
The expressive power of

cardinality�bounded set values in

object�based data models�

Jan Van den Busschey Dirk Van Guchtz

May ��� ����

Abstract

In object�based data models� complex values such as tuples or sets

have no special status and are represented just as any other object�

However� di�erent objects may represent the same value� i�e�� dupli�

cates may occur� It is known that typical object�based models sup�

porting �rst�order queries� standard object creation� and while�loops�

cannot in general guarantee the duplicate�freeness of representations

of set values� In this paper� we consider a number of extensions of the

basic object�based model which provide exactly this ability� under the

assumption that a �xed bound is known on the cardinality of the set

values� We show that these extensions are all equivalent to each other�

Our main result is that increasing the cardinality bound from m to

m�� yields strictly more expressive extensions� except for m � � and

m � 	� We thus establish a non�collapsing hierarchy�

�Extended and revised version of a paper presented at the Fourth International Con�
ference on Database Theory �����

yResearch Assistant of the NFWO� Address� Dept� Math� � Computer Sci�� Uni�
versity of Antwerp 	UIA
� Universiteitsplein �� B����� Antwerp� Belgium� E�mail�
vdbusswins�uia�ac�be�

zComputer Science Department� Indiana University� Bloomington� IN �����������
USA� E�mail� vguchtcs�indiana�edu�

�

� Introduction

In the past decade� there has been a lot of interest in accommodating more
complex data structures as �rst�class citizens in database systems� a fea�
ture not o�ered by standard relational systems� Recent work in this �eld
lead to the de�nition of two new data models� the complex value model
and the object�based model� �There were also proposals to combine the two
approaches �	�
� ��� ����
The complex value model� �� is an extension of the standard relational

model� While the relational model o�ers collections of tuples� the complex
value model o�ers collections of arbitrary combinations of sets and tuples
called complex values� In the object�based model ��� ��� ��� ��� �
� a database
is essentially thought of as a labeled graph of objects� where each set of
equally labeled objects comprises a so�called class� The edges between objects
in the graph express properties and are labeled by property names� This
approach is inspired by the object�oriented philosophy ���� but can in fact
be traced back to the Functional Data Model ����
A di�erence between the complex value approach and the object�based

approach is that in the latter� set values are not explicitly part of the data
model� The usual way of representing a set in such a model is by having
an object o� with equally labeled edges linking o to each element of the set�
A class of objects then represents a collection of set values if each object in
the class represents a set in the collection� and vice versa� each set in the
collection is represented by an object in the class� However� it may occur
that two di�erent objects in the class represent the same set� i�e�� duplicates
may occur�
In this paper� we will focus on object�based queries whose result is a col�

lection of set values� Such queries augment the database with the new objects
and edges necessary for representing the desired collection� The fundamen�
tal query language for relational databases� the relational calculus� can be
adapted for this purpose� More speci�cally� a relational calculus query over
the database graph can be used for object creation by creating a new object
for each tuple in its result� And if the result is a binary relation� it can
be alternatively used for edge addition� A simple yet powerful object�based
query language� which we call OBQL� can thus be obtained by providing

�Also known as the complex object� nested relational� NF�� or unnormalized model�

	

object creation and edge addition as basic statements and closing o� under
composition and while�loops� This language subsumes many object�based
query languages proposed in the literature�
However� it is known �	� that if we insist on duplicate�free representa�

tions� there are very simple collections of set values that are inexpressible in
OBQL� For example� the query asking for all subsets of two elements of a
given class is not expressible without duplicates�
Duplicate�free representations have a number of apparent practical ad�

vantages� Obviously� duplicates cause redundancy in the database� Another
advantage concerns the e�cient answering of queries involving the equality
of set values� In arbitrary representations� checking for equality of two sets
requires an expensive comparison of all elements� However� if every set value
is represented by a unique object� checking equality amounts to one single
comparison of the corresponding object identi�ers� A third advantage is ef�
�ciency of representation� If a client program asks for a collection of set
values� it is useful if the server program can deliver the collection in the form
of a unique handle to each set� Di�erent handles to the same set value� i�e��
duplicates� would be very undesirable in this situation�
Hence� it is desirable to enrich OBQL with an additional primitive for

the creation of duplicate�free set representations� The obvious candidate for
this� considered in ��
� is an explicit powerset operation� An alternative�
considered in ��� is the abstraction operation� which provides a quotient
construction� creating a unique representative for each equivalence class of
duplicate objects� These two options for enriching OBQL are equivalent �	��
In the present paper� we are motivated by the observation that in many

practical applications� the set values appearing in the database have bounded
cardinality � their cardinality is often known to be bounded by a �xed natural
number m� For example� we might know in advance that each student will
take at most ten courses� Or� in a genealogy database� any person has at most
four grandparents� We de�ne a natural cardinality�bounded restriction of the
abstraction operation� and show that it is equivalent to various cardinality�
bounded� duplicate�free set�object creation operations� In particular� the
above�mentioned equivalence between abstraction and powerset holds also
under the restriction of bounded cardinality� Our second and main result
is that enriching OBQL with m�bounded abstraction yields a strictly less
expressive extension than the one obtained by enriching with m���bounded
abstraction �except for m � ��� We thus reveil a non�collapsing hierarchy

