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Abstract

Information extraction (IE) aims at extracting spe-
cific information from a collection of documents.
A lot of previous work on IE from semi-structured
documents (in XML or HTML) uses learning tech-
niques based on strings. Some recent work con-
verts the document to a ranked tree and uses tree
automaton induction. This paper introduces an al-
gorithm that uses unranked trees to induce an auto-
maton. Experiments show that this gives the best
results obtained so far for IE from semi-structured
documents based on learning.

1 Introduction
Information extraction aims at extracting specific information
from a collection of documents. One can distinguish between
IE from unstructured and from (semi-) structured texts [Mus-
lea, 1999]. Extracting information from web documents be-
longs to the latter category and gains importance [Levy et al.,
1998]. These documents are not written in natural language,
but rather involve explicit annotations such as HTML/XML
tags to convey the structure of the information, making the
methods tuned towards natural language unusable.

While special query languages exist [Bry and Schaffert,
2002; XQL, 2002], their use is time consuming and re-
quires nontrivial skill. As argued in [Muslea et al., 2001;
Kushmerick, 2000], there is a need for systems that learn to
extract information from a few annotated examples (wrap-
per induction). Several machine learning techniques for in-
ducing wrappers have been proposed. Examples are multi-
strategy approaches [Freitag, 2000] and various grammatical
inference techniques that induce a kind of delimiter-based
patterns [Muslea et al., 2001; Freitag and McCallum, 1999;
Freitag and Kushmerick, 2000; Soderland, 1999; Freitag,
1997; Hsu and Dung, 1998; Chidlovskii et al., 2000]. All
these methods treat the document as a string of characters.

Structured documents such as HTML and XML docu-
ments, however, have an explicit tree structure. In [Kosala
et al., 2002b; 2002a], it is argued that one can better exploit
this tree structure and use tree automata [Comon et al., 1999].
The document tree is converted in a ranked binary tree and � -
testable tree automata [Rico-Juan et al., 2000] are induced
and then used for the extraction task. Typically in a IE task

from structured documents, there is some structural context
close to the target. After linearisation in a string, this context
can be arbitrarily far away, making the learning task very dif-
ficult for string based methods. While binarisation may also
increase the distance between the context and the target, they
remain closer, and the learning task should be easier. This
is confirmed by the experiments in [Kosala et al., 2002b;
2002a]. If distance between the relevant context and the
target is indeed a main factor determining the ability to
learn an appropriate automaton, then an algorithm inducing
a wrapper directly from the unranked tree should perform
even better. This path is pursued in the current paper. As
in [Kosala et al., 2002b; 2002a] user intervention is lim-
ited to annotating the field to be extracted in a few rep-
resentative examples. String based methods require sub-
stantially more user intervention, such as splitting the doc-
ument into small fragments, and selecting some of them
for use as a training example, e.g. [Soderland, 1999]; the
manual specification of the length of a window for the pre-
fix, suffix and target fragments [Freitag and McCallum, 1999;
Freitag and Kushmerick, 2000], and of the special tokens or
landmarks such as “ � ” or “;” [Freitag and Kushmerick, 2000;
Muslea et al., 2001].

The rest of the paper is organized as follows. Section 2
provides some background on unranked tree automata and
their use for IE. Section 3 describes our methodology and
introduces our unranked tree inference algorithm. Results are
described in Section 4, related work in Section 5. Section 6
concludes.

2 Preliminaries
Grammatical inference and information extraction.
Grammatical inference (also called automata induction,
grammar induction, or automatic language acquisition) refers
to the process of learning rules from a set of labeled ex-
amples. The target domain is a formal language (a set of
strings over some alphabet � ) and the hypothesis space is
a family of grammars. The inference process aims at find-
ing a minimum automaton (the canonical automaton) that is
compatible with the examples. There is a large body of work
on grammar induction, for a survey see e.g. [Murphy, 1996;
Parekh and Honavar, 1998].

In grammar induction, we have a finite alphabet � and a
formal language �	�
��� . Given a set of examples in � ( �� )



and a (possibly empty) set of examples not in � ( �� ), the
task is to infer a deterministic finite automaton (DFA) that ac-
cepts the examples in �� and rejects those in �� . In [Freitag,
1997], an IE task is mapped into a grammar induction task.
A document is converted into a sequence of tokens (from � ).
Examples are transformed by replacing the token to be ex-
tracted by the special token � . Then a DFA is inferred that
accepts all the transformed examples. In our case, a docu-
ment is converted into a tree and the token to be extracted (at
a leaf) is replaced by the special token � . Then a tree auto-
maton is inferred that accepts all the transformed examples.
When using the learned automaton, a similar transformation
is done. Each token that is a candidate for extraction is in
turn replaced by � . The token replaced by � is extracted iff
the transformed document is accepted by the automaton.

