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1 Introduction

We will first introduce the area of psychotropic drugs, then discuss pharmaco-electro-
encephalogram studies, whereafter we will indicate how they pose a problem from a
methodological point of view and how initial answers have been formulated. In subsequent
sections, particular statistical methodology will be introduced and exemplified using two
case studies.

1.1 Psychotropic Drugs

For thousands of years, humans in all known societies have used psychotropic drugs
(substances that act on the central nervous system (CNS) and affect mood, thinking, and
behavior). Psychotropic drugs, whatever the substances used, rank second to tenth among
the most consumed medicine in Western nations (Zarifian 1996). Their goal is to modify
(to increase or to reduce) the cerebral transmissions carried out by neurotransmitters (such
as the dopamine) whose dysfunction could be at the origin of mental disorders (Costentin
1993).

Roughly speaking, all psychotropics may be classified as CNS depressants (e.g., alcohol,
opium, Valium), CNS stimulants (e.g., coffee, cocaine, Ritalin), hallucinogens (e.g., LSD),
etc. Psychotropics either tranquillize or sedate, awake or stimulate, or impair perception.
Occasionally, shades of these effects are produced by a single drug.

Over the last 45 years, with progress in synthesizing chemicals and with the rapid accep-
tance of medical approaches to understand and treat human distress, many psychotropics
(except, since the 1960s, hallucinogens) have been prescribed to treat emotional and be-
havioral problems. These drugs are often called “psychiatric drugs,” although primary
care physicians write the bulk of prescriptions.

In spite of recurrent controversies (Zarifian 1988, Kapsenbelis 1994), these substances may
be divided into 5 major classes (Deniker 1982, Oughourlian 1984, Cohen and Cailloux-
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Cohen 1995), each typically named according to its main indication in psychiatry. How-
ever, these names mean little since most drugs are actually used for most indications:
stimulants may be prescribed to calm children, antidepressants to relieve anxiety; an-
ticonvulsants to control mania, etc. Classifying drugs on the basis of known chemical
structure or action might be more accurate but would create numerous categories. Given
the absence of pathophysiological findings underlying psychiatric diagnoses, current clas-
sification of psychiatric drugs remains provisional.

1.2 Pharmaco-electroencephalogram Studies

Pharmaco-electroencephalogram (EEG) studies aim at characterizing psychotropic drug
effects usually on the basis of spectral EEG analysis. This way EEG-defined sleep-waking
behavior can be explored and, in conjunction with electromyogram (EMG) and movement
monitoring, clearly defined states of vigilance can be separated out, resulting, e.g., in a
hypnogram.

Typically, six sleep-wake stages are distinguished: (1) active wake, characterized by move-
ment, theta activity and high EMG, (2) quiet wake, without movement, (3) light sleep,
characterized by EEG spindles, (4) deep sleep, with slow waves and prominent delta ac-
tivity, (5) intermediate sleep, with spindles against a background of theta activity and
low EMG, and (6) paradoxical sleep, with theta activity and low EMG. We will use the
following abbreviations: active wake (AW), quiet wake (QW), light sleep (Sws1), deep
sleep (Sws2), intermediate sleep (IS) and paradoxical sleep (PS).

Experiments typically allocate n rats over different treatment groups, generally several
doses of the same drug and a placebo group are the type of experiments encountered in
this area. The brain signals of the rats are monitored during a number of hours, which
generally are divided into a light period and a period of not light. The administration of
the drug is usually done at the beginning of the light period and after each experiment a
period of washout is considered in order to use the same rat again in another experiment.
The effects of the drugs on sleep-waking behavior are assessed using several parameters
from the hypnogram. In the application of Section 8, we will focus on the time spent in
each sleeping stage as a summary measure, and we refer to the sections on longitudinal
data for the situation where time is taken into account as well.

1.3 A statistical Challenge

From a statistical point of view, analyzing EEG data poses rather a though challenge.
This is due to several reasons. First, there is the high-dimensionality of raw EEG data.
Even after the usual initial reduction of dimensionality involving a spectral analysis, in
which the power spectrum is divided into several frequency bands (delta, theta, etc.),
there is a multitude of variables to be analyzed.

Secondly, the fact that a pharmaco-EEG study usually consists of subjects that are mea-
sured repeatedly over time indicating that we are dealing with longitudinal data. Lon-
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gitudinal data require special statistical methods because the set of observations on one
subject tends to be intercorrelated. This correlation must be taken into account to draw
valid scientific inferences (Diggle, Liang, and Zeger 1994). The mixed-effects model is
a flexible and widely used approach when modelling this type of data. The theoretical
background of mixed-effects models will de discussed later on in Section 4.

Thirdly, there does not exist a reasonably well accepted functional form for the evolution
of the EEG activity over time. This immediately becomes clear when looking at e.g. the
longitudinal profiles of the time spent in a certain sleep-wake stage. These longitudinal
profiles are usually highly irregular and the variability both between and within subjects is
relatively high. Often the variance is also not constant over time. Fitting a simple linear
model for this kind of data will clearly not be satisfactory. Finding a suitable statistical
model that captures the trends of EEG data over time is therefore not a trivial task.

Finally, given these complexities, discriminating between various components in terms of
their action is not an easy task. While conventional discriminant analysis methods can
be used, a fully satisfactory answer requires more advanced methods to be used and,
arguably, further research.

1.4 Solutions from the Field

In order to tackle these statistical challenges, people from the field of pharmaco-EEG
have tried to simplify the EEG data even further to be able to use rather basic statistical
techniques. To start with, all response variables (e.g., sleep-wake stages) are analyzed
separately using univariate statistical methods. Applying multivariate methods would
increase the complexity of the analysis considerably.

The most common applied technique is an analysis by time point and correcting for the
number of significance tests post-hoc (e.g., Bonferroni correction) in order to deal with
the so-called multiple testing problem.

Another approach could be to summarize the whole longitudinal sequence of observations
into one summary statistic (e.g., average, sum, area under the curve, etc.) per subject
and then analyze this summary statistic, e.g., by using ANOVA or a nonparametric test
like the Wilcoxon.

However, it is very important to realize that EEG data can be analyzed using a battery
of methods which exist for data arising from life science applications, perhaps tailored
to the specific needs of the problem at hand. Section 2 provides a broad overview of
commonly used methods in biometric applications. The following four sections are devoted
to methodology particularly relevant in the area of EEG data: analysis of variance is
discussed in Section 3, while random-effects models are highlighted in Section 4; general
discrimination and classification methodology is the topic of Section 5, and the specific
subfield of classification and regression trees is dealt with in Section 6. An application
of the former two sets of methods is presented in Section 7, while the latter two are
exemplified in Section 8.
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2 Statistical Methods in Biometry

Choosing a statistical approach is a very common task in everyday statistical practice.
When choosing a method for analysis, it is important to reflect on whether the method-
ology is sound from a theoretical point of view and whether it is adequate in terms of
the scientific research question of interest. A method chosen should therefore reflect the
design, type of outcome, type of covariates, etc. A useful distinction is made between
methods for univariate (single) outcomes and methodology for correlated sets of response
variables. General texts are Shoukri and Pause (1999), Dunn and Everitt (1991), Pagano
and Gauvreau (1992), and Rosner (1994). When the focus is on epidemiological methods,
useful references are Breslow and Day (1990) and Rothman and Greenberg (1996).

The simplest statistical analysis is concerned with a single outcome variable, recorded for
a sample of a homogeneous population. Standard procedures include the computation
of means or medians (location parameters) and standard errors or interquartile ranges
(dispersion parameters). For example, the height of a number of human subjects might
be recorded. A first level of complexity arises when a variable is recorded for a sample out
of two subgroups (subpopulations) of a larger population (treated and untreated patients,
two species, boys and girls): the two-sample problems. A question of interest is whether
the means are different in the two populations. The outcome variable might still be height,
but we would have an explanatory variable: treatment allocation, or sex. For example,
the height of boys can be compared to the height of girls. The outcome variable is often
called dependent variable. The predictor is often called covariate or independent variable.
The statistical tools for this data setting include analysis of variance (ANOVA), t test,
Wilcoxon test.

In the previous situation, the dependent variable had only two levels: a binary or di-
chotomous variable. This is the simplest case. Alternatively, the predictor itself could
be a variable with several levels (e.g., dose administered in a clinical trial; one of several
species of a plant; race, etc.). In addition, it could potentially have an infinite number
of levels, just as is the case with the height response variable. For example, a baseline
height at 7 years of age can be compared to the height at 10 years. This leads to a family
of models frequently referred to as regression models. When the dependent variable is
continuous (height) one often uses linear regression. The independent variable can be
continuous, binary, categorical, or discrete. The choice of the statistical analysis method
is driven by the outcome or dependent variables, rather than by the predictor variables.

Should the dependent variable be binary (diseased/non diseased; death/alive, etc.), then
one would choose logistic regression rather than linear regression. Several alternatives
to logistic regression exist, such as probit regression, where an underlying latent normal
variable is considered to give rise to the observed binary outcome, after dichotomization,
rather than a continuous logistic variable.

Of course, one does not need to be restricted to a single predictor variable. For instance,
both treatment allocation and sex of the human subject might be of interest. In such
cases, most of the well-known methods easily extend. One-way ANOVA extends to two-
way or even multi-way ANOVA. Simple, or single, linear regression extends to so-called
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multiple regression. Most other techniques, such as logistic regression, are easily extended
to encompass multiple covariates. It has to be noted that, while simple in theory, methods
for multiple covariates require great care since particular issues are raised that do not occur
otherwise. Indeed, such issues as collinearity arise only for multiple covariate models.
Often, not all predictors are on equal footing. For example, the relation between an
exposure and a disease is of interest, while another variable is merely a confounder. This
issue needs careful consideration in all non-randomized settings, such as epidemiological or
otherwise observational studies. Thus, model building and interpretation of (regression)
coefficients require both expertise as well as subject matter knowledge.

Particular care is needed in cases where the outcome variable is a time to a certain event.
In a life sciences context, this is often the time from the beginning of a study, birth,
or start of randomization, until a certain medical event occurs, such as death, relapse
of onset of disease, complete cure, pregnancy, etc. This methodological area is often
referred to as survival analysis or lifetime data analysis. There are two main reasons why
standard (linear) regression is seldom appropriate. First, survival times tend to show skew
rather than symmetric distributions, unlike in the normal distribution. Second, and more
important, is the potential occurrence of censoring, i.e., the follow up time for a subject
is not sufficiently long in order to observe the actual survival time. In such a case, it is
clear that the actual survival times exceeds the end of follow-up, i.e., the survival time is
larger than the censoring time. This means that partial, or coarse, information is present.
Nevertheless, such information needs to be included into the analysis. A lot of research
has been devoted to develop parametric and non-parametric methods for the analysis of
survival times in the presence of censoring.

Another important set of situations, different from the univariate settings considered thus
far, occurs when several dependent variables are recorded simultaneously. This concept
harbors a large, and ever growing portion of statistical methodology, of use in health
sciences and elsewhere. The most classical setting is multivariate analysis, where different
outcomes are measured on the same subject. Alternatively, the same measurement can
be taken on the same unit or on correlated units. Examples include longitudinal studies,
where the same measurement is repeatedly made over time, spatial statistics, where the
connection of a response to its geographical location is of interest, clustered data (e.g., in
animal litters or in family studies), hierarchical survey data, such as arising from multistage
or cluster sampling, etc. A particular area of such dependent, or hierarchical, data is given
by meta-analysis in clinical trials, where information is pooled from several clinical trials.
Apart from general methodological considerations, one is then confronted with pragmatic
issues such as which study to include, etc.

Section 2.1 is devoted to classical univariate modeling, including linear regression, general-
ized linear models, and logistic regression. Section 2.2 offers a perspective on hierarchical
data, encompassing multivariate methods as well as repeated measures and multilevel
modeling. Finally, some comments about survival analysis are made, and its connection
to the other modeling frameworks is highlighted.
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2.1 Linear Regression, Generalized Linear Models, Exponential Family, and Lo-
gistic Regression

2.1.1 Gaussian Outcomes

The analysis of continuously distributed responses (Neter et al. 1996), especially when
they are normally distributed, has received a lot of attention. Next to the t test, analysis
of variance and linear regression have received a lot of attention. The general linear
regression model is customarily written as

Yi = β0 + β1Xi1 + β2Xi2 + . . .+ βp−1Xi,p−1 + εi,

where Yi is a response variable for subject i = 1, . . . , N in a study, Xij is the value for the
jth predictor variable and εi is an error term. There are some important special cases. For
example, when p = 1 then there are no covariates and the one-sample problems results.
When p = 2, so-called simple or single regression is obtained, where the outcome variable
is regressed on a single covariate. When all of the covariates are dummy variables (0 or
1 depending on whether a certain characteristic is absent or present within a subject),
possibly resulting from a multi-categorical covariate, then analysis of variance is obtained.
Analysis of variance and regression are often treated as different entities in introductory
texts. This makes sense because on the one hand linear regression generalizes ANOVA,
while on the other hand a larger number of results and tools is available for the ANOVA
setting than for the more general regression setting. In a sense, ANOVA refers to cate-
gorical covariates, whereas regression focuses on continuous covariates, or a combination
of continuous and categorical covariates.

Regarding the error term, two views can be taken. First, one can restrict attention to spec-
ification of its moments only. Most commonly, one assumes a zero mean and a constant
variance, σ2 say. This results in the so-called ordinary least squares (OLS) approach to lin-
ear regression. Alternatively, the error term, and subsequently the response variable itself,
can be considered normally distributed. In the first case, sampling-based or frequentist
inference results, in the second case, full maximum likelihood follows. Both approaches
yield the same parameter estimates and almost the same estimates of precision, given that
they are asymptotically equivalent. The OLS approach is valid under weaker assumptions,
thus even when the errors are not normally distributed, but if one is comfortable with the
normal distribution, use can be made of fully parametric inference. This is one of many
instances in statistical modelling: if one is prepared to make assumptions, more results
become available, but the risk of incorrect assumptions is always present. This is why
careful assessment of assumptions is important.

Throughout statistical analysis, and not only in linear regression, the normal distribution
is omnipresent. Let us reflect on this phenomenon. For a simple random sample with
just one outcome variable, the mean and the standard deviation, and/or the standard
error of the mean, are easily computed. This is independent of the true distribution of
the data. However, for some distributions, a mean and standard deviation will be less
meaningful. This includes, for example, bimodal distributions. Even though they may
have a mean, primary scientific interest may lie in identification of the two modes and
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other characteristics thereof. Another example is provided the Cauchy distribution, which
does not have finite mean and variance.

The normal distribution has easy interpretations for the mean and standard deviation
of samples drawn from it. The usual definitions of mean and standard deviation are the
least squares estimators (and maximum likelihood estimators) of the population quantities.
Very importantly, under regularity conditions, the sample mean converges to the location
parameter of the true distribution, even if it is not normal. This is based on the so-
called law of large numbers (central limit theory), which means, roughly speaking, that
distributions of estimators from large samples show a normal spread, even when the
samples themselves are drawn from non-normal distributions. In addition, the researcher
disposes of an alternative set of tools consisting of transformation methods. This allows
to transform responses or residuals that are non-normal, to (more) normally distributed
ones. For all of these reasons, the normal distribution is a convenient working paradigm
in a number of statistical areas.

