermore, we only
discuss XML research issues which directly motivate the use of the automata
presented in this paper. For a more general discussion on database theory and
XML, we suggest the survey papers by Abiteboul [1] and Vianu [61] or the book
by Abiteboul, Buneman, and Suciu [2]. We do not give many proofs and the
purpose of the few ones we discuss is merely to arouse interest and demonstrate
underlying ideas. Finally, we mention that automata have been used in database
research before: Vardi, for instance, used automata to statically analyze datalog
programs [59].

The paper is further organized as follows. In Section 2, we discuss XML.
In Section 3, we provide the necessary background definitions concerning trees
and logic. In Section 4, we consider unranked tree automata. In brief, unranked
trees are trees where every node has a finite but arbitrary number of children.
In Section 5, we focus on computation by tree-walking. In Section 6, we consider
such automata over infinite alphabets. We conclude in Section 7.

2 Basics of XML

We present a fairly short introduction to XML. In brief, XML is a data-exchange
format whose enormous success is due to its flexibility and simplicity: almost
any data format can easily be translated to XML in a transparent manner.
For the purpose of this paper, the most important observation is that XML
documents can be faithfully represented by labeled attributed ordered trees.
Detailed information about XML can be found on the web [14] and, for instance,
in the O’Reilly XML book [49].

We illustrate XML by means of an example. Consider the XML document in
Figure 1 which displays some information about crew members in a spaceship. As
for HTML, the building blocks of XML are elements delimited by start- and end-
tags. A start-tag of a crew-element, for instance, is of the form <crew>, whereas
the corresponding closing tag, indicating the end of the element, is </crew>. So,
all text between and including the tags <crew> and </crew> in Figure 1, consti-
tutes a crew-element. Elements can be arbitrarily nested inside other elements:



the element <name> Spock </name>, for instance, is a subelement of the outer
crew-element. Elements can also have attributes. These are name value pairs
separated by the equality sign. The value of an attribute is always atomic. That
is, they cannot be nested. The attribute appears in the start-tag of the element
it belongs to. For instance, <starship name="Enterprise"> indicates that the
value of the name attribute of that particular starship-element is Enterprise.

<starship name="Enterprise">

<crew id="a457">

<name> Scotty </name>

<species> Human </species>

<job> automata </job>

</crew>

<crew id="a544">

<name> Spock </name>

<species> Vulcan </species>

<job> logic </job>

</crew>

</starship>

Fig. 1. Example of an XML document.

An XML document can be viewed as a tree in a natural way: the outermost
element is the root and every element has its subelements as children. An at-
tribute of an element is simply an attribute of the corresponding node. The tree
in Figure 2, for instance, corresponds to the XML document of Figure 1. There
is no unique best way to encode XML documents as trees. Another possibility is
to encode attributes as child nodes of the element they belong to. In the present
paper we stick to the former encoding.

starship[name="Enterprise"]

crew[id="a457"]

name

Scotty

species

Human

job

automata

crew[id="a544"]

name

Spock

species

Vulcan

job

logic

Fig. 2. Tree representation of the XML document in Figure 1

Usually, we are not interested in documents containing arbitrary elements,
but only in documents that satisfy some specific constraints. One way to define
such “schema’s” is by means of DTDs (Document Type Definitions). DTDs
are, basically, extended context-free grammars. These are context-free grammars



with regular expressions as right-hand sides. In Figure 3, we give an example
of a DTD describing the data type of a spaceship. The DTD specifies that
starship is the outer most element; that every crew element has name and
species as its first and second subelement, respectively, and rank or job as its
third subelement. So, | and , denote disjunction and concatenation, respectively.
#PCDATA indicates that the element has no subelements but consists of text only.
ATTLIST determines which attribute belongs to which element. The attributes
specified in this DTD can only have a single string value. DTDs are not the only
means for representing schema’s for XML. We briefly come back to this at the
end of Section 4.4.

<!DOCTYPE starship [

<!ELEMENT starship (crew)*>

<!ELEMENT crew (name,species,(rank | job))>

<!ELEMENT name (#PCDATA)>

<!ELEMENT species (#PCDATA)>

<!ELEMENT rank (#PCDATA)>

<!ATTLIST starship name CDATA>

<!ATTLIST crew id CDATA>

]>

Fig. 3. A DTD describing the structure of the document of Figure 1.

Attributes can also be used to link nodes. For instance, the id a457 of Scotty
in Figure 1, can be used in a different place in the document to refer to the latter:
for instance,

<cabin>
<number> 988 </number>
<inhabitant> a457 </inhabitant>

</cabin>

Actually, the id-attribute has a special meaning in XML but we do not discuss
this as it is not important for the present paper.

As indicated above, XML documents can be faithfully represented by trees.
In this respect, inner nodes correspond to elements, while leaf nodes contain
in general arbitrary text. In the next sections (with exception of Section 6),
we only consider the structure of XML documents and, therefore, will ignore
attributes and the text in the leaf nodes. Hence, XML documents are trees over
a finite alphabet where the alphabet in question is, for instance, determined by
a DTD. However, such trees are unranked: nodes can have an arbitrary number
of children (the DTD in Figure 3, for instance, allows an unbounded number
of crew elements). Although ranked trees, that is, trees where the number of
children of each node is bounded by a fixed constant, have been thoroughly
investigated during the past 30 years [24, 57], their unranked counterparts have



been rather neglected. In Section 4, we recall the definition of unranked tree
automata and consider some of their basic properties. First, we introduce the
necessary notation in the next section.

3 Trees and logic

3.1 Trees

For the rest of this paper, we fix a finite alphabet Σ of element names. The set
of Σ-trees, denoted by TΣ , is inductively defined as follows:

(i) every σ ∈ Σ is a Σ-tree;
(ii) if σ ∈ Σ and t1, . . . , tn ∈ TΣ , n ≥ 1 then σ(t1, . . . , tn) is a Σ-tree.

