
A semi�deterministic approach to object

creation and non�determinism in database

queries�

Jan Van den Busschey Dirk Van Guchtz

Abstract

We introduce and study the concept of semi�determinism� A non�

deterministic� generic query is called semi�deterministic if any two

possible results of the query to a database are isomorphic� Semi�

determinism is a generalization of determinacy� proposed by Abiteboul

and Kanellakis in the context of object�creating query languages� The

framework of semi�deterministic queries is less restrictive than that of

the determinate queries and avoids the problem of copy elimination

connected with determinacy� By o�ering a less restrictive framework�

it avoids the problem of copy elimination connected with determinacy�

We argue that semi�determinism is also interesting in its own right

and show that it is natural and desirable� though hard to achieve in

general� Nevertheless� we exhibit two major applications where semi�

deterministic computations are possible� First� we show that there is

a universal procedure to compute any semi�deterministic query in a

semi�deterministic manner� Second� we show that the polynomial�time

counting queries can be e�ciently expressed semi�deterministically�

�An extended abstract of a preliminary version of this paper was presented at the ��th
ACM Symposium on Principles of Database Systems�

yResearch Assistant of the NFWO� Address� Dept� Math� � Computer Sci�� Uni�
versity of Antwerp �UIA�� Universiteitsplein �� B��	�
 Antwerp� Belgium� E�mail�
vdbuss�uia�ac�be�

zAddress� Computer Sci� Dept�� Indiana University� Bloomington� IN �
�
����
�� USA�
E�mail� vgucht�cs�indiana�edu�

�



� Introduction

The theory of queries in the context of the conventional relational database
model is well understood� For a survey� see ���� The theory started with
the work of Chandra and Harel ����� who formally de�ned a query as a
function from databases to databases which is partial recursive and preserves
isomorphisms� They also presented a query language called QL� an extension
of the relational algebra with unbounded looping and the possibility to store
intermediate results in relations with unbounded arity� It was furthermore
shown that QL is complete in the sense that it can express exactly all queries�

Abiteboul and Vianu ��� extended the notion of query by allowing non	
determinism� They rede�ned a query as a binary relationship between
databases which is recursively enumerable and preserves isomorphisms�� If
the binary relationship happens to be a function� we call the query deter�
ministic and the deterministic queries are exactly those of the previous para	
graph� A language called TL ��� 
� was then proved to be complete for all
�possibly non	deterministic� queries� TL is equivalent to the extension of the
relational algebra with �i� unbounded looping
 �ii� an operation to choose
arbitrary tuples from a relation
 and �iii� an operation to create new objects
by tagging each tuple of a relation with a di�erent new object �which can
be thought of as an identi�er�� It was also shown in ��� that detTL� a deter	
ministic version of TL obtained by disallowing the choice operation and the
appearance of new objects in the �nal result� is complete for the determin	
istic queries� In particular� this showed that object creation in intermediate
relations is an alternative to the intermediate relations with unbounded arity
of QL�

Motivated by applications in object	oriented database systems ����� the
need arose for queries where new objects do appear in the �nal result� This
lead Abiteboul and Kanellakis to the study of IQL ���� a query language
roughly comparable in expressive power to detTL but without the prohibition
of new objects in the result� In an attempt to capture the queries expressible
in IQL� they de�ned the intuitively appealing class of determinate queries��

A non	deterministic query is called determinate if any two di�erent results of
the query applied to a database are isomorphic through an isomorphism that

�The work of Abiteboul and Vianu was not restricted to queries only� but also included
updates� In this paper we will focus on the query aspect�

�Determinacy was also implicit in Kuper�s thesis �����

�



is the identity on the domain of the input database� Hence� the isomorphism
can only permute the new objects� Determinacy thus intends to isolate the
very weak form of non	determinism which is needed to accommodate new
objects�

It turned out that IQL is not complete for the determinate queries� an
extra operation called copy elimination ��� has to be added in order to obtain
determinate	completeness� Nevertheless� most likely all determinate queries
arising in practice can be already be expressed in IQL �without copy elim	
ination�� So� one could conclude that the class of determinate queries is
perhaps not so natural after all� This philosophically unsatisfactory situa	
tion left open two natural directions for further research� restrict or extend
the class of determinate queries to �nd more natural classes�

The �rst direction was explored in ����� where the precise expressive power
of IQL was characterized� It was shown that this characterization is obtained
when an additional requirement� besides determinacy� is made which simply
expresses that the creation of new objects can be interpreted as the deter	
ministic construction of hereditarily �nite sets� The feeling expressed above
that the class of IQL	expressible determinate queries� coined the constructive
queries in ����� indeed arises very naturally was thus con�rmed�

In the present paper� we explore the other direction� We propose the
notion of semi�determinism� A non	deterministic query is called semi	
deterministic if any two di�erent results of the query to a database are iso	
morphic� by an isomorphism which maps the input database onto itself �i�e��
an automorphism�� Note that determinate queries are very restricted semi	
deterministic queries� for which this automorphism is the identity� Thus�
semi	determinism is a natural generalization of determinacy� and at the same
time a natural restriction on arbitrary non	determinism� the only sources of
non	determinism are the symmetries �automorphisms� present in the input
database�

The contents of this paper can be summarized as follows� In Section ��
we review the necessary preliminary notions�

In Section �� we introduce and motivate semi	determinism� Given that
semi	determinism is an extension of determinacy� we provide a necessary
and su�cient algebraic condition for when a semi	deterministic query is ac	
tually determinate� We also present an alternative characterization for semi	
determinism which demonstrates its naturalness� Another motivation for
semi	determinism which we prove is that a non	deterministic loop program

�



which makes its choices in a semi	deterministic manner� has the good prop	
erty that if one of its possible computations halts� then all possible compu	
tations will halt� and this after the same number of iterations of the loop�
We also observe that semi	deterministic queries which yield a yes	no answer
must in fact be deterministic� which is quite desirable�

While semi	determinism has good properties� it is hard to achieve in gen	
eral� Indeed� we prove that the problem of syntactically verifying whether a
non	deterministic program expresses a semi	deterministic query is undecid	
able� Furthermore� checking a computation for semi	determinismat run	time
is shown to be polynomial	time equivalent to checking graph isomorphism�

Nevertheless� in Sections � and �� we exhibit two major applications where
semi	deterministic computations are possible� completeness and counting� In
both of these applications� object creation plays a crucial role�

In Section �� we prove that every semi	deterministic query can be ex	
pressed by a program in TL that contains only one single application of the
choice operation� This application is semi	deterministic and is a generaliza	
tion of the copy elimination operation to the semi	deterministic context� This
result indicates that the obvious candidate language for semi	deterministic
completeness� namely the semi	deterministic TL programs� is indeed semi	
deterministic complete� It also suggests that the notion of copy elimination
naturally falls in the framework of semi	deterministic queries�

In Section �� we show that all polynomial	time counting queries can be
expressed e�ciently in a semi	deterministicmanner� Queries involving count	
ing are computationally simple but cannot be expressed in the extension of
the relational algebra with looping� Using non	determinism� this situation
can be remedied� it is well	known ��� that all polynomial	time computable
queries can be expressed e�ciently in the extension of the relational alge	
bra with looping and non	deterministic choice� Our result shows that� as
far as counting is concerned� the advantages of non	determinism can also be
obtained semi	deterministically� To this end� we demonstrate a new� semi	
deterministic technique for constructing restricted types of orderings that are
su�cient for counting purposes�

Concluding remarks are in Section 
�

�



� Preliminaries

In this section� we review the necessary preliminary notions�
We will work in the following version of the well	known relational database

model ���� Formally� assume the existence of su�cientlymany relation names�
Every relation name R has an associated arity a�R�� a natural number� For
each natural number n there are su�ciently many relation names R with
a�R� � n� A database scheme is a �nite set of relation names� Furthermore�
let U be an in�nite� recursively enumerable universe of data elements called
atomic objects �or objects for short�� An instance I over a scheme S is a
mapping� assigning to each relation name R of S a �nite relation I�R� �
Ua�R�� The active domain of a relation r �or an instance I� is the set of all
objects occurring in it� and is denoted by adom�r� �adom�I��� The set of all
instances over a scheme S is denoted by inst�S�� If S � fR�� � � � � Rng� then
an instance I � inst�S� will be denoted as I � �R� � I�R��� � � � � Rn � I�Rn���

In its most general form� a query can be thought of as a possibly non	
deterministic process� augmenting databases with derived information� For	
mally� let S be a scheme� and let A�� � � � � An be relation names not in S� The
following de�nition is adapted from ����

De�nition ��� A query of type S � A�� � � � � An is a recursively enumerable�
binary relationship Q � inst�S�� inst�S � fA�� � � � � Ang� such that�

�� if Q�I� J� then J is equal to I on S
 and

�� if Q�I� J� and f is a permutation of U then Q�f�I�� f�J���

The latter requirement is now commonly called genericity and traces back
to references ��� and �����

We will sometimes use the following notation� if � is a binary relationship�
then ��x� stands for the set fy j ��x� y�g� For a query Q and instance I� Q�I�
is called the set of possible results of Q for I� If Q�I� � � then the result of
Q is unde�ned on input I�

Queries that are functions are called deterministic� A basic language for
expressing deterministic queries is RA� This is a version of the relational
algebra ���� an algebraization of �rst	order predicate logic �a�k�a� relational
calculus�� consisting of the relational operators union ���� di�erence ����
Cartesian product ���� selection ��i�j � selects from a relation those tuples for

�



which the i	th and the j	th component are equal�� and projection ��i������ik��
Let S be a scheme and let R�� � � � � Rm be a sequence of relation names not
in S� They will be used as relation	valued variables� holding intermediate
results of the computation� The sequence P of relation assignments�

R� �� E�
 � � � 
 Rm �� Em�

where each Ei is a relational algebra expression using only relation names in
S�fR�� � � � � Ri��g� is a RA program� If we choose a subset of answer relation
names fA�� � � � � Ang among the Ri�s� then this program P computes a query
of type S � A�� � � � � An in the obvious and well	known way� We will not
always explicitly indicate the answer relations in a program
 they will often
be clear from the context�

A queryQ is called object�creating if there exist I� J such that Q�I� J� and
adom�I� ��� adom�J� �note that for any queryQ� Q�I� J� implies adom�I� �
adom�J��� Object	creating queries are necessarily non	deterministic� because
of genericity� In proof� assume Q�I� J� and o � adom�J� � adom�I�� Take
an arbitrary o� � U such that o� �� adom�J�� and consider the permutation
f of U which transposes o and o�� f � �o o��� Then f�I� � I and f�J� �� J

and� by genericity� Q�I� f�J���
A natural object	creating operation which can be added to RA is new �

Let S be a scheme� I � inst �S�� and R � S with a�R� � a� A relation r of
arity a � � is a possible result of new �R� applied to I if r is obtained from
I�R� by extending each tuple t of I�R� with a di�erent new object t�a� ��
that is not yet in adom�I��

Example ��� Let S � fRg with a�R� � � and

I�R� � fha� bi � ha� ci � hb� dig�

A possible result of new �R� applied to I is

fha� b� ��i � ha� c� ��i � hb� d� ��ig�

where the �i are three arbitrary new objects from U�

So� in a sense� new is the converse of projection� We can add new to the
operations of the relation algebra� thus obtaining the query language RA �
new �






The language RA � new provides a basic and general object creation
mechanism in function of tuples� Essentially this samemechanism is provided
by many other query languages with object	creating capabilities that have
been proposed in the literature ��� �� 
� �
� ��� ��� ���� Some languages
��� �
� ��� ��� provide also object creation in function of sets� We will not
explicitly need this capability to prove our results� but will return to it in
Section 
�

While we know that an object	creating query must be non	deterministic�
it is clear that the queries expressed by programs of RA� new are �nearly�
deterministic� di�erent results of these queries to a database di�er only in
the particular choice of the new objects that have been created� To capture
this intuition� the notion of determinacy was de�ned in ����

De�nition ��� Query Q is called determinate if whenever Q�I� J�� and
Q�I� J��� then J� and J� must be I�isomorphic� i�e�� there must be a per	
mutation f of U� that is the identity on adom�I�� such that f�J�� � J��

We now de�ne an operation� W �Witness� ����� which allows for arbitrary
non	determinism� Let S be a scheme� I � inst�S�� and R � S with X �
f�� � � � � a�R�g� A relation r of arity a�R� is a possible result ofWX�R� applied
to I if r is a subset of I�R� obtained by choosing for each class ofX	equivalent
tuples of I�R� exactly one representative� Here� two tuples are called X�
equivalent if they are equal outside X� In particular� if X � f�� � � � � a�R�g�
then any two tuples are X	equivalent�

Example ��� Let S and I be as in Example ���� If we interpret I�R� as
a parent	child relation� then W��R� amounts to choosing a child for each
parent� The two possible results of W��R� applied to I are

r� � fha� bi � hb� dig

and
r� � fha� ci � hb� dig�

On the other hand�W����R� chooses an arbitrary tuple from I�R�� so the three
possible results of W����R� applied to I are fha� big� fha� cig� and fhb� dig�

We can extend RA and RA�new with non	determinism by allowing assign	
ments of the form A �� WX�E�� where E is a relational algebra expression�

�



The resulting language is denoted by RA�W or RA� new �W� Note that
we allow applications of the Witness operation only at the end of a relational
algebra expression in an assignment� not within expressions� This is no real
restriction and will make it easier to de�ne semi	deterministic programs in
Section ��

Finally� all languages introduced so far must often be enriched with a loop	
ing construct to increase expressiveness� We will use here a loop with partial
�xpoint semantics ���� This is a �repeat	while	change� looping semantics� but
special care must be taken to de�ne it in the presence of non	determinism�
Let P be a program in RA � new � W� Let Q be the query expressed by
P and let Qn be the query expressed by P n� the n	fold concatenation of P �
Then the query Q� expressed by the program loop�P � is de�ned as follows� On
input instance I� J � Q��I� if there exists an n such that J � Qn�I� 	Q�J��
We can extend any query language L to L � loop as follows� �i� if P is an
L	program� then loop�P � is also a program
 �ii� programs can be composed
using �
��

If P is determinate� then the above amounts to the typical �xpoint se	
mantics� So either loop�P � is unde�ned on I since it does not halt� or the
result equals Qn�I� for the least n such that Qn�I� � Qn���I�� However� if P
is arbitrarily non	deterministic� loop�P � can have a much more complicated
behavior� Some possible computations may halt� while others may not halt�
Furthermore� not all possible results of the loop will be computed after the
same number of iterations�

Example ��� Let R be a binary relation� viewed as �the set of edges of� a
directed graph� Let Q be the query of type fRg � A� where A is binary�
de�ned by Q�I� J� if JA lists each node x in I together with an arbitrary node
reachable from x in RI � This query is expressible by the following program�

D �� ���R� � ���R�

E �� �����D �D�

A �� W��R�

loop � A ��W�����������A� �R � E��� ��

Possible computations of the loop in this program� when applied to a �xed
instance� may halt after any number of iterations� or may loop inde�nitely�

We will show later �Theorem ����� that non	deterministic loop programs
do have a nice behavior if the non	determinism is in fact semi	deterministic�

�



The language which includes all features introduced in this section� RA�
new �W� loop� will often be referred to as TL� since it is equivalent to the
language TL of ��� �see also �
��� TL is complete
 it can express all queries�

� Semi�determinism

In this section� we introduce and motivate semi	determinism� and also show
that it is hard to achieve in general�

��� De�nition and general properties

Semi	determinism is a natural restriction on the amount of non	determinism
of a query Q�

De�nition ��� Query Q is called semi�deterministic if whenever Q�I� J��
and Q�I� J��� then J� and J� are isomorphic� i�e�� there is a permutation f of
U such that f�J�� � J��

By de�nition of query� J� and J� are extensions of I� and it follows that
the stated isomorphism f from J� to J� is an automorphism of I� �In this
paper� with an automorphism of I we mean a permutation f of U such
that f�I� � I�� So intuitively� the only sources of non	determinism in a
semi	deterministic query are the symmetries �automorphisms� in the input
database�

Clearly� determinate queries �De�nition ���� are very restricted semi	
deterministic queries� for which the above mentioned automorphism is ac	
tually the identity on I� The di�erence between determination and semi	
determinism can also be characterized by the next Theorem� We say that an
automorphism f of an instance I can be extended to an automorphism of an
instance J � with adom�J� 
 adom�I�� if there is a permutation g of U such
that gjadom�I� � f jadom�I� and g�J� � J �

Theorem ��� A semi�deterministic query Q is determinate if and only if
whenever Q�I� J� and f is an automorphism of I� then f can be extended to
an automorphism of J��

Proof� If� Assume Q�I� J�� and Q�I� J��� Since Q is semi	deterministic�
there is a permutation f of U such that f�J�� � J�� f is an automorphism

�



of I� so it can be extended to an automorphism of J�� This means there is a
permutation g such that gjadom�I� � f jadom�I� and g�J�� � J�� Let p be the
order of gjadom�I� in the permutation group of adom�I�� I�e�� p is the least
such that p � � and �gjadom�I��

p is the identity� De�ne h �� g�p���f � Then
h�J�� � J�� and h is the identity on adom�I�� Therefore� Q is determinate�

Only if� Let f be an automorphism of I� By genericity� Q�I� f�J��� By
determinacy� there is a permutation g such that g�f�J�� � J and g is the
identity on adom�I�� So� h �� gf satis�es hjadom�I� � f jadom�I� and h�J� � J �
as desired�

The above theorem also yields the following�

Corollary ��� A semi�deterministic query Q is deterministic if and only if
whenever Q�I� J� and f is an automorphism of I� then f is also an auto�
morphism of J �

Proof� Only if� Suppose for the sake of contradiction that f is not an au	
tomorphism of J � This means that f�J� �� J � But by genericity� Q�I� f�J���
whence Q is not deterministic� contradiction�

If� If Q�I� J� and f is an automorphism of I� then surely f can be trivially
extended to an automorphism of J � Hence� by Theorem ���� Q is determinate�
So to prove that Q is deterministic� it su�ces to prove that Q is not object	
creating� Suppose for the sake of contradiction that Q is object	creating�
Then there exist I� J such that Q�I� J� and adom�J� �� adom�I�� Let o �
adom�J� � adom�I�� Let f be a permutation of U such that f�I� � I and
f�o� �� adom�J�� But then f�J� �� J � so f is an automorphism of I but not
of J � contradiction�

The quali�cation semi�deterministic cannot be omitted from Theorem ���
or Corollary ���� To show this for Theorem ���� consider the query Q of
type fV g � W � where a�V � � a�W � � �� de�ned as follows� Q�I� J�
if J�W � � I�V � or if J�W � � I�V � � fog for some arbitrary o �� I�V ��
Although every automorphism of I can be extended to an automorphism of
J � Q is not determinate� For Corollary ���� consider the query Q of type
fV g � R� where a�V � � � and a�R� � �� de�ned as follows� Q�I� J� if I�V �
is of the form fa� bg and J�W � is either of the form�

fha� ai � hb� big

��



or of the form�
fha� bi � hb� aig�

Although every automorphism of I is also an automorphism of J � Q is not
deterministic�

We also point out that� since we de�ned queries as augmentations� the
following straightforward but fundamental closure property holds�

Proposition ��� The composition of two semi�deterministic queries is
again semi�deterministic�

We now present an interesting characterization of the semi	deterministic
queries ����� To do this� we need the following auxiliary notion�

De�nition ��� Let S� A�� � � � � An be as in De�nition ���� A pre�query of
type S � A�� � � � � An is a recursively enumerable� binary relationship Q� �
inst�S�� inst�S � fA�� � � � � Ang� such that�

�� if Q��I� J� then J is equal to I on S
 and

�� if Q��I� J� and Q��I �� J �� then either I � I � and J � J �� or I and I � are
not isomorphic�

So� a pre	query is an arbitrary partial recursive function from instances to
instances with the property that it is de�ned on at most one representative of
each isomorphism type� In particular� pre	queries are never generic� There	
fore� it makes sense to de�ne the closure of a pre	query under the genericity
requirement�

De�nition ��� The closure of pre	query Q� is the query

Q�
� �� f�f�I�� f�J�� j Q��I� J� and f permutation of Ug�

We observe�

Proposition ��	 For any pre�query Q�� its closure Q�
� is recursively enu�

merable�

Proof� The standard approach to enumerate Q� would be to enumerate the
Cartesian product of Q� with the set of all permutations f of U� The only
problem with this approach is that the latter set is uncountable� However�

��



since we are working with �nite instances� it su�ces to consider only the
permutations having �nite support� i�e�� those permutations that are the
identity on all but a �nite number of elements� Since every such permutation
is the composition of a �nite number of transpositions� it thus su�ces to
enumerate the Cartesian product of Q� with the set of all �nite sequences of
transpositions�

Hence� Q�
� is the minimal query containing Q�� We now establish�

Theorem ��
 Query Q is semi�deterministic if and only if Q � Q�
� for some

pre�query Q��

Proof� If� Assume Q�I� J�� and Q�I� J��� By the de�nition of Q�
�� there are

instances I�� J� and permutations f�� f� of U such that Q��I�� J��� I � f��I��
and J� � f��J��� and I � f��I�� and J� � f��J��� Hence� f�f

��
� is the desired

isomorphism from J� to J��
Only if� Let Q� be any maximal pre	query contained in Q� Since Q is

recursively enumerable� such a Q� exists� We show that Q � Q�
�� Since Q

is generic� it su�ces to show that Q � Q�
�� Assume Q�I� J�� Since Q� is

maximal� there exists an I� isomorphic to I such that Q��I�� J�� for some J��
Let f be a permutation of U such that f�I�� � I� Since Q�I�� J��� we have
Q�I� f�J���� by genericity of Q� Since Q is semi	deterministic� there exists
a permutation g of U such that g�f�J��� � J � Since g�I� � I and hence
g�f�I��� � I� it follows that Q�

��I� J� through application of gf to Q��I�� J���
as desired�

Before we move to semi	deterministic programs� we make one �nal obser	
vation concerning semi	deterministic queries in general� A boolean query is
a query of type S � A� with a�A� � �� So a boolean query can have only
two possible answers� the empty zero	ary relation �� which is interpreted
as False� and the non	empty zero	ary relation fh ig� which is interpreted as
True� Since True and False are non	isomorphic� we immediately obtain�

Proposition ��� Every boolean semi�deterministic query is deterministic�

��� Semi�deterministic programs

Given a TL program P � when would we call it semi	deterministic� We
could call it semi	deterministic simply if the query expressed by P is semi	
deterministic� But this is not a very interesting de�nition� It would be more

��



interesting if the whole of P �s computation is semi	deterministic� not just
merely the end result� Formally� the semi	deterministic programs are de�ned
as follows�

De�nition ���� �� We �rst de�ne the unfoldings of a TL program P �

�a� If P is a program not containing any loops� then the only unfolding
of P is P itself�

�b� If P is of the form loop�P ��� then the unfoldings of P are all n	fold
concatenations �P ��n of P � with itself� for all natural numbers n�

�c� If P is of the form P�
P� then the unfoldings of P are all programs
of the form P �

�
P
�
�� with P �

� �P �
�� an unfolding of P� �P���

�� An unfolding of a program is a sequence of assignments ��
 � � � 
�n� We
call such a sequence semi�deterministic if for each i � n� the program
��
 � � � 
�i expresses a semi	deterministic query�

�� Finally� a program is called semi�deterministic if all its unfoldings are�

In item ��� of the above de�nition� it is required that every interme	
diate stage is semi	deterministic� In principle it is su�cient to verify the
requirement only for those i where �i contains an application of the Witness
operation� since these are the only places where things can go wrong�

Clearly� the query expressed by a semi	deterministic program is semi	
deterministic� Of course� the converse does not hold� In the next example� we
will give examples of non	semi	deterministic queries and of semi	deterministic
queries expressed by programs that are semi	deterministic and by programs
that are not�

Example ���� Let S and I be as in Example ���� Consider the RA �W	
program P��

A� �� ���R� � ���R�
 A� ��W��A���

In a possible result of applying this program to I� the A�	relation will hold
adom�I�� and the A�	relation will hold one of the four singleton subsets
of adom�I�� Among these four possible outcomes� the two possible results
�R � I�R�� A� � adom�I�� A� � fag� and �R � I�R�� A� � adom�I�� A� � fbg�
are not isomorphic� there is no automorphism of I mapping a to b� So� the

��



program does not express a semi	deterministic query� and so it certainly not
semi	deterministic�

To illustrate the di�erence between semi	deterministic programs and
semi	deterministic queries� consider the very simple scheme fV g� with
a�V � � �� and the programs P��

A� �� W��V �
 A� �� W��V �

and P��
A� ��W��V �
 A� ��W��V �A���

Let us restrict attention to instances I for which I�V � has at least two ele	
ments� If in both programs� A� is the answer relation� the query Q expressed
by P� and P� is the same� Applied to an instance I� a possible result of Q
will hold �in the A� relation� an arbitrary element of I�V �� Since the ele	
ments of I�V � are indistinguishable� Q is semi	deterministic� However� to
check whether the programs P� and P� are semi	deterministic� we also have
to take the temporary A� relation into account� So we see that P� is not semi	
deterministic
 two possible intermediate results could be the instance J� with
J��A�� � fhaig and J��A�� � fhaig� and the instance J� with J��A�� � fhbig
and J��A�� � fhcig� Clearly� J� and J� are not isomorphic� On the other
hand� P� is semi	deterministic� since any possible intermediate result of P�

will contain an element of V in A� and another element of V in A�� All such
con�gurations are clearly isomorphic�

Example ���� Finally� to give a less abstract example� consider the scheme
fProf �Studg with a�Prof � � a�Stud� � �� The intended meaning of this
scheme is that the Prof 	relation holds a set of professor names� and the
Stud 	relation holds a set of student names� We assume that the sets of
student names and professor names are disjoint� The reader is invited to
verify that the following program is semi	deterministic�

Prof chosen �� �

Stud chosen �� �

Advisor �� �

loop �

C stud ��W��Stud � Stud chosen�

C prof ��W��Prof � Prof chosen�


��



Advisor �� Advisor � �C stud � C prof �

Stud chosen �� Stud chosen � C stud 

Prof chosen �� Prof chosen � C prof 


�

The query expressed by this program produces in the answer relation Advisor
an arbitrary one	to	one student	advisor assignment� All possible such assign	
ments are isomorphic by an isomorphismmapping profs to profs and students
to students
 hence� the query is indeed semi	deterministic�

The above examples do not involve object creation� but it will be	
come clear later that object creation is actually crucial to performing semi	
deterministic computations in less contrived situations� For now� we demon	
strate a good property of semi	deterministic loop programs which we can
prove in the most general setting of all TL programs�

Theorem ���� Let P be a TL program such that loop�P � is semi�
deterministic� and let I be an input instance� Then either the result of loop�P �
on I is unde�ned since no possible computation halts� or every possible com�
putation halts after the same number of iterations of the loop�

Proof� Assume J is a possible result of loop�P � on I� By de�nition� there
exists n such that J � P n�I� 	 P �J�� So� J � P n���I� and J is output
after n� � iterations� Now let J � be another element of P n���I�� arbitrarily
chosen� So� J � is the preliminary result� after n�� iterations� of an arbitrary
possible computation of the program� We must show that J � � P n�I�	P �J ���
Indeed� if this is the case then J � is actually a �nal result of loop�P �� or in
other words� its corresponding computation halts after n � � iterations� as
desired�

Since loop�P � is semi	deterministic� P n�� is semi	deterministic� Since
both P n���I� J� and P n���I� J ��� J � must be isomorphic to J � But then since
P n�I� J�� by genericity also P n�I� J ��� Moreover� since P �J� J�� by genericity�
also P �J �� J ���

It is known ��� that it is undecidable whether an RA �W	program� and
more speci�cally� an RA �W	program of the form� R �� E
 A �� WX�R�

��



�where E is an arbitrary relational algebra expression� expresses a deter	
ministic query�� Although semi	determinism is less restrictive than plain
determinism� the analogue of this result still holds�

Theorem ���� It is undecidable whether a program in RA�W expresses a
semi�deterministic query�

Proof� Let P be a program of the form R �� E
 A� �� WX�R�� Let P � be
the program P 
 A� �� WX�R�
 A �� A� � A�� with A the answer relation�
Since the assignments to A� and A� might be the same� we have that for
any instance I� there is a possible result J of P � on I for which J�A� � ��
Since the only relation isomorphic to � is � itself� it follows that the query
Q� expressed by P � is semi	deterministic i� Q� is deterministic� But Q� is
deterministic i� the query Q expressed by P is deterministic� and this is
undecidable�

Corollary ���� It is undecidable whether a program in RA � W is semi�
deterministic�

Proof� Follows from the observation that programs P � of the special form
exhibited in the proof of Theorem ���� are semi	deterministic i� the query
they express is semi	deterministic� which was just shown to be undecidable�

Theorem ���� shows that �compile	time� checking for semi	determinism
is infeasible� As an alternative� we can check for semi	determinism �at run	
time�� Given a TL program P and an input instance I� execute P on I and
add� a posteriori� an extra checking phase to see that all possible results are
pairwise isomorphic� If this check fails� the result of P on I is overruled to
some default value� e�g�� all empty answer relations� We have thus de�ned
an alternative semantics for TL programs� which we naturally call the semi�
deterministic semantics� If we want not only the query expressed by the

�In short� the reason is the following� The Witness operation WX �R� is deterministic
i� the complement Xc of X is a key for its argument relation R� Since R is the result of
algebra expression E� it thus follows that the program is deterministic i� E implies the key
dependency key�Xc�� This is undecidable because it is undecidable whether a functional
dependency is implied by a �rst�order sentence� a much stronger version of this statement
was proven in �����

�




program� but also the program itself to be semi	deterministic� we further
add a similar check after each application of the Witness operation� This
stronger version of the semi	deterministic semantics is called the uniformly
semi	deterministic semantics�

We now show that run	time checking can be performed in TL� That is�
the just mentioned extra checking phases can be simulated in TL itself� This
should come as no surprise� in view of the computational completeness of
TL� Therefore� we only give a sketch of the proof�

Proposition ���� For every TL program P there is another TL program
P sd �resp� P usd� such that the ordinary semantics of P sd corresponds to the
�resp� uniformly� semi�deterministic semantics of P �

Proof� P sd consists of two parts� The �rst part is a deterministic �or rather
determinate� simulation of P � Applications of Witness are simulated by gen	
erating all possible results� and keeping track of them in subsequent com	
putations� After the end of the simulation� there is a second part that
checks whether the accumulated possible results are pairwise isomorphic�
�Between each pair of possible results� all possible bijections are generated
by a powerset	like construction using object creation� Then it is veri�ed
whether at least one of these bijections is an isomorphism�� If the test fails�
the answer relations are assigned empty by default� Otherwise� using Wit	
ness� an arbitrary possible result is chosen� The proof for P usd is analogous�

We have just shown that run	time checking for semi	determinism� in con	
trast to compile	time checking� is decidable� However� the tests for isomor	
phism that are involved are similar to testing graph isomorphism� for which
no polynomial	time algorithm is known� Indeed� we next show that the two
problems are polynomial	time equivalent�

Proposition ���	 Run�time checking for semi�determinism is polynomial�
time equivalent to checking graph isomorphism�

Proof� Run	time checking for semi	determinism can be reduced in poly	
nomial time to checking graph isomorphism� because checking isomorphism
of relational structures �i�e�� database instances� reduces to checking graph
isomorphism �����

��



For the converse direction� consider the schemeS � fR�V g with a�R� � �
and a�V � � �� and consider the class I of instances I over S for which I�V �
contains exactly two elements of adom�I�R��� Consider the following one	line
program P � A ��W��V �� Checking P for semi	determinism on an instance
I of the class I amounts to checking whether two given nodes o�� o� of a graph
�binary relation� are auto�equivalent� meaning that there is an automorphism
of the graph mapping o� to o�� We conclude the proof by showing that graph
isomorphism can be reduced in polynomial time to auto	equivalence� Assume
given two graphs G�� G�� of which we may assume that they are connected
and disjoint� In order to test whether there is an isomorphism between G�

and G�� it su�ces to test whether there is a pair �o�� o��� where oi is a node
of Gi� such that o� and o� are auto	equivalent within G� � G��

This section can be concluded by saying that semi	determinism is a de	
sirable and natural notion� but at the same time it is hard to achieve� Never	
theless� in the next two sections we will exhibit two major applications where
semi	deterministic computations are possible�

� Semi�determinism and completeness

In this section� we prove that every semi	deterministic query can be expressed
by a semi	deterministic TL program�

��� Determinate�completeness up to copies

The language RA�new�loop is a very powerful� determinate language� which
is roughly comparable in expressive power to the language IQL ���� The only
di�erence is that IQL supports set values� This di�erence is irrelevant to the
issues discussed in the main body of this paper� but we will return to set
values in Section 
�

If we restrict the use of object creation syntactically� so that new objects
appear only in intermediate relations and not in the �nal answer relations�
we obtain a sublanguage of RA � new � loop� which we call detTL since
it is equivalent to the language detTL of ��� 
�� The queries expressed by
detTL programs are not just determinate� but actually deterministic� exactly
because no new objects appear in the result� In fact� it is known ��� that

��



detTL is deterministic	complete� all deterministic queries can be expressed
in the language�

Therefore� it came much as a surprise that RA � new � loop is not
determinate	complete� This is illustrated by the following example�

Example ��� Consider a relation name A of arity �� Let B�C be two rela	
tion names of arity �� Consider any determinate queryQ of type fAg � B�C

containing a pair Q�Idi� � Jdi� �� Here� Idi� is an instance of the very simple
form �A � fa�� a�g�� and the corresponding result Jdi� has the form�

A � fa�� a�g�
B � fhb�� a�i � hb�� a�i � hb�� a�i � hb�� a�ig�
C � fhb�� b�i � hb�� b�i � hb�� b�i � hb�� b�ig�

So the bi�s are new objects� This can be easy visualized using graphs� starting
from a discrete graph containing two isolated A	nodes a�� a�� a C	cycle of four
new nodes b�� � � � � b� is created such that two opposite b	nodes are associated
to a common a	node through the B	relation� It can be shown ��� �� ��� that
such a query Q is not expressible in RA � new � loop�

The non	completeness of RA�new� loop can be put in a more structured
framework using the notion of instance with copies ���� Let S be a scheme�
and let S� � S� For each R � S � S�� let CR be a relation name not
in S for which a�CR� � a�R� � �� All these CR must be di�erent� Let
S �� S� � fCR j R � S � S�g� Let J � inst�S�� and J � inst�S�� Then we
de�ne�

De�nition ��� J is an instance with copies of J w�r�t� S� if there exist�

�i� A natural number n � �� called the number of copies


�ii� n instances J�� � � � � Jn � inst�S�� called copies� such that the sets
adom�J� � adom�J jS��� adom�J�� � adom�J�jS��� � � � � adom�Jn� �
adom�JnjS�� are pairwise disjoint� and Jk and J are J jS�	isomorphic
for k � �� � � � � n
�

�Recall from De�nition ��� that an I�isomorphism� for some instance I� is an isomor�
phism that is the identity on adom�I��

��



�iii� n objects ��� � � � � �n� called copy identi�ers� not appearing in J or any
Jk�

such that

J�CR� � �J��R�� fh��ig� � 
 
 
 � �Jn�R�� fh�nig�

for each R � S � S�� and J�R� � J�R� for each R � S��

It follows from �ii� that each Jk agrees with J on S�� and hence also J does�

Example ��� Recall Jdi� from Example ���� The following instance Jdi�

over scheme fA�CB�CCg is an instance with two copies of Jdi� w�r�t� fAg�

A � fa�� a�g�
CB � fhb��� a�� ��i � hb��� a�� ��i � hb��� a�� ��i � hb��� a�� ��i�

hb��� a�� ��i � hb��� a�� ��i � hb��� a�� ��i � hb��� a�� ��ig�
CC � fhb��� b��� ��i � hb��� b��� ��i � hb��� b��� ��i � hb��� b��� ��i�

hb��� b��� ��i � hb��� b��� ��i � hb��� b��� ��i � hb��� b��� ��ig�

Although no query expressible in RA � new � loop can contain a pair
�Idi� � Jdi� � as in Example ���� it is not di�cult to write an RA�new � loop
program P such that Jdi� is a possible result of P applied to Idi� � More
generally� RA� new � loop is complete up to copies�

Fact ��� 
���� For each determinate query Q of type S� � S � S� there is
an RA�new � loop program expressing a query Q of type S� � S �S� such
that Q�I� J� i� Q�I� J�� with J an instance with copies of J w�r�t� S��

Proof� Let us brie�y review the proof of this important fact� Since Q is r�e��
there is a Turing machine M which enumerates Q� So� M takes a natural
number as input� and produces a pair �I� J� of �encodings of� instances such
that Q�I� J�� The range of M is the whole of Q� Then the desired program�
on input instance I over S�� visits pairs �k� �� of natural numbers� in some
standard order� For each pair �k� ��� k new objects� o�� � � � � ok� are created�
The collection C of all instances J over S that equal I on S� and for which
adom�J� � adom�I� � fo�� � � � � okg� is constructed� The subset C� of C�
consisting of those J for which M on input � produces a pair of instances
that is isomorphic to �I� J�� is determined� If C � is empty� the next pair �k� ��

��



of natural numbers is visited� Otherwise� by the genericity of Q� for each J

in C�� we have Q�I� J�� Furthermore� by the determinacy of Q� all J in C � are
pairwise isomorphic by a permutation of fo�� � � � � okg� Thus� C� contains all
the necessary ingredients from which to construct an instance J with copies
as desired�

It follows that the query CE �for Copy Elimination� of type S � S �
S�� de�ned by� CE�J� J� if J is an instance with copies of �S� � J jS��S �
S� � J jS�S��� is not expressible in RA � new � loop� Copy elimination is a
determinate query� and by Fact ���� it su�ces to add it as a primitive to
make RA � new � loop complete for all determinate queries�

��� Semi�deterministic completeness

As argued in the Introduction� the determinate	completeness up to copies of
RA� new � loop is not very satisfactory� In fact� our original motivation for
studying semi	determinism was the hope that it could o�er a less restrictive
setting in which copy elimination could be explained and would appear less
ad	hoc� Indeed� an alternative way to look at copy elimination is to consider
it as a non	determinate operation which chooses one among several available
copies� More formally� we can de�ne a non�determinate version of copy
elimination� call it CEnd� as follows� Let C be a relation name not in S with
a�C� � �� Then CEnd is of type S � C� and de�ned by� CEnd�J�K� if J
is an instance with copies as in De�nition ���� and K�C� � f�ig for some
arbitrarily chosen i�

Using CEnd as just de�ned� we can easily simulate CE as originally de	
�ned� It is also readily veri�ed that CEnd is semi	deterministic� And� it
can be easily expressed by a semi	deterministic TL program� This program
�rst checks whether its input is indeed an instance with copies�	 Then the
Witness operation is applied to the set of all copy identi�ers�

This encourages us to generalize the notion of instance with copies to
the semi	deterministic setting� in the hope of being able to prove that every
semi	deterministic query is expressible by a semi	deterministic TL program�

�This initial check is computationally expensive� as it requires checking graph isomor�
phism� However� in the intended application of copy elimination it is guaranteed that
the input has the required format �as with the result of the RA � new � loop program of
Fact ���� so the check can in principle be omitted�

��



Indeed� the strategy which we could follow is to prove �i� that Fact ��� can be
generalized to the semi	deterministic setting
 and �ii� that non	determinate
copy elimination� adapted to the semi	deterministic setting� is still expressible
by a semi	deterministic TL program� In the remainder of this section� we
will show that this strategy works�


First� we generalize the notion of instance with copies as de�ned in Def	
inition ��� to the semi	deterministic setting� To do this� it su�ces to note
that requirement �ii� in that de�nition� stating that Jk and J must be J jS� 	
isomorphic� is similar to the determinacy condition� Hence� we can generalize
the de�nition of instance with copies in a similar way as we generalized de	
terminacy to semi	determinism� Speci�cally� we now only require in �ii� that
Jk and J are isomorphic� Let us refer to this generalized notion of instance
with copies as instance with semi�deterministic copies� and to the original
notion as instance with determinate copies�

We can now observe that the following analogue to Fact ��� holds�

Proposition ��� For each semi�deterministic query Q of type S� � S �S�
there is an RA�new�loop program expressing a query Q of type S� � S�S�
such that Q�I� J� i� Q�I� J�� with J an instance with semi�deterministic
copies of J w�r�t� S��

Proof� The proof of Fact ��� goes through verbatim� except for the point
where it is stated that all J in C� are isomorphic by a permutation of
fo�� � � � � okg� The italicized quali�cation must now be omitted�

Suppose Q is a determinate query as in Fact ���� Q�I� J�� and J is an in	
stance with determinate copies of J � Then trivially� any J � such that Q�I� J ��
is I	isomorphic to a copy �in fact every copy� contained in J � The analogue
of this property in the semi	deterministic case is not entirely trivial�

Lemma ��� Assume Q is a semi�deterministic query as in Proposition ��	�
Q�I� J�� and Q�I� J� as constructed in the proof of said proposition� Then
any J � such that Q�I� J �� is I�isomorphic to a copy contained in J �

Proof� We use the notation from the proof of Proposition ��� �and Fact �����
Clearly� J � is I	isomorphic to some J �� in C� Furthermore� since Q is semi	

�Contrary to the conjecture expressed in a preliminary version of this paper �����

��



deterministic� J �� and hence also J ��� is isomorphic to J by some automor	
phism of I� But C� is computed by a �generic� RA � new � loop program�
and therefore if J is in C�� then so is J ��� as desired�

We may thus conclude that also in the semi	deterministic case� J contains
�enough� copies� Hence� to express any semi	deterministic query Q� we can
in a �rst phase express Q up to semi	deterministic copies� using the RA �
new � loop program of Proposition ���� and then in a second phase choose
one of the copies and assign it to the �nal answer relation� using an obvious
TL program� If we can prove that the two	phase program thus obtained
is semi	deterministic �again something that was trivial in the determinate
case�� we can conclude�

Theorem ��	 Every semi�deterministic query can be expressed by a semi�
deterministic TL program�

Proof� As just observed� we must prove that choosing among semi	
deterministic copies is semi	deterministic� This follows immediately from
the following claim�

Assume Q is a semi	deterministic query as in Proposition ����
Q�I� J�� and Q�I� J� as constructed in the proof of said proposi	
tion� Then any two copies J�� J� contained in J are isomorphic
by an automorphism of J�

Let us prove this claim� We know that J� and J� are isomorphic by an
automorphism of I� say f � We must extend f to an automorphism of J�
This means we must �nd a permutation g of U that equals f on adom�J��
such that g�J� � J� Let p be the order of f jadom�I� in the permutation group
of adom�I��

If p � �� then J� and J� are I	isomorphic and the problem is as trivial as in
the determinate case �simply de�ne g as f on adom�J��� f�� on adom�J���
adom�J��� and the identity everywhere else��

Now suppose p � �� By genericity� we have for each i � �� � � � � p that
Q�I� f i�J���� By Lemma ��
� for each i there is a copy Ji�� contained in J

such that Ji�� is I	isomorphic to f i�J��� �Note that J� is compatible with this
statement�� Furthermore� since fpjadom�I� is the identity� Jp�� can be chosen

��



to be J�� So we can de�ne the desired permutation g as f on adom�J��� and
such that g�Ji� � Ji��� for i � �� � � � � p� in the obvious way�

Note that we have actually obtained a syntactic� semi	deterministic sub	
language of TL capable of expressing exactly the semi	deterministic queries�
namely� the language consisting of all RA � new � loop programs followed
by a semi	deterministic copy elimination step� Of course� this sublanguage
is highly arti�cial�

� Counting semi�deterministically

In this section� we show that every polynomial	time counting query can be
computed e�ciently in a semi	deterministic manner� For clarity� we will only
consider deterministic queries in this section� So whenever we use the term
query� we will mean deterministic query�

Before coming to the point� we de�ne an intuitive notion of e�ciency
for programs� There is an obvious implementation of TL programs by non	
deterministic Turing machines� We say that a TL program is e
cient if its
thus associated Turing machine is polynomial	time�

��� Problem statement

There are queries that are computationally simple� but not expressible in
RA � loop� The most important class of such queries are those involving
counting� A simple example in this class is the boolean parity query� Given
input instance I� is the cardinality of adom�I� even� Most queries involving
counting cannot be expressed in RA� loop because RA� loop has a �	� law
�����

It is well	known ��� that using non	determinism� more deterministic
queries can be expressed� Concretely� every polynomial	time computable
query is expressible by an e�cient RA�W� loop program� This result can
be best understood in terms of ordered databases� Ordered databases are
databases equipped with a special binary relation containing a linear order
of the active domain� It is well	known that every polynomial	time com	
putable query is expressible� on ordered databases� by an e�cient program
in RA � loop ���� Hence� to express an arbitrary polynomial	time query Q

��



in RA � W� loop� it su�ces to be able to construct an ordered list of the
active domain� which can be done easily by repeatedly choosing elements� In
particular� the counting queries can be expressed e�ciently in this manner�

A non	deterministic program which generates an arbitrary ordered list of
the input database is not semi	deterministic in general� only for completely
symmetric databases it is true that any two such lists can be mapped into
each other by an automorphism� However� in order to express counting
queries� construct an ordering of the entire database domain is not really
needed� It is su�cient to generate� for each fragment of the database that has
to be counted� a list of new objects whose length is equal to the cardinality
of the fragment� These new objects are �witnesses� for the fragment to be
counted� and whether we count the original fragment or the thus constructed
witness list clearly does not matter� Furthermore� a con�guration of witness
lists can be computed by an e�cient TL program� and this program is semi	
deterministic� intuitively since any two con�gurations of witness lists are
determinate copies of each other�

So� the purpose of this section is to prove formally that the intuition
just expressed is correct� i�e�� that every counting query can be expressed
e�ciently by a semi	deterministic TL program� The quali�cation e
ciently
is crucial� since otherwise the claim would be trivial� Indeed� we mentioned
in Section � that RA � new � loop �or� for that matter� detTL� being a
sublanguage of TL can already express all deterministic queries� in particular
the counting queries� And� RA � new � loop programs are trivially semi	
deterministic� However� the counting queries are not e
ciently expressible
in RA�new�loop� For example� it follows from results in generic complexity
��� that there is no e�cient RA � new � loop program expressing the parity
query�

��� Counting semi�deterministically

We still have to specify precisely what is the class of counting queries� A pre	
cisely de�ned extension of �xpoint logic with counting capabilities has been
introduced in ���� ���� This approach� however� involves a two	sorted exten	
sion of the relational signature with a sort for natural numbers to express
the results of the counting operations� In our object	creating framework�
however� an essentially equivalent counting mechanism can be introduced
without at the same time introducing natural numbers as well� since a natu	

��



r �

a a�
b b�
b b�
c c�
c c�
c c�

count�r� �

a �� ��

b 	� 	�
b 	� 	�
c 
� 
�
c 
� 
�
c 
� 
�

Figure �� An example of counting

ral number n can be represented by a linked list of newly created objects of
length n� This simply corresponds to writing the natural number in unary
notation� Before giving a formal de�nition� we illustrate this operation by
means of an example�

Example ��� Assume given a binary relation r� interpreted as a parent	
child relation� Suppose we want to count the number of children of each
parent� A uniform� generic way to do this would be to construct for each
parent a list of new objects� the length of which equals the number of his
children� This is done by applying the counting operation count to r� For
example� Figure � shows a relation r together with count�r�� The Greek
letters are newly created objects�

In general� the counting operation is de�ned as follows�

De�nition ��� Let S be a scheme� I � inst �S�� and R � S with X �
f�� � � � � a�R�g� Let �X�I�R�� � fu�� � � � � upg� For each i � �� � � � � p� de�ne ni
as the cardinality of the set

ft � I�R� j tjX � uig�

�




Then each possible result of countX�R� applied to I is a relation of arity
jXj� �� of the form�

f hu�� ��
�� �

�
�i � � � � � hu�� �

�
n�
� ��

n���
i

���
hup� �

p
�� �

p
�i � � � � � hup� �

p
np
� �

p
np��i g

where the �ij are di�erent new objects not in adom�I��

The count operation is clearly determinate� and is readily implementable in
polynomial	time�

The counting application in Example ��� is formally an application of
count�� Note that count��R� counts the total number of tuples in R� Note
also that the count operation contains the new operation as a singular case�
Indeed�

new �R� � �������a�R���count ������a�R��R��

By extending RA� loop with the count operation� we obtain a language
which we denote by RA � loop � count � By the above remark and the
discussion in the previous subsection� this language has exactly the same
expressive power as RA � new � loop� but can express much more queries
e�ciently� We will refer formally to the class of counting queries as consisting
of those queries expressed by an e�cient RA� loop � count program��

We now show�

Theorem ��� Every counting query is expressible by an e
cient semi�
deterministic TL program�

Proof� We show how to express the count operation by an e�cient semi	
deterministic TL program� It is su�cient to consider applications of the form
count��R�� where R is a binary relation �as in Example ����� Indeed� if R
is not binary and we have to compute countX�R�� then by two applications
of the new operation� new ��X�R�� and new ��f������a�R�g�X�R��� we can easily
construct� in the relational algebra� an encoding of R into a binary relation
which is equivalent for counting purposes� The following program computes

�This is not a syntactic de�nition� The usual approach to syntactically approximate
the e�cient RA� loop programs is to give an in�ationary semantics to the loops ���� This
approach does not work in the presence of object creation�

��



count��R� in its answer relation A� �The relational calculus expressions oc	
curring in the program can easily be translated into the relational algebra
�����

R� �� ����new �R� � new ����R��

C� �� W��R��

C� �� W��R� � C��

A �� fhu� �� 	i j hu� �i � C� and hu� 	i � C�g

Chosen �� C� � C�

loop �

C ��W��R� � Chosen�

Chosen �� Chosen � C

A �� A � fhu� 	� 
i j hu� 
i � C and �� � hu� �� 	i � A and

��
� � hu� 	� 
�i � Ag

�

Using the familiar parent	child terminology� the R� relation de�ned in
the �rst assignment can be viewed as being obtained from the R relation
by replacing each child by a di�erent� newly created object �and one more��
The remainder of the program then simply orders these �witnesses� �recall
the discussion in the �rst subsection� into lists� as required by the de�nition
of count��R�� This is accomplished by initializing the lists to length �� and
then completing them by repeatedly choosing the remaining witnesses and
appending them to the lists� Hence� the program is correct� and it is clearly
also e�cient�

It remains to show that the program is semi	deterministic� Observe that
in R�� any two witnesses of a common parent are logically interchangeable�
More precisely� for any two tuples hu� ��i and hu� ��i in R�� the transposition
��� ��� is an automorphism of R�� �From this it follows immediately that
the �rst two applications of the Witness operation� in the second and third
statements of the program� are semi	deterministic� To show that the loop is
semi	deterministic� we similarly observe that before each application of the
assignment C �� W��R� � Chosen�� any two witnesses of a common parent
remaining in R� � Chosen are logically interchangeable with respect to the
whole intermediate result of the computation at that moment�

The class of counting queries includes a wide variety of useful queries� In
particular� it can be veri�ed that every query expressible in the extension

��



of �xpoint logic with counting de�ned in ���� ��� is a counting query in
our sense� Rather than proving this claim formally �which is tedious but
straightforward�� we illustrate it in the remainder of this section�

For example� we can express all �global� boolean counting queries� such
as the parity query� This class of queries could be de�ned as follows� Let E be
a relational algebra expression� Let F �n� be a property of natural numbers
which can be decided by a Turing machine in polynomial time� given n in
unary notation� Then the boolean counting query associated with E and
F yields True for an input instance I i� F �jE�I�j� is true� To express this
query e�ciently and semi	deterministically� �rst compute count��E�� which
produces an ordered list whose length equals the cardinality of E�I�� Then
invoke the well	known fact ��� that every polynomial	time property of ordered
instances can be expressed e�ciently in RA � loop�

But we can express much more counting queries than the global boolean
ones� The result of a general application of the count operation can be
interpreted as a relation containing tuples having one entry whose value is a
natural number� encoded as a �unary� string� For example� the result relation
shown in Figure � can be interpreted as the relation

fha� �i � hb� �i � hc� �ig�

By combining the results of di�erent counting operations� we can also con	
struct relations with tuples having multiple entries with natural numbers as
values� For example� we can count the number of children of each parent
in one relation� and count the number of grandchildren of each parent in
another relation� These two relations can then be joined� yielding a rela	
tion containing� for each parent� the number of children and the number of
grandchildren�

One could now imagine a selection operation for relations containing nat	
ural numbers� based on an arbitrary k	ary property F �n�� � � � � nk� of natural
numbers computable by a polynomial	time Turing machine� given n�� � � � � nk
in unary notation on k input tapes� An example with k � � would be� Give
all parents with an even number of children� In this case� F would be the
property of being even� An example with k � � would be� Give all parents
having an equal number of children and grandchildren� In this case� F would
be the property of being equal� It is possible to show that these selection op	
erations are e�ciently expressible in RA�loop� Indeed� as already mentioned

��



above� one can simulate in RA � loop any polynomial	time Turing machine
operating on a unary string �actually� any string�� The generalization to a
tuple of strings is straightforward� It �nally su�ces to run the simulations
in parallel for each tuple in the relation� The techniques required to do this
are straightforward adaptations of the basic simulation technique described
in ����

� Concluding remarks

�� We would like to have a better understanding of why semi	deterministic
computing is desirable� i�e�� why it is important to express a query with
a semi	deterministic program instead of with just an arbitrarily non	
deterministic one� One of the most important characteristics of semi	
deterministic programs is that all possible computations behave similarly�
as illustrated by Theorem ����� This property could be crucial when having
to combine di�erent parts of a non	deterministic program which have been
executed distributedly on di�erent computers�

�� In Section � we have shown that every polynomial	time counting query
can be expressed by an e�cient� semi	deterministic TL program� Can
we do better� More precisely� exactly which polynomial	time computable
queries can be thus expressed� In this respect� we point out that on the
class of rigid instances �i�e�� having no non	trivial automorphisms�� �xpoint
logic is strictly weaker than polynomial time�� On rigid structures� semi	
deterministic choices among elements are impossible� This strongly indicates
that not all the polynomial	time computable queries will be expressible by
an e�cient� semi	deterministic TL program�

�� In the present paper� we have focused on object creation in function of
tuples �the new operation�� Object creation in function of sets has also been
considered in the literature
 a simple and uniform operation providing this
functionality is the abstraction operation ��
� ���� One among the many
equivalent ways to de�ne this operation is as follows� Let I � inst�S�� and
R � S with a�R� � �� If the binary relation I�R� is not an equivalence rela	
tion� then the application of abstr�R� to I is unde�ned� Otherwise� assume

�This is because �xpoint logic has a 
�� law ��
�� and almost all instances are rigid�

��



Z�� � � � � Zk is an enumeration of the equivalence classes� and let ��� � � � �k be
distinct new objects not in adom�I�� Then the binary relation

fho� �ii j o � adom�I�R�� and �o� � Zig

is the result of abstr�R� applied to I� ��o� denotes o�s equivalence class�� So�
while new tags tuples� abstr tags sets�

Using abstraction� it seems that more queries can be expressed e�	
ciently and semi	deterministically� For example� consider the following semi	
deterministic query� given an equivalence relation R� choose for each equiv	
alence class one representative� We conjecture that this query is not ex	
pressible by an e�cient semi	deterministic TL program� It can however be
expressed� e�ciently and semi	deterministically� by the following simple pro	
gram in RA�W� abstr �

C �� W�abstr �R�

A �� ���C��

By Theorem ���� abstraction is of course semi	deterministically expressible
in TL� but� we conjecture� not e�ciently so� We point out that abstraction
is not expressible in RA � new � loop �����

�� Not every TL program is semi	deterministic or expresses a semi	
deterministic query� TL programs are in general not semi	deterministic�
and even more� in general do not express a semi	deterministic query� An
important issue that has not been considered in the present paper is the de	
sign of �preferably e�cient� query languages that are guaranteed to express
semi	deterministic queries� In investigating this problem� one might take in	
spiration from the semi	deterministic counting program of Theorem ���� A
semi	deterministic operation which is implicit in this program is what could
be called swap�choice� the choice of one representative for each equivalence
class of objects that are logically interchangeable� Swap	choice has been stud	
ied in ����� where it was shown that swap	choice and the count operation are
polynomial	time equivalent within RA � new � loop�

�� In the present paper� we have focused on queries� In ��
�� we have
conducted an initial study on semi	determinism in the context of arbitrary
database transformations� including updates� The preliminary conclusion

��



of this study was that there seems to be a fundamental di�erence between
queries and updates in this respect� Several soundness problems arise and
it remains to be seen whether semi	determinism is compatible at all with
updates�

Acknowledgments

We thank Serge Abiteboul� Tony Bonner� Marc Gyssens� and Jan Paredaens
for interesting discussions and Moshe Vardi for bringing up the question
whether every polynomial	time deterministic query is expressible by an ef	
�cient semi	deterministic TL program� We also thank the referees for their
thorough and insightful comments on an earlier draft of this article� in par	
ticular Tova Milo for suggesting a more natural semantics for the looping
construct�

References

��� Proceedings of the Ninth ACM Symposium on Principles of Database
Systems� ACM Press� �����

��� S� Abiteboul� Personal communication� �����

��� S� Abiteboul� R� Hull and V� Vianu� Foundations of Databases� Addison	
Wesley� �����

��� S� Abiteboul and P� Kanellakis� Object identity as a query language
primitive� Technical Report ����� INRIA	Rocquencourt� ����� Also in
SIGMOD Record� �������������� �����

��� S� Abiteboul and V� Vianu� Procedural languages for database queries
and updates� Journal of Computer and System Sciences� ��������������
�����

�
� S� Abiteboul and V� Vianu� Datalog extensions for database queries and
updates� Journal of Computer and System Sciences� ������ �����

��



��� S� Abiteboul and V� Vianu� Generic computation and its complexity�
In Proceedings ��rd ACM Symposium on Theory of Computing� pages
�������� ACM Press� �����

��� A�V� Aho and J�D� Ullman� Universality of data retrieval languages� In
Proceedings of the Sixth ACM Symposium on Principles of Programming
Languages� pages �������� �����

��� M� Andries and J� Paredaens� A language for generic graph	
transformations� InGraph�Theoretic Concepts in Computer Science� vol	
ume ��� of Lecture Notes in Computer Science� pages 
����� Springer	
Verlag� �����

���� A� Chandra and D� Harel� Computable queries for relational database
systems� Journal of Computer and System Sciences� ��������
�����
�����

���� A�K� Chandra and M�Y� Vardi� The implication problem for functional
and inclusion dependencies is undecidable� SIAM Journal on Comput�
ing� ������
���
��� �����

���� E� Gr adel and M� Otto� Inductive de�nability with counting on �nite
structures� In E� B orger et al�� editors� Computer Science Logic� volume
��� of Lecture Notes in Computer Science� pages �������� Springer	
Verlag� �����

���� S� Grumbach and C� Tollu� Query languages with counters� In J� Biskup
and R� Hull� editors� Database Theory
ICDT���� volume 
�
 of Lecture
Notes in Computer Science� pages �������� Springer	Verlag� �����

���� M� Gyssens� Personal communications� �����

���� M� Gyssens� J� Van den Bussche� and Dirk Van Gucht� Expressiveness
of e�cient semi	deterministic choice constructs� In S� Abiteboul and
E� Shamir� editors� Automata� Languages� and Programming� volume
��� of Lecture Notes in Computer Science� pages ��
����� Springer	
Verlag� �����

��



��
� M� Gyssens� J� Paredaens� J� Van den Bussche� and D� Van Gucht� A
graph	oriented object database model� IEEE Transactions on Knowl�
edge and Data Engineering� 
����������
� �����

���� R� Hull and M� Yoshikawa� ILOG� Declarative creation and manipula	
tion of object identi�ers� In D� McLeod� R� Sacks	Davis� and H� Schek�
editors� Proceedings of the ��th International Conference on Very Large
Data Bases� pages �����
�� Morgan Kaufmann� �����

���� M� Kifer and J� Wu� A logic for programming with complex objects�
Journal of Computer and System Sciences� ������������� �����

���� W� Kim� A model of queries for object	oriented databases� In P� Apers
and G� Wiederhold� editors� Proceedings of the Fifteenth International
Conference on Very Large Data Bases� pages �������� Morgan Kauf	
mann� �����

���� P�G� Kolaitis and M�Y� Vardi� In�nitary logics and �	� laws� Information
and Computation� �������������� �����

���� G� Kuper� The Logical Data Model� A New Approach to Database Logic�
PhD thesis� Stanford University� �����

���� G� Kuper and M� Vardi� The logical data model� ACM Transactions on
Database Systems� �������������� �����

���� G�L� Miller� Graph isomorphism� general remarks� Journal of Computer
and System Sciences� �������������� ���
�

���� J� Van den Bussche and J� Paredaens� The expressive power of com	
plex values in object	based data models� Information and Computation�
����������
� �����

���� J� Van den Bussche and D� Van Gucht� Semi	determinism� In Proceed�
ings ��th ACM Symposium on Principles of Database Systems� pages
�������� ACM Press� �����

��
� J� Van den Bussche and D� Van Gucht� Non	deterministic aspects of
database transformations involving object creation� In U� Lipeck and
B� Thalheim� editors� Modeling Database Dynamics� pages ���
� Work�
shops in Computing� Springer	Verlag� �����

��



���� J� Van den Bussche� D� Van Gucht� M� Andries� and M� Gyssens� On
the completeness of object	creating query languages� In Proceedings ��rd
Symposium on Foundations of Computer Science� pages �������� IEEE
Computer Society Press� �����

��


