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Abstract

We introduce and study the concept of semi-determinism. A non-
deterministic, generic query is called semi-deterministic if any two
possible results of the query to a database are isomorphic. Semi-
determinism is a generalization of determinacy, proposed by Abiteboul
and Kanellakis in the context of object-creating query languages. The
framework of semi-deterministic queries is less restrictive than that of
the determinate queries and avoids the problem of copy elimination
connected with determinacy. By offering a less restrictive framework,
it avoids the problem of copy elimination connected with determinacy.
We argue that semi-determinism is also interesting in its own right
and show that it is natural and desirable, though hard to achieve in
general. Nevertheless, we exhibit two major applications where semi-
deterministic computations are possible. First, we show that there is
a universal procedure to compute any semi-deterministic query in a
semi-deterministic manner. Second, we show that the polynomial-time
counting queries can be efficiently expressed semi-deterministically.
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1 Introduction

The theory of queries in the context of the conventional relational database
model is well understood. For a survey, see [3]. The theory started with
the work of Chandra and Harel [10], who formally defined a query as a
function from databases to databases which is partial recursive and preserves
isomorphisms. They also presented a query language called QL. an extension
of the relational algebra with unbounded looping and the possibility to store
intermediate results in relations with unbounded arity. It was furthermore
shown that QL is complete in the sense that it can express exactly all queries.

Abiteboul and Vianu [5] extended the notion of query by allowing non-
determinism. They redefined a query as a binary relationship between
databases which is recursively enumerable and preserves isomorphisms.! If
the binary relationship happens to be a function, we call the query deter-
ministic and the deterministic queries are exactly those of the previous para-
graph. A language called TL [5, 6] was then proved to be complete for all
(possibly non-deterministic) queries. TL is equivalent to the extension of the
relational algebra with (i) unbounded looping; (ii) an operation to choose
arbitrary tuples from a relation; and (iii) an operation to create new objects
by tagging each tuple of a relation with a different new object (which can
be thought of as an identifier.) It was also shown in [5] that detTL, a deter-
ministic version of TL obtained by disallowing the choice operation and the
appearance of new objects in the final result, is complete for the determin-
istic queries. In particular, this showed that object creation in intermediate
relations is an alternative to the intermediate relations with unbounded arity
of QL.

Motivated by applications in object-oriented database systems [19], the
need arose for queries where new objects do appear in the final result. This
lead Abiteboul and Kanellakis to the study of 1QL [4], a query language
roughly comparable in expressive power to detTL but without the prohibition
of new objects in the result. In an attempt to capture the queries expressible
in IQL, they defined the intuitively appealing class of determinate queries.?
A non-deterministic query is called determinate if any two different results of
the query applied to a database are isomorphic through an isomorphism that

!The work of Abiteboul and Vianu was not restricted to queries only, but also included
updates. In this paper we will focus on the query aspect.
2Determinacy was also implicit in Kuper’s thesis [21].



is the identity on the domain of the input database. Hence, the isomorphism
can only permute the new objects. Determinacy thus intends to isolate the
very weak form of non-determinism which is needed to accommodate new
objects.

It turned out that IQL is not complete for the determinate queries: an
extra operation called copy elimination [4] has to be added in order to obtain
determinate-completeness. Nevertheless, most likely all determinate queries
arising in practice can be already be expressed in IQL (without copy elim-
ination.) So, one could conclude that the class of determinate queries is
perhaps not so natural after all. This philosophically unsatisfactory situa-
tion left open two natural directions for further research: restrict or extend
the class of determinate queries to find more natural classes.

The first direction was explored in [27], where the precise expressive power
of IQL was characterized. It was shown that this characterization is obtained
when an additional requirement, besides determinacy, is made which simply
expresses that the creation of new objects can be interpreted as the deter-
ministic construction of hereditarily finite sets. The feeling expressed above
that the class of IQL-expressible determinate queries, coined the constructive
queries in [27], indeed arises very naturally was thus confirmed.

In the present paper, we explore the other direction. We propose the
notion of semi-determinism. A non-deterministic query is called semi-
deterministic if any two different results of the query to a database are iso-
morphic, by an isomorphism which maps the input database onto itself (i.e.,
an automorphism.) Note that determinate queries are very restricted semi-
deterministic queries, for which this automorphism is the identity. Thus,
semi-determinism is a natural generalization of determinacy, and at the same
time a natural restriction on arbitrary non-determinism: the only sources of
non-determinism are the symmetries (automorphisms) present in the input
database.

The contents of this paper can be summarized as follows. In Section 2,
we review the necessary preliminary notions.

In Section 3, we introduce and motivate semi-determinism. Given that
semi-determinism is an extension of determinacy, we provide a necessary
and sufficient algebraic condition for when a semi-deterministic query is ac-
tually determinate. We also present an alternative characterization for semi-
determinism which demonstrates its naturalness. Another motivation for
semi-determinism which we prove is that a non-deterministic loop program



which makes its choices in a semi-deterministic manner, has the good prop-
erty that if one of its possible computations halts, then all possible compu-
tations will halt, and this after the same number of iterations of the loop.
We also observe that semi-deterministic queries which yield a yes-no answer
must in fact be deterministic, which is quite desirable.

While semi-determinism has good properties, it is hard to achieve in gen-
eral. Indeed, we prove that the problem of syntactically verifying whether a
non-deterministic program expresses a semi-deterministic query is undecid-
able. Furthermore, checking a computation for semi-determinism at run-time
is shown to be polynomial-time equivalent to checking graph isomorphism.

Nevertheless, in Sections 4 and 5, we exhibit two major applications where
semi-deterministic computations are possible: completeness and counting. In
both of these applications, object creation plays a crucial role.

In Section 4, we prove that every semi-deterministic query can be ex-
pressed by a program in TL that contains only one single application of the
choice operation. This application is semi-deterministic and is a generaliza-
tion of the copy elimination operation to the semi-deterministic context. This
result indicates that the obvious candidate language for semi-deterministic
completeness, namely the semi-deterministic TL programs, is indeed semi-
deterministic complete. It also suggests that the notion of copy elimination
naturally falls in the framework of semi-deterministic queries.

In Section 5, we show that all polynomial-time counting queries can be
expressed efficiently in a semi-deterministic manner. Queries involving count-
ing are computationally simple but cannot be expressed in the extension of
the relational algebra with looping. Using non-determinism, this situation
can be remedied: it is well-known [3] that all polynomial-time computable
queries can be expressed efficiently in the extension of the relational alge-
bra with looping and non-deterministic choice. Our result shows that, as
far as counting is concerned, the advantages of non-determinism can also be
obtained semi-deterministically. To this end, we demonstrate a new, semi-
deterministic technique for constructing restricted types of orderings that are
sufficient for counting purposes.

Concluding remarks are in Section 6.



2 Preliminaries

In this section, we review the necessary preliminary notions.