Unranked tree automata. Some existing algorithms for
string automaton induction have been upgraded to ranked tree
automaton induction (e.g. [Rico-Juan et al., 2000; Abe and
Mamitsuka, 1997])1. By converting documents (which are
unranked) into binary trees (which are ranked), tree auto-
maton induction can be used for IE as shown in [Kosala et
al., 2002b]. The present work avoids binarisation and uses
unranked trees. Unranked tree automata have been studied
since the late 60’s, see e.g. [Brüggemann-Klein et al., 2001]
for a survey. To our knowledge, algorithms for inducing them
do not yet exist. This paper is a first step in this direction.

An unranked label is a label with a variable rank (arity).
Thus the number of children is not fixed by the label. Given
a set � of labels in an unranked alphabet, we can define ��� ,
the set of all (unranked) trees, as follows:��� is a tree where ��� � .�������! #"%$&$%$&"'��(*) is a tree, where �+� � and each �-, is a

tree.
An unranked tree automaton (UTA) is a quadruple

( � "/.0"213"54  ), where � is a set of unranked labels, . is a
finite set of states, 4 6� . is a set of final (accepting) states,
and 1 is a set of transitions where each transition is of the
form 7 �98:)<;>= , where 7 � � , =	�?. , and 8 is a regular
expression over . .

A bottom up UTA processes trees bottom up. When a leaf
node is labeled 7 and there is a transition 7 �98:)@;A= such that8 matches the empty string, then the node is assigned state= . When an internal node is labeled 7 , its children have been
assigned states =# :"&$%$&$&"2=&( , and there is a transition 7 �98:)�;B=
such that the string =  "&$%$&$&"2= ( matches the regular expression8 , then the node is assigned state = . A tree is accepted if the
state of its root is assigned an accepting state =C�D4  .

3 Approach and algorithm
Preprocessing. Fig. 1 shows a representative task. For
dealing with text nodes, we follow the approach described
in [Kosala et al., 2002b]: we replace most text nodes by
CDATA2, making an exception for so-called distinguishing
context, specific text that is useful for the identification of the

1Ranked: the label determines the number of children.
2See Fig. 2 for an example.

field of interest. E.g., the text ”Organization:” may be relev-
ant for the extraction, hence this text should not be changed
into CDATA. In each data set, at most one text field is identi-
fied as distinguishing context. It is found automatically using
the approach described in [Kosala et al., 2002b].

Figure 1: The fields to be extracted are the fields following
the Alt.Name and Organization fields. A document
consists of a variable number of records. The number of oc-
currences of the fields to be extracted is variable (from zero
to many). Also the position is not fixed.
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Figure 2: The left figure is an HTML tree. The right one is
the same tree after abstracting the text nodes

Approach. Our approach for information extraction has the
following characteristics:� Strings stored at the text nodes are treated as single la-

bels. If extracted, the whole string is returned.� One automaton is learned for one type of field to be ex-
tracted, e.g., the field following “Organization”.� In examples used during learning, one target field (a text
node) is replaced by � . A document gives rise to several
examples when several targets occur.

The learning phase proceeds as follows:� Replace in the examples the target by “ � ”, the distin-
guishing context(s) (if present) by “ EGFH� ” and all other
text fields by CDATA.� Map examples to trees and learn a tree automaton.

The extraction phase repeats for all candidate targets:� Map the document to a tree and replace the candidate
target by “ � ”, the distinguishing context(s) (if present)
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by “ EGFH� ” and all other text fields by CDATA.� Run the tree automaton; if the tree is accepted, then out-
put the original text of the node labeled with � .

3.1 Local unranked tree automaton inference
algorithm

Preliminaries. A partition of a set  is a set of dis-
joint nonempty subsets of  such that the union of
the subsets is  . The height of a tree is defined
as: I 8KJML INF � 7 )PO Q and I 8KJRL INF � 7 � F  #"&$&$%$&" F (S)')TO QDU
max � I 8KJML ISF � F  )G"%$&$%$&" I 8KJML INF � F ( )') . If F OWV5� F  "&$%$&$&" F ( ) then
the F , are called subtrees of F , and subtrees of F , are also sub-
trees of F . When a tree F is ”cut off” at level � , this means all
subtrees at level � become leaves. Thus the height of the cut-
off tree can be at most � . Given a tree F , the set of roots XZY � F )
is the singleton containing F cut off at � ; the set of forks [\Y � F )
contains all subtrees of F of height at least � , cut off at � ; and
the set of subtrees ] Y � F ) contains all subtrees of F of height at
most � . Roughly, these sets respectively collect all subtrees
of height � at the top, in the middle, and at the bottom of F .
See [Rico-Juan et al., 2000] for a formal definition.