Note that there is no a priory bound on the number of children of a node in a
Σ-tree; such trees are therefore unranked. For every tree t ∈ TΣ , the set of nodes
of t, denoted by Dom(t), is the subset of N

∗ defined as follows: if t = σ(t1 · · · tn)
with σ ∈ Σ, n ≥ 0, and t1, . . . , tn ∈ TΣ , then Dom(t) = {ε} ∪ {iu | i ∈
{1, . . . , n}, u ∈ Dom(ti)}. Thus, ε represents the root while vj represents the
j-th child of v. By labt(u) we denote the label of u in t. In the following, when
we say tree we always mean Σ-tree.

Next, we define our formalization of DTDs.

Definition 1. A DTD is a tuple (d, sd) where d is a function that maps Σ-
symbols to regular expressions over Σ and sd ∈ Σ is the start symbol. In the
sequel we just say d rather than (d, sd).

A tree t satisfies d iff labt(ε) = sd and for every u ∈ Dom(t) with n children,
labt(u1) · · · labt(un) ∈ d(labt(u)). Note that if u has no children ε should belong
to d(labt(u)).

Example 1. As an example consider the following DTD describing the XML
document in Figure 1:

d(starship) := crew∗

d(crew) := name · species · (rank+ job)
d(name) := ε
d(species) := ε
d(rank) := ε
d(job) := ε

Recall that, for the moment, we are only interested in the structure of XML doc-
uments. Therefore, name, species, rank, and job are mapped to ε. In Section 6,
we consider text and attribute values. �



3.2 Logic

We can also view trees as logical structures (in the sense of mathematical logic
[18]). We make use of the relational vocabulary τΣ := {E,<, (Oσ)σ∈Σ} where
E and < are binary and all the Oσ are unary relation symbols. The domain of
t, viewed as a structure, equals the set of nodes of t, i.e., Dom(t). Further, E is
the edge relation and equals the set of pairs (v, v · i) where v, v · i ∈ Dom(t). The
relation < specifies the ordering of the children of a node, and equals the set of
pairs (v · i, v · j), where i < j and v · j ∈ Dom(t). For each σ, Oσ is the set of
nodes that are labeled with a σ.

We consider first-order (FO) and monadic second-order logic (MSO) over
these structures. In brief, MSO is FO extended with quantification over set vari-
ables. We refer the unfamiliar reader to, e.g., the books by Ebbinghaus and
Flum [18], or the chapter by Thomas [57]. In Section 5.3, we also consider tran-
sitive closure logic.

Example 2. As an example, consider the MSO formula ϕ defining the set of trees
where every a-labeled node always has a b-labeled descendant:

ϕ := ∀x(Oa(x)→ ∃y(Ob(y) ∧ desc(x, y))).

Here, desc(x, y) is an abbreviation of the formula

∀X
((
X(x) ∧ ∀z∀z′(X(z) ∧E(z, z′)→ X(z′))

)
→ X(y)

)
.

The formula desc(x, y) says that any set which contains x and is closed under
the edge relation, also contains y. So, it defines the pairs (x, y) where y is a
descendant of x. �

4 Unranked Tree Automata

Research on unranked trees in the context of XML was initiated by Brüggemann-
Klein, Murata, and Wood [8] based on early work of Pair and Quere [46] and
Takahashi [55]. They considered mostly language theoretic properties like non-
determinism, two-wayness, tree grammars,. . . . Since then, quite a number of
applications, based on their initial ideas, have risen. We discuss these applications
in Section 4.4. In Sections 4.1–4.3, we focus on non-deterministic tree automata,
the connection with binary tree automata, expressiveness, and complexity.

4.1 Definition

Definition 2. A nondeterministic tree automaton (NTA) is a tuple B = (Q,Σ,
δ, F ), where Q is a finite set of states, F ⊆ Q is the set of final states, and δ is a
function Q×Σ → 2Q∗

such that δ(q, a) is a regular string language over Q∗ for
every a ∈ Σ and q ∈ Q.
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Fig. 4. A tree and an accepting run of the automaton of Example 3.

A run of B on a tree t is a labeling λ : Dom(t) 	→ Q such that for every
v ∈ Dom(t) with n children, λ(v1) · · ·λ(vn) ∈ δ(λ(v), labt(v)). Note that when
v has no children, then the criterion reduces to ε ∈ δ(λ(v), labt(v)). A run is
accepting iff λ(ε) ∈ F . A tree is accepted if there is an accepting run. The set of
all accepted trees is denoted by L(B). We call a set of trees regular when it can
by recognized by an NTA.

We illustrate the above definition with an example.

Example 3. (1) Consider the alphabet Σ = {∧,∨, 0, 1}. Suppose for ease of
exposition that trees are always of the following form: 0 and 1 only appear
at leaves, ∧ and ∨ can appear everywhere except at leaves. These are all tree-
shaped positive boolean circuits. We next define an automaton accepting exactly
the circuits evaluating to 1. Define B = (Q,Σ, δ, F ) with Q = {0, 1}, F = {1},
and

δ(0, 0) := δ(1, 1) := {ε};
δ(0, 1) := δ(1, 0) := ∅;
δ(0,∧) := (0 + 1)∗0(0 + 1)∗;
δ(1,∧) := 1∗;
δ(0,∨) := 0∗; and,
δ(1,∨) := (0 + 1)∗1(0 + 1)∗.

Intuitively, B works as follows: B assigns 0 (1) to 0-labeled (1-labeled) leaves;
B assigns a 1 to a ∧-labeled node iff all its children are 1; B assigns a 0 to
a ∨-labeled node iff all its children are 0. Finally, B accepts when the root is
labeled with 1. In Figure 4, we give an example of a tree and an accepting run.

(2) The automaton accepting the DTD of Example 1 is defined as follows:
B = (Q,Σ, δ, F ) with

Q := {starship, crew, name, rank, job, species},

F := {starship}, for all a ∈ {name, job, species, rank}, δ(a, a) = {ε}, and

δ(starship, starship) := crew∗;
δ(crew, crew) := name · species · (rank+ job).