We will work in the following version of the well-known relational database
model [3]. Formally, assume the existence of sufficiently many relation names.
Every relation name R has an associated arity a(R), a natural number. For
each natural number n there are sufficiently many relation names R with
a(R) = n. A database scheme is a finite set of relation names. Furthermore,
let U be an infinite, recursively enumerable universe of data elements called
atomic objects (or objects for short). An instance I over a scheme S is a
mapping, assigning to each relation name R of § a finite relation I(R) C
U“P), The active domain of a relation r (or an instance I) is the set of all
objects occurring in it, and is denoted by adom(r) (adom([I)). The set of all
instances over a scheme § is denoted by inst(S). If S = {Ry,..., R,}, then
an instance [ € inst(S) will be denoted as I = (Ry : [(Ry),..., R, : [(R,)).

In its most general form, a query can be thought of as a possibly non-
deterministic process, augmenting databases with derived information. For-
mally, let § be a scheme, and let A;,..., A, be relation names not in §. The
following definition is adapted from [5].

Definition 2.1 A query of type S — Ay, ..., A, is a recursively enumerable,
binary relationship Q@ C inst(S) x inst(S U{Ay,..., A,}) such that:

1. if Q(I,.J) then J is equal to I on S; and
2. if Q(1,J) and f is a permutation of U then Q(f(I), f(.J)).

The latter requirement is now commonly called genericity and traces back
to references [8] and [10].

We will sometimes use the following notation: if p is a binary relationship,
then p(x) stands for the set {y | p(x,y)}. For a query @) and instance I, Q([)
is called the set of possible results of () for 1. If (1) = 0 then the result of
() is undefined on input [.

Queries that are functions are called deterministic. A basic language for
expressing deterministic queries is RA. This is a version of the relational
algebra [3], an algebraization of first-order predicate logic (a.k.a. relational
calculus), consisting of the relational operators union (U), difference (—),
Cartesian product (x), selection (0;=;, selects from a relation those tuples for



which the i-th and the j-th component are equal), and projection (7, ;. ).
Let § be a scheme and let Ry,..., R,, be a sequence of relation names not
in §. They will be used as relation-valued variables, holding intermediate
results of the computation. The sequence P of relation assignments:

Ry:=Fy ... Ry, = F,,

where each Fj; is a relational algebra expression using only relation names in
SU{Ry,...,Ri_1},is a RA program. If we choose a subset of answer relation
names {Aj,..., A,} among the R;’s, then this program P computes a query
of type § — Ay,..., A, in the obvious and well-known way. We will not
always explicitly indicate the answer relations in a program; they will often
be clear from the context.

A query @ is called object-creating if there exist I, J such that Q(7, .J) and
adom(1l) Cx adom(J) (note that for any query (), Q(I, J) implies adom(I) C
adom(.J)). Object-creating queries are necessarily non-deterministic, because
of genericity. In proof, assume Q(I,.J) and o € adom(.J) — adom([I). Take
an arbitrary o’ € U such that o’ ¢ adom(.J), and consider the permutation
f of U which transposes o and o': f = (0 0'). Then f(I) =1 and f(J) # J
and, by genericity, Q(I, f(.J)).

A natural object-creating operation which can be added to RA is new.
Let S be a scheme, [ € inst(S), and R € S with a(R) = a. A relation r of
arity @ + 1 is a possible result of new(R) applied to [ if r is obtained from
I(R) by extending each tuple ¢t of I(R) with a different new object t(a + 1)
that is not yet in adom(1).

Example 2.2 Let S = {R} with «(R) =2 and
[(R) = {{a,b), {a, ¢}, (b,d)}.
A possible result of new(R) applied to [ is
Ha,bya1), (a,¢,09), (b, d, )},
where the a; are three arbitrary new objects from U.

So, in a sense, new is the converse of projection. We can add new to the
operations of the relation algebra, thus obtaining the query language RA +
new.



The language RA + new provides a basic and general object creation
mechanism in function of tuples. Essentially this same mechanismis provided
by many other query languages with object-creating capabilities that have
been proposed in the literature [4, 5, 6, 16, 17, 18, 22]. Some languages
[4, 16, 22, 24] provide also object creation in function of sets. We will not
explicitly need this capability to prove our results, but will return to it in
Section 6.

While we know that an object-creating query must be non-deterministic,
it is clear that the queries expressed by programs of RA + new are “nearly”
deterministic: different results of these queries to a database differ only in
the particular choice of the new objects that have been created. To capture
this intuition, the notion of determinacy was defined in [4]:

Definition 2.3 Query ) is called determinate if whenever Q(/,.J;) and
Q(I,.Jz), then J; and Jy must be [-isomorphic, i.e., there must be a per-
mutation f of U, that is the identity on adom([I), such that f(.J;) = Js.

We now define an operation, W ( Witness, [3]), which allows for arbitrary
non-determinism. Let & be a scheme, I € inst(S), and R € S with X C
{1,...,a(R)}. A relation r of arity a( R) is a possible result of Wx (R) applied
to [ if r is a subset of I( R) obtained by choosing for each class of X-equivalent
tuples of I(R) exactly one representative. Here, two tuples are called X-
equivalent if they are equal outside X. In particular, if X = {1,...,a(R)},
then any two tuples are X-equivalent.

Example 2.4 Let § and [ be as in Example 2.2. If we interpret I(R) as
a parent-child relation, then W5(R) amounts to choosing a child for each
parent. The two possible results of W3 (R) applied to [ are

™= {<a, b> ) <bv d>}
and

ry = {{a,c), (b,d)}.
On the other hand, Wi 2( R) chooses an arbitrary tuple from I(R), so the three
possible results of Wy o(R) applied to [ are {{(a,b)}, {(a,c)}, and {(b,d)}.

We can extend RA and RA + new with non-determinism by allowing assign-
ments of the form A := Wx(F), where F is a relational algebra expression.



The resulting language is denoted by RA + W or RA + new + W. Note that
we allow applications of the Witness operation only at the end of a relational
algebra expression in an assignment, not within expressions. This is no real
restriction and will make it easier to define semi-deterministic programs in
Section 3.

Finally, all languages introduced so far must often be enriched with a loop-
ing construct to increase expressiveness. We will use here a loop with partial
fixpoint semantics [3]. This is a “repeat-while-change” looping semantics, but
special care must be taken to define it in the presence of non-determinism.
Let P be a program in RA 4+ new + W. Let () be the query expressed by
P and let Q™ be the query expressed by P", the n-fold concatenation of P.
Then the query @' expressed by the program loop|P] is defined as follows: On
input instance I, J € Q'([) if there exists an n such that J € Q™"(I)NQ(J).
We can extend any query language £ to £ 4+ loop as follows: (i) if P is an
L-program, then loop[P] is also a program; (ii) programs can be composed
using “; .

If P is determinate, then the above amounts to the typical fixpoint se-
mantics. So either loop[P] is undefined on [ since it does not halt, or the
result equals Q"(I) for the least n such that Q™(1) = Q"' (I). However, if P
is arbitrarily non-deterministic, loop[P] can have a much more complicated
behavior. Some possible computations may halt, while others may not halt.
Furthermore, not all possible results of the loop will be computed after the
same number of iterations.

Example 2.5 Let R be a binary relation, viewed as (the set of edges of) a
directed graph. Let @ be the query of type {R} — A, where A is binary,
defined by Q(I,J) if J# lists each node x in I together with an arbitrary node
reachable from x in R!. This query is expressible by the following program:

D :=m(R)Um(R);

E :=01=2(D x D);

A= Wy(R);

loop [ A := Wy(m409=3(A x (RUFE))) |.