2.1.2 Non-Gaussian Outcomes

For the analysis of categorical response variables (Agresti 1990, McCullagh and Nelder
1990), different families of approaches exist. First, when there is one or a few categorical
responses, possibly with in addition a set of categorical covariates, so-called contingency
table analysis is a commonly used tool. A key model in such a context is the loglinear
model. Second, when there is one binary (or, to some extent, categorical) outcome, in
the presence of one or more, perhaps continuous, covariates, then appropriate regression
tools can be used. In the regression framework, one of the most commonly used tools
is logistic regression. There are at two obvious reasons for this. First, it is considered
a natural extension of linear regression. Second, especially in a biometrical context, the
interpretation of its parameters in terms of odds ratios is considered convenient as it is
related to the so-called relative risk. When the latter is less of a concern, such as in
econometric applications, one frequently encounters probit regression. The split between
these two strands of research is reminiscent of the split between ANOVA and regression
methods for continuous outcomes. At the same time, just as these two strands come
together in a generic perspective on linear regression, thereby encompassing ANOVA, the
theory of generalized linear models encompasses both contingency table analysis (through
the loglinear model) as well as logistic regression. Moreover, the framework of generalized
linear models is very broad, in the sense that it contains linear regression as a special case,
and apart from logistic regression for binary data, it can easily deal with multi-categorical
outcomes, whether nominal (unordered) or ordinal (ordered), with counts, and, to some
extent, with survival analysis.

Consider a response variable Yi, measured on subjects i = 1, . . . , N , together with covari-
ates xi. A generalized linear model minimally specifies the mean E(Yi) = µi and links
it to a linear predictor in the covariates η(µi) = xT

i β, where η(.) is the so-called link
function. Further, the variance of Yi is then linked to the mean model by means of the
mean-variance link

Var(Yi) = φv(µi),
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where v(.) is a known variance function and φ is a scale or overdispersion parameter.
Such a specification is sufficient to implement moment-based estimation methods, such as
iteratively reweighted least squares or quasi likelihood. In case full likelihood is envisaged,
the above framework can be seen to be derived from the general exponential family
definition

f(y|θi, φ) = exp
{
φ−1[yθi − ψ(θi)] + c(y, φ)

}
(1)

with θi the natural parameter and ψ(.) a function satisfying µi = ψ′(θi) and v(µi) =
ψ

′′
(θi). Hence, the previous results are recovered but extended. From (1) it immediately

follows that the corresponding log-likelihood is linear in the statistics θi, simplifying the
form of the score equations,

S(β) =
∑

i

∂µi

∂β
v−1

i (yi − µi) = 0,

log-likelihood maximization and corresponding statistical inference.

For example, in the case of a binary outcome Yi, the model can be written as

f(yi|θi, φ) = µyi

i (1 − µi)1−yi = exp
{
yi ln

(
µi

1 − µi

)
+ ln(1 − µi)

}
and hence the Bernoulli model and, by extension, logistic regression, fits within this
framework. In particular,

θi = logit(µi) = µi/(1 − µi) = logit[P (Yi = 1|xi)], (2)

µ = eθ/(1 + eθ) and v(µ) = µ(1 − µ).

In case one opts for a probit link, the logit in (2) is replaced by the inverse of the standard
normal distribution Φ−1, i.e., the probit function. This model cannot be put within the
exponential family context. Hence, the choice for logistic regression is often based on
the mathematical convenience entailed by the exponential family framework. Now, it has
been shown repeatedly that the logit and probit link functions behave very similarly, in the
sense that for probabilities other than extreme ones (say, outside of the interval [0.2; 0.8])
both forms of binary regression provide approximately the same parameter estimates, up
to a scaling factor equal to π/

√
3, the ratio of the standard deviations of a logistic and a

standard normal variable.

The beauty and elegance of the exponential family framework should not disguise that
there are fundamental differences with linear regression. First, the normal densities, ex-
plicitly or implicitly underlying linear regression, exhibit a separation between mean and
variance; this is radically different in most commonly used generalized linear models. Sec-
ond, the link function introduces a form of non-linearity that is absent in linear regression.
This has important consequences in terms of model selection. For example, omitting a
covariate in linear regression implies, under certain circumstances, merely an increase in
residual variability. In contrast, in GLM, since covariates enter the linear predictor, and
the variability is given by the mean-variance link, a non-linear relationship enters into the

72



Statistical Methods for EEG Data

picture, implying that, when two hierarchically ordered models are considered, at most
one of them can be correctly specified.

In spite of these remarks, logistic regression has found its way into everyday statistical
practice. Perhaps due to this familiarity, the model has been extended to a number of
different settings, including ordinal data, multivariate binary data, and longitudinal data.
But, even more so in the extensions, one needs to be aware of fundamental differences
between the Gaussian and non-Gaussian settings. This will be exemplified using ordinal
data, in the following section.

2.1.3 Regression Models for Ordinal Data

Regression models for binary data, such as described in the previous section, have been
extended to nominal and ordinal categorical outcomes. Let us concentrate on ordinal
outcomes. Assume that the binary variable Yi ∈ {0, 1} is replaced by an ordinal one
taking values Yi ∈ {1, 2, . . . ,K}. Consider the case of a single covariate xi. A predictor,
linear in the covariate, would take the following form in the binary case:

logit[P (Yi = 1|xi)] = α+ βxi. (3)

A commonly used extension of logistic regression to this case is so-called proportional
odds logistic regression:

logit[P (Yi ≤ k|xi)] = αk + βxi, k = 1, . . . ,K − 1. (4)

In (4), the probability of observing a lower response versus a higher one is modeled. The
term proportional odds derives from the fact that the odds for a unit increase in xi are
equal to expβ, irrespective of the cutoff, given it nice interpretational properties and ele-
gance provided the model is correctly specified. The latter is important and fundamentally
different from logistic regression. To see this, consider a logistic regression as in (3) with
xi binary and taking values 0 or 1. For each of the two levels of xi, there is then one
parameter, the probability of success given xi. Since (3) contains two free parameters,
the model is saturated and, in this case, logistic regression is merely a convenient way to
model the two probabilities and the difference between them, thereby assuring that for all
values of α and β valid (i.e., within the unit interval) probabilities are obtained.

In case of (4), there are 2K−2 free probabilities for each of the two levels of xi, implying
that the K free parameters impose model constraints. An obvious extension would be to
allow for category dependent effects βk (k = 1, . . . ,K − 1). This model is saturated and
can be used as a starting point for model simplification, in this simple contingency table
setting.

With continuous covariates, the situation is different. Assuming xi is continuous, and the
fit of model (4) is inadequate (assessed, for example, using a score test, as is routinely
done in the SAS procedure GENMOD), one could, in principle, let the covariate effects
be category dependent. However, the consequence is that there always exist regions in
the covariate space, for any combination of the parameters, where non-valid probabilities
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would be obtained. Indeed, it is easy to see that the conditions for valid probabilities

αk + βkxi ≤ αk+1 + βk+1xi, k = 1, . . . ,K − 1,

impose K − 1 linear inequality constraints. Depending on the signs of βk+1 − βk, the
resulting allowable space can be a finite or infinite interval. The only way in which to
remove the constraints is by setting the βk parameters equal, i.e., proportional odds
regression.

In case the resulting allowable interval for xi, for a given set of parameters, corresponds
to a scientifically plausible range, the model could still be used. Thus, in general, it is
important to realize that there ought to be a careful discussion, when using ordinal data
logistic regression, considering the pros and cons in terms of plausibility, flexibility, and
constraints.

Of course, (4) is not the only ordinal logistic regression type model. Alternatively, one
can consider the multigroup logistic model, where each category is referred to the baseline
category. Such a model is mathematically more convenient since it avoids parameter space
violations and fits within the exponential family framework, but it does not exploit the
ordinal nature of the data. The latter may lead to less parsimonious models and, more
importantly, to difficulties in extracting relevant conclusions from the data.

Another approach is to consider continuation-ratio models:

logit[P (Yi > k|Yi ≥ k, xi)] = αk + βkxi, k = 1, . . . ,K − 1. (5)

This model has been given some attention in the literature. Such a model might be
convenient and useful for subjects that gradually go through a number of states, where
no return is possible (e.g., cancer stages). Fitting the model is easy since (5) consists
of K − 1 separate logistic regressions; only a straightforward expansion of the data is
necessary to prepare them for standard calls to logistic regression software.

Nevertheless, while this model might be a convenient option for directionally ordered
categorical data, it is not so when the direction of the ordering is immaterial. This is
the case, for example, when a 5-point scale, ranging from ‘very bad’ to ‘very good’ can
just as well be reversed: ‘very good’ to ‘very bad’. Reversing the coding in such a case
merely changes the signs of the parameters involved in the case of proportional odds
logistic regression, but it fundamentally changes the model in the continuation-ratio case.
Precisely, not only is there no simple transformation between the parameters, significance
may change as well and the likelihood at maximum can be different. This is one of the
most dramatic instances, in the case of univariate logistic regression for ordinal data,
where consideration of a particular model is not just open to criticism, but actually totally
meaningless in a number of cases.

2.2 Hierarchical Data

In applied sciences, one is often confronted with the collection of correlated data. This
generic term embraces a multitude of data structures, such as multivariate observations,
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clustered data, repeated measurements, longitudinal data, and spatially correlated data
(Aerts et al. 2002, Verbeke and Molenberghs 2000, Diggle et al. 2002, Fahrmeir and
Tutz 2001).

Among the hierarchical settings, multivariate data have received most attention in the
statistical literature. Techniques devised for this situation include multivariate regression
and multivariate analysis of variance, which have been implemented in standard statistical
software.

As an example of a simple multivariate study, assume that a subject’s systolic and diastolic
blood pressure are measured simultaneously. This is different from a clustered setting
where, for example, for a number of families, diastolic blood pressure is measured for all
of their members. A design where, for each subject, diastolic blood pressure is recorded
under several experimental conditions is often termed a repeated measures study. In the
case that diastolic blood pressure is measured repeatedly over time for each subject, we
are dealing with longitudinal data. Although one could view all of these data structures as
special cases of multivariate designs, there are many fundamental differences, thoroughly
affecting the mode of analysis. First, certain multivariate techniques, such as principal
components, are hardly useful for the other designs. Second, in a truly multivariate set
of outcomes, the variance-covariance structure is usually unstructured, in contrast to, for
example, longitudinal data. Therefore, the methodology of the general linear model for
multivariate data is too restrictive to perform satisfactory data analyses of these more
complex data. In contrast, the general linear mixed model , is much more flexible.

2.2.1 Multivariate Analysis

Multivariate analysis refers to a set of techniques which allows the presence of more than
one outcome variable (Johnson and Wichern 1992, Krzanowski 1988). For example, height
and weight might be recorded simultaneously for a group of boys and girls. Arguably, sex
will influence height as well as weight. At the same time, height and weight are likely to
be correlated or associated. Note that association refers to the concept of dependence
between two or more variables. In contrast, correlation refers to a family of measures that
can be computed to capture association (Pearson correlation, Spearman correlation).
Especially for categorical data, a million measures of association have been proposed as
alternatives to the correlation (including the odds ratio, concordance, Kendall’s τ , the κ
coefficient,. . . ).

A different example is provided by the classical Iris Data Set, where four variables (petal
length, petal width, sepal length, sepal width) are recorded for 150 irises, subdivided in
three equal subsamples of 50 irises, belonging to each of three species: setosa, versicolor,
and virginica. Thus, there are four continuous outcomes and one independent variable
(species) which is categorical with three levels.

In general, one might have a set of dependent variables, some of which are continuous,
discrete, categorical, or binary, and, at the same time a set of independent variables, some
of which are continuous, discrete, categorical, and binary. The most general setting is
very hard to study. During the last century, a multitude of sub-problems of the general
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problem have been studied.

It is important to appreciate the relative positions of multivariate analysis on the one
hand, and longitudinal, spatially correlated, clustered, or otherwise hierarchical settings.
Since correlated responses are recorded, all of these settings differ from univariate analysis.
However, in a multivariate study, several variables for simple, as opposed to compound,
subjects, such as individuals, are recorded. In contrast, repeated measures, longitudi-
nal data, etc. usually involve compound units (families, litters) or elaborate sampling
mechanisms (extending over time: longitudinal; or extending over space: spatial). As a
consequence of this difference, models for a multivariate setting will differ from models
for the other settings.

In analogy to the univariate setting, the multivariate normal distribution is heavily used
in multivariate statistics. This has led to multivariate regression, multivariate analysis
of variance, principal components analysis, factor analysis, canonical correlation analysis,
discriminant analysis, the biplot, multidimensional scaling, etc.

For the same reasons as in the univariate setting, these techniques can be used also when
samples are non-normal, for two reasons. First, merely for describing, summarizing, reduc-
ing data (such as a sample mean), no (full) distributional assumptions have to be made.
Second, for samples large enough, asymptotic theory can be invoked to prove (normal)
properties of the estimators’ sampling distributions, even when the data themselves or
the residuals thereof are non-normally distributed. Of course, whether a sample is “large”
depends on the discrepancy between the true distribution and the normal distribution.
Clearly, for binary data the discrepancy might be too large. Therefore, more recent work
focuses on non-normal data, particularly with emphasis on multivariate generalized linear
models, rather than just multivariate general linear models.

With continuous or quasi-continuous (non-continuous outcomes such as ordinal outcomes
with a sufficiently large number of categories) responses, one might still consider a multi-
tude of questions. Consider the Iris data set and let us, for the sake of illustration, focus
on three types of question in particular. (1) Are there differences between the species?
(2) Given a species, do we need all four variables to have an idea about the characteris-
tics? (3) What is the relation between the sepal variables on the one hand, and the petal
variables on the other? Formulated differently, is the sepal shape and/or size related to
the petal shape and/or size?

If the first question were asked in a univariate sample, a difference in the mean parameter
is usually the subject of investigation. One can test for equality of the mean between the
different species. In the current multivariate setting, differences can be spread out over
4 outcomes. Is only one variable responsible for a difference? Is the difference spread
out over all four? Suppose we were to classify a new observation. If only one outcome
is responsible for the difference, one could confine attention to the value of that one to
classify the new observation. However, if it is spread out over all four it is less clear how
to do it. Might it be possible to define a new variable, based on the other four, making
the job easier? This will be the subject of discriminant analysis.

If the second question were asked in a univariate setting, the information contained in the
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data for a species is summarized by 1 mean and 1 variance. Here, we have 4 means, 4
variances, and 6 correlations! (Think of 10 outcomes. . . ). Thus, in order to gain insight,
a data reduction is needed. This has led to principal components.

To answer the third question, the four variables have been divided into two groups of two
variables. In other words, we are interested in the correlation between two sets of variables,
instead of simply between two variables. Not only are there several correlations between
the sets (four in this case), but also the correlation between the variables within each
set (one correlation within each set) is present. Rather than having a single correlation,
we have six numbers. A satisfactory answer to this question is the subject of canonical
correlation analysis. This method generalizes both Pearson’s correlation as well as multiple
correlation and R2, known from regression.

2.2.2 Longitudinal and Other Hierarchical Data

Recall that the broad family of correlated data includes longitudinal data, spatially cor-
related data, clustered data, survey data, etc. Among the clustered data settings, lon-
gitudinal data perhaps require the most elaborate modeling of the random variability.
Generally, three components of variability can be considered. The first one groups tra-
ditional random effects (as in a random-effects ANOVA model) and random coefficients.
It stems from interindividual variability (i.e., heterogeneity between individual profiles).
The second component, serial association, is present when residuals close to each other
in time are more similar than residuals further apart. This notion is well known in the
time-series literature. Finally, in addition to the other two components, there is potentially
also measurement error. This results from the fact that, for delicate measurements (e.g.,
laboratory assays), even immediate replication will not be able to avoid a certain level of
variation. In longitudinal data, these three components of variability can be distinguished
by virtue of both replication as well as a clear distance concept (time), one of which is
lacking in classical spatial and time-series analysis and in clustered data. This implies that
adapting models for longitudinal data to other data structures is in many cases relatively
straightforward. For example, clustered data could be analyzed by leaving out all aspects
of the model that refer to time.