The δ(q, a) that are not mentioned are empty. �



4.2 Connection with ranked trees

Before we start to develop a theory of regular unranked trees, it makes sense to
reflect upon the relationship with regular binary trees. Unranked trees can be
uniformly encoded as binary trees. We just mention one possible encoding. See,
e.g., Figure 5 for an illustration. Intuitively, the first child of a node remains
the first child of that node in the encoding, but it is explicitly encoded as a left
child. The remaining children are right descendants of the first child. Whenever
there is right child but no left child, a # is inserted. Additionally, when there is
only a left child, a # is inserted for the right child.

b

b a

a a

b

b a

enc−→

dec←−

b

b

# a

a

# a

b

b

# a

#

#

Fig. 5. An unranked tree and its binary encoding.

Using the encodings enc and dec of Figure 5 one obtains the following propo-
sition (we represent the transition functions of NTAs by NFAs).

Proposition 1. [54]

1. For every unranked NTA B there is a binary tree automaton A such that
L(A) = {enc(t) | t ∈ L(B)}. The size of A is polynomial in the size of B.

2. For every binary tree automaton A there is an unranked NTA B such that
L(B) = {dec(t) | t ∈ L(A)}. The size of B is polynomial in the size of A.

The above proposition allows to transfer all closure properties of the class of
ranked tree automata to the class of unranked tree automata.

4.3 Expressiveness and complexity

As enc and dec are MSO definable, Proposition 1 implies that the famous Doner-
Thatcher-Wright characterization of ranked tree automata easily carries over to
unranked trees [17, 56].

Corollary 1. [43] A set of trees L is regular iff there is an MSO formula ϕ such
that L = {t | t |= ϕ}.



Although Proposition 1 provides a tool for transferring results from ranked
to unranked trees, it does not deal with issues which are specific for unranked
tree automata. The complexity of decision problems for NTAs, for instance,
depends on the formalism used to represent the regular string languages δ(q, a)
in the transition function. As there are many ways to represent regular string
languages (logical formulas, automata with various forms of control, grammars,
regular expressions), Proposition 1 does not seem to offer immediate help. We
dwell a bit further upon this issue.

In the following M always denotes classes of representations of regular lan-
guages. So, NTA(M) denotes the set of NTAs where the regular languages δ(q, a)
are represented by elements inM. The translation between binary and unranked
automata mentioned in Proposition 1 is polynomial for NTA(NFA)’s. For this
reason, the latter class can be seen as the default for unranked tree automata.
For the latter class, the complexity of the membership problem is quite tractable.
The size of an automaton B is |Q| + |Σ| +

∑
q,a |δ(q, a)| + |F |. By |δ(q, a)| we

mean the size of the automaton accepting δ(q, a) not the size of the language.

Proposition 2. Let t ∈ TΣ and B ∈ NTA(NFA). Testing whether t ∈ L(B) can
be done in time O(|t||B|2).

When using tree automata to obtain upper bounds on the complexity of
problems related to XML, one sometimes needs to turn to more succinct for-
malisms. In [32], for instance, a pspace upper bound on the complexity of the
typechecking problem for structural recursion is obtained by a reduction to the
emptiness problem of NTA(2AFA)’s. Here, 2AFA stands for the class of two-way
alternating string automata. In this respect, it, therefore, makes sense to explore
various possibilities ofM. We mention some initial results.

We consider the following well-known decision problems:

– emptiness(M): given an NTA(M) B, decide whether L(B) = ∅;
– containment(M): given two NTA(M)’s B1 andB2, decide whether L(B1) ⊆
L(B2);

– equivalence(M): given two NTA(M)’s B1 and B2, decide whether L(B1) =
L(B2);

Proposition 3. [32]

1. emptiness(NFA) is in ptime.
2. emptiness(2AFA) is in pspace.
3. containment(2AFA) is in exptime.
4. equivalence(2AFA) is in exptime.

Theorem 3 is optimal as even for fixed arity trees, emptiness and containment
are ptime-hard and exptime-hard, respectively [12, 52]. Further, emptiness of
2DFAs is known to be hard for pspace.



4.4 Applications

Unranked tree automata can serve XML research in at least four different ways:

1. as a basis of schema languages and validating of schema’s. Murata
was the first to consider tree automata as a schema definition language [35].
In fact, the schema language Relax, a competitor of XML schema [15], is
directly inspired upon unranked tree automata. The XDuce type system of
Pierce and Hosoya [27] as well as the specialized DTDs of Papakonstantinou
and Vianu [47] correspond precisely to the unranked tree languages [54]. Lee,
Mani, and Murata provide a comparison of XML schema languages based
on formal language theory [31].

2. as an evaluation mechanism for pattern languages. Several researchers
defined pattern languages for unranked trees that can be implemented by
unranked tree automata: Neumann and Seidl develop a µ-calculus for ex-
pressing structural and contextual conditions on forests [37].2 They show
that their formalism can be implemented by push-down forest automata.
The latter are special cases of unranked tree automata. Murata defines an
extension of path expressions based on regular expressions over unranked
trees [36]. Brüggemann-Klein and Wood consider caterpillar expressions [9].
These are regular expressions that in addition to labels can specify move-
ment through the tree. Neven and Schwentick define a guarded fragment
ETL of MSO whose combined complexity is much more tractable than that
of general MSO [22, 40, 50]. Expressiveness and complexity results on ETL
are partly obtained via techniques based on unranked tree automata.

3. as an algorithmic toolbox. For instance, Miklau and Suciu used (binary)
tree automata to obtain an algorithm for XPath containment [33]. As men-
tioned above, Martens and Neven obtain upper bounds on the complexity
of type checking by a reduction to the emptiness test of unranked tree au-
tomata [32]. Unranked tree automata as a toolbox are hardly developed. It
would be helpful to have general results on the complexity of unranked tree
automata in terms of the complexity of the regular languages representing
the transition functions.

