Information Extraction from Structured Documents

using k-testable Tree Automaton Inference

Raymond Kosala, Hendrik Blockeel, Maurice Bruynooghe
Katholieke Universiteit Leuven
Dept. of Computer Science
Celestijnenlaan 200A
B-3001 Leuven, Belgium

{raymond,maurice,hendrik }@cs.kuleuven.ac.be

Jan Van den Bussche
Limburgs Universitair Centrum
Department WNI
Universitaire Campus
B-3590 Diepenbeek, Belgium

jan.vandenbussche@luc.ac.be

Abstract

Information extraction (IE) addresses the problem of extracting specific inform-

1 INTRODUCTION 2

ation from a collection of documents. Much of the previous work on IE from struc-
tured documents, such as HTML or XML, uses learning techniques that are based
on strings, such as finite automata induction. This paper explores methods that
exploit the tree structure of the documents. In particular, our method infers a k-
testable tree automaton from a small set of annotated examples and explores various
ways to generalize the inferred automaton. Experimental results on the benchmark

data sets show that our approach compares favorably to the previous approaches.

1 Introduction

Information extraction (IE) addresses the problem of extracting specific information from
a collection of documents. Basically work on IE can be classified into three categories:
IE from unstructured texts, IE from semi-structured texts and IE from structured texts
[51]. Classical or traditional IE tasks from unstructured natural language texts typically
use various forms of linguistic pre-processing. An example domain, which is a task invest-
igated in the Sixth Message Understanding Conference (MUC-6) [37], is “Management
Succession”. Given an article, the tasks are to extract the name of the new company
officers or the old officers, the company name, and the position title succeeded. IE from
semi-structured texts arises from the need to extract, for example a date field from online
advertisements or announcements. Semi-structured texts typically use ungrammatical
language. It requires a non-linguistic approach to extract information from such docu-
ments.

With the increasing popularity of the World Wide Web (Web) as a medium for dis-

seminating information and the work on Web information integration [35, 55], there is

1 INTRODUCTION 3

a need for IE systems that support the extraction of information from Web documents.
Many documents from the Web, which are stored as HTML and/or XML documents, are
structured. These documents rely on non-linguistic structures, such as HTML/XML tags,
and sometimes use ungrammatical language to convey information, making the methods
appropriate for grammatical text unusable.

While there are several query languages supporting the extraction of information from
web data [5, 57], their use is time consuming and requires nontrivial skill. As argued
for example in [41, 33|, there is a need for systems that can learn to extract information
from a few annotated examples. The reason is that building IE systems manually is
not feasible and scalable for such a dynamic and diverse medium as the Web. The
problem, also known as wrapper induction, has already been addressed by several authors.
Several machine learning techniques for inducing wrappers have been proposed such as
rule learning algorithms, e.g., [17], and multi-strategy approaches [18]. In [41, 20, 19, 51,
16, 27, 10] grammatical inference techniques are used to induce a kind of delimiter-based
patterns.

These methods consider the document as a string. However, structured documents
such as HTML and XML documents have a tree structure. Therefore it is natural to
explore the use of tree automata for IE from structured documents. Indeed, tree automata
are well-established and natural tools for processing trees [14]. An advantage of using the
more expressive tree formalism is that the extracted field can depend on its structural
context in a document. A structural context that is close to the target field in the
tree structure of the document can be arbitrarily far away in the string representing the
document, making the learning task very difficult and resulting in wrappers with rather

poor performance.

1 INTRODUCTION 4

The current paper develops a novel wrapper induction method that utilizes the tree
structure of the document. Accordingly, it uses tree automata as wrappers. Recent work
by Gottlob and Koch [23] shows that all existing wrapper languages for structured docu-
ment [E can be captured using tree automata. This result provides a strong justification
for the use of tree automata instead of string automata.

We will use the k-testable tree automaton inference algorithm [46], an algorithm for
grammatical inference that is able to identify in the limit [22] any k-testable tree language
(in the strict sense) from positive examples only. Informally, a k-testable tree language
is a language that can be determined just by looking at all the subtrees of length k. The
amount of generalization occurring when learning from the positive examples of the k-
testable tree algorithm is mainly determined by the value of £; it decreases with increasing
k. It is an algorithm for ranked trees, while documents are unranked trees. The simplest
way to apply the algorithm is to convert web documents into (ranked) binary trees. As
the extraction is based on some structural context, £ must be large enough such that the
field to be extracted and its structural context are covered in the same subtree. Because
of the binarisation, the value of k£ needed for capturing the structural (or distinguishing)
context tends to be rather large. Consequently, the generalization tends to be rather low,
often resulting in rather poor recall (as we reported in [31]).

To overcome this problem, we have experimented with two generalizations of the k-
testable algorithm, namely, the g-testable and gl-testable algorithms. In the g-testable
algorithm [29], the generalization is parameterized by [. It considers generalizations of
states (which are trees) where the state labels at the lowest [levels are replaced by
wildcards. The gl-algorithm, which is introduced in this paper, considers another gener-

alization and uses the partial order between different generalizations to limit the search.

2 PRELIMINARIES 2

Experiments show that these generalizations improve the performance of the induced
wrappers.

Not only does our method exploit the tree structure, it also requires very little user
intervention. The user only has to annotate the field to be extracted in a few representative
examples. Previous approaches required substantially more user intervention such as
splitting the document in small fragments, and selecting some of them for use as a training
example, e.g., [51]; the manual specification of the length of a window for the prefix, suffix
and target fragments [20, 19], and of the special tokens or landmarks such as “>” or *;”
(19, 41].

Preliminary version of parts of this article appeared in conference proceedings (k-
testable algorithm [31], g-testable algorithm [29]).

The rest of the paper is organized as follows. Section 2 provides some background on
tree automata and their use for IE. Section 3 describes our methodology, the k-testable
algorithm and its generalisations: the g-testable and gl-testable algorithms. Experimental

setting and results are described in Section 4 and related work in Section 5. In Section 6

we conclude by summarizing the contributions of this paper.

2 Preliminaries

2.1 Grammatical inference

Grammatical inference refers to the process of learning rules from a set of labeled ex-
amples. It belongs to a class of inductive inference problems [2] in which the target
domain is a formal language (a set of strings over some alphabet ¥) and the hypothesis

space is a family of grammars. It is also often referred to as automata induction, gram-

2 PRELIMINARIES 6

mar induction, or automatic language acquisition. It is a well-established research field in
AT that goes back to Gold’s work [22]. The inference process aims at finding a minimum
automaton (the canonical automaton) that is compatible with the examples. The compat-
ibility with the examples depends on the applied quality criterion. Quality criteria that
are generally used are exact learning in the limit of Gold [22], query learning of Angluin
[1] and probably approximately correct (PAC) learning of Valiant [53]. There is a large
body of work on grammatical inference, for excellent surveys see, e.g., [38, 49, 44].

In regular grammar inference, we have a finite alphabet ¥ and a regular language
L C ¥*. Given a set of examples that are in the language (S*) and a (possibly empty) set
of examples not in the language (S), the task is to infer a deterministic finite automaton

(DFA) A that accepts the examples in ST and rejects the examples in S™.

2.2 Tree automata

Assume given a finite set V' of labels, each with an associated rank (or

arity; a natural number). Trees labeled by V' are formally defined as terms

a
over V, as follows: a label of rank 0 (f/0 or just f) is a tree; and if f/n is a
N
booc label of rank n > 0 and t,...,t, are trees, then f(¢,...,t,) is a tree. For
| example the term a(b(a(c, ¢)),) with a/2,b/1,¢/0 € V, represents the tree
a on the left.
i A deterministic tree automaton (DTA) M is a quadruple (V,Q, A, F),
c c

where V is a set of ranked labels, () is a finite set of states, F' C @ is a set of
final (accepting) states, and A : J, V; x QF — @ is the transition function.
Here, Vi denotes the subset of V' of labels of rank n. For example, (v,q,...,qx) — ¢,

where v/k € Vi, and ¢, q; € Q, represents a transition.