Possible computations of the loop in this program, when applied to a fixed
instance, may halt after any number of iterations, or may loop indefinitely.

We will show later (Theorem 3.13) that non-deterministic loop programs
do have a nice behavior if the non-determinism is in fact semi-deterministic.



The language which includes all features introduced in this section, RA +
new + W + loop, will often be referred to as TL, since it is equivalent to the
language TL of [5] (see also [6]). TL is complete; it can express all queries.

3 Semi-determinism

In this section, we introduce and motivate semi-determinism, and also show
that it is hard to achieve in general.

3.1 Definition and general properties

Semi-determinism is a natural restriction on the amount of non-determinism
of a query Q:

Definition 3.1 Query @ is called semi-deterministic if whenever Q(I,.J;)
and Q(1,J;), then J; and J; are isomorphic, i.e., there is a permutation f of

U such that f(J;) = Js.

By definition of query, J; and J; are extensions of I, and it follows that
the stated isomorphism f from .J; to .J; is an automorphism of /. (In this
paper, with an automorphism of I we mean a permutation f of U such
that f(/) = [.) So intuitively, the only sources of non-determinism in a
semi-deterministic query are the symmetries (automorphisms) in the input
database.

Clearly, determinate queries (Definition 2.3) are very restricted semi-
deterministic queries, for which the above mentioned automorphism is ac-
tually the identity on [. The difference between determination and semi-
determinism can also be characterized by the next Theorem. We say that an
automorphism f of an instance [ can be extended to an automorphism of an
instance .J, with adom(J) 2 adom([), if there is a permutation g of U such

that g|adom(1) = f|adom(1) and g(‘]) =J.

Theorem 3.2 A semi-deterministic query () is determinate if and only if
whenever Q(1,.J) and f is an automorphism of I, then f can be extended to
an automorphism of Js.

Proof: [f: Assume Q([,J;) and Q(I,.J3). Since @ is semi-deterministic,
there is a permutation f of U such that f(J1) = J;. f is an automorphism



of I, so it can be extended to an automorphism of JJ,. This means there is a
permutation ¢ such that glagom(ry = fladom(ry and g(J2) = J5. Let p be the
order of ¢|,dom(r) in the permutation group of adom([l). lLe., p is the least
such that p > 0 and (g|agom(r))? is the identity. Define h := g~V f. Then
h(Jy) = Jz, and h is the identity on adom([). Therefore, () is determinate.

Only if: Let f be an automorphism of I. By genericity, Q(/, f(J)). By
determinacy, there is a permutation ¢ such that ¢(f(J)) = J and g is the
identity on adom(I). So, h := gf satisfies h|ogom (1) = fladom(r) and h(J) = J,
as desired. [ |

The above theorem also yields the following:

Corollary 3.3 A semi-deterministic query () is deterministic if and only if
whenever Q(I,J) and f is an automorphism of I, then f is also an auto-
morphism of J.

Proof: Only if: Suppose for the sake of contradiction that f is not an au-
tomorphism of J. This means that f(.J) # J. But by genericity, Q(1, f(.J)),
whence () is not deterministic, contradiction.

If: £ Q(1,J)and f is an automorphism of I, then surely f can be trivially
extended to an automorphism of .J. Hence, by Theorem 3.2, () is determinate.
So to prove that () is deterministic, it suffices to prove that () is not object-
creating. Suppose for the sake of contradiction that ) is object-creating.
Then there exist [,.J such that Q(I,.J) and adom(J) € adom([). Let o €
adom(J) — adom(I). Let f be a permutation of U such that f(/) = [ and
flo) & adom(J). But then f(J) # J, so f is an automorphism of I but not

of J, contradiction. [ |

The qualification semi-deterministic cannot be omitted from Theorem 3.2
or Corollary 3.3. To show this for Theorem 3.2, consider the query @) of
type {V} — W, where «(V) = (W) = 1, defined as follows: Q(I,.J)
it JW) = I(V) or if JIW) = I(V)U{o} for some arbitrary o ¢ (V).
Although every automorphism of I can be extended to an automorphism of
J, @) is not determinate. For Corollary 3.3, consider the query @) of type
{V} = R, where a(V) = 1 and a(R) = 2, defined as follows: Q(I,.J) if I[(V)
is of the form {a,b} and J(W) is either of the form:

{{a, @), (b, b)}

10



or of the form:
{(a,0), (b,a)}.
Although every automorphism of [ is also an automorphism of J, () is not
deterministic.
We also point out that, since we defined queries as augmentations, the
following straightforward but fundamental closure property holds:

Proposition 3.4 The composition of two semi-deterministic queries s
again semi-deterministic.

We now present an interesting characterization of the semi-deterministic
queries [14]. To do this, we need the following auxiliary notion:

Definition 3.5 Let S, Ay,..., A, be as in Definition 2.1. A pre-query of
type S — Ay,..., A, is a recursively enumerable, binary relationship )y C
inst(S) x inst(S U{Ay,..., A,}) such that:

1. if Qo(I,J) then J is equal to I on S; and
2. if Qo(I,J) and Qo(I’,.J’) then either [ = [’ and J = J', or [ and I" are

not isomorphic.

So, a pre-query is an arbitrary partial recursive function from instances to
instances with the property that it is defined on at most one representative of
each isomorphism type. In particular, pre-queries are never generic. There-
fore, it makes sense to define the closure of a pre-query under the genericity
requirement:

Definition 3.6 The closure of pre-query () is the query

Qy :={(f(I), f(J)) | Qo(I,J) and f permutation of U}.

We observe:

Proposition 3.7 For any pre-query Qo, its closure QQf is recursively enu-
merable.

Proof: The standard approach to enumerate (g would be to enumerate the
Cartesian product of ()g with the set of all permutations f of U. The only
problem with this approach is that the latter set is uncountable. However,

11



since we are working with finite instances, it suffices to consider only the
permutations having finite support, i.e., those permutations that are the
identity on all but a finite number of elements. Since every such permutation
is the composition of a finite number of transpositions, it thus suffices to
enumerate the Cartesian product of () with the set of all finite sequences of
transpositions. [ |

Hence, Q)5 is the minimal query containing )o. We now establish:

Theorem 3.8 Query () is semi-deterministic if and only if () = QF for some
pre-query Qo.

Proof: [f: Assume Q(/,J;) and Q(I,.J). By the definition of @}, there are
instances Iy, Jo and permutations fi, fo of U such that Qo(/lo, Jo), I = fi(lo)
and J; = fi(Jo), and I = fy(ly) and Jo = fo(Jo). Hence, fof; " is the desired
isomorphism from .J; to .J,.