4. as a new paradigm. Unranked tree automata use regular string languages
to deal with unrankedness. The latter simple but effective paradigm found
application in several formalisms.
Neven and Schwentick define query automata [43]. These are two-way deter-
ministic unranked tree automata that can select nodes in the tree. Query
automata correspond exactly to the unary queries definable in monadic
second-order logic. By a result of Gottlob and Koch they also correspond
to the unary queries definable in monadic datalog [25]. In [38], an extension
of the Boolean attribute grammars considered in [45] to unranked trees is
defined. These also express precisely the unary queries in MSO. A transla-
tion of the region algebra, considered by Consens and Milo [13], into these
attribute grammars drastically improves the complexity of the optimization

2 A forest is a concatenation of unranked trees.



problems of the former. We refer the interested reader to [42] for a more
detailed overview of pattern languages based on tree automata.

5 Tree-walking automata

Next, we focus on computation by tree-walking. This is a well-known paradigm
from formal language theory studied in the context of attribute grammars and
tree-transformations [4, 7, 16]. This paradigm materialized in XML research in
various ways. Indeed, a first instance of tree-walking is provided by the cater-
pillar expressions of Brüggemann-Klein and Wood [9]. Further, Milo, Suciu, and
Vianu [34] defined a tree-walking tree-transducer model with pebbles as an ab-
stract model for XML transformations. Segoufin and Vianu considered tree-
walking automata in the context of XML streaming [51]. Finally, as argued by
Bex, Maneth and Neven [6], stripped down, XSLT is essentially a tree-walking
tree-transducer with registers and look-ahead. We embark on the issue of reg-
isters and look-ahead in the next section. In the present section, we consider
ordinary tree-walking automata.

Admittedly, the application of tree-walking to XML is less direct than that of
unranked tree automata. However, we hope that a thorough understanding of the
tree-walking paradigm leads to more insight in the operation and expressiveness
of languages like XSLT.

5.1 Definition

Before we give the definition of tree-walking automata, let’s recall two-way de-
terministic finite state machines on strings : such devices ‘walk’ in two directions
over a string changing state and direction depending on the current state, the
current symbol and whether the current position is the left or right-delimiter.
An automaton accepts if a final state is reached at some point. Analogously, a
tree-walking automaton is a finite state device walking a tree. Its control is al-
ways at one node of the input tree. Based on the label of that node, its state, and
its position in the tree (first or last child, root, or leaf), the automaton changes
state and moves to one of the neighboring nodes (parent, first child, left or right
sibling). The automaton accepts the tree when it enters a final state.

To simplify the definition of two way automata on strings, one usually de-
limits strings with the start and end symbols � and �, respectively. We do the
same for trees using the extra symbols � and �. For instance, if t is the tree
a(bcd) then delim(t) is the tree

�
� a

� b

�
c

�
d

�
�

�



Definition 3. A TWA C is a tuple (Q,Σ, q0, qF , P ) where

– Q is a finite set of states;
– q0 ∈ Q is the initial state and qF ∈ Q is the final state;
– P is a finite set of rules of the form (q, σ) → (q′, d) where σ ∈ Σ, q, q′ ∈ Q,

and d ∈ {←, ↑,→, ↓, stay}
Intuitively, a transitions (q, σ) → (d, q′) can only be applied in state q at

a node labeled with σ. Further, it changes state to q′ and moves in direction
d where ←, ↑,→, ↓, and stay mean go to left sibling, go to parent, go to right
sibling, go to first child, and stay put, respectively. We assume that there is no
transition possible from the final state.

Formally, a configuration on a tree t is a tuple [u, q] where q ∈ Q is the
current state and u ∈ Dom(t) is the current node. Before we define the transition
relation, we define the (partial) move function md for every d ∈ {←,→, ↑, ↓
, stay} as follows. For every node u, m←(u), m→(u), m↑(u), m↓(u), and mstay(u)
equals the left sibling, the right sibling, the parent, the first child of u, and u,
respectively (if they exist). Given γ = [u, q] and γ ′ = [u′, q′], we define the
one step transition relation � as follows: γ � γ ′ iff there is a transition (q, σ) →
(q′, d) ∈ P such that labt(u) = σ and md(u) = u′. By �∗ we denote the transitive
closure of �. Finally, C accepts the input tree t if [ε, q0] �∗ [ε, qF ].

We say that C is deterministic if there is at most one rule (q, σ) → α in P
for every σ ∈ Σ and q ∈ Q. Denote the class of deterministic TWAs by DTWA.

We illustrate the above definition with an example.

Example 4. We construct an automaton accepting the tree defined by the XPath
expression //a[//b][//c]. XPath is an XML pattern language employed by, for
instance, XSLT [10]. We do not get into the specifics of the syntax. The present
pattern selects all trees with an a-labeled node that has both a b and a c-labeled
descendant. Let C be the TWA (Q,Σ, q0, qF , P ) with Q = {qa, qb, qc, qroot, qF }
and q0 = qb. We give the rules in P while explaining the operation of the au-
tomaton. First C nondeterministically searches a b using the following tran-
sitions: (qb, σ) → (qb, d), for every σ ∈ Σ and d ∈ {←, ↑,→, ↓, stay}, and
(qb, b) → (qa, stay). Then, C moves up the tree until it finds a suitable a:
(qa, σ) → (qa, ↑), for every σ ∈ Σ and (qa, a) → (qc, ↓). Next, C moves down
in search of a c: (qc, σ) → (qc, d), for every σ ∈ Σ and d ∈ {→, ↓}, and
(qc, c) → (qroot, ↑). Finally, C walks to the root and accepts: (qroot, σ) → (σ, ↑),
for every σ ∈ Σ and (qroot,�)→ (qF , stay). �

5.2 Expressiveness

Most of the recent research on TWAs focused on ranked TWAs [19, 21, 41], not
on unranked ones as defined here. Ranked TWAs are defined just as unranked
ones. The only difference is that there is a fixed n such that only trees of rank
n are considered as inputs. In particular, a tree has rank n if every node has
n or fewer children. However, as with unranked tree automata, we can transfer
results between the ranked and unranked case. Let enc and dec be the encoding
and decoding discussed in Section 4.