2 PRELIMINARIES 7

A DTA processes trees bottom up. Given a leaf labeled v/0 and a transition (v) — g,
the state ¢ is assigned to it. Given a node labeled v/k with children in state g1, ..., g
and a transition (v,qi,...,qx) — ¢, the state ¢ is assigned to it. We say that a tree is
accepted if the state assigned to its root is accepting, i.e., belongs to F'.

Grammatical inference can be generalized from string languages to tree languages.
Rather than a set of strings over an alphabet ¥ given as example, we are now given a
set of trees over a ranked alphabet V. Rather than inferring a standard finite automaton
compatible with the string examples, we now want to infer a compatible tree automaton.
Tree automata are the natural generalisation of string automata. Typically algorithms
for tree automata induction are developed by upgrading the existing algorithms for string

automata induction (e.g., [46, 48]).
2.3 Information extraction by grammatical inference

If we model structured documents as trees over some ranked alphabet V' as above, an IE
task can be reduced to a grammatical inference task (as noted by Freitag [16]). Specifically,
suppose the TE task consists of selecting certain nodes from a tree. We are given a set of
examples, each consisting of a tree and a selected node. By adding for each label v € V
a new label (v, x), where z is a new “target” symbol, we can represent such examples as
trees over the new alphabet V' = V U (V x {z}), where the label of precisely one node,
namely the selected one, is in V' x {z}, and the other labels are in V' as before.

We can now try to infer a grammar for the obtained set of example trees, producing
a DTA M over V'. If successful, we can use M to perform the original IE task simply
by selecting each node, one by one, relabeling it to (v,z) if its original label is z, and

verifying whether M accepts the thus relabeled tree. If so, the selected node is extracted.

3 APPROACH AND ALGORITHMS 3

In what follows, we will focus on applications where only leaf nodes are to be extracted,
and where all these nodes have a fixed known label. We can therefore simplify the setting
a bit by labeling selected nodes simply by the target symbol z instead of (v,), because
v is fixed and known and therefore uninformative. The new alphabet V' then simply

becomes V' U {z}.

3 Approach and algorithms

Structured documents in HTML, or, more generally, XML format, can be readily repres-
ented as trees, where internal nodes represent the elements, and are labeled by tags, and
leaf nodes represent the text content. Before we can use grammatical inference to perform

IE on such trees, as described above, we must deal with two issues:

1. How do we deal with text content?

2. Tags are not ranked. For example, in HTML, an element can have an arbitrary
number of <1i> subelements, and more generally, in XML documents, there is no

bound on the number of subelements an element can have.

In the next two subsections, we will deal with these two issues. After that, we sum-
marize our general approach. Finally, we introduce the various concrete grammatical

inference algorithms we will use for IE from structured documents.

3.1 Preprocessing

Figure 1 shows a simplified view of a representative document. (The real documents, as

used in the experiments by us and the other authors, are more complex.) In this document,

3 APPROACH AND ALGORITHMS 9

the fields to be extracted are the fields following the ‘Alt. Name’ and ‘Organization’

fields.

A document consists of a variable number of records. As we can see, in each

record the number of occurrences of the fields to be extracted is also variable (from zero

to several occurrences). Also the position where they occur is not fixed. There is evidence

that extracting this kind of information is a difficult task [26, 40].