As in the univariate settings, a very important characteristic of data to be analyzed is
the type of outcome. Methods for continuous data form the best developed and most
advanced body of research; the same is true for software implementation. This is natural,
since the special status and the elegant properties of the normal distribution simplify
model building and ease software development. It is in this area that the general linear
mixed model is situated. However, also categorical (nominal, ordinal, and binary) and
discrete outcomes are very prominent in statistical practice. For example, quality of life
outcomes are often scored on ordinal scales.

Two fairly different views can be adopted. The first one, supported by large-sample results,
states that normal theory should be applied as much as possible, even to non-normal data
such as ordinal scores and counts. A different view is that each type of outcome should
be analyzed using instruments that exploit the nature of the data. In addition, since the
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statistical community has been familiarized with generalized linear models, some have
taken the view that the normal model for continuous data is but one type of generalized
linear models. Although this is correct in principle, it fails to acknowledge that normal
models are much further developed than any other generalized linear models (e.g., model
checks and diagnostic tools) and that it enjoys unique properties (e.g., the existence of
closed-form solutions, exact distributions of test statistics, unbiased estimators, no mean-
variance link, etc.). Extensions of generalized linear models to the longitudinal case include
marginal models (e.g., generalized estimating equations) and random-effects models (e.g.,
the generalized linear mixed model).

In longitudinal settings, each individual typically has a vector Y of responses with a
natural (time) ordering among the components. This leads to several, generally non-
equivalent, extensions of univariate models. In a marginal model , marginal distributions
are used to describe the outcome vector Y , given a set X of predictor variables. The
correlation among the components of Y can then be captured either by adopting a fully
parametric approach or by means of working assumptions, such as in the generalized
estimating equations approach. Alternatively, in a random-effects model , the predictor
variables X are supplemented with a vector b of random effects, conditional upon which
the components of Y are usually assumed to be independent. This does not preclude
that more elaborate models are possible if residual dependence is detected. Finally, a con-
ditional model describes the distribution of the components of Y , conditional on X but
also conditional on (a subset of) the other components of Y . In a longitudinal context,
a particularly relevant class of conditional models describes a component of Y given the
ones recorded earlier in time. Well-known members of this class of transition models are
Markov type models.

For normally distributed data, marginal models can easily be fitted with a number of stan-
dard statistical software packages. For such data, integrating a mixed-effects model over
the random effects produces a marginal model, in which the regression parameters retain
their meaning and the random effects contribute in a simple way to the variance-covariance
structure. For example, the marginal model corresponding to a random-intercepts model
is a compound-symmetry model that can be fitted without explicitly acknowledging the
random-intercepts structure. In the same vein, certain types of transition model induce
simple marginal covariance structures. For example, some first-order stationary autore-
gressive models imply an exponential or AR(1) covariance structure. As a consequence,
many marginal models derived from random-effects and transition models can be fitted
with mixed-models software.

It should be emphasized that the above elegant properties of normal models do not extend
to the general non-Gaussian case. For example, opting for a marginal model for longi-
tudinal binary data precludes the researcher from answering conditional and transitional
questions in terms of simple model parameters.

While research in this area has largely focused on the formulation of linear mixed-effects
models, inference, and software implementation, other important aspects, such as ex-
ploratory analysis, the investigation of model fit, and the construction of diagnostic tools
have received considerably less attention. In addition, longitudinal data are typically very
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prone to incompleteness, due to dropout or intermediate missing values. This poses
particular challenges to methodological development.

2.2.3 The Linear Mixed Model

The linear mixed-effects model is a commonly used tool for, among others, variance
component models and for longitudinal data. We will briefly introduce it and discuss
some of the issues surrounding this model. Let Yi denote the ni-dimensional vector of
measurements available for subject i = 1, . . . , N . A general linear mixed model then
assumes that Yi satisfies

Yi = Xiβ + Zibi + εi, (6)

in which β is a vector of population-average regression coefficients called fixed effects, and
where bi is a vector of subject-specific regression coefficients. The bi describe how the
evolution of the ith subject deviates from the average evolution in the population. The
matrices Xi and Zi are (ni × p) and (ni × q) matrices of known covariates. The random
effects bi and residual components εi are assumed to be independent with distributions
N(0, D), and N(0,Σi), respectively. Inference for linear mixed models is usually based
on maximum likelihood or restricted maximum likelihood estimation under the marginal
model for Yi, i.e., the multivariate normal model with mean Xiβ, and covariance Vi =
ZiDZ

′
i + Σi. Thus, we can adopt two different views on the linear mixed model. The

fully hierarchical model is specified by

Yi|bi ∼ Nni
(Xiβ + Zibi,Σi),

bi ∼ N(0, D),
(7)

while the marginal model is given by

Yi ∼ Nni
(Xiβ, ZiDZ

′
i + Σi). (8)

Even though they are often treated as equivalent, there are important differences between
the hierarchical and marginal views on the model. Making likelihood-based inferences on
the marginal model, and deriving a satisfactory fit has been obtained, does not imply the
posited hierarchical model is plausible. In fact, it can be shown that several hierarchical
models can lead to the same marginal model. Moreover, some marginal models cannot
be derived from a hierarchical model. A direct implication of this fact is that one has to
be careful with inference on variance components in linear mixed models. A hierarchical
interpretation of variance components implies that the null hypothesis associated to the
tests lies on the boundary of the parameter space. This, in turn, implies that inference
and in particular null distributions take a non-standard form.

Other issues, surrounding the linear mixed model, focus on data exploration and model
confirmation. Exploring data and model building involves not only a mean structure and
variance components, but the further decomposition of both in several constituents. For
example, the mean structure typically has a time-independent or cross-sectional part, as
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well as a time-dependent or longitudinal part. The covariance structure typically includes,
apart from the variance function, all three components of association alluded to earlier,
i.e., random effects, serial association and measurement error (instantaneous replication
error). In order to perform model criticism, it is important to realize that residuals can
be defined in essentially two ways: conditional upon the random effects or marginalized
over them. One or the other definition may make more or less sense, depending on the
situation.

2.2.4 From Gaussian to Non-Gaussian Longitudinal Data

In the previous section we have discussed a number of issues arising from the use of the
linear mixed effects model. Still focusing on continuous outcomes, a marginal model is
characterized by the specification of a marginal mean function

E(Yij |xij) = x′
ijβ, (9)

whereas in a random-effects model we focus on the expectation, conditional upon the
random-effects vector:

E(Yij |bi,xij) = x′
ijβ + z′ijbi. (10)

Finally, a third family of models conditions a particular outcome on the other responses
or a subset thereof. In particular, a simple first-order stationary transition model focuses
on expectations of the form

E(Yij |Yi,j−1, . . . , Yi1,xij) = x′
ijβ + αYi,j−1. (11)

As we have seen before, random-effects models imply a simple marginal model in the
linear mixed model case. This is due to the elegant properties of the multivariate normal
distribution. In particular, the expectation (9) follows from (10) by either (a) marginalizing
over the random effects or by (b) by conditioning upon the random-effects vector bi = 0.
Hence, the fixed-effects parameters β have both a marginal as well as a hierarchical model
interpretation. Finally, when a conditional model is expressed in terms of residuals rather
than outcomes directly, it also leads to particular forms of the general linear mixed effects
model.

Such a close connection between the model families does not exist when outcomes are
of a non-Gaussian type, such as binary, categorical, or discrete outcomes. The main
reason is that the left hand sides of (9)–(11) have to be replaced by g[E(Yij |·)] where
g is an appropriate link function, thus destroying the simple links described above, since
these exist thanks to the property of linearity. Let us therefore focus on some differences
between the model families.

It will be clear from the briefest comparison of the marginal and the conditional families,
that fitting a marginal model is typically more involved than fitting a conditional model. In
addition, most marginal models have constrained parameter spaces. This is often quoted
as an interpretational disadvantage. However, the same is true for the multivariate normal
model since its covariance matrix has to be positive definite. In contrast, the parameters
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in many conditional models can take on any value in the Euclidean space whilst still
producing valid probabilities. However, one of the main interpretational advantages of
marginal models is their upward compatibility or reproducibility. This means that when
a marginal model is used to model a response vector, then the appropriate sub-model
applies to any subvector of the response vector. Precisely, such a sub-vector still follows
a model of the same structure, with as parameter vector the corresponding sub-vector.
This is not true in conditional models, posing particular problems when response vectors
are of unequal length.

Marginal models should be chosen whenever there are marginal research questions, e.g.,
pertaining to one or a few occasions, or the evolution between them. They are also useful
when not only the strength of association between occasions, but also a quantification
of this association is of interest. Of course, when the number of measurement occasions
within a subject grows, such models become intractable from a likelihood perspective.
One can then resort to alternative approaches, such as generalized estimating equations
or pseudo-likelihood. In fact, generalized estimating equations are by far the most com-
monly used marginal approach. This is a sensible approach when one is mainly interested
in first-order marginal mean parameters. For clustered and repeated data, Liang and
Zeger proposed so-called generalized estimating equations (GEE) which require only the
correct specification of the univariate marginal distributions provided one is willing to
adopt “working” assumptions about the association structure. They estimate the para-
meters associated with the expected value of an individual’s vector of binary responses and
phrase the working assumptions about the association between pairs of outcomes in terms
of marginal correlations. The method combines estimating equations for the regression
parameters β with moment-based estimating for the correlation parameters entering the
working assumptions.

Models with subject-specific parameters are differentiated from population-averaged mod-
els by the inclusion of parameters which are specific to the cluster. Unlike for correlated
Gaussian outcomes, the parameters of the random effects and population-averaged mod-
els for correlated binary data describe different types of effects of the covariates on the
response probabilities.

The choice between population-averaged and random effects strategies should heavily
depend on the scientific goals. Population-averaged models evaluate the overall risk
as a function of covariates. With a subject-specific approach, the response rates are
modeled as a function of covariates and parameters, specific to a subject. In such models,
interpretation of fixed-effect parameters is conditional on a constant level of the random-
effects parameter. Population-averaged comparisons, on the other hand, make no use of
within cluster comparisons for cluster varying covariates and are therefore not useful to
assess within-subject effects.

Whereas the linear mixed model is unequivocally the most popular choice in the case of
normally distributed response variables, there are more options in the case of non normal
outcomes. An early instance of a random-effects model for binary data is the beta-binomial
model. The most popular model in this setting, however, is the generalized linear mixed
model, where a generalized linear model (e.g., with logit link for binary data or log link
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for counts) is combined with a linear predictor that includes normally distributed random
effects. While the idea seems natural, key issues arise. First, it should be clear that the
parameters obtained from a marginal approach such as GEE and a GLMM approach are
not directly comparable since they estimate different sets of population parameters. In the
first case, the parameters describe an evolution over time or a covariate dependence over
a population as a whole, while in the second case such effects are studied conditional upon
a level of a subject’s random effects. Second, fitting a GLMM requires integration of a
subject’s contribution to the log-likelihood function over the random-effects distribution.
While this problem has a closed-form solution in the linear mixed-effects model, either
numerical integration or an approximation to the integrand is required in the general cases.

2.3 Survival Analysis

Survival analysis refers to statistical procedures used to analyze data where the outcome
of interest is time to an event (Kalbfleisch and Prentice 1980, Kleinbaum 1996). Examples
of events include death and recurrence of illness. Survival data, or time-to-event data,
occur in health sciences and elsewhere, such as in technometrics, actuarial sciences, etc.
Even though there is a strong connection between the analysis of survival data and other
types of data analysis, there is an important key difference in the sense that not all study
subjects may experience the event. Such observations are called censored, the others being
uncensored. Censored subjects are included since they do provide partial information, i.e.,
for them it is known in which time interval the event did not occur. It is commonly said
that they contribute “follow-up time” to the study.

Let us first introduce some concepts and notation. Denote a survival time by a random
variable T and its cumulative distribution function by F (t), i.e., the probability that a
failure occurs before time t. The corresponding density is denoted by f(t). The range
for t typically is [0,+∞[. In addition, and this is specific to the survival area, one defines
the survivorship function or survival function S(t) = 1 − F (t), i.e., the probability tat
the event occurs after time t. When the outcome is death, S(t) indicates the probability
to survive until time t. A very important concept is the hazard, h(t), defined as the
probability that an individual fails in a small interval of time conditional on their survival
at the beginning of such interval. It may be written as:

h(t) =
f(t)

1 − F (t)
.

One often refers to it as the instantaneous failure rate or the force of mortality. The
cumulative hazard function is then defined as

H(t) =
∫ t

0

h(x) dx.

Survival data are commonly represented using Kaplan-Meier plots. These are also con-
sidered a non-parametric way of analyzing such data. When a certain number of survival
curves is to be compared (two or more), one often uses log-rank or Wilcoxon tests. These
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can be seen as the counterparts to analysis of variance and contingency table analysis
in continuous and discrete data, respectively. Just as there are regression methods for
continuous and categorical data (linear and logistic regression, respectively), a number
of regression methods are available for (censored) time-to-event data. Fully parametric
models include the exponential model

f(t) = λ exp(−λt)

for t ≥ 0 and parameter λ > 0, and the Weibull model

f(t) = λγtγ−1 exp(−λtγ),

for t ≥ 0 and parameters λ, γ > 0. In the exponential model, the hazard is constant,
i.e., h(t) = λ, whereas for the Weibull model it equals h(t) = λγtγ−1. Now, λ can be
modeled as a function of covariates, thus producing a flexible regression class for survival
outcomes. This is especially true in the Weibull case, due to the presence of the shape
parameter γ.

However, it is often considered a drawback having to model the entire distribution func-
tion, whereas interest focuses primarily on the difference between survival curves (e.g.,
between treated and untreated patients). This is why the Cox proportional hazards model
has become so popular. Precisely, the hazard for the ith subject, hi(t) is written as

hi(t) = h0(t)ϕ(xi),

where h0(t) is a so-called baseline hazard, common to all subjects and left unspecified,
and ϕ(xi) specifies the effect of a set of covariates. This function must be nonnegative,
explaining why often a log-linear specification is employed:

lnϕ(xi) = ln
(
hi(t)
h0(t)

)
= β0 + β1Xi1 + β2Xi2 + . . .+ βp−1Xi,p−1.

This equation also reveals the assumption behind the model: the hazard for an individual
is proportional to that for another individual, regardless of time. Alternate models are
available to analyze data when this assumption is not satisfied, including the stratified
Cox model. The stratified Cox model estimates regression coefficients for variables that
do satisfy the proportional hazards assumption, stratifying on variables that do not satisfy
the assumption. For the Cox model, conditional, permutation-based arguments are used
to construct a so-called partial likelihood function. Specific attention is to be devoted to
tied observations, and several methods for handling thereof exist. In addition, the method
requires non-trivial but now standard extension when covariates vary with time. The Cox
model, just as the fully parametric survival regression methods, requires specific attention
with censored observations.

Just as with continuous and categorical outcomes, the occurrence of correlated survival
times is becoming ever more frequent. For example, survival times may be observed on
several members within the same family (e.g., in population genetics) or time to sev-
eral non-exclusive events may be observed for the same person. The same split between
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marginal and random-effects models exist as in the settings considered earlier, but the
methods are further complicated by the presence of censoring. An example of a mar-
ginal approach is provided by appropriately constructed generalized estimating equations.
Random-effects models tend to be referred to as frailty models in this particular context.
Special attention is devoted to so-called recurrent events, as well as to competing risks.

Recently, interest has increased in the joint modeling of longitudinal outcomes and survival
times. This can be motivated from, at least, three different perspectives. First, the
survival analyst can be interested in the effect of an entire longitudinal covariate, rather
than merely in the effect of a time-varying covariate. Second, the longitudinal modeler can
be left with a partially unobserved longitudinal profile due the operation of a time-to-event
or dropout process. Third, one can be interested in the longitudinal and survival outcomes
simultaneously, from a more symmetric perspective, in the sense that a longitudinal profile
or a part thereof can be considered as a (candidate) surrogate marker or surrogate endpoint
for a true endpoint that is of a time-to-event type.