Example 1 Let F O^���M_:�9���R_:" � )5)G" E ) then X  Z� F )`O a#�cb ,[:d � F )�OeaK���R_#" E )G"/_:�9�*)f"5���R_#" � )Gb , and ]  � F )�Oga#_#" � " E b .

Algorithm 1 Local unranked tree inference algorithm
Input: Positive examples (set h ) and an integer i:j�kml .
Output: An unranked tree automaton n9oqpsrtpsuvpsw�x!y .
1: w�x3z|{
z|}~z�� ;
2: for each ���Ch do
3: ���*z��5�%�S�Z�G�&� �����2�f���#n��sy
4: {
z|{m���&�Kn�� � y % 2-forks
5: }�z|}��0�K�Gn�� � y % 1-subtrees
6: w�x3z�w�x��v� � n�����y % 1-root
7: end for
8: r+z�w�x����f� � n9�*y/� �0��{�� �¡}
9: u¢z6�G�*n�£'y¥¤`�S� �v�¡}��

10: ¦mzD§¨�Z�f��©���©��&�qn�{ty
11: for each n��¨p'xª�M�#y¥�0¦ do
12: if �tzm�%« and the length of the shortest string in xª�M�¬kz6i:j

then
13: �@z�i �5�%�*�H�G®¯�M°¨���Mn�i#jfp'xª���Ky % a DFA
14: else if �±z��%« then
15: �@z�i �5�%�*�H�G®¯�M°¨���Mn9²Zpsx��M�#y % a DFA
16: else
17: �@zm³ % accepts any sequence
18: end if
19: u¢z�u��0�G�*n��&yq¤´�\�
20: end for

The algorithm. We have designed a procedure, which is
shown in Algorithm 1, to learn an unranked tree automaton
from a set µ of positive examples. The inferred automaton is
“local” in the sense that it identifies a tree with its ¶ -forks as
defined above. Note that DTDs for XML do the same [Murata
et al., 2001]. In addition to the input µ , it takes as additional
parameter a positive integer �¨·0� Q , which is the parameter
for the k contextual subroutine that it calls.

In a first for-loop, our algorithm collects all 2-forks, 1-
subtrees and 1-roots. The latter become final states. However,

before these steps, the node labels of each input tree F are re-
written using the function Ef¸#¹-7 8 X#F V9�*_G8#V ] � F ) . This function
(Algorithm 2) rewrites node labels. The label 7 of the root of
a subtree is changed into 7�º if that subtree contains a “ � ” and
into 7 ·M»�º if that subtree contains a “ EGFH� ”. The effect is that the
special labels are remembered up to the root3.

Algorithm 2 convert labels( F )
Input: A tree �qz��*n�� � pG¼/¼/¼/pM�H½\y .
Output: A tree � �
1: � � � z��2�&�N�Z�G�f� ���Z�/�f���#n��2�Hy5p/¼/¼/¼GpM� � ½ z��5�%�S�Z�G�&� �����2�f���#n�� ½ y
2: if ¾�©q¿%� �À has label � « or ® then
3: � � z��%«¯n�� � � p2¼/¼/¼/p�� � ½ y
4: else if ¾�©!¿K� �À has label � j�Á�« or �5��® then
5: � � z��&j�Á�«\n�� � � p/¼G¼2¼/p�� � ½ y
6: else
7: � � z|�
8: end if

Algorithm 3 k contextual( � "  FHX )
Input: An integer ivkml and set of strings xª��� over Â
Output: A i -contextual DFA n9Âpsrtp'u¡psw�x!y .
1: r+z�w�x�zmuÃz�� ;
2: Ämzm�%Å¬Æ&Ç � �fÅ�� �È�Éxª���&p'ÅËÊ��Â��
3: Ì@�%�ZÍÉ��zm�%�:� � is a substring of °ªps°0��Ä�pf� �:�Kz�i¯�
4: for each Î��ÉÌ@�%�ZÍ0� do
5: Let Î¬z�°¨� with � °-�#z+l and � �S�Kz�i±ÏÐl
6: r+z�rÐ�É�f�\�
7: if �±z��:��Å then
8: w�x<z�w�x����f�\�
9: end if