@ Netscape: IAF Search Results

a|@x

File Edit Yiew Go Communicator

Help ‘

1. Name:
E-Mail:
Last Update:

Organization:

"Lithium® J Smith
aulmer@u.washi n.edu
080125

University of

21

2. Name:
ALt Name:
E-Mail:
Crganization:
Last Update:

Crganization:

’Sir Brand’ Gregrohin Smith
Smith Gregrohin
sivhrand@u.washington.edn
university of washington
06721796

University of

3. Name
E-Mail:
Last Update:

Crganization:

(raig Smith
chs@maxwell.cs.uoregon.edu
080194

University of Oregon

Last Update:

Service Provider:

4. Name - Richard Smith

Alt. Name: Richard

E-Mail: GEORDERS® SFASU.EDU

Last Update: 11412405

Crganization: Stephen F. Austin State University
5. Name: - David § Smith

Alt. Name: David §

E-Mail: dssmith@ INDIANA.EDU

11/16/95

Indiana University

£

= T =
’E 100% maitoauimer@uwast 4 i %ix AP E3) \&H

An important issue is how to deal with the vari-
ous text nodes in the document. Treating every
piece of text as a distinct label is unacceptable as
it results in too specific automata. Labeling all
text nodes (but the node to be extracted which is
labeled x) by some fixed label CDATA, as in XML
DTD’s [56], is also unacceptable, as this results in

too general automata. Indeed, consider the follow-

ing fragment of a document tree that could origin-

Figure 1: An example of a HTML ate from the document shown above:

document

td

td td td

Provider b

root

td td

td
! | |

Organization

8 —o—a

Suppose the target field x is always preceded by a field labeled Organization. If the

labels Provider and Organization are both replaced by CDATA then any automaton that

extracts the x node will likely also extract the att node when it is replaced by x. Hence we

3 APPROACH AND ALGORITHMS 10

should not replace the field Organization by CDATA. Fields such as Organization and
Alt .Name are called distinguishing contexts (or structural context). Roughly speaking, a
distinguishing context is the text content of a tree node that is useful for the identification
of the field of interest. However, not every field of interest has a unique distinguishing
context.

In our experiments, we consistently used the following procedure to determine the
distinguishing context. We look for the invariant text label that is nearest to the field
of interest and occurs at the same distance from the field of interest in all examples.
For example, the text ‘Organization:’ is an invariant text label that is nearest to the
organization name in HTML document figure at the beginning of this Section. If no such
text is found, no context is used and all text is turned into CDATA. If there are several
possibilities, one is chosen at random. As distance measure, we use the length of the
shortest path in the document tree (for example the distance of a node to its parent is

one; to its sibling, two; to its uncle, three).

3.2 Conversion to ranked trees

Existing tree automata inference algorithms expect ranked trees. The simplest way to

apply them on HT'ML or XML documents, which are unranked trees, is to transform the

latter into (ranked) binary trees. This is the approach that we follow in this paper.
Using the symbol 7" to denote unranked trees and F' to denote a sequence of unranked

trees (a forest), the following grammar defines unranked trees:

T:=a(F),acV F:=c¢

3 APPROACH AND ALGORITHMS 11

The transformation we use can be formally defined with the following recursive func-

tion encode (with encode; for the encoding of forests):

encode(T) o encodes(T')
a if F1 = F2 =€
et | right(encodes(Fy)) it Fi=¢F#¢

encodep(a(Fr), Fy) = <
aiest(encodes(FY)) if F1#¢,Fy=¢

a(encodes(F1), encodes(F3)) otherwise

\

Informally, the first child of a node v in an unranked tree 7" is encoded as the left child
of the corresponding node v' of T”, the binary encoding of T, while the right sibling of a
node v in tree T is encoded as the right child of v' in 7. To distinguish between a node
with one left child and a node with one right child, the node is annotated with left and
right respectively. For example, the unranked tree a(b, c(a), d) is encoded into the binary
tree ajeft(brignt(c(a, d))) as pictorially shown below. Note that the binary tree has exactly

the same number of nodes as the original tree.

a = Qest
N |
b ¢ d bright
| |
a c
P
a d

An advantage of transforming the HTML /XML document trees into (ranked) binary

trees is that we can directly use the tree automata inference algorithms that have been