In the following four sections, methodology specifically relevant for the area of EEG data
will be presented.

3 Analysis of Variance (ANOVA)

Based on Neter et al. (1996), we will give an overview of the basics of ANOVA.

3.1 Notation

Let Yij represent the observation or measurement for subject i = 1, . . . , nj for factor level
(i.e., group) j = 1, . . . , r. The total of the observations for the jth factor level is denoted
by Y·j :

Y·j =
nj∑
i=1

Yij .

Note that the dot in Y·j indicates an aggregation over the i index, i.e., all subjects. The
sample mean for the jth factor level is denoted by Y ·j :

Y ·j =
∑nj

i=1 Yij

nj
=
Y·j
nj
.

Finally, the overall mean for all responses is denoted by Y ··:

Y ·· =

∑r
j=1

∑nj

i=1 Yij∑r
j=1 nj

,

where the two dots indicate aggregation over all subjects i and all factor levels j.
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3.2 Partitioning of the Variability

The total variability of the Yij observations, not using any information about factor levels,
is measured in terms of the total squared deviation of each observation, i.e. the squared
deviation of Yij around the overall mean Y ··:

SSTO =
r∑

j=1

nj∑
i=1

(Yij − Y ··)2, (12)

where SSTO stands for total sum of squares.

When we utilize information about the factor levels, we can calculate the sum of squared
deviations of all observation Yij around their respective estimated factor level means Y ·j :

SSE =
r∑

j=1

nj∑
i=1

(Yij − Y ·j)2, (13)

where SSE stands for error sum of squares.

Finally, the treatment sum of squares is defined as:

SSTR =
r∑

j=1

nj∑
i=1

(Y ·j − Y ··)2. (14)

This brings us to a basic equality in ANOVA:

SSTO = SSTR+ SSE. (15)

In other words, the total variability can be decomposed as sum of the between and within
group variability.

3.3 Testing for Treatment Differences

We will now present a test statistic using SSTR and SSE which will enable us to test
for treatment differences. This testing problem can be formulated as testing the following
null hypothesis H0 versus the alternative hypothesis Ha:{

H0 : µ1 = µ2 = . . . = µr,

Ha : not all µj are equal,
(16)

where the treatment means µj are the expected values for each response Yij .

More precisely, we use the following ANOVA model:

Yij = µj + εij . (17)
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The εij ’s are called random errors and they are assumed to be independent and normally
distributed: εij ∼ N(0, σ2). A third critical assumption underlying this model is that the
variance of the random errors remains constant across all factor levels j, the so-called
heterogeneity assumption.

The test statistic to be used for choosing between the two hypotheses is the F -test:

F ∗ =
MSTR

MSE
=
SSTR/(r − 1)
SSE/(nT − r)

∼ F (r − 1, nT − r), (18)

where nT stands for the total number of subjects, MSE for mean square error and
MSTR for mean square treatment. Hence, for a given significance level α and with
F (1 − α; r − 1, nT − r) the (1 − α)100 percentile of the F distribution with r − 1 and
nT − r degrees of freedom, we have the following decision rule:{

if F ∗ ≤ F (1 − α; r − 1, nT − r), conclude H0,

if F ∗ > F (1 − α; r − 1, nT − r), conclude Ha,

where F ∗ is the actual value of the F -statistic. The so-called p-value associated with
this F-statistic is the probability of observing the sample treatment differences under
the assumption that the null hypothesis is true. A small p-value indicates that the null
hypothesis is unlikely to be true.

4 Mixed-effects Models for Longitudinal Data

Based on the considerations in Section 1.3, we will now move to genuine longitudinal
analysis techniques. After introducing the classical linear mixed model in Section 4.1, we
shift to their non-linear extension in Section 4.2.

4.1 The Linear Mixed Models

The linear mixed-effects model (Laird and Ware 1982, Verbeke and Molenberghs 2000)
is a commonly used tool for, among others, longitudinal data. It has been introduced in
Section 2.2.3.

4.2 Non-linear Mixed Models

Perhaps the most commonly encountered subject-specific model is the generalized linear
mixed model. Assume the data setting is the same as in Section 4.1. A general framework
for mixed-effects models for longitudinal data can be expressed as follows. Assume that
Yi (possibly appropriately transformed) satisfies

Yi|bi ∼ Fi(θ, bi), (19)
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i.e., conditional on bi, Yi follows a pre-specified distribution Fi, possibly depending on
covariate matrices Xi and Zi (suppressed from notation), and parameterized through a
vector θ of unknown parameters, common to all subjects. Further, bi is a q-dimensional
vector of subject-specific parameters, called random effects, assumed to follow a so-called
mixing distribution G which may depend on a vector ψ of unknown parameters, i.e.,
bi ∼ G(ψ). The bi reflect the between-unit heterogeneity in the population with respect
to the distribution of Yi. In the presence of random effects, conditional independence
(upon bi) is often assumed,

In general, unless a fully Bayesian approach is followed, inference is based on the mar-
ginal model for Yi which is obtained from integrating out the random effects, over their
distribution G(ψ) (Fahrmeir and Tutz 2001). Let fi(yi|bi) and g(bi) denote the density
functions corresponding to the distributions Fi and G, respectively, we have that the
marginal density function of Yi equals

fi(yi) =
∫
fi(yi|bi)g(bi)dbi, (20)

which depends on the unknown parameters θ and ψ. Assuming independence of the
units, estimates of θ̂ and ψ̂ can be obtained from maximizing the likelihood function built
from (20), and inferences immediately follow from classical maximum likelihood theory.

It is important to realize that the random-effects distribution G is crucial in the calculation
of the marginal model (20). One approach is to leave G unspecified and to use non-
parametric maximum likelihood (NPML, McLachlan and Peel 2000) estimation, which

maximizes the likelihood over all possible distributions G. The resulting estimate Ĝ is
then always discrete with finite support. Depending on the context, this may or may
not be a realistic reflection of the true heterogeneity between units. One therefore often
assumes G to be of a parametric form, such as a (multivariate) normal. Depending on Fi

and G, the integration in (20) may or may not be possible analytically. Proposed solutions
are based on Taylor series expansions of fi(yi|bi), or on numerical approximations of the
integral, such as (adaptive) Gaussian quadrature (Pinheiro and Bates 1995).

Although one is usually primarily interested in estimating the parameters in the marginal
model, it is often needed to calculate estimates for the random effects bi as well, e.g.,
for predictive purposes or to detect special profiles, outlying individuals, or groups of
individuals evolving differently in time. Inference for the random effects is often based on
their posterior distribution fi(bi|yi), given by

fi(bi|yi) =
fi(yi|bi) g(bi)∫
fi(yi|bi) g(bi) dbi

, (21)

in which the unknown parameters θ and ψ are replaced by estimates obtained from
maximizing the marginal likelihood. The mean or mode corresponding to (21) can be
used as point estimates for bi, yielding empirical Bayes (EB) estimates.

There are two major differences in comparison to the linear mixed model. First, the
marginal distribution of Yi can no longer be calculated analytically, such that numerical
approximations to the marginal density (8) come into play, complicating the computation
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of the MLE for β, D, and the parameters in all Σi. As a result, the marginal covariance
structure does not immediately follow, such that it is not always clear in practice what
assumptions a specific model implies with respect to the underlying variance function and
the underlying correlation structure in the data.

A second difference is related to the interpretation of the fixed effects β. Under the linear
model (6), E(Yi) = Xiβ, such that the fixed effects have a subject-specific as well as a
marginal interpretation: the elements in β reflect the effect of specific covariates, condi-
tionally on bi, as well as marginalized over these random effects. Under non-linear mixed
models, this does not generally hold. The fixed effects now only reflect the conditional
effect of covariates, and the marginal effect is not easily obtained anymore as E(Yi) is
given by

E(Yi) =
∫
yi

∫
fi(yi|bi)g(bi)dbidyi,

which, in general, is not of the form h(Xi, Zi,β,0).

Only for very particular models, (some of) the fixed effects can still be interpreted as
marginal covariate effects. For example, consider the model where, apart from an ex-
ponential link function, the mean is linear in the covariates, and the only random ef-
fects in the model are intercepts. More specifically, this corresponds to the model with
h(Xi, Zi,β, bi) = exp(Xiβ + Zibi), in which Zi is now a vector containing only ones.
The expectation of Yi is now given by

E(Yi) = E [exp(Xiβ + Zibi)] = exp(Xiβ) E [exp(Zibi)] , (22)

which shows that, except for the intercept, all parameters in β have a marginal interpre-
tation.

5 Discrimination and Classification

A very specific problem is the classification of drugs. Drug classifications can be based
on a variety of different considerations and there appears to be little general agreement
as to the optimal scheme for ordering the universe of biologically active substances. For
example, drugs might be organized according to chemical structure, clinical-therapeutic
use, potential health hazards, liability to non-medical use, public availability and legality,
effects on specific neural or other physiological systems, or influence on certain psycholog-
ical and behavioural processes. The classification systems developed from these different
approaches may show considerable overlap, although there are often striking incongruities.
For example, some drugs which appear very similar in chemical structure may be quite
different in pharmacological activity and vice-versa. The most useful organization depends
on the intended use of the classifications.

There are different approaches to classification. First, it can be done intuitively. For
example, a physician or a group of physicians may use their experience in caring for
patients with chest pain to form a subjective opinion or an empirical decision as to whether
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a new patient with chest pain is likely to suffer a heart attack, and consequently, decide
what treatment is most appropriate. Secondly, methods in both statistical and machine
learning literature have been developed, such as Fisher linear discriminant analysis (Fisher
1936). These methods have the parametric flavor in the sense that the classification rule
has an explicit form with only a few parameters to be determined from a given sample
that is usually referred to as learning sample. Classification trees belong to the third type
of methods for which we allow a very general structure, e.g., the binary tree, but the
number of “parameters” also needs to be determined from the data, and this number
varies. For this reason, classification trees are regarded as nonparametric methods. They
are adaptive to the data and are flexible, although the large number of quantities (or
parameters) to be estimated from the data makes the classification rule more vulnerable
to noise in the data.

We will focus our attention on the classification of psychotropic drugs based on the
changes induced by the drugs in sleep-waking behaviour using electroencephalographic
(EEG) spectral. Discrimination and classification belongs to the family of multivariate
methods, as introduced in Section 2.2.1. Section 6 describes a non-parametric technique,
classification and regression trees, which can be used for classification purposes. The
methods are exemplified in Section 8.

5.1 Discriminant Analysis

In many cases, the subgroup (stratified) structure of the data, will be the focus of scientific
interest. Two very distinct situations can arise:

Known groups: Groups have been defined explicitly. This is often based on subject
matter (e.g., biological) knowledge. The drug classes have been identified and the
classification is widely accepted by the scientific community. Of course, this does
not imply that it is easy to discriminate between groups.

Unknown groups: The researcher has good grounds to believe in the existence of strata,
even though they have not been defined clearly. She might even be uncertain about
the actual number of groups.

The second situation is the topic of cluster analysis. In this section, attention is confined
to discriminant analysis. An EEG data set will be used as an illustration. This is in line
with tradition, as part of discriminant analysis is called Fisher’s discriminant analysis.

Discriminant function analysis is used to determine which variables discriminate between
two or more naturally occurring groups. In linear discriminant analysis (LDA) we are
interested in those linear features which reduce the dimensionality and simultaneously
preserve class separability. Discriminant analysis can be understood as an exploratory tool
to describe the dependence relations of the response variable on the given set of predictors
in the observed sample of cases; the G categories of the response variable define a partition
of the population Ω into G groups (ω1, ω2, ..., ωG) and the P predictors are observed to
characterize the typologies of cases within each group (Saporta 1990, McLachlan 1992).
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At the same time, discriminant analysis can also be used to define a decision rule for
assigning a new case to one class on the basis of the observations of the given predictors
in the so-called learning sample; a method such as test sample or cross-validation is
considered to estimate the accuracy of the decision rule (Fisher and van Ness 1973,
Celeux and Nakache 1994).

To summarize the discussion so far, the basic idea underlying discriminant function analysis
is to determine whether groups differ with regard to the mean of a variable, and then to
use that variable to predict group membership (e.g., of new cases).

Discriminant analysis can serve two slightly different purposes.

Discrimination: Suppose the five drug classes have been clearly defined. The question is
then whether it is possible to distinguish among them in an “optimal” way. Indeed,
when several characteristics are recorded, it might turn out that summary measures,
such as mean and standard deviation, are distinct among the drug classes.

Again, one can try and pick the variable with the “largest” differences among group
(e.g., by means of an ANOVA model). However, this would waste information on
all other variables. As before, the idea is to combine information on the available
variables, e.g., by incorporating all of them into a linear combination.

This can be viewed as an exploratory, descriptive technique. It can also be used for
a graphical display of the relative location of the drug classes.

Classification: Given a sample for which group membership is known, and given a new
observation, the question is to allocate the new compound to a particular population.

Clearly, this is not a descriptive technique any more. A (mathematical) rule is re-
quired, an automated decision process, which indicated unambiguously to which
drug classes a new compound should be allocated, given the values on the charac-
teristics.

In both cases, one often relies on an algebraic rule, a discriminant function.

5.2 The Scope of Discriminant Analysis

Discriminant analysis has been studied extensively, and can be approached from several
distinct angles.

5.2.1 Fully Parametric or Not

In regression analysis, distinction can be made between a semi-parametric (moment based)
approach, such as least squares, and a fully parametric likelihood approach. The distinc-
tion is academic, since point estimators under both paradigms coincide, while standard
precision measures are asymptotically the same.
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In a similar fashion, discriminant analysis can be approached by two philosophically dif-
ferent roads:

The parametric way: This method is based on assuming a parametric distributional form
for the outcomes in each of the subgroups(drug classes). Differences between these
distributions (in terms of their parameters), are used to discriminate between them.

The best known examples include normal and logistic discriminant analysis. We will
focus on normal discriminant analysis. A further subdivision can be made between:

• a normal distribution in each group, with different means (location parame-
ters), but with the same variance-covariance matrix.

• a normal distribution in each group, with both mean vectors and covariance
matrix different.

Fisher’s way: This method is concerned with finding a linear combination of the original
variables, that displays the group differences best. (Of course, “best” will have to
be defined properly).

Just as in regression analysis, where least squares (a “linear” technique), and likelihood
(a “normal distribution” technique) yield the same estimators, both normal discriminant
analysis (with equal variances) and Fisher’s (linear) discriminant analysis are in fact two
faces of the same coin.

5.2.2 Two or More Subgroups

As soon as there are at least two subgroups, the discriminant analysis problem is legitimate.
While the theory for more groups is in principle a fairly straightforward extension of the
theory for two groups, the latter one is easier in notation. Therefore, emphasis will be
placed on the two groups case first.

5.2.3 Quality of the Classification Rule

It is not because a classification rule has been determined that it is of any practical
relevance, even not if the rule turns out to be “statistically significant” in a well defined
sense. It might happen that two groups have been defined very clearly while several
characteristics of the subjects in these groups tend to be similar. In other words, the
group means could be close to each other, relative to the random variability of the
subjects within each of the groups separately. This situation arises when the two clouds
of points are poorly separated.

In statistical terms: the between group variability is too small, compared to the within
group variability, to lead to a useful separation criterion.

How can this then yield a statistically significant difference ? Consider a single variable
X, measured for a number of subjects in two subgroups, 1 and 2. Suppose the group
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means are 20 and 21 respectively, and that the standard deviation in each of the groups is
5. Clearly, the two clouds of points are going to show a considerable overlap. Intuitively,
we feel the classification boundary should be 20.5. When the sample size in each group
increases, the group means are going to be estimated more and more precisely, and as a
consequence, a significant difference will be found eventually. However, by applying this
classification rule, a lot of errors are going to be made, no matter how large the sample
size.