Proposition 4. 1. For every unranked (D)TWA B there is a ranked (D)TWA
C such that L(C) = {enc(t) | t ∈ L(B)}. The size of C is linear in the size
of B.

2. For every ranked (D)TWA C there is an unranked (D)TWA B such that
L(B) = {dec(t) | t ∈ L(C)}. The size of B is linear in the size of C.

It follows from results in [19, 21] that the language accepted by ranked TWAs
is regular. From Proposition 1 and Proposition 4, it follows that unranked TWAs
only define regular tree languages. Essentially, the latter is all what is known.
Even the most basic questions remain unanswered:

1. Do TWAs capture the regular tree languages?
2. Are DTWAs as expressive as TWAs?
3. Are TWAs closed under complement?

It is believed that the answer to all these questions is negative. Again, using
Proposition 1 and Proposition 4, it can be shown that a negative answer on the
class of unranked tree implies a negative answer on the class of ranked trees (the
converse is obvious).

A negative answer to question one is proved in [41] for ranked TWAs that
can visit every subtree only once (and a mild generalization thereof). Engelfriet
and Hoogeboom supply two tree languages as possible candidates to separate
TWAs from NTAs. Fülöp and Maneth [23] showed that the domains of partial
attributed tree transducers correspond to the tree-walking automata in universal
acceptance mode. No lower bounds on the expressiveness of TWAs have been
obtained.

Denote the class of alternating TWAs by ATWA. The next proposition is a
useful characterization of the regular unranked tree languages. It immediately
follows from the result by Slutzki [53] and the fact that Proposition 4 also holds
for alternation.

Proposition 5. An unranked tree language is accepted by an ATWA iff it is
regular.

TWAs can also be used as an algorithmic toolbox. An upper bound on the
non-circularity test of extended attribute grammars is obtained by a reduction
to the emptiness test of TWAs.

Theorem 1. [38] The emptiness, containment and equivalence problem of TWAs
are exptime-complete.

We finish with a remark on robustness. A striking difference between ranked
and unranked tree automata is that the former can check the label of the parent
of the current node by remembering the child number in the state, moving up,
and moving back down to the correct child. Seemingly, unranked automata can
not achieve this as the child number is unbounded. For this reason, ranked TWAs
can evaluate boolean circuits with a fixed fan-in [41] while unranked TWAs,
probably, can not evaluate boolean circuits with an unbounded fan-in. However,
a proof of the latter would solve question one above. A solution might be to let



a move of an unranked TWA depend both on the label of the current node and
the label of its parent. The question remains whether this would be the right
model for unranked trees.

5.3 A logical characterization

In this section, we present a logical characterization of ranked TWAs. We add
for every m > 0 the unary predicate depthm to the vocabulary of trees. In all
trees, depthm will contain all vertices the depth of which is a multiple of m.

We characterize tree-walking automata by transitive closure logic formulas
(TC logic) of a special form. We refer the reader unfamiliar with TC logic to,
e.g., [18, 29]. As we only consider TC formulas in normal form, we refrain from
defining TC logic in full generality. A TC formula in normal form is an expression
of the form

TC[ϕ(x, y)](ε, ε),

where ϕ is an FO formula which may make use of the predicate depthm, for
some m, in addition to E, < and the Oσ. Its semantics is defined as follows, for
every tree t,

t |= TC[ϕ(x, y)](ε, ε),

iff the pair (ε, ε) is in the transitive closure of the relation

{(u, v) | t |= ϕ[u, v]}.

We use deterministic transitive closure logic formulas (DTC) in an analogously
defined normal form to capture deterministic tree-walking automata. In partic-
ular,

t |= DTC[ϕ(x, y)](ε, ε)

iff the pair (ε, ε) is in the transitive closure of the relation

{(u, v) | t |= ϕ[u, v] ∧ (∀z)(ϕ[u, z]→ z = v)}.

The latter expresses that we disregard vertices u that have multiple ϕ-successors.
As an example consider the formula

ϕ(x, y) := (E(x, y) ∧Oa(x) ∧Oa(y)) ∨ (leaf(x) ∧ y = ε).

Here, leaf(x) is a shorthand expressing that x is a leaf. Then, for all trees t,
t |= DTC[ϕ(x, y)](ε, ε) iff there is a path containing only a’s from the root to
a leaf such that every non-leaf vertex on that path has precisely one a-labeled
child. In contrast, t |= TC[ϕ(x, y)](ε, ε) iff there is a path from the root to a leaf
carrying only a’s.

Theorem 2. 1. A ranked tree language is accepted by a nondeterministic tree-
walking automaton iff it is definable by a TC formula in normal form.

2. A ranked tree language is accepted by a deterministic tree-walking automaton
iff it is definable by a DTC formula in normal form.



The simulation in TC-logic is an easy extension of a proof of Potthoff [48] who
characterized two-way string automata by means of TC formulas in normal form.
The latter direction also holds for unranked trees. To show that every TWA can
evaluate a TC formula in normal form, we make use of Hanf’s Theorem (see, e.g.,
[18]). This result intuitively says, for graphs of bounded degree, that whether
a FO sentence holds depends only on the number of pairwise disjoint spheres
of each isomorphism type of some fixed radius. Furthermore, the exact number
is only relevant up to a certain fixed threshold, only depending on the formula.
As unranked trees do not have bounded degree it is unclear whether the latter
result can be extended to unranked trees.

The above result thus implies that any lower bound on (D)TC formulas in
normal form is also a lower bound for (non)deterministic tree-walking automata.
It is open whether the depthm predicates are necessary. Unfortunately, proving
lower bounds for the above mentioned logics does not seem much easier than the
original problem as Ehrenfeucht games for DTC and TC are quite involved [18].

Engelfriet and Hoogeboom showed that tree-walking automata with pebbles
correspond exactly to transitive closure logic without restrictions [20]. Hence,
when allowing pebbles one can simulate nested TC operators.