10: u¢z�u��0�G°¨�¬¤´�\�
11: end for

Next, the states are collected (the 1-root, the 1-subtrees,
and the 1-roots of the forks) in . , the transitions are initial-
ized with one transition for each 1-subtree and the 2-forks
are partitioned according to the label of the forks’ root. The
latter results in a set of pairs � 7 "  FHX ) with  FHX a set of se-
quences, each sequence being the children of a fork. E.g.,aK�ª"&a¯�R_:" E )f"%�R_:" E " E )/b\b represents two forks with root label � .

In the second for-loop, the k contextual algorithm (Al-
gorithm 3) [Muggleton, 1990; Ahonen, 1996] is used to learn
a deterministic finite automaton (DFA) that can be used as the
representation of the regular expressions 8 to be used in the
transitions 7 �98:);A= of the UTA. As an illustration, consider
an input string �¨_ for � OeÑ . The value of Ò is Ó0Ó �*_ Ó and
one obtains 4  OÔa#_ Ó b and 1ÕOÔa Ó0Ó ��; Ó �ª" Ó �*_�;�*_#"5�*_ Ó ;Ö_ Ó b , where Ó is a distinguished label that is not
in � . It is capable of identifying in the limit any � -contextual
string automaton, a subset of the finite automata, from posit-
ive examples only. In principle, we could use any string auto-
maton inference algorithm for this purpose (see e.g. [Murphy,
1996; Parekh and Honavar, 1998] for others). We choose
the k contextual algorithm because it is efficient, simple, and
works well in practice.

3As a result, the tree automaton is not purely local.
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An element � 7 "  FHX ) of the partition gives all positive ex-
amples for a particular label 7 . The regular expression 8 cap-
tures the regularity in these examples (the document content
model in XML terminology). To obtain sufficient generaliz-
ation, we decided, after some experimentation, to distinguish
three cases. If all children of a 7 º node are long enough,
we construct a DFA using the � -contextual algorithm with� -value �¯· , otherwise with value 2. For other labels (either
a 7 ·M»�º label or an original label), we ignore the content of
the children and accept any sequence (the regular expression
“ × ”).

Using a result of [Muggleton, 1990], it is quite straight-
forward to make an incremental version of Algorithm 1. We
omit it here due to lack of space. Using a basic result of
[Angluin, 1980], we can prove:

Theorem 1 Every unranked tree language that is definable
by a local unranked tree automaton with � -contextual regular
expressions is identifiable in the limit, from positive examples
only, by our algorithm.

Example 2 Applying the Algorithm 1 on the tree of Ex-
ample 1 for �¯· O ¶ , we obtain:Ø � � z��\«\n��/«\n���«¯n��&pH®SyHy5pM�GyØ � � n�� � y!zm�f� « �Ø {
z��&�Kn�� � y!z6�G��«¯n��/«\p��Gy5p��2«¯n���«#y5pª�\«\n��%pH®Sys�Ø }~z�� � n�� � y!zm�f�&p-®ªpc�f� .Ø w�x3z6�G� « �Ø r6zm�f��«\p��2«\p��&p�®ªpc�f�Ø ¦¬lzm�f� « p'�Zn�� « pH�Gy5pfn��&p�®Sys�%�Ø ¦�²�zm�f�2«\p5�:n��\«#ys�K�Ø|Ù w�Ú�lË¿ÛuÜzÝ�%Å¡ps�2«W¤ �2«\Þ¡�/«\p��g¤ �%Þ¡�%p5Åß¤Å¡Þ¥Å¡pH�È¤Ô�&Þ-�%ps®0¤Ô®cÞ-®ªp'Åe¤àÅ�� , ráz	�f� « p��%p'Å¡p��%pH®N� ,w�x3zm�&Å�� .Ø|Ù w�Ú@²�¿¯u
z¢�%Å¡p�� « ¤T� « Þ-� « p'Åá¤âÅ�� , r¢z	�f� « p'Å�� ,w�x3zm�&Å�� .Ø transitions:Ø �@��}Ð¿#�Kn�£'y!¤´�Ø ®0�C}�¿K®�n�£'y-¤´®Ø �È�C}�¿%�Kn�£'yq¤´�Ø ¦¬l�¿K��«¯n Ù w�Ú�lfy!¤´��«Ø ¦�²±¿K�2«¯n Ù w�ÚÈ²%yq¤`�/«
4 Experimental results
We evaluated our method on two semi-structured data
sets commonly used in IE research (available online from
http://www.isi.edu/˜muslea/RISE/): a collection of web pages
containing people’s contact addresses (the Internet Address
Finder (IAF) database) and a collection of web pages about
stock quotes (the Quote Server (QS) database). For each
dataset, there are two tasks; they are the extraction of al-
ternative and organization fields in the IAF dataset and of
the date and volume fields in the QS dataset. Each data-
set consists of 10 documents. The number of fields to be
extracted is respectively 94 (IAF-organization), 12 (IAF-
alt.name), 24 (QS-date), and 25 (QS-vol). We choose these
datasets because they are benchmark datasets that are com-
monly used for research in IE; hence they allow us to com-
pare results. In order to provide a close comparison, we
use the same train and test splits as in [Freitag and Kush-
merick, 2000]. In addition, they require the extraction of a
whole leaf node (our algorithms are designed for that task).