3 APPROACH AND ALGORITHMS 12

proposed in the literature, such as [21, 46, 7, 3]. In this paper we explore the application of
the k-testable algorithm developed in [21, 46]. We choose the k-testable algorithm because
it requires fewer examples than the other tree-based algorithms, and hence less effort from
the user (who needs to provide these labeled examples). A drawback of converting an
unranked tree to a binary tree is that the distance between the distinguishing context
and the target node can increase. A so far less explored alternative is to work directly
with unranked trees. Unranked tree automata formalism exist, e.g., [43, 52]. They have
transition rules of the form (v,e) — ¢, where e is a regular expression that describes a

sequence of states. [30] is a first step in this direction.

3.3 Approach

Our approach for information extraction has the following characteristics:

e Strings stored at the nodes are treated as a whole. If extracted, the whole node is
returned.

e One automaton is learned for one type of field to be extracted, e.g., the field following
“Organization”.

e In the examples used during learning, one target field is replaced by x. When a
document contains several fields of the same type, then several examples are created
from it, one for each occurrence of the target field.

One characteristic of our tree automata wrappers is that they do single-slot (or single-
field) extraction. A single-slot IE system extracts isolated facts from the text, while a
multi-slot IE system groups the related extracted fields (called a case frame) together into
correctly ordered multi-slot facts. There are some domains where multi-slot extraction is

a necessity. For example, a webpage may contain a list of house addresses with their cor-

3 APPROACH AND ALGORITHMS 13

responding prices. Unless the address and the price are combined in a pair, the extracted
information is rather useless.

Multi-slot extraction can be achieved by extracting also the location of the extracted
fields. Knowing the locations, one can combine the extracted fields into the correct tuples.
This simple post-processing method works for structured documents such as HTML/XML
documents, since the order of the fields in a case frame typically follows the order of their
position in the document. However, we did not collect the extracted fields in a case frame

in our experiments.
The learning procedure is as follows:

[P

1. Replace in the examples the target field by “z”, the distinguishing context (if

present) by “ctz” and all other text fields by CDATA.

2. Convert the example trees to binary trees.

3. Run a tree automaton inference algorithm on the examples and return the inferred

automaton.

The extraction procedure is as follows:

1. Replace the distinguishing context (if present) by “ctz” and all other text fields by

CDATA.

2. Convert the tree to a binary tree.

3. Repeat for all CDATA nodes:
e Replace the label of one CDATA node by the special label "z .

e Run the inferred tree automaton.

3 APPROACH AND ALGORITHMS 14

e [f the tree is accepted by the automaton, then extract the original text of the

node labeled with z.

The automaton can succeed for zero, one or more text nodes. The text nodes for which
it succeeds are the extracted fields. Only the first step of the learning procedure requires
user intervention. The second step of the learning procedure and the whole extraction
procedure are done automatically. The above procedures are repeated for each field of
interest in the dataset. If one wants to do a novel extraction task on a novel dataset, then
the learning procedure above has to be done for this novel task. That is, the user should
mark the fields of interest and distinguishing context if they exist, then run the learning

algorithm on the novel data.

3.4 Tree automaton inference algorithms

The k-testable algorithm is a basic tree automaton inference algorithm. As we will see in
Section 4, the algorithm is precise, but is sometimes too specific, as indicated by the low
recall. Hence we develop two generalisation algorithms: g-testable and gl-testable. We

start with some definitions.