Thus, for small samples, errors occur for two reasons:

• the classification rule is imprecise (small sample size; incorrect distributional as-
sumptions);

• the populations genuinely overlap.

For (very) large samples, errors for the first reason could disappear, but the population
overlap is a population characteristic, not a sampling characteristic, and will not disap-
pear. . . Therefore, it is important to evaluate the classification rule. This leads to the
study of classification error. A few concerns about classification errors:

• Some groups are much less frequent than others (e.g., a very rare disease versus
the healthy subpopulation). This information should be included.

• When we have two groups, two classification errors can be made. A subject that
truly belongs to subgroup 1 can be classified into group 2 and vice versa. However,
often one error is much less severe than another. For instance, in a breast cancer
screening program, a false positive test is much less dramatic than a false negative,
since the first one allows correction during a more thorough investigation, while for
the second one the tumor can start to develop.

• Using the same sample for constructing a classification rule as well as to test it might
be misleading (too optimistic). Indeed, while the classification rule is constructed
to learn something about the population as a whole, it will often perform better on
the sample it was constructed on than on most other samples. This is true because
the rule will adapt to features in the sample that happened purely by chance (e.g.,
outliers), while it will not cope explicitly with such features in new samples.

This fact should be accounted for when developing methods to evaluate a classifi-
cation rule.

Standard procedures are: the use of learn+validation samples, cross-validation, and
the bootstrap.

5.2.4 Purpose of Classification

We present a few situations where a classification criterion is useful.

• For each subject, measurements are made at different times:
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– predictors at time 0,

– outcomes at time 1.

Given a set of complete measures, can I predict/classify the outcome for new indi-
viduals, using only their predictor information?

• Given non-destructive predictors and destructive outcomes, can I, using a learn
sample, determine a rule to classify an object w.r.t. the outcomes, only using the
non-destructive predictors?

• Some variables are unavailable for all objects, so we want to use predictor variables.

• Outcome too expensive.

A prediction rule, using easy, generally available measures, is used to predict outcomes
of complicated measures. This is based on a training sample which contains both sets of
measures.

5.3 Parametric Version: Two Populations

For the parametric theory, we will restrict attention to two groups (two drug classes, two
classes of objects). Indicate the two classes of objects by π1 and π2. Recall that we want
to:

• distinguish between them,

• allocate objects to them.

For each object or individual i, a set of p measures Xi = (Xi1, . . . , Xip)T is obtained
(e.g., the time spent in each of the sleeping stages). We hope that the measurements are
“different” between the two groups (e.g., the mean of some of them is higher or lower in
one group than in the other).

A difference between populations is translated into statistical language by the claim that
they are generated by a different stochastic mechanism, which in turn is characterized by
a different distribution. An observation in population j = 1, 2 follows distribution Fj(x)
with density fj(x).

Remarks:

• Almost always, we are not at all sure about our classification. This is translated into
a probabilistic statement: we claim that a (new) compound belongs to population
1 with probability 0.7 (posterior probability).

• Rephrase the question as: “Given the vector of measurements x, does it come from
π1 or from π2?”
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We have introduced the notation π1 and π2 to indicate the two groups. At the same
time, the observation vector x occupies a value in its space. For example, the active and
quiet wake variables will be recorded in the following space:

Ω = [0,+∞[×[0,+∞[×[0,+∞[×[0,+∞[.

Since we want to operate at the level of our observed measurements, the problem can be
further reduced to the following aim:

Divide the variable space Ω into 2 parts R1 and R2 (regions) and adopt
the rule:

A new observations is assumed to belong to πj if it falls in Rj .

Of course, the regions should be a partition:

• The union of R1 and R2 fill the whole parameter space Ω.

• The intersection of R1 and R2 is empty (has probability zero).

5.3.1 Classification Error

Classification is bound to err. In statistical terms, we have to study the misclassification
error:

• Xi belongs to π1 and is classified into π2,

• Xi belongs to π2 and is classified into π1.

Thus, based on the classification rule and the observations made for a particular com-
pound, we are lead to believe that the compound belongs to one subgroup, whereas in
reality it belongs to the other.

It is important to realize that for many data configurations, a perfect classification (error
free) is not possible. This will often be clear from a simple graphical inspection of the
data.

5.3.2 Properties of a Good Classification Rule

The following properties, discussed before, should be sought for a good classification rule:

1. the misclassification probabilities are minimal,

2. the prior probabilities are taken into account:
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• if one population is much larger than another, classification in the largest
should be more frequent;

• e.g. there are more antidepressant than stimulants drugs, whence classification
of a compound as stimulants candidate should occur only if the evidence is
overwhelming.

3. cost of misclassification error (ethical cost, economic cost),

• e.g. classifying a healthy person as diseased implies further investigation and
eventually the healthy condition of the person will be established, while the
opposite misclassification is dramatic. Note that similar remarks apply in
controlling type I and type II error rate. We sometimes need to distinguish
between the two classification errors.

5.3.3 Formalizing the Classification Error

Recall the setting:

• Two populations π1 and π2 with associated densities f1(x) and f2(x).

• Let Ω be the sample space and suppose it is partitioned as Ω = R1 ∪ R2 with Rj

the set of x which we would classify as belonging to πj (which could be wrong).

Our previous statements about classification that will often never be perfect can be for-
malized as follows: Note that in general, there is an optimal classification possible, but
no perfect classification.

The classification errors are:

• the probability of lying in the second region and belonging to the first population:

P (2|1) = P (X ∈ R2|π1) =
∫

R2

f1(x)dx.

• The opposite classification error is:

P (1|2) = P (X ∈ R1|π2) =
∫

R1

f2(x)dx.

Now, consider the prior probabilities:

• p1 = prior probability of belonging to π1,

• p2 = prior probability of belonging to π2.
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Evidently p1 + p2 = 1.

For example, we might have an idea about the relative proportions of the five drug classes.

There are 4 “classification probabilities”. A compound can belong to π1 or π2 and can
be classified as population π1 and π2, leading to a 2 × 2 factorial:

classify as

π1 π2

true π1 P (1|1) P (2|1)

population π2 P (1|2) P (2|2)

With a slight abuse of notation, the probabilities of correct and incorrect classification
can be written in terms of the prior probabilities p1 and p2, and of the quantities P (j|k).
The correct classification probability for population π1:

P (correctly classified as π1) = P (X ∈ π1,X ∈ R1)
= P (X ∈ π1).P (X ∈ R1|X ∈ π1)
= p1.P (1|1),

and the misclassification error is

P (misclassified as π1) = P (X ∈ π2,X ∈ R1)
= P (X ∈ π2).P (X ∈ R1|X ∈ π2)
= p2.P (1|2).

In summary:

P (correctly classified as π1) = p1.P (1|1),
P (misclassified as π1) = p2.P (1|2),

P (correctly classified as π2) = p2.P (2|2),
P (misclassified as π2) = p1.P (2|1).

These probabilities are the first step to answer the following questions:

1. What is the misclassification error ?

(2.) What is the misclassification cost ?

The cost matrix is very simple in the case of two groups:

classify as

R1 R2

true π1 0 c(2|1)

population π2 c(1|2) 0

We are now able to compute the
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5.3.4 Expected Cost of Misclassification

ECM = c(2|1)P (2|1)p1 + c(1|2)P (1|2)p2

= c(2|1)p1

∫
R2

f1(x)dx+ c(1|2)p2

∫
R1

f2(x)dx

= c(2|1)p1

∫
R2

f1(x)dx+ c(1|2)p2

(
1 −

∫
R2

f2(x)dx
)

= c(1|2)p2 +
∫

R2

{
f1(x)[c(2|1)p1] − f2(x)[c(1|2)p2]

}
dx.

Minimizing ECM is done by choosing those points that yield a negative contribution to
the integral:

R2 = {x|f1(x)c(2|1)p1 − f2(x)c(1|2)p2 < 0}
R2 = {x|f1(x)c(2|1)p1 < f2(x)c(1|2)p2}
R2 =

{
x

∣∣∣∣f1(x)
f2(x)

<
c(1|2)p2

c(2|1)p1

}
.

Similarly,

R1 =
{
x

∣∣∣∣f1(x)
f2(x)

>
c(1|2)p2

c(2|1)p1

}
.

and hence the regions are defined.

What if
f1(x)
f2(x)

=
c(1|2)p2

c(2|1)p1
?

This boundary case is fairly arbitrary and the performance of the rule will not change
when we either assign this curve to R1 or to R2.

5.3.5 Structure of the ECM

The classification rule is: Assign an observation with outcome vector x to the first pop-
ulation π1 if

f1(x)
f2(x)

>
c(1|2)p2

c(2|1)p1
.

In other words, the ratio of the densities should exceed a threshold function.

The boundary:
f1(x)
f2(x)

=
c(1|2)p2

c(2|1)p1

is called the discriminant function.

Inspecting this ratio, it is clear that we only need:
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prior probability ratio p1/p2. Of course, knowing the ratio is equivalent to knowing
p1 only or to knowing p2 only. Indeed, the quantities sum to one, whence they
represent only 1 independent quantity.

cost ratio c(1|2)/c(2|1). This is an important reduction of the information that needs
to be found. Even if the components are hard to specify, the ratio can be much
easier to establish. Indeed, one might have difficulty in calculating even a rough
approximation of the actual cost involved in these misclassifications. But it is
plausible that one has a rough idea about the relative severity of the misclassification,
e.g., the second type of misclassification is 10 times as bad as one of the first type.

A few remarks are in place.

• The shape of the discriminant function depends on the forms of f1(x) and f2(x).
It will change with changing parametric forms assumed for these densities (e.g.,
normal densities with equal or with unequal variances).

• If either the cost ratio or the prior probability ratio is unity, the definition of the
regions simplifies accordingly.

• If the product of cost and prior probability ratio is unity, then we actually allocate
to the population with the highest probability. We then classify to R1 if

f1(x)
f2(x)

> 1,

or, equivalently,

f1(x) > f2(x).

The ECM is not the only useful criterion to determine the classification boundary. A few
alternatives are:

Total probability of misclassification (TPM) : the ECM for equal costs.

Largest posterior probability : reduces to the TPM.

5.4 Two Multivariate Normal Populations

Now that we have defined a classification criterion:

Assign an observation with outcome vector x to the first population π1 if

f1(x)
f2(x)

>
c(1|2)p2

c(2|1)p1
,
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we can focus on a few standard cases.

Assume a multivariate normal form for the two populations:

π1 : Np(µ1,Σ1),
π2 : Np(µ2,Σ2),

where µ1 and µ2 are the mean vectors, and Σ1 and Σ2 are the covariance matrix. Here
µ1, µ2, Σ1 and, Σ2 are assumed to be known.

The underlying principle is that the mean vector shifts in switching from one population to
the other. This feature is then used to “draw a line” (a plane, a hyperplane,. . . ) between
the two population. We need to distinguish between the situation where the covariance
matrices are equal or unequal.

5.4.1 Equal Covariance Matrices

In this case, we assume Σ1 = Σ2 = Σ.

Explicitly, the densities are (i = 1, 2):

fi(x) =
1

(2π)p/2|Σ|1/2
exp

[
−1

2
(x− µi)

T Σ−1(x− µi)
]
.

The classification rule is based on the ratio of the two densities, evaluated at x:

f1(x)
f2(x)

= exp
[
−1

2
(x− µ1)

T Σ−1(x− µ1) +
1
2
(x− µ2)

T Σ−1(x− µ2)
]
.

After some manipulations, the classification region R1 is found to be:

(µ1 − µ2)
T Σ−1x− 1

2
(µ1 − µ2)

T Σ−1(µ1 + µ2) ≥ ln
[
c(1|2)
c(2|1)

p2

p1

]
.

Sample Version In the above reasoning, µ1, µ2, and Σ are assumed to be known
population values. However, in practice, they are unknown.

This implies they have to be estimated from data. The following algorithm can be used:

• Collect n1 observations out of π1 and n2 observations out of π2.

• Construct the sample statistics x1, x2, S1, and S2, as estimators for µ1, µ2, Σ1,
and Σ2, respectively.

• Since we assume a common Σ, it is necessary to construct a common S. In other
words, S1 and S2 are assumed to estimate the same quantity, and therefore, they
should be combined, in a so-called pooled sample covariance matrix:

Spooled =
(n1 − 1)S1 + (n2 − 1)S2

(n1 + n2 − 2)
.
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Observe that, when the sample sizes n1 and n2 are equal, then Spooled is simply
the average of S1 and S2, otherwise, they are weighted by the sample size they are
based upon.

Plugging in these estimators leads to the

Estimated Minimum ECM Rule for 2 Normal Populations Allocate an observation
with measurements x0 to π1 if

(x1 − x2)TS−1
pooledx0 − 1

2
(x1 − x2)TS−1

pooled(x1 + x2) ≥ ln
[
c(1|2)
c(2|1)

p2

p1

]
.

If the product of the two ratios is unity, then

ln
[
c(1|2)
c(2|1)

p2

p1

]
= 0,

and the right hand side of the allocation rule vanishes, whence it can be rewritten as

(x1 − x2)TS−1
pooledx0 ≥ 1

2
(x1 − x2)TS−1

pooled(x1 + x2).

Remark. We did not explicitly prescribe a particular parametric form of the classification
rule. Rather, the form of the densities involved was specified a priori. Yet, a very simple,
linear discriminant function arises. Once again, normal theory implies linear theory.
(Here, linearity is respect to x0).

Define the linear combination vector

�T = (x1 − x2)TS−1
pooled.

This linear combination occurs both on the left hand side, as well as on the right hand
side of the classification rule.

The rule can be rewritten as:

�Tx0 ≥ 1
2
(�Tx1 + �Tx2) = m.

Some remarks are in place.

• � is called the vector of discriminant coefficients.

• Our rule is only an estimate of the optimal rule, we do not know the population
versions µ1, µ2, and Σ. This implies that

– the sample size should be reasonably large (ni − p ≥ 20),

– normality must hold in each sub-population,

– the two covariance matrices must be equal.
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By rewriting the rule, we clearly see that a univariate variable �Tx0 is compared to the
average of the two univariate means �Tx1 and �Tx2, i.e. the “midpoint” m.

Should we have had a univariate observation for each compound (e.g., active wake only,
rather than 6 outcome variables), then the midpoint of one of the drug class mean
and another drug class mean would be the natural candidate as a “classification rule”.
Since we were confronted with a multivariate setting, it was not a priori clear what a
classification rule (discriminant function) would look like. However, we are back to the
univariate setting, since we have constructed a linear combination, which reduces the 6
original variables to a single new one, to which we then apply our simplistic first idea of
computing the midpoint. Of course, this linear combination is optimal in the sense that
it minimizes the Expected Cost of Misclassification.

A warning is in place. This nice and simple result is found by the virtue of three assump-
tions:

• both populations have a normal dispersion;

• the covariance matrices are equal;

• the product of the prior probability ratio and the cost ratio is unity.

Should the ratio be different from unity, then the rule is slightly more complex, since it
has to make the “most expensive” misclassification less likely.

The contribution of each of the original variables is determined by their coefficients �j .
The question that one wants to answer is:

How important are the discriminators X1, . . . , Xp ?

• Define

�(1) =
�√
�T �

,

yielding a vector with unit length, of which all components lie within [−1, 1].

Their magnitudes can be interpreted, if the original variables have been standardized.

• Alternatively, define

�(2) =
�

�1
enabling to compare X2, . . . , Xp with X1, as the coefficient of X1 is 1.

5.4.2 Unequal Covariance Matrices

We now allow that Σ1 �= Σ2.