�

of duplicate�free set creation operations in object�based data models� the
supremum of which is general abstraction�
The proofs of our results carry some interest on their own� and provide

more insight on the issues of object creation� set value representation� and
duplicates� For instance� we show that object identi�ers can be interpreted
as hereditarily �nite sets� Based on this insight� we reduce the ability to do
duplicate�free m�bounded set creation to the existence of a certain type of
hereditarily �nite set that is �xed by all permutations of f�� � � � � mg� After
this reduction� our hierarchy result then follows from some basic facts of
group theory�
The hierarchy we establish in this paper should be contrasted with other

hierarchies established in the context of data manipulation languages for
complex objects ��� �	� These hierarchies are based on the nesting depth of
sets� while our hierarchy is based on the cardinality of sets� At the end of
the paper� we mention a few interesting problems which remain open�

� The object�based data model

In this section� we de�ne a general object�based data model� which serves as
a formal framework capturing the features �relevant to this paper� of many
object�oriented database systems encountered in practice� Our formalism�
which views database schemes and instances as directed� labeled graphs�
is close to that of the earlier proposals LDM ��
 and GOOD ��� We will
de�ne database schemes and instances as special kinds of graphs� and we will
introduce a simple yet powerful object�based query language� called OBQL�

It is customary in object�based models to depict a database scheme as
a graph� So we assume the existence of in�nitely enumerable sets of class
names and property names� and de�ne�

De�nition ��� A scheme is a �nite� edge�labeled� directed graph� The nodes
of the graph are class names and the edges are triples �B� e� C�� where B and
C are nodes and the edge label e is a property name�

A database instance can now be de�ned as a graph consisting of objects
and property�links� whose structure is constrained by some database scheme�
So we assume the existence of an in�nite supply of objects� and de�ne� for an
arbitrary scheme S�

�

De�nition ��� An instance over S is a �nite� labeled� directed graph� The
nodes of the graph are objects� Each node o is labeled by a class name ��o�
of S� The edges are triples �o� e� p�� where o and p are nodes and the edge
label e is a property name of S such that ���o�� e� ��p�� is an edge of S�

The set of all objects in an instance labeled by the same class name C
will be called the class C�
Before turning to the object�based query language OBQL� we must �rst

specify what we mean with the notion of query in the object�based data
model� In the relational model� a query is typically considered as a function�
mapping an input database to an output relation� This output relation is
often materialized as derived information� or used as part of the input to
a subsequent query� Hence� it is natural to view a query alternatively as
a function which augments an input database with a new� derived relation�
This view of a query can be readily adopted in the object�based data model�
a query is a function which augments an input instance with new objects
and edges� Correspondingly� OBQL provides two basic operations� one for
object creation and one for edge addition�
Object creation and edge addition are based on the following adaptation

of the relational calculus to object databases� With a scheme S� we can
associate a standard� �rst�order� many�sorted logic� The class names of S
are the sorts� and for each edge �B� e� C� in the scheme there is a binary�
sorted predicate name e�B�C�� Given an instance I over S� a sort C is
interpreted by the class C in I� and the predicate e�B�C� is interpreted by
the set of all e�labeled edges going from objects of class B to objects of class
C� Now let ��x�� � � � � xn� be a formula over S� and let Ci be the sort of xi�
Evaluating f�x�� � � � � xn� j �g over I yields an n�ary relation consisting of all
tuples �o�� � � � � on� of objects in I satisfying �� Note that oi will be in class
Ci�
The object creation operation�

� � C�e� � x�� � � � � en � xn� �

provides a natural way to augment the database with a representation of the
above n�ary relation� Here� C is some class name and e�� � � � � en are property
names� The e�ect of � on schemes S and instances I is formally de�ned as
follows�

De�nition ���

� ��S� is the scheme obtained by augmenting� S with node C and edges
�C� ei� Ci�� for i � �� � � � � n�

� ��I� is the instance over ��S� obtained from I by adding� for each tuple
�o�� � � � � on� of objects in I such that ��o�� � � � � on� is true in I� a new
object o with label C� together with edges �o� ei� oi�� for i � �� � � � � n�

If n � 	� then evaluating the formula � yields a binary relation� which
can be used not only for object creation� but also for edge addition� Indeed�
each pair in the relation can be interpreted as a set of derived edges� These
can be added to the database using the edge addition operation

� � e�x�� x��� ��

where e is some property name� The e�ect of � on schemes and instances is
formally de�ned as follows�

De�nition ���

� ��S� is the scheme obtained by augmenting S with the edge �C�� e� C���

� ��I� is the instance over ��S� obtained by augmenting I with an edge
�o�� e� o�� for each tuple �o�� o�� of objects in I such that ��o�� o�� is
true in I�

Queries can now be expressed in OBQL by means of arbitrary compo�
sitions of object creation and edge addition operations� Furthermore� these
compositions can be iterated using a while�loop construct of the form

while change do op�� � � � � opk od�

The body of the loop is executed as long as the instance under operation
changes �which might be forever��
We conclude this section with some remarks on some speci�c features of

OBQL�

�By augmenting a graph G with a node or edge x� we mean adding x to G provided x
does not already belong to G�

�

We allow that the labels of objects and edges that are added to an in�
stance by an object creation or edge addition already exist in the scheme
of that instance� This provision is necessary for adding derived information
incrementally� e�g�� using a while�loop� For example� the following program
computes the transitive closure of a database graph whose objects are all in
the same class and whose edges all have the same label e� The edges of the
transitive closure will get the label e��

e��x� y�� e�x� y��
while change do e��x� y�� �z � e�x� z� � e��z� y� od

A program expressing a query will often create a lot of auxiliary objects
and edges that are only used for storing temporary results in the course of
the computation� and should be omitted from the end result� We will not
de�ne this practice formally� it will always be clear from the context which
of the labels are only temporary�
A number of object�based data models considered in the literature ��� ���

�� use an alternative semantics for object creation� which we will call weak
semantics� and which is often natural and useful� Recall De�nition 	�� of the
object creation operation� The weak variant of this operation� written

C�e� � x�� � � � � en � xn�weak ��

only adds a new object o �as speci�ed in the de�nition� if there is not already
a C�labeled object o� with edges �o�� ei� oi� in the database� Hence� it is
equivalent to

C�e� � x�� � � � � en � xn� � � ��x � e��x� x�� � � � � � en�x� xn��

Thus� the weak semantics can be simulated in our semantics� actually� the
converse is true as well� The converse simulation uses an auxiliary class T �
structured as an ever�growing stack� The stack is initialized with a bottom
object using the �zero�ary� object addition�

T � �weak true�

The object creation
C�e� � x�� � � � � en � xn� �

�

is then simulated by �rst pushing a new object on the stack�

T �prev � t�weak ��t
� � prev�t�� t��

�Here� t and t� are variables of sort T � the formula states that t is the top of
the stack�� The actual object creation is then performed by

C�e� � x�� � � � � en � xn� e � t�weak � � ��t
� � prev�t�� t��

In words� the new object must be connected to the top of the stack with a
temporary edge labeled e� This guarantees that it will indeed be created�
regardless of whether there already exists an object with the same e�� � � � � en�
edges� since such an object will be connected to a lower object in the stack�

� Representation of set values

Complex values� such as set values� are not explicitly part of the object�
based data model de�ned in the previous section� Instead� set values are
represented by objects through their properties� Consider as an example
a scheme containing class names Student and Course� with an edge from
Student to Course labeled by the property name takes� In an instance� there
will be objects labeled Student � i�e�� students� and objects labeled Course�
i�e�� courses� Each student is connected to the courses he takes by edges
labeled takes� We say that each student represents the set of courses he
takes� Hence� the collection V of all sets of courses represented by some
student is represented by the class Student � However� since di�erent students
may take exactly the same courses� di�erent students may represent the same
set value� we say in this case that the representation of V by class Student
is not duplicate�free�
Of course� we do not want to disallow �duplicate� students� Nevertheless�

it might be desirable to also have a representation of V which is duplicate�
free� Some advantages of duplicate�free representations have been pointed
out in Section �� we will now illustrate one of them� Assume we have an
additional class� say Set � representing the collection V without duplicates�
So� in the scheme� there is an additional edge from Set to Course labeled
with contains� say� In the instance� each Set�object is linked via contains�
edges to precisely the courses of a set in V � All sets in V are represented

�

in this way� and no two Set�objects represent the same set� We can then
derive new edges� labeled set courses� from these Set�objects to students by
the following edge addition operation�

set courses�z� s�� �c � takes�s� c�� contains�z� c�

�Here� s� z and c are variables of sort Student � Set and Course� respec�
tively�� After this operation� each student is linked to the unique Set�object
representing the set of courses taken by that student� Note also that the
contains�edges have now become dispensable� since they can be recovered by
�rst following a set courses�edge� then a takes�edge� After the preprocessing
performed by this edge addition� queries concerning the equality of sets of
courses can now be answered very e�ciently� To test whether students take
exactly the same courses� we can simply check whether they are linked to
the same Set object �by a set courses�edge��
A natural question now is the following� can we generate this duplicate�

free class Set �together with the set courses�edges� by means of an OBQL
query� This question can be put more generally in terms of the abstraction
operation� introduced in ��� The abstraction is an operation for turning an
arbitrary given representation into a duplicate�free one� More speci�cally�
given a class C� it creates for each equivalence class Z of duplicate objects in
C �with respect to some property p� a unique representative object �labeled
K� which is linked to all members of Z �by edges labeled e�� Here� two
objects are called duplicates with respect to p if they represent the same set
value with respect to p� i�e�� if they are linked to the same set of objects by
edges labeled p� We will write the abstraction operation as

abstr K�e� C�p�

For example� we can create the desired class Set of the above example as
follows�

abstr Set �set courses� Student�takes�

As just de�ned� the abstraction operation works on all objects of a class C�
It is often useful however to work only on a subset of the class� determined by
some formula ��x�� with x a variable of sort C� We will write this generalized
version of the abstraction operation� which we will call the qualifying version�
as

abstr K�e� C�p j ��

�

E�g�� in the above example� if we want only Set�objects for the sets of courses
taken by married students� we use�

abstr Set �set courses� Student�takes j �p � spouse�s� p�

�Assuming the database scheme contains an edge labeled spouse from Student
to� say� class name Person� variables s and p are of sort Student and Person�
respectively��
Returning now to our question� we can rephrase it as follows� is abstrac�

tion expressible in OBQL� This question was answered negatively in �	�� It
was shown there that even very simple collections of set values are inexpress�
ible in OBQL without duplicates� such as the query asking for all subsets
of two elements of a given class� The latter query is a kind of cardinality�
restricted powerset construction� which can be de�ned in general as follows�

De�nition ��� Let C�K be class names and let e be a property name� Let
m be a natural number� Then applying the m�restricted powerset operation�

powersetm K�e� C

results in the addition� for each subset Z of class C of cardinality m� of a
new object o with label K together with edges �o� e� o�� to each o� 	 Z�

We can also de�ne a cardinality�bounded version of the cardinality�restricted
powerset operation by replacing the phrase �of cardinality m� in De�ni�
tion ��� with �of cardinality at most m�� Let us denote this operation by
powerset�m�
Like the qualifying version of the abstraction operation� a qualifying

version of the cardinality�bounded powerset operation is often useful� We
conceive qualifying powerset construction as an intuitive set�based dual of
OBQL�s standard object creation operation�

De�nition ��� Let C�K be class names and let e be a property name� Let
m be a natural number� Let ��x�� � � � � xk�� with k
 m� be a formula where
each xi is of sort C� Then applying the m�bounded set creation operation�

K�e � fx�� � � � � xkg� ��x�� � � � � xk�

results in the addition� for each collection fo�� � � � � okg of �not necessarily
distinct� objects of class C such that ��o�� � � � � ok� is true� of a new object o
with label K together with edges �o� e� oi� to each oi�

��

For example� if we know that each student takes at most ten courses� then
the Set�objects desired in the earlier example can be added as follows�

Set �set courses � fc�� � � � � c��g� �s � takes�s� c�� � � � � � takes�s� c����

Inspired by all these cardinality�bounded operations� we can also de�ne a
cardinality�bounded version of the original abstraction operation �qualifying
or not�� which creates representative objects only for those equivalence classes
of objects representing a set value of cardinality at most m� for some �xed
natural number m� Let us denote this by abstr�m�
Given any of the new kinds of operations de�ned in this section� say op�

we can extend OBQL by allowing operations of that kind as basic statements
�besides object creation and edge addition�� The such extended language will
be called OBQL�op� It turns out that all these di�erent possible extensions
are equivalent�

Theorem ��� The following languages are equivalent�

�� OBQL �m�bounded set creation�

	� OBQL � qualifying abstr�m�

� OBQL � abstr�m�

�� OBQL � powerset�m�

�� OBQL � powersetm�

Proof�

��� � ���� Given a program in OBQL�m�bounded set creation� an equiv�
alent program in OBQL � qualifying abstr�m can be obtained by re�
placing each statement of the form

K�e � fx�� � � � � xkg� ��x�� � � � � xk� �k
 m�

with the following statements� Variables xi� z
�� z� and x are of sort C�

K �� K� and C� respectively�

��

K ��e� � x�� � � � � e
� � xk� ��x�� � � � � xk��

abstr�m K�e��� K ��e� j �old�z�� z���
e�z� x�� �z� � �old�z�� z�� � e���z� z�� � e��z�� x��
old�z�� z��� z� � z�

Note that at each execution of the above program fragment� new auxil�
iary K ��objects will be created� which are then discarded at the end by
labeling them with old �� This reuse of the same auxiliary class name
K � is important if the statement simulated by the program fragment
would occur in the body of a while�loop� �This technique� which is
frequently used in this paper� has been used in the literature earlier�
e�g�� ��� Theorem 	������

��� � ���� Given a program in OBQL � qualifying abstr�m� an equiva�
lent program in OBQL � abstr�m can be obtained by replacing each
statement of the form

abstr�m K�e� C�p j ��x�

with the following statements�

abstr�m K ��e�� C�p�
K�a � z�� �old�z�� z�� � �x � e��z�� x� � ��x��
e�z� x�� �z� � �old�z�� z�� � a�z� z�� � e��z�� x� � ��x��
old�z�� z��� z� � z�

��� � ���� Given a program in OBQL � abstr�m� an equivalent program
in OBQL� powerset�m can be obtained by replacing each statement
of the form

abstr�m K�e� C�p

with the following statements� For simplicity� we assume that in the
database scheme� there is only one edge labeled p leaving C� say
�C� p� B�� Variable y is of sort B�

�Objects are labeled old by attaching a loop�edge to them� labeled old� This explains
the �binary� format of the last statement� which may seem awkward at �rst sight�

�	

powerset�m K ��e�� B�
e���z�� x�� �old�z�� z�� � �y � p�x� y�� e��z�� y��
K�a � z�� �old�z�� z�� � �x � e���z�� x��
e�z� x�� �z� � �old�z�� z�� � a�z� z�� � e���z�� x��
old�z�� z��� z� � z�

��� � ���� By induction onm� The casem � � is trivial� So assumem � ��
Note that a statement of the form

powerset�m K�e� C

is equivalent to the two statements

powerset�m�� K�e� C�
powersetm K�e� C

By the induction hypothesis� it now su�ces to show that given a pro�
gram in OBQL � powersetm��� there is an equivalent program in
OBQL�powersetm� This can be obtained by replacing each statement
of the form

powersetm�� K�e� C

with the following statements� Variable x� is of sort C ��

C �� � true�
dummy�x�� x��� �old�x�� x���
C ��a � x� x � x�
powersetm K ��e�� C ��
K�b � z�� �old�z�� z�� � �x� � e��z�� x��� �old�x�� x�� �

�x� � dummy�x�� x�� � e��z�� x���
e�z� x�� �z� � �old�z�� z�� � b�z� z�� � �x� � e��z�� x�� � a�x�� x��
old�x�� x��� x� � x��
old�z�� z��� z� � z�

��� � ���� Given a program in OBQL�powersetm� an equivalent program
in OBQL�m�bounded set creation can be obtained by replacing each
statement of the form

powersetm K�e� C

��

with the statement

K�e � fx�� � � � � xmg�
�

��i�j�m

xi � xj

� A hierarchy result

In �	�� ��� it was shown that the abstraction operation is not expressible
in OBQL� This was done by proving that for m � 	� powersetm is not
expressible in OBQL� In this section� we will show�

Theorem ��� Except for m � � and m � �� powersetm�� is not expressible
in OBQL � powersetm�

The operations powerset� and powerset� are merely special cases of
OBQL�s standard object creation� so OBQL � powerset�� is equivalent to
OBQL� settling the case m � �� We next settle the case m � ��

Proposition ��� OBQL�powerset� is equivalent to OBQL�powerset��

Proof� The idea of the proof is to simulate a ��set� say f�� 	� �� �g� with the
��bounded object�

n n
f�� 	g� f�� �g

o
�
n
f�� �g� f	� �g

o
�
n
f�� �g� f	� �g

oo

Note that this technique is ad�hoc� it does not generalize� It is mere coinci�
dence that there are less than four ways to split a set of four elements in two
equal�sized parts��

Formally� given a program in OBQL�powerset�� an equivalent program
in OBQL � powerset� can be obtained by replacing each statement of the
form�

powerset� K�e� C

with the following statements�

�In particular� it is readily veri�ed that ���
�
m
m��

�
� the number of ways to split a set of

some even size m in two equal�sized parts� is strictly larger than m if m � �� A similar
situation holds for sets of odd size� 	E�g�� the number of ways to split a set of some odd
size m in a part of size dm��e and a part of size bm��c is

�
m

bm��c

�
wich is at least m if

m � ��

��

powerset� K
��a� C�

K ���b � fz��� z
�
�g�

V
i���� �old�z

�
i� z

�
i� � ��x � a�z�� x� � a�z�� x��

K�e� � fz��� �z
��
� � z

��
�g�

V
i������ �old�z

��
i � z

��
i � �V

i���j��
i���j��

�x � ��z� � b�z��i � z
�� � a�z�� x��� ��z� � b�z��j � z

�� � a�z�� x���

e�z� x�� �z�� � �old�z��� z��� � �z� � e��z� z��� � b�z��� z�� � a�z�� x�
old�z�� z��� z� � z��
old�z��� z���� z�� � z��

We now embark on the proof of Theorem ��� for m � �� �� Along the
way� we will prove a number of lemmas which we think are interesting in
their own right�
As we already mentioned� the theorem is already known for m � ��

So� we will assume for the remainder of this section that m � 	� This
allows us to make a simpli�cation� Denote by OBQL� the language of all
OBQL programs that do not use object creation statements� Recall that
OBQL � powersetm is equivalent to OBQL �m�bounded set creation� We
have�

Lemma ��� OBQL��m�bounded set creation is equivalent to OBQL�m�
bounded set creation�

Proof� Given a program in OBQL�m�bounded set creation� an equivalent
program in OBQL� �m�bounded set creation can be obtained by replacing
each object creation statement� of the form

K�e� � x�� � � � � ek � xk� ��x�� � � � � xk�

as follows�
If k � �� then � is either true or false� If false� then the statement is

simply deleted� If true� it can be replaced with

K�e � f g� ��

for some arbitrary e�
If k � �� then the statement can be replaced with

K�e� � fx�g� ��x���

�

If k � 	� then�inspired by Kuratowski�s ordered pair construction
�x�� x� � ffx�g� fx�� x�gg�the statement can be replaced with the following
statements� Variables z�� z� and z are of sort K�� K� and K� respectively�

K��e � fx�g� �x� � ��x�� x���
K��e � fx�� x�g� ��x�� x���
K�e� � fz�� z�g� �old�z�� z�� � �old�z�� z�� �

�x�� x� � e�z�� x�� � e�z�� x�� � e�z�� x�� � ��x�� x���
e��z� x��� �z� � �old�z�� z�� � e��z� z�� � e�z�� x���
e��z� x��� �z� � �old�z�� z�� � e��z� z�� � e�z�� x���
old�z�� z��� z� � z��
old�z�� z��� z� � z�

If k � 	� then�inspired by the well�known tuple construction
�x�� � � � � xk � �x�� �x�� � � � � xk�the statement can be replaced with the fol�
lowing statements�

K ��e� � x�� � � � � ek � xk� �x� � ��x�� x�� � � � � xk��
K�e� � x�� e � z

�� �x�� � � � � xk � ��x�� � � � � xk� � �old�z
�� z�� �

Vk
i�� ei�z

�� xi��
e��z� x��� �z� � �old�z�� z�� � e�z� z�� � e��z

�� x���
���
ek�z� xk�� �z� � �old�z�� z�� � e�z� z�� � ek�z

�� xk��
old�z�� z��� z� � z�

This replacement is repeated until we are reduced to the case k � 	�
The proof of Theorem ��� will be based on the insight that the objects�

created by a program in OBQL � powersetm when executed on an input
instance I� can be identi�ed with m�bounded hereditarily �nite sets with
ur�elements in dom�I�� where dom�I� is the set of all objects occurring in I�
This identi�cation is formalized next�

De�nition ��� Let U be a set� the elements of which are called ur�elements�
Then HFm�U�� the collection of m�bounded hereditarily �nite sets with ur�
elements in U � is the smallest set satisfying the following two conditions�

�� U � HFm�U��

	� for any subset X of HFm�U� having cardinality at most m� X 	
HFm�U��

��

Let P be a program in OBQL � powersetm� Then P is equivalent to
a program Q in OBQL� � m�bounded set creation� Let I be an instance
to which Q is applied� Let J be the result of this application� We can
number the class and property names that are used in Q in some arbitrary
but �xed way� let C or p denote the unique number thus assigned to class
name C or property name p� We can also number the consecutive statement
executions during the application of Q on I� Now let o be an object in J �
We identify o with a member !o of HFm�dom�I�� in an inductive manner� as
follows�

De�nition ���

� If o is in I� then !o �� o�

� If o is not in I� then o must have been created during the application
of Q on I� say in the �th statement execution� Let the statement be of
the form�

K�e � fx�� � � � � xkg� ��x�� � � � � xk�

Then o is created in function of a set of objects fo�� � � � � okg in J� and
we de�ne

!o �� ��� � K� � e� f !o�� � � � � !okg�

with the understanding that natural numbers are encoded as sets in the fol�
lowing straightforward way� � � �� n � � � fng� and that ordered pairs are
encoded as sets in the usual Kuratowski way� �a� b � ffag� fa� bgg�

In the sequel� we will no longer make a formal distinction between o and !o�
If I and J are as above� then by the identi�cation of objects in J and

elements of HFm�dom�I��� every permutation f of the objects of I can be
canonically extended to a permutation of the objects of J � We can then
observe that OBQL � powersetm is BP�bounded in the sense of ���

Lemma ��	 If f is an automorphism of I� i�e�� f is a permutation of dom�I�
preserving labels and edges� then f is also an automorphism of J�

Proof� It su�ces to prove the lemma for the simple case where J is obtained
from I by application of a single edge addition or m�bounded set addition�

��

Indeed� the lemma will then follow in general by repeated application of this
simple case� First� assume J is obtained from I by edge addition�

e�x�� x��� ��x�� x���

It is well�known that the relational calculus is BP�bounded� Therefore� if
f is an automorphism of I� then f is also an automorphism of the binary
relation over dom�I� de�ned by � on I� and hence preserves the edges added
by the edge addition� Next� assume J is obtained from I by m�bounded set
creation�

K�e � fx�� � � � � xkg� ��x�� � � � � xk� �k
 m�

Any automorphism f of I is also an automorphism of the k�ary relation over
dom�I� de�ned by � on I� Hence� if an object o is created in function of
the set fo�� � � � � okg� then ��f�o��� � � � � f�ok�� will be true in I� Therefore�
also the object f�o� will be created� in function of the set ff�o��� � � � � f�ok�g�
This completes the proof�
We are now ready to present two key lemmas� from which Theorem ���

will follow immediately� The lemmas are based upon the following auxiliary
notion�

De�nition ��
 The base of a hereditarily �nite set o� denoted by B�o�� is
the set of ur�elements appearing in o�

Lemma ��� If� for some arbitrary but �xed m� � 	� powersetm� is express�
ible in OBQL�powersetm then there exists an m�bounded hereditarily �nite
set� with base f�� � � � � m�g� which is �xed by every permutation of its base�

Proof� Let S be the scheme consisting of one single class name C and
no edges� For any natural number n� let In be the instance over S with
dom�In� � f�� � � � � ng� So� In is a discrete graph consisting of n isolated
nodes� As a consequence� every permutation of f�� � � � � ng is an automor�
phism of In�
Assume powersetm� is expressible in OBQL��m�bounded set creation�

Then there exists a program Q in the language which� when applied to In� is
equivalent to the application of the m��restricted powerset operation

powersetm� K�e� C

��

to In� Let Jn be the result of applying Q to In� So� there is a one�to�one
correspondence between the m��subsets Z of f�� � � � � ng and the K�labeled
objects oZ of Jn� such that oZ is linked precisely to the elements of Z by
e�edges� Furthermore� every object in Jn can be identi�ed with a member of
HFm�f�� � � � � ng�� and by Lemma ���� every permutation of f�� � � � � ng is an
automorphism of Jn�
Let us focus on Z � f�� � � � � m�g� to keep notation simple� we will write

oZ simply as o� Let f be an arbitrary permutation of f�� � � � � ng such that
f�Z� � Z� Since f is an automorphism of Jn� we have an edge �f�o�� e� f�i��
i� we have an edge �o� e� i�� i�e�� i� i 	 Z� Consequently� since f�Z� � Z� the
set represented by f�o� through its e�edges is Z� So� necessarily� f�o� � o by
the de�nition of Jn� We have thus observed that�

Every permutation f such that f�Z� � Z �xes o�

Analogously� we can make the observation that also conversely�

Every permutation f such that f�o� � o satis�es f�Z� � Z�

As a result� if it were the case that B�o� � Z� then o itself is the desired
m�bounded hereditarily �nite set�
We can therefore concentrate on the possibility that B�o� � Z� We

distinguish the following cases�

�� Z is a strict subset of B�o�� We consider two possibilities�

�a� B�o� � f�� � � � � ng� Then we can choose i 	 B�o� � Z and
j 	 f�� � � � � ng�B�o�� Clearly� j 	 Z� But now consider the trans�
position f � �i j�� Clearly� f�o� � o� However� since f�Z� � Z�
f�o� must equal o� a which is in contradiction with our earlier
observations� So this case cannot occur�

�b� B�o� � f�� � � � � ng� Replace each occurrence of an element of Z
in o by �� denote the resulting hereditarily �nite set by o�� Then
o� is still m�bounded� and B�o�� � fm� � �� � � � � ng� Since each
permutation which is the identity on Z �xes o� each permutation
of fm���� � � � � ng �xes o�� Hence� if we put n � 	m� and de�ne the
bijection � from fm���� � � � � 	m�g to f�� � � � � m�g by ��i� �� i�m��
we obtain ��o� as the desired m�bounded hereditarily �nite set
with base Z which is �xed by each permutation of Z�

��

	� Z is not a subset of B�o�� and Z � B�o� � �� Then we can choose
i 	 Z � B�o� and j 	 Z � B�o�� As in case ��a� we now arrive at a
contradiction� So� this case cannot occur�

�� Z �B�o� � �� Again we consider two possibilities�

�a� Z �B�o� � f�� � � � � ng� Then we can choose i 	 f�� � � � � ng� �Z �
B�o�� and j 	 Z� The transposition f � �i j� clearly satis�es
f�o� � o and f�Z� � Z� which is in contradiction with our earlier
observations� So this case cannot occur�

�b� So� necessarily� Z � B�o� � f�� � � � � ng� Then B�o� � fm� �
�� � � � � ng� Each permutation which leaves Z invariant also leaves
o invariant� So� in particular� each permutation of fm���� � � � � ng
leaves o invariant� Hence� with n � 	m� and � as in case ��b�� we
obtain ��o� as the desired hereditarily �nite set�

Theorem ��� �for m � �� will now follow if we can prove that no m�
bounded hereditarily �nite set exists having base f�� � � � � m � �g which is
�xed by each permutation of its base� In fact� we will prove a stronger
statement in Lemma ���� To this end� we will need to recall some basic facts
of group theory�
For a set X� denote the group of all permutations of X by SX � and denote

the group of all even permutations of X by AX � If jXj � r� then SX and
AX are also written as Sr and Ar� If r � 	 then jArj � r"�	� Note that any
permutation of a set X works also as a permutation of the hereditarily �nite
sets with ur�elements in X in the canonical manner�
For any group G working on a set X� the set fg�x� j g 	 Gg is denoted

by G�x�� and the subgroup fg 	 G j g�x� � xg of G is denoted by Gx� By
Lagrange�s theorem� jG�x�j � jGj�jGxj�
Let � � G � H be a group homomorphism� Then the kernel Ker��� �

fg 	 G j ��g� � idHg is a normal subgroup of G� Furthermore� � is injective
i� Ker��� � fidGg� For r � �� Ar is simple� i�e�� has no nontrivial normal
subgroups�
We are now ready for�

Lemma ��� If m � �� then there is no m� ��bounded hereditarily �nite set
whose base is f�� � � � � mg and which is �xed by Am�

	�

Proof� De�ne the depth of a hereditarily �nite set as its depth when viewed
as a tree in the obvious way� We will prove by induction on n that for each n�
there is no m�bounded hereditarily �nite set of depth n with base f�� � � � � mg
which is �xed by Am� The basis of the induction� n � �� is trivial� Now let
o � fo�� � � � � okg� k � m� be an m���bounded hereditarily �nite set of depth
n � � with base Z � f�� � � � � mg� For the sake of contradiction� assume that
o is �xed by Am�
Note that for each oi 	 o� B�oi� � B�o� � Z� First� we show that actually�

B�oi� � Z� For� suppose jB�oi�j � � � m� Without loss of generality we
may assume B�oi� � � and thus � � �� Since for every f 	 Am� f�oi� 	
o� we have joj � jAm�oi�j� Clearly� jAm�oi�j � jAm�B�oi��j� The latter
equals jAmj�j�Am�B�oi�j� Every member of �Am�B�oi� can be written as a
product f�f�� where f� is in SB�oi� and f� is in SZ�B�oi�� such that either both
factors are even� or both factors are odd� So� j�Am�B�oi�j � �"�m � ��"�	� by

straightforward calculations� Hence� k � joj �
�
m

�

�
� which is at least m by

our assumptions on �� But� from the outset� k � m� contradiction� Hence�
B�oi� � Z�
Since Am �xes o� each f 	 Am induces a permutation on the elements of

o� Since o has k elements� this yields a natural homomorphism � � Am � Sk�
Ker��� consists of those f 	 Am such that f�oi� � oi for each oi 	 o�
Since Ker��� is a normal subgroup of Am� the former must be trivial� by the
simplicity of the latter� So� there are two possibilities�

� Ker��� � fidg� But then � is injective� which would imply that jAmj

jSkj� which is in contradiction with k � m�

� Ker��� � Am� But then each oi 	 o� of which we know that B�oi� � Z�
would be �xed by Am� which is in contradiction with the induction
hypothesis�

Hence� o cannot be �xed by Am� as had to be shown�
Note how the above proof relies on the simplicity of Ar for r � �� A� is

not simple� a non�trivial normal subgroup of A� is the group generated by
the three permutations �� 	��� ��� �� ���	 ��� and �� ���	 ��� Interestingly�
these generators have precisely the same structure as the simulation of ��sets
by ��sets exhibited in the proof of Proposition ��	�

	�

� Discussion

Let us conclude by mentioning an interesting open problem� Suppose the
known cardinality bound on the set values appearing in an application is
m� Without supplying the full functionality of m�bounded abstraction �or
the equivalent m�bounded set creation� in the query language� our results
indicate that duplicate�free representations will not be achievable in general�
i�e�� the generation of duplicates will sometimes be unavoidable�
However� one might allow a limited number of duplicates� at the gain

of not having to implement abstraction� For example� not having abstrac�
tion� one can represent m�sets by m�ary tuples �which can be created using
OBQL�s standard object creation�� achieving a duplication factor of at most
m"� which is a limit independent of the particular database instance� This
is actually an optimal representation in general� since it can be shown that
in the absence of abstraction� in the worst case� as many as m" duplicates
per m�set will be unavoidable� �This follows from the proof in ��� that
powersetm is not expressible in OBQL��
More subtly� one might provide in the query language� not the complete

m�bounded set creation operation� but a more e�cient k�bounded one� where
k � m� For example� if m � � and k � 	� one can represent a ��set f�� 	� �g
as a pair ��� f	� �g� In the worst case� this will yield two other duplicate
representations �	� f�� �g and ��� f�� 	g� Hence� the duplication factor is now
reduced to �� Again� it can be shown that this representation is optimal� in
the language OBQL�abstrjm��� m duplicates per m�set are unavoidable in
general�
This suggests a trade�o� between the processing time needed to elimi�

nate duplicates �as provided by abstraction�� and the maximum number of
duplicates that one can �live with�� It would be interesting to develop a
cost model to study this trade�o� in more detail� �A cost model for duplicate
tuple values was described in ���� Doing so will in particular require the solu�
tion of the following problem� in the language OBQL� abstr jk� with k � m�
how many duplicates per m�set are unavoidable in the worst case� In the
preceding paragraphs� we answered this question for k � � and k � m � ��
but the general solution remains open�

		

Acknowledgment The �rst author wishes to thank Michel Van den Bergh
for some inspiring discussions in the initial stages of this investigation� We
are indebted to Darrell Haile for pointing out the use of the natural group
homomorphism � in the proof of Lemma ���� Marc Gyssens� Jan Paredaens
and Inge Thyssens gave useful comments on a previous version of this pa�
per� We also thank an anonymous referee for correcting a few errors in the
submitted manuscript�

References

�� S� Abiteboul� P� Fischer� and H��J� Schek� editors� Nested Relations and
Complex Objects in Databases� volume ��� of Lecture Notes in Computer
Science� Springer�Verlag� �����

�	 S� Abiteboul and P� Kanellakis� Object identity as a query language
primitive� In Cli�ord et al� ��� pages �
�#����

�� S� Abiteboul and V� Vianu� Procedural languages for database queries
and updates� Journal of Computer and System Sciences� ���	�����#		��
�����

�� D� Bitton and D� DeWitt� Duplicate record elimination in large data
�les� ACM Transactions on Database Systems� ��	��	

#	�
� �����

�
 C� Beeri� A formal approach to object�oriented databases� Data
Knowledge Engineering�
�����
�#��	� �����

�� A� Chandra and D� Harel� Computable queries for relational database
systems� Journal of Computer and System Sciences� 	��	���
�#����
�����

�� J� Cli�ord� B� Lindsay� and D� Maier� editors� Proceedings of the ����
ACM SIGMOD International Conference on the Management of Data�
volume ���	 of SIGMOD Record� ACM Press� �����

�� M� Gyssens� J� Paredaens� and D� Van Gucht� A graph�oriented ob�
ject database model� In Proceedings of the Ninth ACM Symposium on
Principles of Database Systems� pages ���#�	�� ACM Press� �����

	�

�� S� Grumbach and V� Vianu� Playing games with objects� In S� Abiteboul
and P�C� Kanellakis� editors� ICDT���� volume ��� of Lecture Notes in
Computer Science� pages 	
#��� Springer�Verlag� �����

��� R� Hull and R� King� Semantic database modeling� Survey� applications�
and research issues� ACM Computing Surveys� ������	��#	��� �����

��� R� Hull and J� Su� On accessing object�oriented databases� Expressive
power� complexity� and restrictions� In Cli�ord et al� ��� pages ���#�
��

��	 R� Hull and J� Su� On the expressive power of database queries with in�
termediate types� Journal of Computer and System Sciences� ������	��#
	��� �����

��� R� Hull and M� Yoshikawa� ILOG� Declarative creation and manipula�
tion of object identi�ers� In D� McLeod� R� Sacks�Davis� and H� Schek�
editors� Proceedings of the ��th International Conference on Very Large
Data Bases� Morgan Kaufmann� �����

��� W� Kim and F�H� Lochovsky� editors� Object�Oriented Concepts�
Databases� and Applications� Frontier Series� ACM Press� Addison�
Wesley� �����

��
 G� Kuper and M� Vardi� A new approach to database logic� In Proceed�
ings of the Third ACM Symposium on Principles of Database Systems�
pages ��#��� ACM Press� �����

��� M� Kifer and J� Wu� A logic for object�oriented logic programming
�Maier�s O�logic revisited�� In Proceedings of the Eighth ACM Sympo�
sium on Principles of Database Systems� pages ���#���� ACM Press�
�����

��� C� L$ecluse� P� Richard� and F� Velez� O�� an object�oriented data model�
In H� Boral and P�A� Larson� editors� ���� Proceedings SIGMOD In�
ternational Conference on Management of Data� pages �	�#���� ACM
Press� �����

��� D� Shipman� The functional data model and the data language
DAPLEX� ACM Transactions on Database Systems� ����������#����
�����

	�

��� J� Van den Bussche and J� Paredaens� The expressive power of complex
values in object�based data models� Submitted manuscript� ����� full
version of �	��

�	� J� Van den Bussche and J� Paredaens� The expressive power of structured
values in pure OODB�s� In Proceedings of the Tenth ACM Symposium
on Principles of Database Systems� pages 	��#	��� ACM Press� �����

�	� J� Van den Bussche and D� Van Gucht� A hierarchy of faithful set
creation in pure OODBs� In J� Biskup and R� Hull� editors� Database
Theory�ICDT��	� volume ��� of Lecture Notes in Computer Science�
pages �	�#���� Springer�Verlag� ���	�

	