Only if: Let (Jp be any maximal pre-query contained in ). Since @) is
recursively enumerable, such a Qg exists. We show that Q) = @f. Since @)
is generic, it suffices to show that @ C QF. Assume Q([,.J). Since Qg is
maximal, there exists an [y isomorphic to [ such that Qo(lo, Jo) for some Jo.
Let f be a permutation of U such that f(ly) = I. Since Q(ly, Jy), we have
Q(I, f(Jo)), by genericity of (). Since () is semi-deterministic, there exists
a permutation g of U such that ¢(f(Jo)) = J. Since g(I) = I and hence
g(f(ly)) = 1, it follows that Q§(1,J) through application of gf to Qo(lo, Jo),

as desired. [ ]

Before we move to semi-deterministic programs, we make one final obser-
vation concerning semi-deterministic queries in general. A boolean query is
a query of type & — A, with a(A) = 0. So a boolean query can have only
two possible answers: the empty zero-ary relation ), which is interpreted
as False, and the non-empty zero-ary relation {( )}, which is interpreted as
True. Since True and False are non-isomorphic, we immediately obtain:

Proposition 3.9 Fvery boolean semi-deterministic query is deterministic.

3.2 Semi-deterministic programs

Given a TL program P, when would we call it semi-deterministic? We
could call it semi-deterministic simply if the query expressed by P is semi-
deterministic. But this is not a very interesting definition. It would be more

12



interesting if the whole of P’s computation is semi-deterministic, not just
merely the end result. Formally, the semi-deterministic programs are defined
as follows:

Definition 3.10 1. We first define the unfoldings of a TL program P:

(a) If P is a program not containing any loops, then the only unfolding

of Pis P itself.
(b) If P is of the form loop[P’], then the unfoldings of P are all n-fold

concatenations (P’)" of P’ with itself, for all natural numbers n.

(c) If P is of the form Pp; Py then the unfoldings of P are all programs
of the form P[; P;, with P/ (P;) an unfolding of P, (P,).

2. An unfolding of a program is a sequence of assignments oy;...;0,. We
call such a sequence semi-deterministic if for each ¢ < n, the program
01;...;0; expresses a semi-deterministic query.

3. Finally, a program is called semi-deterministic if all its unfoldings are.

In item (2) of the above definition, it is required that every interme-
diate stage is semi-deterministic. In principle it is sufficient to verify the
requirement only for those ¢ where o; contains an application of the Witness
operation, since these are the only places where things can go wrong.

Clearly, the query expressed by a semi-deterministic program is semi-
deterministic. Of course, the converse does not hold. In the next example, we
will give examples of non-semi-deterministic queries and of semi-deterministic
queries expressed by programs that are semi-deterministic and by programs
that are not.

Example 3.11 Let § and [ be as in Example 2.2. Consider the RA + W-
program F;:

Ay i=m(R)Um(R); Ay = Wi(Ar).

In a possible result of applying this program to I, the A;j-relation will hold
adom(I), and the As-relation will hold one of the four singleton subsets
of adom(I). Among these four possible outcomes, the two possible results
(R : I(R), Ay : adom([), Ay : {a}) and (R : I(R), A1 : adom([]), Ay : {b})

are not isomorphic: there is no automorphism of I mapping a to b. So, the

13



program does not express a semi-deterministic query, and so it certainly not
semi-deterministic.

To illustrate the difference between semi-deterministic programs and
semi-deterministic queries, consider the very simple scheme {V'}, with
a(V) =1, and the programs P:

Ay = Wi(V); Ay = Wh(V)

and Ps:
Al = Wl(V), A2 = Wl(V — Al)

Let us restrict attention to instances [ for which /(V') has at least two ele-
ments. If in both programs, A, is the answer relation, the query ) expressed
by P, and Ps is the same. Applied to an instance I, a possible result of ()
will hold (in the Aj relation) an arbitrary element of I(V). Since the ele-
ments of (V) are indistinguishable, @) is semi-deterministic. However, to
check whether the programs P, and Ps are semi-deterministic, we also have
to take the temporary A; relation into account. So we see that P, is not semi-
deterministic; two possible intermediate results could be the instance J; with
J1(A1) ={{a)} and J1(Az) = {(a)}, and the instance J with J2(A;) = {(b)}
and Jy(Az) = {(¢)}. Clearly, J; and .J; are not isomorphic. On the other
hand, Ps is semi-deterministic, since any possible intermediate result of FP5
will contain an element of V in A; and another element of V in A;. All such
configurations are clearly isomorphic.

Example 3.12 Finally, to give a less abstract example, consider the scheme
{Prof,Stud} with a(Prof) = a(Stud) = 1. The intended meaning of this
scheme is that the Prof-relation holds a set of professor names, and the
Stud-relation holds a set of student names. We assume that the sets of
student names and professor names are disjoint. The reader is invited to
verify that the following program is semi-deterministic:

Prof _chosen := ();
Stud_chosen = (J;
Advisor := (;
loop |
C_stud := Wy(Stud — Stud_chosen);
C_prof := Wy(Prof — Prof _chosen);
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Advisor := Advisor U (C _stud x C _prof);
Stud _chosen := Stud_chosen U C'_stud;
Prof _chosen := Prof _chosen U C _prof;

]

The query expressed by this program produces in the answer relation Advisor
an arbitrary one-to-one student-advisor assignment. All possible such assign-
ments are isomorphic by an isomorphism mapping profs to profs and students
to students; hence, the query is indeed semi-deterministic.

The above examples do not involve object creation, but it will be-
come clear later that object creation is actually crucial to performing semi-
deterministic computations in less contrived situations. For now, we demon-
strate a good property of semi-deterministic loop programs which we can
prove in the most general setting of all TL programs.

Theorem 3.13 Let P be a TL program such that loop[P] is semi-
deterministic, and let I be an input instance. Then either the result of loop[P)]
on I is undefined since no possible computation halts, or every possible com-
putation halts after the same number of iterations of the loop.

Proof: Assume J is a possible result of loop[P] on I. By definition, there
exists n such that J € P*(I)N P(J). So, J € P"*(I) and J is output
after n + 1 iterations. Now let J' be another element of P"*!(I), arbitrarily
chosen. So, J'is the preliminary result, after n 4 1 iterations, of an arbitrary
possible computation of the program. We must show that J' € P*(1)NP(.J').
Indeed, if this is the case then J' is actually a final result of loop[P], or in
other words, its corresponding computation halts after n 4 1 iterations, as
desired.

Since loop[P] is semi-deterministic, P**! is semi-deterministic. Since
both P"t(I,.J)and P"*'(I,.J"), J' must be isomorphic to J. But then since
P"(1,.J), by genericity also P*(I,.J"). Moreover, since P(.J,.J), by genericity,
also P(J',.J"). [ |

It is known [3] that it is undecidable whether an RA + W-program, and
more specifically, an RA + W-program of the form: R := FE; A := Wx(R)
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(where F is an arbitrary relational algebra expression) expresses a deter-
ministic query.® Although semi-determinism is less restrictive than plain
determinism, the analogue of this result still holds:

Theorem 3.14 [t is undecidable whether a program in RA + W expresses a
semi-deterministic query.

Proof: Let P be a program of the form R := E; A; := Wx(R). Let P’ be
the program P; Ay := Wx(R); A:= A; — A,, with A the answer relation.
Since the assignments to A; and Ay might be the same, we have that for
any instance I, there is a possible result J of P’ on [ for which J(A) = (.
Since the only relation isomorphic to () is () itself, it follows that the query
Q)" expressed by P’ is semi-deterministic iff )’ is deterministic. But @’ is
deterministic iff the query @) expressed by P is deterministic, and this is
undecidable. [ |

Corollary 3.15 [t is undecidable whether a program in RA + W s semi-
deterministic.