Manipulating the ratio of the densities, R1 is defined as the set of vectors satisfying:

R1 : −1
2
xT (Σ−1

1 − Σ−1
2 )x+

(
µT

1 Σ−1
1 − µ2Σ

−1
2

)
x− k ≥ ln

[
c(1|2)
c(2|1)

p2

p1

]
,
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where

k =
1
2

ln
( |Σ1|
|Σ2|

)
+

1
2

(
µT

1 Σ−1
1 µ1 − µT

2 Σ−1
2 µ2

)
.

If Σ1 = Σ2 then the quadratic term vanishes and we again obtain the linear discriminant
function.

Plugging in the sample versions we obtain the quadratic classification rule:

Quadratic Classification Rule for Two Normal Populations Allocate x0 to π1 if

−1
2
xT

0 (S−1
1 − S−1

2 )x0 +
(
xT

1 S
−1
1 − x2S

−1
2

)
x0 − k ≥ ln

[
c(1|2)
c(2|1)

p2

p1

]
.

Guidelines:

• If the populations are approximately normal and the variances are unequal: use the
quadratic classification rule.

• BUT: the quadratic rule is sensitive to departures from normality, while the linear
rule is much more generally valid, also outside the normal framework, as we will
learn from Fisher’s discriminant analysis.

• carry out checks before performing a classification procedure:

– transform to normality first

– then check for homogeneity of the covariance matrix

The order is important since these homogeneity checks are sensitive to nonnormality.

5.5 Evaluating Classification Functions

As mentioned earlier, it is important to assess the performance of a classification rule.
This performance is a function of two arguments:

• How precise is the actual discriminant function an estimate of the true discrimi-
nant function? This is largely due to sampling variability and can be improved by
increasing the learning sample size.

• How well are the two populations separated? If they are different but largely over-
lapping, any discriminant function, no matter how precisely determined, will be
bound to err a lot.

5.5.1 Derivation of Optimum Error Rate

Recall that the Total Probability of Misclassification (TPM) is

TPM = TPM(R1, R2) = p1

∫
R2

f1(x)dx+ p2

∫
R1

f2(x)dx.

102



Statistical Methods for EEG Data

Clearly, the TPM is a function of the regions R1 and R2, and the problem has been to
choose the regions carefully, in order to minimize the TPM.

The regions for which the minimum is achieved is called the optimum error rate (OER):

OER = min
R1,R2

(TPM).

For example, the OER in the case of two normal populations with the same shape, equal
priors p1 = p2 = 0.5 and equal costs is obtained for the regions:

R1 : (µ1 − µ2)
T Σ−1x− 1

2
(µ1 − µ2)

T Σ−1(µ1 + µ2) ≥ 0

R2 : (µ1 − µ2)
T Σ−1x− 1

2
(µ1 − µ2)

T Σ−1(µ1 + µ2) < 0.

In this case, the OER can be computed explicitly, and turns out to be:

OER = Φ
(
−∆

2

)
,

with

∆2 = (µ1 − µ2)
T Σ−1(µ1 − µ2),

and Φ(.) the standard normal cumulative density function.

This result is intuitively appealing:

• The larger ∆, the smaller −∆/2, and thus the smaller the OER.

• Now, ∆ increases when:

– µ1−µ2 increases, i.e., when the means of the two groups are further apart and
thus better separated. In other words, when the between group variability
increases.

– Σ decreases, i.e., when the within group variability decreases.

Thus, the ideal situation is given by two compact clouds of points that are far apart.

5.5.2 Actual Error Rate

Above computation can be carried out if the populations are completely known. This is of
course a theoretical situation and in practice, the sample version of the parameters have
to be used. In this case, the terminology changes to actual error rate, formally defined
as:

AER = p1

∫
̂R2

f1(x)dx+ p2

∫
̂R1

f2(x)dx,
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with

R̂1 : (x1 − x2)TS−1
pooledx− 1

2
(x1 − x2)TS−1

pooled(x1 + x2) ≥ ln
[
c(1|2)
c(2|1)

p2

p1

]
,

R̂2 : (x1 − x2)TS−1
pooledx− 1

2
(x1 − x2)TS−1

pooled(x1 + x2) < ln
[
c(1|2)
c(2|1)

p2

p1

]
.

Problem:

• f1(x) and f2(x) unknown,

• we will have to find an estimated version.

Although work has been done to carry out this estimation, and results are even imple-
mented in SAS PROC DISCRIM, this falls outside of the scope of these notes. We will
discuss a simpler alternative.

5.5.3 Apparent Error Rate

A generally applicable error rate, not requiring the parent distribution, is the apparent
error rate (APER): “What fraction in the training (learning) sample is misclassified ?”
We first construct the so-called confusion matrix :

predicted

π1 π2

actual π1 n1C n1M n1

π2 n2M n2C n2

Then,

APER =
n1M + n2M

n1 + n2
=

(n1 + n2) − (n1C + n2C)
n1 + n2

.

• Advantage: this quantity is easy to compute.

• Disadvantage: too optimistic (underestimates AER). This implies that the evalua-
tion done at the learning sample, will be typically much better than the performance
for test samples.

Why ? The rule is ready-made for the learn sample, and this very sample is used to
evaluate the rule.

• Solution:

Construct LEARN+TEST sample (TRAINING+VALIDATION sample):

– Advantage: this overcomes bias,
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– Disadvantage: requires larger samples and/or considerable computation time.

Alternative: cross-validation technique:

• cycle through all observations i = 1, . . . , n1 + n2,

• construct classification rule without observation i,

• classify observation i.

We then get an unbiased estimate of the expected actual error rate:

Ê(AER) =
n

(J)
1M + n

(J)
2M

n1 + n2
.

In the next section we will briefly describe a non-parametric technique that can also be
used for classification purposes.

6 Classification Tree Analysis

Classification tree analysis is a method where, following specific splitting rules, disjoint
subsets of the data are constructed. These subsets are called nodes. Further splitting
is repeated several times within these nodes. A node where a split is formed is called a
parent node; the subsequent nodes are called child nodes. Terminal nodes are nodes that
are not split further. The size of the tree is the number of parent nodes plus one. We
focus on binary classification trees, where splitting occurs into exactly two child nodes.
This partitioning process results in a saturated tree. A tree is saturated in the sense that
the offspring nodes subject to further division cannot be split. The saturated binary tree
is then pruned to an optimal size tree. This is the so-called pruning process. The final
step is the selection process, which determines the final tree. In the following sections a
brief overview of the different processes is given.

6.1 The Partitioning Process

The partitioning process is based on splitting rules. The splitting rules involve conditioning
on predictor variables. The best possible variable to split the root node is the one that
results in the most homogeneous and purest child nodes. A measure for the goodness of
split is defined as the reduction in impurity. The best split is the split with the largest
reduction in impurity. The splits are selected one at a time, starting with the split at the
root node (including all individuals), and continuing with splits of resulting child nodes
until splitting stops, and the child nodes that have not been split become terminal nodes.
This partitioning process results in a saturated tree with the characteristic that if no limit
is placed on the number of splits that are performed, eventually ‘pure’ classification (all
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subjects have the same value with reference to the dependent variable) will be achieved.
However, ‘pure’ classification is usually unrealistic. The saturated tree is usually too large
to be useful, the terminal nodes are so small that no sensible inference can be made, so
the tree has a small predictive value. Therefore it is typically to set a minimum size of a
node a priori or a maximum number of levels for the tree to reach (Breiman et al. 1984).

6.2 The Pruning Process

The point is to find the subtree of the saturated tree that is most predictive of the
outcome and least vulnerable to noise in the data. Breiman et al. (1984) proposed to let
the partitioning continue until the tree is saturated or nearly so, and this generally large
tree is pruned from the bottom up. The method of cost-complexity pruning is used. This
function is defined as the cost for the tree plus a complexity parameter times the tree
size. The cost of a tree is a measure for total impurity in the final nodes. The sum of the
impurities in the terminal nodes is indicative for the quality of the tree. The larger the
tree the smaller the impurities in the terminal nodes, but the more complex the tree is.
The tree size is a measure of the tree complexity. The procedure generates a sequence
of trees which are nested and optimally pruned, because for every size of a tree in the
sequence, there is no other tree of the same size with lower costs.

6.3 The Selection Process

For the original dataset, the cost decreases monotonically with increasing number of nodes.
This corresponds to the fact that the maximum tree will give the best fit. For the test
data, the cost decreases with increasing number of nodes, but reaches a minimum and
then increases as complexity increases. This reflects that an overfitted and overly complex
tree will not perform well on new data. The optimal tree corresponds to the complexity
parameter that gives a minimum cost for the new data. Often there are several trees with
costs close to the minimum, then the smallest-sized tree whose cost does not exceed the
minimum cost plus 1 times the standard error of the cost will be chosen. This is the ‘1
SE rule’. When no test sample is available, V-fold cross-validation is useful. A specified V
value for V-fold cross-validation determines the number of random subsamples, as equal
in size as possible, that is formed from the learning sample. The classification tree of the
specified size is computed V times, each time leaving out one of the subsamples from
the computations, and using that subsample as a test sample for cross-validation. The
CV costs computed for each of the V test samples are then averaged to give the V-fold
estimate of the CV costs.

6.4 Missing Data

One attractive feature of tree-based methods is the ease with which missing values can be
handled. There are several methods to deal with missing values. The method used here
was the approach of surrogate splits, which attempt to utilize information in the other
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Figure 1: Mean profiles over time for treated (solid) and placebo (dotted) group.

predictors to assist in making the decision to send an observation to the left or to the right
daughter node. They look for the predictor that is most similar to the original predictor in
classifying the observations. Similarity is measured by a measure of association. It is not
unlikely that the predictor that yields the best surrogate split may also be missing. Then
there will be looked for the second best, and so on. In this way all available information
is used.

7 Application of ANOVA and Longitudinal Methods

In this section, we will present an application of statistical methodology for pharmaco-EEG
data. First, we will describe the experimental design and consecutively explore the data
from a descriptive point of view. This is followed by a discussion of the results of a linear
mixed-effects model analysis. Finally, the results of a non-linear mixed-effects approach
are presented.

7.1 Experimental Design

In this experiment 60 subjects are randomly assigned to either the placebo or the treatment
group. The subjects were monitored over a period of 8 hours and the time spent in a
certain sleeping stage was summarized every 30 minutes.

7.2 Data Exploration

The mean profiles over time for the treated and placebo group are shown in Figure 1.
We can see that the longitudinal profiles are clearly different between both groups. The
observed profile for the placebo group is almost monotonically increasing over time, while
the profile is roughly U-shaped for the treated group.
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7.3 ANOVA Model

We can try to simplify the data by summarizing the longitudinal profile into one summary
statistic per subject, which in this case is the sum of all observed values over time. The
results of analyzing this summary statistic are presented in the following ANOVA table:

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 1 12.411713 12.411713 0.08 0.7786

Error 58 9026.006643 155.620804

Corrected Total 59 9038.418356

There appears to be no significant difference between the placebo and the treated group
(p=0.7786).

Collapsing the data into one summary statistic might not be the optimal solution for this
experiment. Another approach is to analyze the treatment difference by time point. This
approach will be discussed next.

7.4 Analysis By Time Point

An overview of the estimated treatment differences and ANOVA per time point is pre-
sented Table 1. If we want to maintain an overall significance level α of 5% by applying
the Bonferroni correction, the adjusted critical p-value becomes:

α

2 × g
=

0.05
2 × 17

= 0.00147,

where g stands for the number of comparisons performed (Neter et al. 1996), i.e., the
number of time points.

By comparing this adjusted p-value to the list presented in Table 1, we observe that there
is a significant difference between both groups at time point 1, 2, 3, 4, 8, 11, 12, 14
and 15. The estimated difference is negative for the first four significant time points,
indicating that the placebo group has lower observed response values compared to the
treatment group. The other time points associated with significant p-values have positive
estimates, indicating higher response values.

7.5 Linear Mixed Model

The following linear mixed-effects model was fitted to these data:

Yij = β0+bi+β1 Time+β2 Time2+β3 Group+β4 Time*Group+β5 Time2*Group+εij .
(23)
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Table 1: Estimated treatment difference and ANOVA per time point.

Time point Estimate Standard Error DF t Value Pr > |t|
T1 -8.0155 0.8555 986 -9.37 <.0001

T2 -5.0719 0.8555 986 -5.93 <.0001

T3 -5.7704 0.8555 986 -6.74 <.0001

T4 -3.3895 0.8555 986 -3.96 <.0001

T5 0.8634 0.8555 986 1.01 0.3131

T6 -2.3710 0.8555 986 -2.77 0.0057

T7 -0.7760 0.8555 986 -0.91 0.3646

T8 2.8450 0.8555 986 3.33 0.0009

T9 1.7434 0.8555 986 2.04 0.0418

T10 2.3333 0.8555 986 2.73 0.0065

T11 3.5376 0.8555 986 4.13 <.0001

T12 3.2572 0.8555 986 3.81 0.0001

T13 1.6010 0.8555 986 1.87 0.0616

T14 5.2333 0.8555 986 6.12 <.0001

T15 3.3279 0.8555 986 3.89 0.0001

T16 0.1177 0.8555 986 0.14 0.8906

T17 1.4441 0.8555 986 1.69 0.0917

This type of model is called a random intercept model, since the only subject-specific
effect is the intercept bi. The interaction terms Time*Group and Time2*Group allow for
a different linear and quadratic trend over time for both groups.

Fitting model (23) in SAS leads to the following output:

The Mixed Procedure

Solution for Fixed Effects

Standard

Effect Estimate Error DF t Value Pr > |t|

Intercept 1.6482 0.5150 58 3.20 0.0022

time -0.00269 0.2634 956 -0.01 0.9919

time2 0.1349 0.02845 956 4.74 <.0001

group 10.0666 0.7283 956 13.82 <.0001

time*group -4.2456 0.3725 956 -11.40 <.0001

time2*group 0.3423 0.04023 956 8.51 <.0001
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Figure 2: Mean (solid) and fitted (dotted) profiles over time for treated and placebo
group.

From this output we can see that the estimated response Ŷij for the placebo group equals

Ŷij = 1.6482 − 0.00269 × Time + 0.1349 × Time2.

For the treatment group, the estimated response Ŷij becomes

Ŷij = 11.7148 − 4.24829 × Time + 0.4772 × Time2.

The observed and fitted longitudinal profiles for model (23) are presented in Figure 2. In
this figure shows that the fitted curves seem to describe the data reasonably well for both
groups. The differences in time and time2 effect are highly significant.

Looking at the SAS output and Figure 2, we can clearly see that model (23) is able to
capture the differences in the longitudinal pattern between both groups.
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7.6 Non-linear Mixed Model

Fitting a non-linear mixed-effects model to this particular dataset is not needed, since the
linear model had a satisfactory fit.

7.7 Some Reflections on Longitudinal Data Analysis

The analysis by time point with Bonferroni correction post-hoc has some serious draw-
backs. If a large number of hypothesis tests are performed (which is often the case in
EEG data), this will have a negative impact on the power. Furthermore, this approach
usually leads to a large amount of p-values due to the high time resolution of the EEG
data and drawing a clear and simple conclusion from such a list of p-values is not always
evident.

Other multiple comparison procedures exist besides the Bonferroni correction. Especially
the Dunnett correction can be of interest if all dose groups are compared with a control
(i.e., placebo). Although a gain in power can be achieved in this setting by applying the
Dunnett correction instead of the Bonferroni, the overall power of an analysis by time
point is usually not satisfactory in pharmaco-EEG studies.

The summary statistic approach discussed in Section 1.4 might work for certain settings
where the longitudinal profiles are roughly stable over time and the profiles do not cross,
but as already mentioned, this is not the case in EEG data and therefore this approach is
also not recommendable. For example, applying a summary statistic analysis to the data
presented in Figure 1 did not enable us to find any difference between the treated and
non-treated group, since e.g. the sum of the response values per subject is approximately
the same for both groups. By taking into account the trend over time, e.g. as we did
in Section 7.5 by fitting a linear mixed-effects model, we were able to find a treatment
effect.