Moreover, the results obtained so far [Muslea et al., 1999;
Hsu and Chang, 1999] indicate that they are difficult tasks. In
fact one of the authors in [Muslea et al., 1999] has tried to
build a hand-crafted extractor given all available documents
from the QS dataset and achieved only 88% accuracy (or re-
call in our criteria below). We also test our method on a signi-
ficantly reduced Shakespeare XML dataset (available online
from http://www.ibiblio.org/bosak/). We use the same train-
ing and test set as in [Kosala et al., 2002b]. The task on this
dataset is to extract the second scene from one act in a partic-
ular play.

We apply the commonly used criteria of IE research for
evaluating our method. Precision ã is the number of cor-
rectly extracted objects divided by the total number of extrac-
tions, while recall ä is the number of correct extractions di-
vided by the total number of objects present in the answer
template. The F1 score is defined as ¶�ã�ä�å � ã U ä ) , the
harmonic mean of ã and ä . Table 1 shows the results we
obtained as well as those obtained by some current state-of-
the-art string-based methods: an algorithm based on Hidden
Markov Models (HMMs) [Freitag and McCallum, 1999], the
Stalker wrapper induction algorithm [Muslea et al., 2001] and
BWI [Freitag and Kushmerick, 2000]. We also include the
results of the � -testable algorithm in [Kosala et al., 2002b]
which works on ranked trees. The results of HMM, Stalker
and BWI are taken from [Freitag and Kushmerick, 2000]. All
tests are performed with 10-fold cross validation following
the splits used in [Freitag and Kushmerick, 2000], except in
the small Shakespeare dataset which uses 2-fold cross valida-
tion. Each split has 5 documents for training and 5 for testing.
We refer to Section 5 for a description of these methods.

Table 1 shows the best results of the unranked method with
a certain �¯· (cross-validation on one fold of 50% random
training and test examples.) As can be seen, our method is
the only one giving optimal results.

Table 2 shows the value of � and � · used respectively
by the � -testable and the unranked algorithm. It is well-
known that when learning from positive examples only, there
is a problem of over-generalization. Our algorithm re-
quires a cross-validation on the value of � · to avoid over-
generalization.

Algorithm 1 runs in time O( EG¹ ), where ¹ is the total num-
ber of nodes in the training examples and E is a constant. It
takes an average time between 19 and 26 ms in a 1.7 Ghz
Pentium 4 PC for Algorithm 1 to learn an example in the IAF
and QS datasets.

5 Related work
The IE work for (semi-) structured texts can be divided into
systems built manually using a knowledge engineering ap-
proach, e.g. [Hammer et al., 1997] and systems built (semi-)
automatically using machine learning techniques or other al-
gorithms. The latter are called wrapper induction methods.
We briefly survey them.

The three systems referred to in Table 1 learn wrappers
based on regular expressions. BWI [Freitag and Kushmerick,
2000] uses a boosting approach in which the weak learner
learns a simple regular expression with high precision but low
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Table 1: Comparison of the results
IAF - alt.name IAF - organization QS - date QS - volume Small Shakespeare

Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1
HMM 1.7 90 3.4 16.8 89.7 28.4 36.3 100 53.3 18.4 96.2 30.9 - - -
Stalker 100 - - 48.0 - - 0 - - 0 - - - - -
BWI 90.9 43.5 58.8 77.5 45.9 57.7 100 100 100 100 61.9 76.5 - - -i -testable 100 73.9 85 100 57.9 73.3 100 60.5 75.4 100 73.6 84.8 56.2 90 69.2

unranked 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Table 2: Parameters used for the experiments
IAF - alt.name IAF - org. QS - date QS - volume Small Shakespearei -testable ( i ) 4 4 2 5 3

unranked ( i j ) 2 2 2 7 3

recall. The HMM approach [Freitag and McCallum, 1999]
learns a hidden Markov model; it solves the problem of es-
timating probabilities from sparse data by using a statistical
technique called shrinkage. This model has been shown to
achieve state-of-the-art performance on a range of IE tasks.
Stalker [Muslea et al., 2001] induces extraction rules that
are expressed as simple landmark grammars, a class of fi-
nite automata; it performs hierarchical extraction guided by a
manually built embedded catalog tree that describes the struc-
ture of the fields to be extracted.

Several techniques based on naive-Bayes, two regular lan-
guage inference algorithms, and their combinations for IE
from unstructured texts are described in [Freitag, 1997].
WHISK [Soderland, 1999] learns extraction rules based on
a form of regular expression patterns with a top-down rule in-
duction technique. [Chidlovskii et al., 2000] describe an in-
cremental grammar induction approach; they use a subclass
of deterministic finite automata that do not contain cyclic pat-
terns. The SoftMealy system [Hsu and Dung, 1998] learns
separators that identify the boundaries of the fields of interest.
[Hsu and Chang, 1999] propose two classes of SoftMealy ex-
tractors: single pass, which is biased for tabular documents
such as QS data (they reach up to 97% recall), and multi
pass, which is biased for tagged-list document such as IAF
data (they reach up to 57% recall). We cannot really compare
results because the experimental setting is different.

All above methods use algorithms for learning string lan-
guages and require some manual intervention. HMMs and
BWI require to specify a window length for the prefix, suffix
and the target fragments. Stalker and BWI require to spe-
cify special tokens or landmarks such as “ � ” or “;”. Soft-
Mealy extractors in [Hsu and Chang, 1999] requires to choose
between single and multi pass bias.

In [Kosala et al., 2002b], the document is converted in a
ranked (binary) tree and an algorithm is used that induces a� -testable tree automaton. However, as binarisation increases
the distance between target and distinguishing context, large� are needed and the resulting automaton is precise but does
not generalize enough (Table 1). In [Kosala et al., 2002a],
the same authors generalize the obtained automaton by se-
lectively introducing wild-card labels. This gives some mod-
est improvement in recall but does not solve the problem. Our
unranked tree automaton induction algorithm does.

The most apparent limitation of our method is that it can
only output a whole text node. To overcome this, it could be
extended with a second step where string based methods are
used to extract part of the text node. For example, to extract
the substring “the web” from the whole string “Data on the
web” (Fig. 2). Another limitation is that our method only
output a single field (slot) in one run.

Finally, a disadvantage that is not apparent from the res-
ults reported above, is that when the identification of target
fields does not require dependencies between nodes in the tree
but can rely on a local pattern (e.g., the field to be extracted
is always surrounded by specific delimiters), our tree based
method needs more examples to learn the same extraction
rule as methods that automatically focus on local patterns. In-
tuitively, more variations in further-away nodes need to be ob-
served before these variations are considered irrelevant. This
is simply an instance of the well-known trade-off between the
generality of a hypothesis space and the efficiency with which
the correct hypothesis can be extracted from it.

Some other approaches that exploit the structure of the doc-
uments are: WL d [Cohen et al., 2002], a logic-based wrapper
learner that uses multiple (string, tree, visual, and geometric)
representations of the HTML documents. In fact, WL d is able
to extract all four tasks in the IAF and QS datasets with 100%
recall; and wrappers [Sakamoto et al., 2002] that identify a
field with a path from root to leaf, imposing conditions on
each node in the path.

6 Conclusion

We have presented an algorithm for the inference of a local
unranked tree automaton with � -contextual regular expres-
sions and have shown that it can be used for IE from struc-
tured documents. Our results confirm the claim of [Kosala et
al., 2002b] that utilizing the tree structure of the documents is
worthwhile for structured IE tasks. Whereas the latter work
transforms the positive examples into binary ranked trees, we
use them directly as unranked trees. Our results are optimal
for the previously considered benchmarks, substantially im-
proving upon the published results of other string and tree
based methods and are a strong indication that unranked tree
automata are much better suited than ranked ones for struc-
tured IE tasks.
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Possible future work includes experiments with larger and
more difficult datasets, adapting tree automata for multi slot
extraction in one run, and a more formal analysis of the al-
gorithm.
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