6 Tree-walking and data-values

In the previous sections, we primarily focused on the tree structure of XML
documents. Our abstraction ignores an important aspect of XML, namely the
presence of data values attached to leaves of trees or to attributes, and com-
parison tests performed on them by XML queries. These data values make a
big difference – indeed, in some cases the difference between decidability and
undecidability (e.g., see [5]). As the connection to logic and automata proved
very fruitful in foundational XML research, it is therefore important to extend
the automata and logic formalisms to trees with data values.

6.1 Trees and logic revisited

We take a radical view when dealing with text. Indeed, we move all text occurring
at leaves into the attributes. For instance, the XML document in Figure 1 can
be represented as in Figure 6. Although this approach leads to awkward XML
documents, it, nevertheless, remains a valid representation.

<starship name="Enterprise">

<crew id="a457" name="Scotty" species="Human" job="automata"/>

<crew id="a544" name="Spock" species="Vulcan" job="logic"/>

</starship>

Fig. 6. Example of an XML document with all text moved into the attributes.



Next, we add attributes to our Σ-trees. To this end, we assume an infinite
domain D = {d1, d2, . . .} and a finite set of attributes A.

Definition 4. An attributed Σ-tree is a pair (t, (λt
a)a∈A), where t ∈ TΣ and for

each a ∈ A, λt
a : Dom(t) 	→ D is a function defining the a-attribute of nodes in

t.

Of course, in real XML documents, usually, not all element types have the
same set of attributes. Obviously, this is just a convenience and not a restriction.
Further, XML documents can contain elements with mixed content. For instance,
consider the XML document

<p>This is <em>not</em> a problem.</p>

Here, we use the special text label T and the attribute text, to represent the
document by the tree. That is,

<p>
<T text="This is"/>
<em text="not"/>
<T text="a problem."/>

</p>

In the following, when we say tree we always mean attributed Σ-tree.
For our logics, we make use of the extended vocabulary τΣ,A = {E,<,≺,

(Oσ)σ∈Σ , (vala)a∈A}. Here, each vala is a function, from Dom(t) to D. The logic
at hand is based on the logics accompanying the metafinite structures of Grädel
and Gurevich [26].

An atomic formula is of the form E(x, y), x < y, x ≺ y, Oσ(x), x = y,
vala(x) = valb(y) or vala(x) = d where a, b ∈ A and d ∈ D. Such formulas have
the obvious semantics.3 FO∗ is obtained by closing the atomic formulas under the
boolean connectives and first-order quantification over Dom(t). As an example
consider the FO∗ sentence ∀x(vala(x) = d ∨ vala(x) = valb(x)), expressing that
the value of every a-attribute is d or is equal to the b-attribute. We stress that
no quantification over D is possible. We get MSO∗ by extending FO∗ with set
quantification over Dom(t). To emphasize the difference with the logics of the
previous section we use a ∗ and denote the logics by FO∗ and MSO∗, respectively.

6.2 Tree-walking automata extended with registers

To deal with data values, a tree-walking automaton is equipped with a finite
number of registers. An automaton can store data-values in registers and can
check whether an attribute value of the current node is equal to the content
of some register. This is, essentially, the model of Kaminski and Francez who
studied string automata over infinite alphabets [30]. Actually, this is also the
way XSLT deals with data values. Indeed, the XSLT counterpart of registers are
variables that can be passed between templates. We assume that every attribute
of a delimiter �,�,�,� contains ⊥ where ⊥ �∈ D.
3 x ≺ y says that y is a descendant of x.



Definition 5. A k-register DTWA B is a tuple (Q, q0, qF , τ0, P ) where

– Q is a finite set of states;
– q0 ∈ Q is the initial state and qF ∈ Q is the final state;
– τ0 : {1, . . . , k} → D ∪ {⊥} is the initial register assignment; and,
– P is a finite set of rules of the form (σ, q, ξ) → α. Here, σ ∈ Σ, q ∈ Q,

and ξ is a Boolean combination of atomic formulas of the form j = b where
j ∈ {1, . . . , k} and b ∈ A. We define α below.

Intuitively, transitions (σ, q, ξ) → α can only be applied in state q at a node
carrying a σ that satisfies ξ under the assignment interpreting j by the content
of register j and b by the value of the b-attribute. The right-hand side α can be
one of the following:

– (q′, d) with q′ ∈ Q and d ∈ {←,→, ↑, ↓, stay}; intuitively, this means change
to state q′ and move in direction d; or,

– (q′, i, a) where q′ ∈ Q, i ∈ {1, . . . , k}, and a ∈ A; intuitively, this means
change to state q′, and replace the content of register i by the value of at-
tribute a.

We assume that no transition is possible from the final state. Further, we
assume that the automaton never moves off the input tree.

Given a tree t, a configuration of B on t is a tuple [u, q, τ ] where u ∈ Dom(t),
q ∈ Q, and τ : {1, . . . , k} → D. That is, u is the current node, q the current
state, and τ the register content. The initial configuration is γ0 := [ε, q0, τ0].
A configuration [u, qF , τ ] is accepting. A rule (σ, p, ξ) applies to a configuration
[u, q, τ ] iff labt(u) = σ, p = q and ξ holds under the interpretation induced
by τ where in addition each a ∈ A is interpreted by valta(u). We assume that
automata are deterministic: if (σ, q, ξ1) and (σ, q, ξ2) appear as left-hand sides
then there is never a configuration such that both ξ1 and ξ2 apply.

Given γ = [u, q, τ ] and γ′ = [u′, q′, τ ′], we define the one step transition
relation � as follows: γ � γ ′ iff there is a transition (σ, q, ξ) → α that applies to
γ and if α is of the form (p, d) then p = q′, md(u) = u′, and τ = τ ′; otherwise,
if α is of the form (q, i, a) then p = q′, u = u′, τ ′(i) = valta(u), and τ ′(j) = τ(j)
for all j �= i. By �∗ we denote the transitive closure of �.