3.4.1 Definitions

With t a tree, height(¢) is the number of nodes on the longest path from the root. The
k-root ri(t) of a tree t is the tree of height at most k& obtained from ¢ by cutting off
branches longer than k; the set fi(t) of k-forks is the set of all trees of height k obtained
from ¢ by taking all subtrees of height at least £ and cutting off branches longer than £k;
finally the set si(t) of k-subtrees is the set of all subtrees at the bottom of ¢ of height at

most k. Formally:

3 APPROACH AND ALGORITHMS 15

v ifk=1
re(v(ty, .. tm)) = (1)
U(Tk_l(tl),...,Tk_l(tm)) ifk>1
0 if height(v(t1,...,tm)) <k
fk(’l)(tl,...,tm)) = (2)
Uy fr(t)) U{rr(v(ts, ..., tm))} otherwise
m 0 if height(v(ty,...,tm)) >k
56 (0t 1) = U sulty) U e 3)
J=1 v(t1,...,tm) otherwise

Note that the k-root and the k-subtrees have height at most k, and that the k-forks

have height exactly k.

Example 1 Supposet = a(b(a(b, z)),c) thenrs(t) = {a(b,c)}; f2(t) = {a(b,c),b(a),a(b,x)};

and sy(t) = {a(b,z),b, z,c}.

The level of a node is defined as the number of edges on the path from the node to the
root. The skeleton of tree t, skeleton(t), is defined as t with all of its labels, except the root
label, changed to a wildcard *. For example, skeleton(a(b(d),c(e, f))) = a(x(x), *(x, *)).
A partition of a set S is a set of disjoint nonempty subsets of S (called classes) such that
the union of the subsets is S. The children of a tree v(ty,...,t,) are t1,...,t,. A tree t

covers a tree t' if ¢’ can be derived from ¢ by replacing some of the wildcards in t.

3.4.2 The k-testable algorithm

The k-testable algorithm [46] is parameterized by a natural number k; its name comes
from the notion of a “k-testable tree language”. Informally, a tree language (set of trees)
is k-testable if membership of a tree in the language can be determined just by looking

at its (k — 1)-root, k-forks, and (k — 1)-subtrees. The k-testable algorithm is capable

3 APPROACH AND ALGORITHMS 16

of identifying in the limit any k-testable tree language from positive examples only. We
have selected it because the information to be extracted typically has a locally testable
character. Intuitively, given an example, the right value of k£ is the minimal value that
ensures that the target x and the distinguishing context are in the same fork.

The choice of k is performed automatically using cross-validation, choosing the smallest
k giving the best results. Our cross-validation approach takes randomly one half of the
dataset for training and uses the rest for testing. First calculating a score for £ = 2,
the value for k is increased until the score shows a decrease. The least k-value giving a
maximal score is then selected as the best value. As argued in Section 4 the F1l-score we
use first increases and then decreases, hence this is a good approach.

The procedure to learn the tree automaton [46] is shown in Algorithm 1. The algorithm
uses the (k—1)-roots, k-forks and (k—1)-subtrees occurring in the examples to derive states
and transitions. Note that the algorithm uses trees as states of the inferred automaton:
the (k—1)-roots, the (k—1)-subtrees and the (k—1)-roots of the k-forks all become states.
It is a simple way to ensure that the state associated with a node not only depends on

the label, but also on the states of the children.

Algorithm 1 k-testable

Input: A set T of positive examples (ranked trees over V') and a positive integer k.
Output: A tree automaton (V,Q, A, F'S).

c Fe=U{fu(®) [t €T}

: S = U{sk_1(t) |t €T}

: FS:={rp1(t) |t €T}

:Q:=SUFSU{r,1(f)| feF}

A= {(v, b, tm) 2 0t tm) [Vt t,) € ST

A= AU{(U,tl,...,tm) — T‘k_l(’l)(tl,...,tm)) | U(tl,...,tm) € F}

Sy OB N

3 APPROACH AND ALGORITHMS 17
3.4.3 The g-testable algorithm

The basic idea of the g-testable algorithm is to generalize the transitions originating from
forks that are not important for the extraction. Important forks are those that contain
the target label z. In Algorithm 2, they are collected in the set TF (target forks),
the other ones in the set OF (other forks). The generalisation is parameterised by a
level [. It replaces the label of a node by a wildcard when its level is greater or equal
to [. The algorithm uses a function gen(f,l) for this. Figure 2 shows a fork f (left),
gen(f,1) (middle) and gen(f,2) (right). To prevent overgeneralisation, we require that
the generalisation of a fork does not cover any target fork. The value of parameters £ and
[are determined by the same cross-validation method as explained above.