Proof: Follows from the observation that programs P’ of the special form
exhibited in the proof of Theorem 3.14 are semi-deterministic iff the query
they express is semi-deterministic, which was just shown to be undecidable.

|

Theorem 3.14 shows that “compile-time” checking for semi-determinism
is infeasible. As an alternative, we can check for semi-determinism “at run-
time.” Given a TL program P and an input instance I, execute P on [ and
add, a posteriori, an extra checking phase to see that all possible results are
pairwise isomorphic. If this check fails, the result of P on [ is overruled to
some default value, e.g., all empty answer relations. We have thus defined
an alternative semantics for TL programs, which we naturally call the semi-
deterministic semantics. If we want not only the query expressed by the

3In short, the reason is the following. The Witness operation Wx (R) is deterministic
iff the complement X¢ of X is a key for its argument relation R. Since R is the result of
algebra expression FE, it thus follows that the program is deterministic iff £ implies the key
dependency key(X¢). This is undecidable because it is undecidable whether a functional
dependency is implied by a first-order sentence; a much stronger version of this statement
was proven in [11].
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program, but also the program itself to be semi-deterministic, we further
add a similar check after each application of the Witness operation. This
stronger version of the semi-deterministic semantics is called the uniformly
semi-deterministic semantics.

We now show that run-time checking can be performed in TL. That is,
the just mentioned extra checking phases can be simulated in TL itself. This
should come as no surprise, in view of the computational completeness of
TL. Therefore, we only give a sketch of the proof.

Proposition 3.16 For cvery TL program P there is another TL program
P (resp. P™4) such that the ordinary semantics of P*% corresponds to the
(resp. uniformly) semi-deterministic semantics of P.

Proof: P* consists of two parts. The first part is a deterministic (or rather
determinate) simulation of P. Applications of Witness are simulated by gen-
erating all possible results, and keeping track of them in subsequent com-
putations. After the end of the simulation, there is a second part that
checks whether the accumulated possible results are pairwise isomorphic.
(Between each pair of possible results, all possible bijections are generated
by a powerset-like construction using object creation. Then it is verified
whether at least one of these bijections is an isomorphism.) If the test fails,
the answer relations are assigned empty by default. Otherwise, using Wit-
ness, an arbitrary possible result is chosen. The proof for P is analogous.

|

We have just shown that run-time checking for semi-determinism, in con-
trast to compile-time checking, is decidable. However, the tests for isomor-
phism that are involved are similar to testing graph isomorphism, for which
no polynomial-time algorithm is known. Indeed, we next show that the two
problems are polynomial-time equivalent.

Proposition 3.17 Run-time checking for semi-determinism is polynomial-
time equivalent to checking graph isomorphism.

Proof: Run-time checking for semi-determinism can be reduced in poly-
nomial time to checking graph isomorphism, because checking isomorphism
of relational structures (i.e., database instances) reduces to checking graph
isomorphism [23].
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For the converse direction, consider the scheme § = {R, V' } with a(R) = 2
and a(V) = 1, and consider the class Z of instances I over S for which (V)
contains exactly two elements of adom(I(R)). Consider the following one-line
program P = A := W(V). Checking P for semi-determinism on an instance
I of the class 7 amounts to checking whether two given nodes o0y, 05 of a graph
(binary relation) are auto-equivalent, meaning that there is an automorphism
of the graph mapping 0y to 0,. We conclude the proof by showing that graph
isomorphism can be reduced in polynomial time to auto-equivalence. Assume
given two graphs (1, (G5, of which we may assume that they are connected
and disjoint. In order to test whether there is an isomorphism between G
and (i3, it suffices to test whether there is a pair (o, 02), where o; is a node
of (7;, such that o, and oy are auto-equivalent within Gy U (5. [ |

This section can be concluded by saying that semi-determinism is a de-
sirable and natural notion, but at the same time it is hard to achieve. Never-
theless, in the next two sections we will exhibit two major applications where
semi-deterministic computations are possible.

4 Semi-determinism and completeness

In this section, we prove that every semi-deterministic query can be expressed
by a semi-deterministic TL program.

4.1 Determinate-completeness up to copies

The language RA+new+loop is a very powerful, determinate language, which
is roughly comparable in expressive power to the language [QL [4]. The only
difference is that IQL supports set values. This difference is irrelevant to the
issues discussed in the main body of this paper, but we will return to set
values in Section 6.

If we restrict the use of object creation syntactically, so that new objects
appear only in intermediate relations and not in the final answer relations,
we obtain a sublanguage of RA 4+ new + loop, which we call detTL since
it is equivalent to the language detTL of [5, 6]. The queries expressed by
detTL programs are not just determinate, but actually deterministic, exactly
because no new objects appear in the result. In fact, it is known [3] that
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detTL is deterministic-complete: all deterministic queries can be expressed
in the language.

Therefore, 1t came much as a surprise that RA + new 4 loop is not
determinate-complete. This is illustrated by the following example.

Example 4.1 Consider a relation name A of arity 1. Let B, C be two rela-
tion names of arity 2. Consider any determinate query @ of type {A} — B, C
containing a pair Q[ J¥0). Here, [V is an instance of the very simple
form (A : {ay,a3}), and the corresponding result J% has the form:

A HAay, az},
B {(bi,a1), (bs,ar), (bz,az), (bs, az)},
C: {{by,by), (b, bs), (bs,bs), (bs,b1)}.

So the b;’s are new objects. This can be easy visualized using graphs: starting
from a discrete graph containing two isolated A-nodes ay, as, a C-cycle of four
new nodes by,..., b, is created such that two opposite b-nodes are associated
to a common a-node through the B-relation. It can be shown [2, 9, 27] that
such a query @) is not expressible in RA + new + loop.

The non-completeness of RA + new + loop can be put in a more structured
framework using the notion of instance with copies [4]. Let S be a scheme,
and let §o € S§. For each R € § — &y, let C'R be a relation name not
in § for which a(CR) = a(R) + 1. All these C'R must be different. Let
S=SU{CR|ReS—38}. Let J € inst(S), and J € inst(S). Then we
define:

Definition 4.2 J is an instance with copies of J w.r.t. Sy if there exist:
(i) A natural number n > 0, called the number of copies;

(ii) n instances Jy,...,J, € inst(S), called copies, such that the sets
adom(J) — adom(J|s,), adom(J1) — adom(Ji|sy), ..., adom(J,) —
adom(.J,|s,) are pairwise disjoint, and Ji and J are J|s,-isomorphic
fork=1,...,n;

*Recall from Definition 2.3 that an I-isomorphism, for some instance I, is an isomor-
phism that is the identity on adom(I).
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(iii) n objects e1,...,&,, called copy identifiers, not appearing in J or any

ka
such that
J(CR) = (Ji(R) x {(e1)}) U--- U (Ju(R) x {(za)})
for each R € S — 8y, and J(R) = J(R) for each R € Sy.

It follows from (ii) that each J; agrees with J on Sy, and hence also J does.

Example 4.3 Recall J% from Example 4.1. The following instance .J 4
over scheme {A,C'B,C(C} is an instance with two copies of J*0 w.r.t. {A}:

A A{ar,az},
CB : {{bi1,a1,¢e1), (bs1,a1,e1), (ba1, az, 1)
<b1276l1752>7 <b3276l1752>7 <5227G2752>
cC: {<b117521751>7 <6217631751>7 <b31,b41,€1>, <b417511,€1>,
<b127522752>7 <5227532752>7 <b327542752>7 <b427612752>}-

541,G2,€1>,
b427 Gz, €2>}7

»
2

Although no query expressible in RA + new + loop can contain a pair
(147 J4TY as in Example 4.1, it is not difficult to write an RA + new + loop
program P such that J%F is a possible result of P applied to I%#. More
generally, RA + new + loop is complete up to copies:

Fact 4.4 ([4]) For each determinate query Q of type So — S — Sp there is
an RA + new + loop program expressing a query Q of type So — S — Sy such
that Q(I,J) iff Q(1,J), with J an instance with copies of J w.r.t. Sp.

Proof: Let us briefly review the proof of this important fact. Since ) is r.e.,
there is a Turing machine M which enumerates (). So, M takes a natural
number as input, and produces a pair (/,.J) of (encodings of) instances such
that Q(I,.J). The range of M is the whole of ). Then the desired program,
on input instance [ over Sy, visits pairs (k, () of natural numbers, in some
standard order. For each pair (k, (), k new objects, o1,..., 0k, are created.
The collection C of all instances J over § that equal I on Sy and for which
adom(J) — adom(Il) = {o1,...,0r}, is constructed. The subset C’ of C,
consisting of those J for which M on input ¢ produces a pair of instances
that is isomorphic to (I, .J), is determined. If C’ is empty, the next pair (k, /)
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of natural numbers is visited. Otherwise, by the genericity of (), for each J
in C', we have Q(/,J). Furthermore, by the determinacy of @, all .J in C’ are

pairwise isomorphic by a permutation of {o1,...,0,}. Thus, C' contains all
the necessary ingredients from which to construct an instance J with copies
as desired. [ |

It follows that the query CE (for Copy Elimination) of type S — S —
So, defined by: CE(J,J) if J is an instance with copies of (Sp : J]s,, S —
So : Jl|s—s,), is not expressible in RA 4+ new + loop. Copy elimination is a
determinate query, and by Fact 4.4, it suffices to add it as a primitive to
make RA 4 new + loop complete for all determinate queries.

4.2 Semi-deterministic completeness

As argued in the Introduction, the determinate-completeness up to copies of
RA + new + loop is not very satisfactory. In fact, our original motivation for
studying semi-determinism was the hope that it could offer a less restrictive
setting in which copy elimination could be explained and would appear less
ad-hoc. Indeed, an alternative way to look at copy elimination is to consider
it as a non-determinate operation which chooses one among several available
copies. More formally, we can define a non-determinate version of copy
elimination, call it CE™, as follows. Let C be a relation name not in S with
a(C) = 1. Then CE™ is of type S — C, and defined by: CE(J, K) if J
is an instance with copies as in Definition 4.2, and K(C) = {¢;} for some
arbitrarily chosen 1.

Using CE™ as just defined, we can easily simulate CE as originally de-
fined. It is also readily verified that CE" is semi-deterministic. And, it
can be easily expressed by a semi-deterministic TL program. This program
first checks whether its input is indeed an instance with copies.® Then the
Witness operation is applied to the set of all copy identifiers.

This encourages us to generalize the notion of instance with copies to
the semi-deterministic setting, in the hope of being able to prove that every
semi-deterministic query is expressible by a semi-deterministic TL program.

This initial check is computationally expensive, as it requires checking graph isomor-
phism. However, in the intended application of copy elimination it 1s guaranteed that
the input has the required format (as with the result of the RA + new + loop program of
Fact 4.4) so the check can in principle be omitted.
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Indeed, the strategy which we could follow is to prove (i) that Fact 4.4 can be
generalized to the semi-deterministic setting; and (ii) that non-determinate
copy elimination, adapted to the semi-deterministic setting, is still expressible
by a semi-deterministic TL program. In the remainder of this section, we
will show that this strategy works.®

First, we generalize the notion of instance with copies as defined in Def-
inition 4.2 to the semi-deterministic setting. To do this, it suffices to note
that requirement (ii) in that definition, stating that Ji, and J must be J|s,-
isomorphic, is similar to the determinacy condition. Hence, we can generalize
the definition of instance with copies in a similar way as we generalized de-
terminacy to semi-determinism. Specifically, we now only require in (ii) that
J and J are isomorphic. Let us refer to this generalized notion of instance
with copies as instance with semi-deterministic copies, and to the original
notion as instance with determinate copies.

We can now observe that the following analogue to Fact 4.4 holds:

Proposition 4.5 For cach semi-deterministic query Q of type So — S — So
there is an RA+new+loop program expressing a query Q of type Sy — S —So
such that Q(I,J) iff Q(I,J), with J an instance with semi-deterministic
copies of J w.r.t. Sp.

Proof: The proof of Fact 4.4 goes through verbatim, except for the point
where it is stated that all J in C’ are isomorphic by a permutation of
{o1,...,0}. The italicized qualification must now be omitted. [ |

Suppose @ is a determinate query as in Fact 4.4, Q(I,J), and J is an in-
stance with determinate copies of J. Then trivially, any J’ such that Q(7,.J")
is [-isomorphic to a copy (in fact every copy) contained in J. The analogue
of this property in the semi-deterministic case is not entirely trivial:

Lemma 4.6 Assume () is a semi-deterministic query as in Proposition 4.5,
Q(UI,J), and Q(I,.J) as constructed in the proof of said proposition. Then
any J' such that Q(I,.J") is [-isomorphic to a copy contained in J.

Proof: We use the notation from the proof of Proposition 4.5 (and Fact 4.4).
Clearly, J" is [-isomorphic to some J” in C. Furthermore, since ) is semi-

SContrary to the conjecture expressed in a preliminary version of this paper [25].
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deterministic, J', and hence also J”, is isomorphic to J by some automor-
phism of I. But C’ is computed by a (generic) RA 4 new + loop program,
and therefore if J is in C’, then so is J”, as desired. [ |

We may thus conclude that also in the semi-deterministic case, J contains
“enough” copies. Hence, to express any semi-deterministic query (), we can
in a first phase express () up to semi-deterministic copies, using the RA +
new + loop program of Proposition 4.5, and then in a second phase choose
one of the copies and assign it to the final answer relation, using an obvious
TL program. If we can prove that the two-phase program thus obtained
is semi-deterministic (again something that was trivial in the determinate
case), we can conclude:

Theorem 4.7 Fvery semi-deterministic query can be expressed by a semi-
deterministic TL program.

Proof: As just observed, we must prove that choosing among semi-
deterministic copies is semi-deterministic. This follows immediately from
the following claim:

Assume () is a semi-deterministic query as in Proposition 4.5,
Q(I,J), and Q(I,J) as constructed in the proof of said proposi-
tion. Then any two copies Ji, .J, contained in J are isomorphic
by an automorphism of J.