Finally, B accepts the input tree t if γ0 �∗ γ for some accepting configuration
γ.

Example 5. Consider the tree-walking automaton that checks whether there
is a node with the same a-attribute as the root. We assume Σ = {σ} and
A = {a}. The automaton starts by putting the value of the a-attribute of
the root in the first register; subsequently, it makes a depth-first traversal of
the tree; it accepts when it encounters a node with the same a-value as in the
first register. Define B = (Q, q0, QF , τ0, P ) as the one-register automaton where
Q = {q0, qdown, qup, qF }, QF = {qF }, τ(1) = ⊥ and P contains the following



rules:
(q0,�, true) → (q0, ↓)
(q0,�, true) → (q0,→)
(q0, σ, true) → (qdown, 1, a)

(qdown, σ, 1 = a) → (qF , stay)
(qdown, σ,¬(1 = a))→ (qdown, ↓)
(qdown,�, true) → (qdown, ↓)
(qdown,�, true) → (qup, ↑)
(qdown,�, true) → (qup, ↑)

(qup, σ, true) → (qdown,→)
(qup,�, true) → (qup, stay)

�

6.3 Expressiveness

The expressiveness of k-register DTWAs behaves in a strange way: on the one
hand, they can compute properties not in MSO∗, while on the other hand they
cannot even compute all FO∗-definable properties. This is a bit awkward as, in
database theory, first-order logic is generally accepted as the minimum expres-
siveness a query language should have, while MSO, due to its correspondence
with various automata, stands for regularity and robustness.

Interestingly, the inexpressibility proof makes use of communication complex-
ity [28]. The latter technique is inspired by a proof of Abiteboul, Herr, and Van
den Bussche [3] separating the temporal query languages ETL from TS-FO. In
particular, they show that every query in ETL on a special sort of databases can
be evaluated by a communication protocol with a constant number of messages,
whereas this is not the case for TS-FO. To simulate k-register DTWAs we need
a more powerful protocol where the number of messages depends on the number
of different data values in the input, but the idea is essentially the same. We
sketch the argument below.

Theorem 3. [44]

1. MSO∗ cannot define all properties computable by k-register DTWAs; and,
2. k-register DTWAs cannot compute all properties definable in FO∗.

Proof. (Sketch of (2)) We can already separate k-register DTWAs and FO∗ on
strings as opposed to trees. In communication complexity the input string is di-
vided in a pre-determined manner between two parties (generally referred to as
I and II) that can send messages to each other according to a given protocol. A
language is accepted by a protocol if for each string both parties can decide after
execution of the protocol whether the string belongs to the language. Both par-
ties have unlimited computation power on their part of the string. The protocol
only restricts the way in which the parties communicate, typically by restricting
the form and number of messages.



We consider strings of the form f#g where f and g encode sets of sets of
D-symbols in a suitable way. For instance, the string $σσ$σ$ where the attribute
values of the σ-symbols are a, b, and c, respectively, encodes the set {{a, b}, {c}}.
The language

L := {f#g | f and g represent the same set of sets}
is definable in FO∗. To show that the language is not accepted by a k-register
DTWA, we note that each such automaton working on strings of the form f#g
can be simulated by a protocol in the following way: I is given f while II is given
g. The first party simulates the automaton until this computation tries to cross
the delimiter # to the right. At this point, it sends the present state q and the
data values d1, . . . , dk currently in its registers. Hence, II gets full information
about the configuration of the automaton (as the position of the symbol #
is fixed). Then II sends in turn the current configuration to I. This process
continues until one of the parties detects a final state. What kind of protocol
can simulate such behavior? First, we need a message for every configuration.
Suppose we restrict to at most N different data values in the strings f#g. Then
M := |Q| ·Nk different messages are needed. Here, k is the number of registers
and Q is the state set. Call a sequence of messages a dialogue. We only need
to consider dialogues up to length M (as every message can only be sent once
in every direction). Hence, there are only M 2M different dialogues on input
strings consisting of N different D-symbols. The latter value is exponential in
N . However, there are 22N

sets of sets of N different D-symbols. So for large
enough N there must be different strings f#f and g#g with f �= g accepted by
the protocol via the same dialogue. But, this means that f#g is also accepted.
Hence, no such protocol can define L, which implies that no k-register DTWA
accepts L. �

Actually, Neven, Schwentick, and Vianu [44] do not consider register au-
tomata on trees but on strings. However, as the separation results hold for strings
they definitely hold for trees. In addition, the authors studied automata with
various control mechanisms: non-determinism, alternation, one-way and two-
way. In fact, the communication complexity technique sketched above can be
extended to show that even alternating k-register automata cannot compute all
FO∗-definable properties. As an alternative to registers, the authors consider
pebbles for dealing with data values. Every automaton is equipped with a finite
number of pebbles whose use is restricted by a stack discipline. That is, pebble
i can only be lifted when pebble i + 1 is not placed. Further, the automaton
can test equality by comparing the attribute values of the pebbled symbols. It
turns out that pebble automata behave much better than register automata:
their expressiveness lies between FO∗ and MSO∗, so they are neither too strong
nor too weak.

6.4 Subcomputations and relational storage

In [39], we consider an extension of the register based model which is closer to
XSLT. To be precise, DTWAs are extended in two ways: (i) registers can store



arbitrary relations over D (as opposed to single D-values); (ii) subcomputations
can be started. A transition rule is of the form (σ, q, ξ) → α, where σ ∈ Σ,
q ∈ Q, and ξ is an FO formula over the relational storage. So, if for instance, the
relational storage contains one setX1 and ξ is the formula ∀x∀y(X1(x)∧X1(y)→
x �= y), then the above transition will be applied if the current symbol is σ, the
current state is q and X1 contains at most one value. The right-hand side α can
determine three kinds of actions:

1. a move: α = (q′, d) where d is a direction and q′ a state;
2. a change of the relational storage: α = (q ′, ψ, i) where q′ is a state, ψ an FO

formula over the relational storage and the attribute values of the current
node, and i is the number of a register. The intended meaning is that the
content of register i is replaced by the relation defined by ψ;

3. a subcomputation: α = (q′, atp(ϕ(x, y), p), i), where q′, p are states, i is the
number of a register and ϕ(x, y) is an FO(∃) formula over the tree (extended
with some other predicates). The logic FO(∃) functions as an abstraction of
XPath. Supppose the current node is u. Intuitively, register i is replaced by
the result of atp(ϕ(x, y), p); the latter, starts � subcomputations at the nodes
{u1, . . . , u�} = {v | t |= ϕ(u, v)} ⊆ Dom(t); these computations are started
in state p and with the current relational store; when they end in a final
state, the contents of the first register is returned; the content of register i is
then the union of the results of all subcomputations. The main thread then
resumes computation at u.