8 Application of Discrimination and Classification Methods

Two types of analysis will be discussed in this section. A parametric analysis (linear
discriminant analysis) based on the time spent for each rat on a particular sleeping stage
during both period (light and dark) was conducted. The second analysis was based on
classification trees, the same variables were used, in order to be able to compare the
results. The analysis were carried out using PROC DISCRIM (SAS procedure) for the
classical discriminant analysis and RPART (SPLUS function) as far as classification and
regression trees are concerned.
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8.1 Discriminant analysis

8.1.1 Class Information

The following output of the procedure shows the structure of the data in use and the
number of degrees of freedom. The between classes degrees of freedom is related to
the group means, in this case we have 6 classes or groups. The within classes degrees
of freedom is associated to the residual variability, and it is just the degrees of freedom
associated to the overall mean minus the degrees of freedom associated to the group
means. It is also important to remark that in each group the prior probability are chosen
to be 1/6, but in case that this is in contradiction with the general knowledge, other prior
probabilities can be used.

Normal Discriminant Analysis

Linear Classification Rule

Discriminant Analysis

Observations 257 DF Total 256

Variables 12 DF Within Classes 251

Classes 6 DF Between Classes 5

Class Level Information

Variable Prior

class Name Frequency Weight Proportion Probability

antidep antidep 31 31.0000 0.120623 0.166667

antipsy antipsy 16 16.0000 0.062257 0.166667

anxiol anxiol 8 8.0000 0.031128 0.166667

hypnot hypnot 20 20.0000 0.077821 0.166667

placebo placebo 150 150.0000 0.583658 0.166667

stimul stimul 32 32.0000 0.124514 0.166667

8.1.2 Association Structure

The association structure can be represented by different measures:

• by means of sums of squares and cross-products (SSCP) matrices;

• by means of covariance matrices;

• by means of correlation matrices.

Since the dataset is structured into different subgroups, each of these measures has several
versions:

• by subgroup: a separate matrix for each drug class;

112



Statistical Methods for EEG Data

• a pooled within subgroup matrix (the weighted average of the subgroup specific
matrices);

• the total matrix (computed from all observations, ignoring the subgroup structure);

• the between subgroup matrix (the “difference” between the total and the within
subgroup structure).

For the SSCP matrix, the computations are as follows:

by subgroup: the observations are corrected for the group mean, squared, and summed;

pooled within: the six “by subgroup” matrices are summed, resulting in the “pooled
within” matrix;

between: the six group mean vectors are corrected for the grand mean, squared, and
summed;

total: the observations are corrected for the grand mean, squared, and summed; this
matrix equals the sum of within and between matrices.

From the SSCP matrices, the respective covariance matrices and correlation matrices can
be derived.

Once this association structures are computed we can compare the between and within
structure. In case that the between SSCP is much larger than the within SSCP, it implies
that at least some separation should be possible. This can be also confirm using the
covariance matrices. The last ones are more relevant to interpret since they are corrected
for the correct number of degrees of freedom. When a discriminant analysis is used
and the within class correlation structure is very different from the between correlation
structure it should be in line with the results derived from the principal components
analysis. In principal component analysis, the relevant choice is the within structure.
When discriminant analysis is performed, both structures need to be contrasted.

8.1.3 Mean Structure (Location Structure)

In addition to the association structure already studied, PROC DISCRIM provides infor-
mation on the location structure.

First, the grand mean structure is given. This consists of the average of each of the 12
variables, for each of the 258 observations in the data. This is augmented with the drug
class specific averages.
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Discriminant Analysis Simple Statistics

Total-Sample

Variable N Sum Mean Variance Deviation

TAW_min1 257 40000 155.64362 3996 63.2112

TQW_min1 257 13411 52.18237 5042 71.0037

TSWS1_min1 257 47452 184.63646 4511 67.1631

TSWS2_min1 257 37435 145.66039 3550 59.5793

TIS_min1 257 1434 5.58043 14.40643 3.7956

TPS_min1 257 12531 48.76039 456.02702 21.3548

TAW_min2 257 54865 213.48374 2275 47.6982

TQW_min2 257 8081 31.44447 1046 32.3446

TSWS1_min2 257 11885 46.24708 745.98976 27.3128

TSWS2_min2 257 10153 39.50588 396.56354 19.9139

TIS_min2 257 480.72000 1.87051 2.37708 1.5418

TPS_min2 257 4422 17.20432 110.39708 10.5070

Somewhat less straightforward is the next panel of output:

Total-Sample Standardized Class Means

Variable antidep antipsy anxiol hypnot placebo stimul

TAW_min1 -0.183094469 -0.052826784 1.303786334 -0.088040092 -0.254189480 1.124377821
TQW_min1 1.133561132 -0.130871767 -0.439007321 -0.373542380 -0.067040309 -0.375234194
TSWS1_min1 -0.139328802 0.632906127 -1.210136229 -0.131120565 0.072972759 -0.139053683
TSWS2_min1 -0.378239119 -0.396652159 0.472577784 0.387418195 0.118732665 -0.352094958
TIS_min1 -1.108872567 0.364785302 0.508044020 0.989590912 0.191390658 -0.750821384
TPS_min1 -1.382770674 -0.237845434 0.020586056 0.320542190 0.373709031 -0.498764658
TAW_min2 -0.813829950 -0.307977552 0.851813811 0.358719036 0.164651754 -0.266571407
TQW_min2 1.269994102 -0.391606227 -0.310081818 -0.274480830 -0.079541586 -0.412581516
TSWS1_min2 0.320670088 0.163857830 -0.823361975 -0.160129303 -0.127181397 0.509506042
TSWS2_min2 -0.164469530 0.418601988 -0.337810493 -0.324038707 -0.020160562 0.331508314
TIS_min2 -0.411667471 1.180128071 -0.095186171 0.452396308 -0.114222648 0.085206340
TPS_min2 -0.187935792 0.957819027 -0.365881653 0.142112946 -0.197365449 0.630953650

Pooled Within-Class Standardized Class Means

Variable antidep antipsy anxiol hypnot placebo stimul

TAW_min1 -0.209883433 -0.060555989 1.494546248 -0.100921436 -0.291380515 1.288888071
TQW_min1 1.250109667 -0.144327515 -0.484144420 -0.411948617 -0.073933144 -0.413814377
TSWS1_min1 -0.143837117 0.653385312 -1.249293067 -0.135363283 0.075333966 -0.143553096
TSWS2_min1 -0.388287092 -0.407189276 0.485131876 0.397710011 0.121886814 -0.361448408
TIS_min1 -1.345144245 0.442511488 0.616294884 1.200446795 0.232170990 -0.910801739
TPS_min1 -1.706231130 -0.293482710 0.025401588 0.395524055 0.461127788 -0.615436675
TAW_min2 -0.870800747 -0.329537003 0.911443603 0.383830559 0.176177923 -0.285232290
TQW_min2 1.441321418 -0.444435483 -0.351913104 -0.311509399 -0.090272066 -0.468240423
TSWS1_min2 0.330905077 0.169087764 -0.849641636 -0.165240231 -0.131240710 0.525768204
TSWS2_min2 -0.166211241 0.423034927 -0.341387860 -0.327470234 -0.020374060 0.335018943
TIS_min2 -0.437624070 1.254537913 -0.101187882 0.480920956 -0.121424654 0.090578799
TPS_min2 -0.200663321 1.022685168 -0.390660165 0.151737226 -0.210731581 0.673683568

These are means for each of the subgroups, corrected for the grand mean and standardized.
There are two distinct ways to standardize:
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• compute the averages for each subgroup;

• subtract the overall mean;

• divide by:

– the total sample standard deviation (i.e., the standard deviation computed
from all 258 observations, ignoring the subgroup structure), leading to the
total sample standardized class means;

– the pooled within subgroup standard deviation (i.e., a combination of the
standard deviations, calculated for each subgroup), leading to the pooled
within class standardized class means.

We can make the following observations. Since the means are centered (subtraction of
grand mean), the row totals are all zero. When the total sample standardized class means
are smaller, relative to the pooled within class standardized class means, then the total
sample standard deviations are much larger than the within class standard deviations. The
difference between both is that the “total” version is the sum of “within” and “between”,
implying in turn that the between group differences are important.

8.1.4 The Discriminant Function

Up to now, the output has been given with the intention to describe and summarize the
data. This process is independent of the actual classification rule adopted, whether it is
normal or not, and whether it is linear or quadratic.

From now on, the discriminant function itself, as well as supporting quantities and derived
results, are central. Therefore, we will see differences between the linear and quadratic
versions. For each output panel, these two versions will be contrasted.

Rank and Conditioning of Covariance Matrix The discriminant functions and the
distances between subgroup involve inverses of covariance matrices. For example,

∆2 = (µ1 − µ2)
T Σ−1(µ1 − µ2)

for two populations and a linear (pooled) rule. It is important that the covariance matri-
ces involved have full rank (determinant different from zero) and are not ill-conditioned
(determinant sufficiently different from zero). This is expressed in the following outputs.

Linear Version The relevant quantity is the pooled covariance matrix.
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Linear Classification Rule

Pooled Covariance Matrix Information

Natural Log of the

Covariance Determinant of the

Matrix Rank Covariance Matrix

12 59.38441

Quadratic Version A different covariance matrix is used for different subgroups.

Quadratic Classification Rule

Natural Log of the

Covariance Determinant of the

class Matrix Rank Covariance Matrix

antidep 12 52.73326

antipsy 12 45.81615

anxiol 7 -26.58118

hypnot 12 48.32568

placebo 12 58.03033

stimul 12 52.13322

8.1.5 Distances Between Groups

We have indicated that the quality of a classification rule depends on the separation
between groups (together with the appropriateness of the rule itself). Once again, for two
populations in the linear case, this distance is

∆2 = (µ1 − µ2)
T Σ−1(µ1 − µ2).

It measures the distance in relative terms, i.e., the within group variability is taken into
account. This is often referred to as the Mahalanobis distance.

Linear Version The following output is produced.
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Linear Classification

Pairwise Squared Distances Between Groups

2 _ _ -1 _ _
D (i|j) = (X - X )’ COV (X - X )

i j i j

Squared Distance to class

From
class antidep antipsy anxiol hypnot placebo stimul

antidep 0 11.03938 9.74957 9.39979 7.06291 6.97914
antipsy 11.03938 0 11.59851 6.49696 5.85131 9.49521
anxiol 9.74957 11.59851 0 7.61226 6.19096 4.79231
hypnot 9.39979 6.49696 7.61226 0 3.05915 9.97237
placebo 7.06291 5.85131 6.19096 3.05915 0 6.15873
stimul 6.97914 9.49521 4.79231 9.97237 6.15873 0

F Statistics, NDF=12, DDF=240 for Squared Distance to class

From
class antidep antipsy anxiol hypnot placebo stimul

antidep 0 9.28292 4.94002 9.10534 14.45821 8.75647
antipsy 9.28292 0 4.92898 4.60165 6.74082 8.07030
anxiol 4.94002 4.92898 0 3.46603 3.74661 2.44389
hypnot 9.10534 4.60165 3.46603 0 4.30159 9.77983
placebo 14.45821 6.74082 3.74661 4.30159 0 12.94247
stimul 8.75647 8.07030 2.44389 9.77983 12.94247 0

Prob > Mahalanobis Distance for Squared Distance to class

From
class antidep antipsy anxiol hypnot placebo stimul

antidep 1.0000 <.0001 <.0001 <.0001 <.0001 <.0001
antipsy <.0001 1.0000 <.0001 <.0001 <.0001 <.0001
anxiol <.0001 <.0001 1.0000 <.0001 <.0001 0.0051
hypnot <.0001 <.0001 <.0001 1.0000 <.0001 <.0001
placebo <.0001 <.0001 <.0001 <.0001 1.0000 <.0001
stimul <.0001 <.0001 0.0051 <.0001 <.0001 1.0000

Pairwise Generalized Squared Distances Between Groups

2 _ _ -1 _ _
D (i|j) = (X - X )’ COV (X - X ) - 2 ln PRIOR

i j i j j

Generalized Squared Distance to class

From
class antidep antipsy anxiol hypnot placebo stimul

antidep 4.23018 16.59236 16.68884 14.50648 8.13980 11.14582
antipsy 15.26956 5.55297 18.53778 11.60365 6.92819 13.66189
anxiol 13.97975 17.15149 6.93927 12.71895 7.26784 8.95899
hypnot 13.62997 12.04993 14.55153 5.10669 4.13603 14.13905
placebo 11.29309 11.40428 13.13023 8.16584 1.07688 10.32541
stimul 11.20931 15.04818 11.73158 15.07906 7.23561 4.16668
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At the beginning of above panel, the quantity D2(i|j) is the generalization of ∆2 to the
several subgroups case. At the end of the panel, the same function and the same dis-
tance matrix is given, but now labeled pairwise generalized squared distance between
groups. The relevance will be understood in the light of the quadratic rule.

Clearly, the resulting distance matrix is symmetric, in the sense that the distance between
drug classes antidep and antipsy is equal to the distance between drug classes antipsy and
antidep. Of course, this property seems logical.

In addition to the actual distances, an F test and associated p values are computed for
each of the distances. This is very natural, since Mahalanobis distances always lead to F
tests. These distances D2(i|j) involve vectors and matrices, but:

• the between group matrix, (Xi−Xj)(Xi−Xj)T plays the role of the numerator,
with 12 degrees of freedom since there are 12 variables.

• the within group matrix, S plays the role of the denominator, with 240 degrees
of freedom.

In conclusion, the separation between any two drug classes, on the basis of the 12 out-
comes, is highly significant.

Quadratic Version The quadratic version differs in several respects from the linear
version:

• The quantity D2(i|j) is now defined asymmetrically ! Since the covariance ma-
trices are unequal, and the covariance structure defines the (relative) coordinate
system, this asymmetry is natural. For example, the covariance matrix of drug class
antidep is apparantly “larger” than the covariance matrix of antipsy (although the
concept “larger” is not evident in a matrix setting):

– Antidep seems to be fairly far away (4617) from antipsy looking from inside
the cloud of points of antipsy.

– Looking from inside the cloud of antidep, the other cloud antipsy looks rela-
tively close (40.04).

In particular, the distance is defined as

D(i|j)2 = (µ1 − µ2)
T Σ−1

j (µ1 − µ2).

• No F tests are given.

• The generalized version, correcting for the difference in covariance matrix, is now
different from the standard version.
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Quadratic Classification Rule

Pairwise Squared Distances Between Groups

2 _ _ -1 _ _
D (i|j) = (X - X )’ COV (X - X )

i j j i j

Squared Distance to class

From
class antidep antipsy anxiol hypnot placebo stimul

antidep 0 4617 214098211 235.40224 7.00828 77.80888
antipsy 40.04586 0 86038960 29.44388 8.52089 17.74053
anxiol 43.54243 33.10573 0 11.27420 9.76251 24.19259
hypnot 46.32953 145.81507 34679175 0 3.38098 30.11011
placebo 23.13658 115.68214 97078087 14.53231 0 6.76926
stimul 13.76129 36.76037 19733684 31.13745 11.70143 0

Pairwise Generalized Squared Distances Between Groups

2 _ _ -1 _ _
D (i|j) = (X - X )’ COV (X - X ) + ln |COV | - 2 ln PRIOR

i j j i j j j

Generalized Squared Distance to class

From
class antidep antipsy anxiol hypnot placebo stimul

antidep 56.96344 4669 214098191 288.83460 66.11549 134.10878
antipsy 97.00930 51.36912 86038940 82.87624 67.62810 74.04043
anxiol 100.50587 84.47485 -19.64191 64.70656 68.86971 80.49249
hypnot 103.29298 197.18420 34679155 53.43237 62.48819 86.41001
placebo 80.10002 167.05126 97078067 67.96468 59.10721 63.06916
stimul 70.72473 88.12949 19733664 84.56981 70.80864 56.29990

Is Separation Possible? In the parametric discriminant theory, the rule is to set up a
discriminant function, with the ability to allocate new observations to one of the sub-
groups. Repeatedly, we have emphasized that the quality of a rule depends on essentially
two (sets of) properties:

Discriminant Function Dependent: Is the optimal discriminant function well approxi-
mated (sample size large enough? Are the correct distributional assumptions made,
e.g., are they normal or not? If they are normal, is a linear or a quadratic rule in
place?