Let us prove this claim. We know that J; and .J; are isomorphic by an
automorphism of I, say f. We must extend f to an automorphism of J.
This means we must find a permutation g of U that equals f on adom(.J;)
such that g(J) = J. Let p be the order of f|ugom(r) in the permutation group
of adom(1).

If p =1, then J; and J, are [-isomorphic and the problem is as trivial as in
the determinate case (simply define g as f on adom(Jy), f~* on adom(Jy) —
adom(.Jy), and the identity everywhere else.)

Now suppose p > 1. By genericity, we have for each : = 1,...,p that
Q(I, fi(J1)). By Lemma 4.6, for each i there is a copy J;;; contained in J
such that J;;; is I-isomorphic to f'(J;). (Note that J, is compatible with this
statement.) Furthermore, since fp|ad0m(1) is the identity, J,41 can be chosen
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to be Ji. So we can define the desired permutation g as f on adom(.J;), and
such that g(J;) = Jip1, for e = 1,...,p, in the obvious way. [ |

Note that we have actually obtained a syntactic, semi-deterministic sub-
language of TL capable of expressing exactly the semi-deterministic queries:
namely, the language consisting of all RA 4+ new + loop programs followed
by a semi-deterministic copy elimination step. Of course, this sublanguage
is highly artificial.

5 Counting semi-deterministically

In this section, we show that every polynomial-time counting query can be
computed efficiently in a semi-deterministic manner. For clarity, we will only
consider deterministic queries in this section. So whenever we use the term
query, we will mean deterministic query.

Before coming to the point, we define an intuitive notion of efficiency
for programs. There is an obvious implementation of TL programs by non-
deterministic Turing machines. We say that a TL program is efficient if its
thus associated Turing machine is polynomial-time.

5.1 Problem statement

There are queries that are computationally simple, but not expressible in
RA + loop. The most important class of such queries are those involving
counting. A simple example in this class is the boolean parity query: Given
input instance [, is the cardinality of adom(I) even? Most queries involving
counting cannot be expressed in RA 4 loop because RA + loop has a 0-1 law
[20].

It is well-known [3] that using non-determinism, more deterministic
queries can be expressed. Concretely, every polynomial-time computable
query is expressible by an efficient RA + W + loop program. This result can
be best understood in terms of ordered databases. Ordered databases are
databases equipped with a special binary relation containing a linear order
of the active domain. It is well-known that every polynomial-time com-
putable query is expressible, on ordered databases, by an efficient program
in RA + loop [3]. Hence, to express an arbitrary polynomial-time query
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in RA + W + loop, it suffices to be able to construct an ordered list of the
active domain, which can be done easily by repeatedly choosing elements. In
particular, the counting queries can be expressed efficiently in this manner.

A non-deterministic program which generates an arbitrary ordered list of
the input database is not semi-deterministic in general: only for completely
symmetric databases it is true that any two such lists can be mapped into
each other by an automorphism. However, in order to express counting
queries, construct an ordering of the entire database domain is not really
needed. It is sufficient to generate, for each fragment of the database that has
to be counted, a list of new objects whose length is equal to the cardinality
of the fragment. These new objects are “witnesses” for the fragment to be
counted, and whether we count the original fragment or the thus constructed
witness list clearly does not matter. Furthermore, a configuration of witness
lists can be computed by an efficient TL program, and this program is semi-
deterministic, intuitively since any two configurations of witness lists are
determinate copies of each other.

So, the purpose of this section is to prove formally that the intuition
just expressed is correct, i.e., that every counting query can be expressed
efficiently by a semi-deterministic TL program. The qualification efficiently
is crucial, since otherwise the claim would be trivial. Indeed, we mentioned
in Section 4 that RA + new + loop (or, for that matter, detTL) being a
sublanguage of TL can already express all deterministic queries, in particular
the counting queries. And, RA + new + loop programs are trivially semi-
deterministic. However, the counting queries are not efficiently expressible
in RA+new+loop. For example, it follows from results in generic complexity
[7] that there is no efficient RA + new + loop program expressing the parity

query.

5.2 Counting semi-deterministically

We still have to specify precisely what is the class of counting queries. A pre-
cisely defined extension of fixpoint logic with counting capabilities has been
introduced in [12, 13]. This approach, however, involves a two-sorted exten-
sion of the relational signature with a sort for natural numbers to express
the results of the counting operations. In our object-creating framework,
however, an essentially equivalent counting mechanism can be introduced
without at the same time introducing natural numbers as well, since a natu-
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Figure 1: An example of counting

ral number n can be represented by a linked list of newly created objects of
length n. This simply corresponds to writing the natural number in unary
notation. Before giving a formal definition, we illustrate this operation by
means of an example:

Example 5.1 Assume given a binary relation r, interpreted as a parent-
child relation. Suppose we want to count the number of children of each
parent. A uniform, generic way to do this would be to construct for each
parent a list of new objects, the length of which equals the number of his
children. This is done by applying the counting operation count to r. For
example, Figure 1 shows a relation r together with count(r). The Greek
letters are newly created objects.

In general, the counting operation is defined as follows:
Definition 5.2 Let S be a scheme, I € inst(S), and R € S with X C

{1,...,a(R)}. Let nx(I(R)) = {u1,...,u,}. Foreach ¢ =1,... p, define n;
as the cardinality of the set

{te I(R) | t|x = u;}.
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Then each possible result of countx(R) applied to [ is a relation of arity
| X |+ 2, of the form:

{ <u1,oz%,oz%>, cee <u17a71117a7111+1>

<up7 0/1?7 O‘227> LA <up7 agpv O‘Zp+1> }
where the ozé are different new objects not in adom([I).

The count operation is clearly determinate, and is readily implementable in
polynomial-time.

The counting application in Example 5.1 is formally an application of
county. Note that county(R) counts the total number of tuples in R. Note
also that the count operation contains the new operation as a singular case.

Indeed,
new(R) = Wl,...,a(R)+1COUWL...,a(R)(R)'

By extending RA + loop with the count operation, we obtain a language
which we denote by RA + loop + count. By the above remark and the
discussion in the previous subsection, this language has exactly the same
expressive power as RA + new + loop, but can express much more queries
efficiently. We will refer formally to the class of counting queries as consisting
of those queries expressed by an efficient RA + loop 4 count program.”

We now show:

Theorem 5.3 Fvery counting query is expressible by an efficient semi-
deterministic TL program.

Proof: We show how to express the count operation by an efficient semi-
deterministic TL program. It is sufficient to consider applications of the form
count1(R), where R is a binary relation (as in Example 5.1.) Indeed, if R
is not binary and we have to compute count x(R), then by two applications
of the new operation: new(rx(R)) and new(my . o(ry3—-x(£)), we can easily
construct, in the relational algebra, an encoding of R into a binary relation
which is equivalent for counting purposes. The following program computes

“This is not a syntactic definition. The usual approach to syntactically approximate
the efficient RA + loop programs is to give an inflationary semantics to the loops [3]. This
approach does not work in the presence of object creation.
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count1(R) in its answer relation A. (The relational calculus expressions oc-
curring in the program can easily be translated into the relational algebra

31)

R :=msnew(R) U new(m(R));
Cl = WQ(R/),
CQ = WQ(R/ — Cl),
A= {(u, 0, 8) | (u,a) € C1 and (u, B) € Ca};
Chosen := Cy U Cly;
loop |
C := Wy(R' — Chosen);
Chosen := Chosen U (;
A:=AU{(u,B,7) | (u,y) € C and Ja : (u,a, ) € A and

] -3 (u,8,7") € A};

Using the familiar parent-child terminology, the R’ relation defined in
the first assignment can be viewed as being obtained from the R relation
by replacing each child by a different, newly created object (and one more.)
The remainder of the program then simply orders these “witnesses” (recall
the discussion in the first subsection) into lists, as required by the definition
of count;(R). This is accomplished by initializing the lists to length 1, and
then completing them by repeatedly choosing the remaining witnesses and
appending them to the lists. Hence, the program is correct, and it is clearly
also efficient.