We do not define this model formally but only illustrate it by means of an
example.

Example 6. Assume Σ = {σ, δ} and A = {a}. We define an automaton that
accepts a tree if for every δ-labeled node all its leaf-descendants have the same
a-attribute. By leaf-descendants we do not mean nodes labeled with � but the
parents of those nodes. We define a 1-register automaton where the register X1

is a set. Let Q = {q0, q1, q2, q3, q4, qF }, and τ0(1) = ∅. P consists of the following
rules:

(�, q0, true)→ (q1, atp(ϕ1, q2), 1) (1)
(�, q1, true)→ (qF , stay) (2)
(δ, q2, true)→ (q3, atp(ϕ2, q4), 1) (3)

(δ, q3, ξ)→ (qF , stay) (4)
(δ, q4, true)→ (qF , x = a, 1) (5)
(σ, q4, true)→ (qF , x = a, 1) (6)

where ϕ1 ≡ x ≺ y ∧ Oδ(y), ϕ2 ≡ ∃y1(x ≺ y ∧ E(y, y1) ∧ O�(y1), and ξ ≡
∃xX1(x) ∧ ∀x∀y(X1(x) ∧X1(y)→ x �= y).

The automaton works as follows: (1) a subcomputation is initiated that se-
lects all δ-labeled descendants of the root; (2) when all subcomputations return,
that is, state q1 is reached, the tree is accepted; (3) every δ-labeled node selects



all leaves (recall that we work with delimited trees); (4) when the returned set
is a singleton, the subcomputation accepts (otherwise, the subcomputation gets
stuck and the main computation rejects); as (5) and (6) make sure that every
leaf returns the value of its a attribute, the computations initiated by (3) accept
in (4) iff every leaf has the same a-attribute. Note that x = a is the formula that
defines the set containing the value of the a-attribute of the current node. �

Allthough the present model seems quite powerful, the additions still do not
suffice to capture FO∗:

Theorem 4. DTWA automata extended with look-ahead and relational storage
do not capture FO∗.

Again, the proof of the latter theorem is based on communication complexity.
However, the protocol is no longer memory-less, as is the case in the proof of
Theorem 3: both parties need a stack to process incoming messages.

The weakness of register automata is that when they leave a node, they
usually cannot relocate that node. In strong contrast, if there is a fixed attribute
such that for every node the value of that attribute is unique among all nodes
in a tree, that is, unique ids are available, then we show that various restrictions
capture natural complexity classes:

Theorem 5. In the presence of unique ids,

1. DTWAs extended with single-valued registers capture logspace;
2. DTWAs extended with single-valued registers and subcomputations capture

ptime;
3. DTWAs extended with relational storage capture pspace; and,
4. DTWAs extended with relational storage and subcomputations capture exp-

time.

Actually, the above characterizations are not obtained for the mentioned
standard complexity classes but for a Turing Machine model directly operating
on attributed trees. It can be shown that the latter and the standard model
recognize the same class of tree languages. Although the proofs of the above
results are combinations of known techniques in complexity, finite model theory,
and formal languages, they provide a quite complete picture of the expressiveness
of query languages based on tree-walking. The most surprising might be that
DTWAs extended with single-valued registers and subcomputations, which is
the abstraction of XSLT defined in [6], captures in fact precisely ptime.

7 Discussion

We considered three automata models that regained interest by the advent of
XML. Our main focus was on their connection with logic and on questions
motivated by XML. We hope to have convinced the reader that XML poses
new challenges on the automata and logic connection. In fact, the application of
automata theory in XML research has only just started.



Indeed, although unranked tree automata have found already many appli-
cations, apart from the work of Brüggemann-Klein, Murata, and Wood [8], no
systematic study has been undertaken. Especially the development of their al-
gorithmic properties deserves much more attention.

Not much is known about tree-walking automata and not that many tech-
niques are available. Solving the questions in Section 5.2 would be an interesting
starting point. However, as these questions are open for quite some time, they
appear to be difficult. The connection with TC-logic made in Theorem 2 learns
that the TWA–NTA problem is an “easier” instance of the open question whether
(full) unary TC logic and MSO on trees are equally expressive. It is even more
of a mystery, whether, and in which way, the addition of pebbles to the formal-
ism, as in [34], increases the expressiveness. The core of XPath, for instance, can
easily be expressed by DTWAs with pebbles. It is unclear how many are needed
(if they are needed at all).

Tree-walking automata with registers can serve as an abstraction of trans-
formation languages like XSLT. Characterizing their expressiveness is, hence,
meaningful. However, as an algorithmic toolbox, register automata are worth-
less as almost all decision problems are undecidable [44]. Nevertheless, in the
context of streaming [51] or typechecking [5] in the presence of datavalues, it
would be interesting to find the most expressive formalism for which emptiness
would remain decidable. The inexpressibility results in [44] and [39] are obtained
via communication complexity. As illustrated in the proof of Theorem 3, such a
proof consists of two parts: (1) showing that your formalism can be simulated
by a protocol; (2) no protocol can express your property. In both case, step (2)
is rather straightforward, while (1) is the most involved one (especially in [39]).
It would be interesting to come up with general criteria from which a simulation
lemma can be derived automatically, rather than proving the simulation lemma
by hand for every new model.
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