Population Structure Dependent: Are the subgroups well separated? Do we see a clear
difference between the clouds of points or do they overlap too much?

The next panel will address the second question, independent of the first one. Of course,
this question has to be addressed using the sample at hand, since the theoretical popula-
tion is out of reach.
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Recall that we always (implicitly) assume that the observations are identified with the
vector of (12) observations that are made for each compound. Thus, a poor separation
could be improved by including extra variables. Alternatively, each outcome separately
could be assessed as a “separator”.

Therefore,

• the next panel presents univariate and multivariate summaries of resolution power;

• it is independent of our choice for the linear or the quadratic version.

Univariate Test Statistics

Univariate Test Statistics

F Statistics, Num DF=5, Den DF=251

Total Pooled Between
Standard Standard Standard R-Square

Variable Label Deviation Deviation Deviation R-Square / (1-RSq) F Value Pr > F

TAW_min1 AW min 63.2112 55.1431 34.8196 0.2538 0.3402 17.08 <.0001
TQW_min1 QW min 71.0037 64.3839 34.1770 0.1938 0.2404 12.07 <.0001
TSWS1_min1 SWS1 min 67.1631 65.0580 20.7731 0.0800 0.0870 4.37 0.0008
TSWS2_min1 SWS2 min 59.5793 58.0375 17.1872 0.0696 0.0748 3.76 0.0027
TIS_min1 IS min 3.7956 3.1289 2.3972 0.3337 0.5009 25.14 <.0001
TPS_min1 PS min 21.3548 17.3064 13.9312 0.3560 0.5529 27.76 <.0001
TAW_min2 AW min 47.6982 44.5777 19.7635 0.1436 0.1677 8.42 <.0001
TQW_min2 QW min 32.3446 28.4999 17.2797 0.2388 0.3137 15.75 <.0001
TSWS1_min2 SWS1 min 27.3128 26.4680 8.4062 0.0792 0.0861 4.32 0.0009
TSWS2_min2 SWS2 min 19.9139 19.7052 4.3529 0.0400 0.0416 2.09 0.0672
TIS_min2 IS min 1.5418 1.4503 0.6133 0.1324 0.1526 7.66 <.0001
TPS_min2 PS min 10.5070 9.8406 4.2976 0.1400 0.1627 8.17 <.0001

Average R-Square

Unweighted 0.1717542
Weighted by Variance 0.1550737

Multivariate Statistics and F Approximations

S=5 M=3 N=119

Statistic Value F Value Num DF Den DF Pr > F

Wilks’ Lambda 0.20092182 7.68 60 1127.6 <.0001
Pillai’s Trace 1.30503451 7.18 60 1220 <.0001
Hotelling-Lawley Trace 2.03002881 8.07 60 808.66 <.0001
Roy’s Greatest Root 0.91933493 18.69 12 244 <.0001

NOTE: F Statistic for Roy’s Greatest Root is an upper bound.

Let us concentrate on the results:

• Univariately, all variables but TSWS2 min2 are found to be highly significant pre-
dictors (p ≤ 0.01). The values of the F statistics allow us to order them from
highest to lowest resolution.
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• The multivariate statistics are once again a comparison of between (group means)
and within (pooled within covariance) structure. Therefore, the same eigenvalue
statistics, used with canonical correlation analysis, can be used again.

Again, they clearly indicate the significant discrimination between subgroups.

Since there are g = 6 drug classes and p = 12 variables, the numerator degrees of
freedom are (g − 1)p = 60 for the first three and p = 12 for the last one.

As an aside, let us discuss Hotelling-Lawley and Roy in some detail. The first one
is

Tr(W−1B) =
2∑

i=1

λi = λ1 + λ2,

whereas Roy is simply λ1. Now, from the individual variables we see that TPS min1
(total time spent in the light period in paradoxical sleeping stage) is the best separa-
tor and thus λ1 might well favor this variable and downplay the others. Hence, the
F value for TPS min1 and Roy is very close. On the other hand, Hotelling-Lawley
is very close to the average of all 12 F values.

Thus, when there is one clear direction (approximately TPS min1) in which differ-
ences are seen, with the others merely nuisances, Roy is able to produce a higher F
values on less degrees of freedom. In other words, in this case, Roy is more powerful
than the others (including Hotelling-Lawley), that look in all directions at once.

Of course, examples of the reverse abound as well.

8.1.6 The Classification Rule

Linear Version The linear classification rule was given by

(x1 − x2)TS−1
pooledx0 ≥ 1

2
(x1 − x2)TS−1

pooled(x1 + x2).

Rewriting this rule (for populations i and j) gives

−1
2
xT

i S
−1
pooledxi + xT

i S
−1
pooledx0 ≥ −1

2
xT

j S
−1
pooledxj + xT

j S
−1
pooledx0.

Since the left hand side is equal to the right hand side (up to the population index), we
could study the discriminants:

−1
2
xT

j S
−1
pooledxj + xT

j S
−1
pooledx0

consisting of

• a constant coefficient (scalar): −1
2x

T
j S

−1
pooledxj ;

• a linear coefficient vector: xT
j S

−1
pooled.
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Table 2: Discriminant analysis:Percentage of well classified observation in each drug
class.

Anti- Anti-

depressants psychotics Anxiolitics Hypnotics Placebo Stimulants

Antidepresants 58.06 3.23 0.00 0.00 25.81 12.90

Antipsychotics 0.00 43.75 0.00 0.00 56.25 0.00

Anxiolitics 0.00 0.00 12.50 0.00 62.50 25.00

Hypnotics 0.00 5.00 5.00 30.00 60.00 0.00

Placebo 5.33 1.33 0.00 4.00 88.67 0.67

Stimulants 3.13 3.13 0.00 0.00 40.63 53.13

In exactly this way, the SAS output for the linear version is presented.

Linear Classification Rule

Linear Discriminant Function

_ -1 _ -1 _
Constant = -.5 X’ COV X + ln PRIOR Coefficient = COV X

j j j Vector j

Linear Discriminant Function for class

Variable Label antidep antipsy anxiol hypnot placebo stimul

Constant -1389 -1376 -1421 -1346 -1359 -1404
TAW_min1 AW min 4.47684 4.50787 4.62369 4.34552 4.43459 4.54279
TQW_min1 QW min 4.08040 4.15691 4.19095 3.97479 4.06276 4.11706
TSWS1_min1 SWS1 min 4.01093 4.06067 4.10678 3.88604 3.97078 4.03787
TSWS2_min1 SWS2 min 4.23988 4.24359 4.34992 4.10170 4.17790 4.25670
TIS_min1 IS min 4.25856 4.83064 4.56278 4.77918 4.32945 4.08450
TPS_min1 PS min 3.54727 3.62606 3.76478 3.50182 3.65985 3.69319
TAW_min2 AW min 0.87439 0.76345 0.74964 0.95291 0.85678 0.84124
TQW_min2 QW min 0.75161 0.54048 0.61318 0.77328 0.67167 0.67715
TSWS1_min2 SWS1 min 0.87459 0.70087 0.77185 0.94570 0.84544 0.86229
TSWS2_min2 SWS2 min 0.56249 0.51111 0.41581 0.63517 0.59102 0.55795
TIS_min2 IS min 2.03727 2.42074 2.12161 2.18998 2.23337 2.08833
TPS_min2 PS min 0.64477 0.66075 0.48419 0.76533 0.55725 0.62062

Thus, for a new observation, the six discriminants are evaluated, and the observation is
assigned to the group with the largest value.

Table 2 shows the percentage of well classified observation for the linear version.
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Table 3: Discriminant analysis:Percentage of well classified observation in each drug
class.

Anti- Anti-

depressants psychotics Anxiolitics Hypnotics Placebo Stimulants

Antidepresants 87.10 3.23 0.00 0.00 3.23 6.45

Antipsychotics 0.00 100.00 0.00 0.00 0.00 0.00

Anxiolitics 0.00 0.00 100.00 0.00 0.00 0.00

Hypnotics 0.00 0.00 0.00 100.00 0.00 0.00

Placebo 6.67 2.00 0.00 12.67 67.33 11.33

Stimulants 0.00 0.00 0.00 0.00 9.38 90.63

The DISCRIM Procedure
Classification Summary for Calibration Data: WORK.TRAINT

Resubstitution Summary using Linear Discriminant Function

Error Count Estimates for class

antidep antipsy anxiol hypnot placebo stimul Total

Rate 0.3548 0.4375 0.7500 0.6000 0.0867 0.3750 0.4341
Priors 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667

We observe that all only 58.06 % of the antidep are correctly classified; that the remains
are classified into other classes (3.23 % into antipsy, 25.18 % into placebo and 12.0 %
into Stimul). For the rest of the drug classes, in can be seen also how are they classified.

The overall (total) error rate is computed as follows:

0.3548 × 0.1667 + 0.4375 × 0.1667 + 0.7500 × 0.1667
+0.6000 × 0.1667 + 0.0867 × 0.1667 + 0.3750 × 0.1667 = 0.4341,

a very poor result. It can be explained by the fact that we are using a summary measured
of the data that it was also shown in previous section that it is not always a good choice.
As this is used only for illustration purpose, it is also important to remark that the data
we start with is also playing an important role for the classification of the drugs.

Quadratic Version Since the quadratic discriminant function is not as easy to decom-
pose as the linear discriminant function, the first part of this output panel is not included
in SAS. One only gets a summary of the performance of the classification (Table 3).
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The DISCRIM Procedure
Classification Summary for Calibration Data: WORK.TRAINT

Resubstitution Summary using Linear Discriminant Function

Error Count Estimates for class

antidep antipsy anxiol hypnot placebo stimul Total

Rate 0.1290 0.0000 0.0000 0.0000 0.3267 0.0938 0.0916
Priors 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667

The rule is different, the classification performance is also different, if we compare it with
the previous result, the overall error rate is much lower than the previous analysis. From
the previous results we can see that a quadratic discriminant function may be a better
choice.

8.2 Classification Tree Analysis

The data used in the previous section will be analyzed using a non-parametric technique
(classification tree analysis). In the construction of the classification tree several screening
status can be used, for this particular example the so called Gini diversity index was used
(Therneau and Atkinson 1997). This index measures the “impurity” (i.e., heterogeneity)
in the node and it belongs to the interval [0, 1]. Breiman et al. (1984) recommended that
binary splits be chosen to minimize the Gini diversity index. In this particular example
we do not have missing observation, thus no surrogates split were necessary. In order to
find the best split, a 10-fold cross-validation was used, the tree with the minimal cross
validation relative error was selected. Figure 3 shows the cross validation relative error,
reaching the minimal value for a tree of size 14, which correspond to a cost complexity
of 0. The final tree is shown in Figure 4. The top node contain the entire sample, each
of the remaining nodes contains a subset of the sample in the node directly above it.
Furthermore, any node contains the sum of the samples in the nodes connected to and
directly below it. The tree thus splits samples. Each node can be thought of as a cluster
of objects (cases) which is to be split by further branches in the tree. The numbers below
the terminal nodes show how the cases are classified by the tree into a particular drug
class. Tree prediction models add two ingredients: the predictor and predicted variables
labeling the nodes and branches. It can be seen that the first split is given by TPS min1,
which in the discriminant analysis is the most important variable. TPS min1 < 45.9
splits the root node. Cases meeting this criterion move left to node 2; the rest move right
to node 3. The procedure continues further and we end up in the final nodes. Table 4
shows the percentage of well classified observation when the classification tree is used.

It can be seen that the performance of this method is similar to the linear discriminant
analysis, and it can be also confirmed by the classification error obtained.
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Figure 3: The X-val relative error in function of cost complexity parameter and the size
of the tree.

The classification tree Procedure

Error Count Estimates for class

antidep antipsy anxiol hypnot placebo stimul Total

Rate 0.3871 0.5625 1.0000 0.1500 0.1267 0.3750 0.4336
Priors 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667

It can be seen that the linear discriminant analysis and the classification tree produce
similar results in terms of well classified observation as well as overall error rate.

8.3 Some Reflections on Discrimination and Classification Methods

Several classification techniques can be applied in order to classify a compound. It can
be used parametrically or in a non-parametric formulation of the problem. In case that
a parametric technique (in this case we discussed discriminant analysis) is used, it is
important to explore if the discriminant function to be used is linear or quadratic. For this
particular example, the quadratic version seems to perform better than the linear version.
Another important aspect to take into account is the data we are using to classify the
compounds. If the data we start with is not giving us a good idea about the behaviour of
the compound, in term of the changes in sleeping stages, it may be a good idea to first
model the behavior, using linear or nonlinear mixed effects model in order to get a better
summary of the data, and use it as an input in the classification procedure. For example,

125



Statistical Methods for EEG Data

Table 4: Classification tree analysis:Percentage of well classified observation in each
sleeping stage.

Anti- Anti-

depressants psychotics Anxiolitics Hypnotics Placebo Stimulants

Antidepresants 61.29 3.23 0.00 6.45 29.03 0.00

Antipsychotics 12.50 43.75 0.00 37.50 6.25 0.00

Anxiolitics 0.00 0.00 0.00 37.50 62.50 0.00

Hypnotics 0.00 0.00 0.00 85.00 15.00 0.00

Placebo 1.33 0.67 0.00 6.00 87.33 3.33

Stimulants 15.63 3.13 0.00 9.38 9.38 62.50

if we assumed that within a drug class, the changes in sleeping stages should be similar,
we can try to model the class using the profiles of the rats, and then use the parameters
in the model as an input datafile for the classification procedure.

There are a large number of methods that an analyst can choose from when analyzing
classification problems. Tree classification techniques, when they “work” and produce
accurate predictions or predicted classifications based on few logical if-then conditions,
have a number of advantages over many alternative techniques. Simplicity of results. In
most cases, the interpretation of results summarized in a tree is very simple. This simplicity
is useful not only for purposes of rapid classification of new observations (it is much easier
to evaluate just one or two logical conditions, than to compute classification scores for
each possible group, or predicted values, based on all predictors and using possibly some
complex nonlinear model equations), but can also often yield a much simpler “model” for
explaining why observations are classified or predicted in a particular manner.

Tree methods are nonparametric and nonlinear. The final results of using tree methods
for classification can be summarized in a series of (usually few) logical if-then conditions
(tree nodes). Therefore, there is no implicit assumption that the underlying relationships
between the predictor variables and the dependent variable are linear, follow some specific
non-linear link function, or that they are even monotonic in nature. For example, some
continuous outcome variable (Y1) of interest could be positively related to another variable
(X1) if X1 is less than some certain amount, but negatively related if it is more than that
amount (i.e., the tree could reveal multiple splits based on the same variable X1, reveal-
ing such a non-monotonic relationship between the variables). Thus, tree methods are
particularly well suited for data mining tasks, where there is often little a priori knowledge
nor any coherent set of theories or predictions regarding which variables are related and
how. In those types of data analyses, tree methods can often reveal simple relationships
between just a few variables that could have easily gone unnoticed using other analytic
techniques.
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Figure 4: The final tree with the number of observation classify in a particular drug class.
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