It remains to show that the program is semi-deterministic. Observe that
in R, any two witnesses of a common parent are logically interchangeable.
More precisely, for any two tuples (u, oq) and (u, a2) in R’, the transposition
(a1 az) is an automorphism of R’. ;jFrom this it follows immediately that
the first two applications of the Witness operation, in the second and third
statements of the program, are semi-deterministic. To show that the loop is
semi-deterministic, we similarly observe that before each application of the

assignment C' := Wy (R’ — Chosen), any two witnesses of a common parent
remaining in R’ — Chosen are logically interchangeable with respect to the
whole intermediate result of the computation at that moment. [ |

The class of counting queries includes a wide variety of useful queries. In
particular, it can be verified that every query expressible in the extension
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of fixpoint logic with counting defined in [12, 13] is a counting query in
our sense. Rather than proving this claim formally (which is tedious but
straightforward), we illustrate it in the remainder of this section.

For example, we can express all “global” boolean counting queries, such
as the parity query. This class of queries could be defined as follows. Let £ be
a relational algebra expression. Let F'(n) be a property of natural numbers
which can be decided by a Turing machine in polynomial time, given n in
unary notation. Then the boolean counting query associated with £ and
F yields True for an input instance [ iff F/(|E(I)]) is true. To express this
query efficiently and semi-deterministically, first compute county(F), which
produces an ordered list whose length equals the cardinality of E(I). Then
invoke the well-known fact [3] that every polynomial-time property of ordered
instances can be expressed efficiently in RA 4+ loop.

But we can express much more counting queries than the global boolean
ones. The result of a general application of the count operation can be
interpreted as a relation containing tuples having one entry whose value is a
natural number, encoded as a (unary) string. For example, the result relation
shown in Figure 1 can be interpreted as the relation

{{a, 1), (6,2), (¢, 3)}

By combining the results of different counting operations, we can also con-
struct relations with tuples having multiple entries with natural numbers as
values. For example, we can count the number of children of each parent
in one relation, and count the number of grandchildren of each parent in
another relation. These two relations can then be joined, yielding a rela-
tion containing, for each parent, the number of children and the number of
grandchildren.

One could now imagine a selection operation for relations containing nat-
ural numbers, based on an arbitrary k-ary property F(ni,...,ny) of natural
numbers computable by a polynomial-time Turing machine, given nq, ..., ng
in unary notation on k input tapes. An example with &k = 1 would be: Glive
all parents with an even number of children. In this case, F' would be the
property of being even. An example with & = 2 would be: Give all parents
having an equal number of children and grandchildren. In this case, I would
be the property of being equal. It is possible to show that these selection op-
erations are efficiently expressible in RA+/loop. Indeed, as already mentioned

29



above, one can simulate in RA + loop any polynomial-time Turing machine
operating on a unary string (actually, any string). The generalization to a
tuple of strings is straightforward. It finally suffices to run the simulations
in parallel for each tuple in the relation. The techniques required to do this
are straightforward adaptations of the basic simulation technique described

in [3].

6 Concluding remarks

1. We would like to have a better understanding of why semi-deterministic
computing is desirable, i.e., why it is important to express a query with
a semi-deterministic program instead of with just an arbitrarily non-
deterministic one. One of the most important characteristics of semi-
deterministic programs is that all possible computations behave similarly,
as illustrated by Theorem 3.13. This property could be crucial when having
to combine different parts of a non-deterministic program which have been
executed distributedly on different computers.

2. In Section 5 we have shown that every polynomial-time counting query
can be expressed by an efficient, semi-deterministic TL program. Can
we do better? More precisely, exactly which polynomial-time computable
queries can be thus expressed? In this respect, we point out that on the
class of rigid instances (i.e., having no non-trivial automorphisms), fixpoint

8 On rigid structures, semi-

logic is strictly weaker than polynomial time.
deterministic choices among elements are impossible. This strongly indicates
that not all the polynomial-time computable queries will be expressible by

an efficient, semi-deterministic TL program.

3. In the present paper, we have focused on object creation in function of
tuples (the new operation.) Object creation in function of sets has also been
considered in the literature; a simple and uniform operation providing this
functionality is the abstraction operation [16, 24]. One among the many
equivalent ways to define this operation is as follows. Let I € inst(S), and
R € S with a(R) = 2. If the binary relation I(R) is not an equivalence rela-
tion, then the application of abstr(R) to I is undefined. Otherwise, assume

8This is because fixpoint logic has a 0-1 law [20], and almost all instances are rigid.
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Z1, ..., 2 1s an enumeration of the equivalence classes, and let aq,...a; be
distinct new objects not in adom([). Then the binary relation

{{0,0;) | 0 € adom(I(R)) and [o] = Z;}

is the result of abstr(R) applied to I. ([o] denotes o’s equivalence class.) So,
while new tags tuples, abstr tags sets.

Using abstraction, it seems that more queries can be expressed effi-
ciently and semi-deterministically. For example, consider the following semi-
deterministic query: given an equivalence relation R, choose for each equiv-
alence class one representative. We conjecture that this query is not ex-
pressible by an efficient semi-deterministic TL program. It can however be
expressed, efficiently and semi-deterministically, by the following simple pro-

gram in RA + W + abstr:

C := Wiabstr(R);
A= my(C).

By Theorem 4.7, abstraction is of course semi-deterministically expressible
in TL, but, we conjecture, not efficiently so. We point out that abstraction
is not expressible in RA + new 4+ loop [24].

4. Not every TL program is semi-deterministic or expresses a semi-
deterministic query. TL programs are in general not semi-deterministic,
and even more, in general do not express a semi-deterministic query. An
important issue that has not been considered in the present paper is the de-
sign of (preferably efficient) query languages that are guaranteed to express
semi-deterministic queries. In investigating this problem, one might take in-
spiration from the semi-deterministic counting program of Theorem 5.3. A
semi-deterministic operation which is implicit in this program is what could
be called swap-choice: the choice of one representative for each equivalence
class of objects that are logically interchangeable. Swap-choice has been stud-
ied in [15], where it was shown that swap-choice and the count operation are
polynomial-time equivalent within RA + new + loop.

5. In the present paper, we have focused on queries. In [26], we have
conducted an initial study on semi-determinism in the context of arbitrary
database transformations, including updates. The preliminary conclusion
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of this study was that there seems to be a fundamental difference between
queries and updates in this respect. Several soundness problems arise and
it remains to be seen whether semi-determinism is compatible at all with
updates.
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