The meaning of a generalized fork is the set of all trees that can be obtained by in-
stantiating labels for the wildcards. Generalized forks yield transitions with wildcards.
For example, with £ = 3 and [= 2, the fork gen(f,2) from the Figure would yield the
transition a(b, c(*, *)) — a(b, ¢), which on a 5-label alphabet V' = {a, b, ¢, d, e} effectively
stands for the 52 = 25 possible transitions obtained by instantiating labels for the wild-
cards. Similarly, with &k = 3 and [= 1, the fork gen(f, 1) from the Figure would yield the
transition a(x, *(*,*)) — a(x, *), which then stands for 5* possible transitions obtained
by instantiating labels for the wildcards on the left-hand side of the transition. Since the
right-hand side stands for the 2-root of the fork, the wildcards on the right-hand side are
instantiated in accordance with the left-hand side. Some concrete example instantiations

of the transition are:
e a(b,c(d,e)) — a(b,c)

e a(d,e(b,c)) — a(d,e)

3 APPROACH AND ALGORITHMS 18

f: a gen(f,1): a gen(f,2): a

b C * * b C
PN PN PN
d e * % * %

Figure 2: Generalizing a fork.
e a(a,a(b,b)) — a(a,a)

The detailed g-testable procedure is shown in Algorithm 2. Note that the (k — 1)-
subtrees of k-forks are explicitly added as states. In the k-testable algorithm, they were
already present as (k — 1)-subtrees or as (k — 1)-roots of other forks. For generalized
k-forks, this is no longer the case, hence their subtrees are explicitly added. Note also
that with | = k, the g-testable algorithm will output exactly the same automaton as the

k-testable algorithm.

Algorithm 2 g-testable algorithm

Input: A set T of positive examples, parameters k£ and .
Output: A tree automaton (V,Q, A, F'S)

1: Fo —U{fk()|t€T}

2. TF:={f € Fo| f contains z}

3 OFy=F—TF

4: OF nogen = {f € OFy | gen(f,!) covers one of TF}

5: OFgen = OFy — OF nogen

6: F:=TFU {gen(f, l) | f S Ofgen} U Ofnogen

7. S:=U{sk1(t) |t €T}

8 FS:={rp1(t)|teT}
9: Q =SUFSU{r,1(f) | feFtUU{sk1(f) | f € F}
10: A:={(v,t1,...,tm) = V(t1, -, tm) | v(t1, ..., tm) € S}
11: A:=AU{(v,t1,. s tm) = Te_1(V(t1, .-, tm)) | v(t1, .- tm) € F}

3.4.4 The gl-testable algorithm

As the k-testable algorithm, the gl-testable algorithm has a single parameter & whose
optimal value is determined by the same cross-validation method. As the g-testable

algorithm, the gl-testable algorithm divides forks in target forks TF and other forks OF

3 APPROACH AND ALGORITHMS 19

and generalises the other forks. However, the amount of generalisation is not determined
by a second parameter [, but by a more exhaustive exploration of possible generalisations.

To check that some generalisation is not overly general, we perform a cover test against
the target forks (as in the g-testable algorithm) but also another test. This second test
checks that the children of a fork (which are also states) do not cover states containing
the target x. Such states can originate from subtrees of height k£ — 1. These states (target
subtrees) are collected in the set TS.

To avoid an exhaustive search over all possible generalisations of a fork, some heuristics
are used. As a first heuristic, the other forks are partitioned according to their skeleton by
means of a procedure partition (not shown). For instance, with OF = {a(d), a(c,d), a(b),
a(e),a(b, c),a(c, d,e)}, partition(OF) = {{a(b), a(c),a(d)}, {a(b,c),a(c,d)}, {a(c,d,e)}}.
Then the procedure pgen (also not shown) computes a single generalisation of the forks
in the same class (with the same skeleton): common labels are preserved but all other la-
bels are replaced by a wildcard *. For instance, pgen({a(b(c),d), a(b(c),e), a(b(f),e)}) =
a(b(x), x). If this generalisation is not overly general, it is used as initial value for a search
of further generalisations. Otherwise, each fork of the partition is considered for gener-
alisation. This further generalisation is performed by the procedure genl (Algorithm 4)
with as inputs a set of target subtrees, a set of target forks (both used to check against
overgeneralisation) and the set of forks to be generalised. This procedure returns the
most general forks that are allowed by the overgeneralisation check. It only considers
generalisations at the bottommost level (i.e., introducing wildcards only for leaves that
are at depth n, with n the height of the tree); this is a heuristic decision inspired by earlier
experimental results.

To reduce redundancy, the partial order between generalisations is exploited. One

3 APPROACH AND ALGORITHMS 20

position at a time is generalised and checked for overgeneralisation before considering
further generalisations.! The procedure gentree (Algorithm 5) returns all acceptable
forks with one position generalised.

Consider for instance a fork a(b(d), c(e, f)). It has seven possible generalisations for
the labels at the bottommost level. They are partially ordered by the covers relation.
The most specific ones are a(b(*), c(e, f)), a(b(d), c(x, f)) and a(b(d), c(e, *)) (the ones
tested by gentree when passed the initial fork), the more general ones are a(b(x), c(x, f)),
a(b(x), c(e,*)) and a(b(d), c(x,*)) and a(b(x), c(*,*)) is the most general one. The fork

and two of its generalisations are shown below.

t a a a
N N PN
b C b C b C
d e f d = f x e *

The detailed gl-testable procedure is shown in Algorithm 3. The used heuristics were

determined by experiment.

Example 2 Applying Algorithm 3 on the term of Example 1 for k = 3, we obtain:
o F'S =ry(t) = {a(b,c)}, OF = {a(bla),c)}, TF = {b(a(b,x))} and S = s5(t) =
{a(b,z), b, z, c}.
o 7S ={a(b,z)}

o P ={{a(b(a), 0)}}

LA further optimisation would be to store unacceptable generalisations, and exploit the fact that any
generalisations of these are automatically unacceptable as well. E.g., if a(b,c,*) is acceptable, then our
algorithm considers its generalisation a(*,c,*); however, if it already knows that a(*,c,d) is unacceptable,
then this new generalisation need not be considered. This further optimisation is not implemented in our
algorithm.

3 APPROACH AND ALGORITHMS

21

Algorithm 3 gl-testable

Input: A set T of positive examples and a positive integer k
Output A tree automaton (V,Q, A, F'S)
=U{/(®) [t €T}

T.7: ={f € Fy| f contains z}
OF =F,—TF
F=TF
P = partition(OF)
FS = {T’k_l(t) | t e T}
S:=U{sx 1(t) |t €T}
TS ={s € §| s contains z, height(s) = k — 1}
for each C € P do

¢ = pgen(C) % candidate generalization

if ¢ covers one of TF or one of children(c) covers one of 7S then

F=FUygenl(TS, TF,C)
else
F=FUgenl(TS, TF,{c})

end if
: end for
:Q:=SUFSU{r,1(f) | feFUU{sk1(f) | f € F}
A={(v,t1, .. tm) = (e tm) | V(e) € S
A= AU{(v, b1, tm) 2 e (0t - t) | v(EL, - tm) € F

e el T e el T e e T
© XD WO

Algorithm 4 genl

Input: Sets TS of target subtrees, 7S of target forks, and 7" of trees
Output: A set of trees G (a generalisation of T')

1: G:=0

2: while T # () do

3: select t from T and remove it

4: C := gentree(TS, TF,t)

5. if C = () then

6: G:=GU {t}

7: else

8: T:=T—{t|teT andtis covered by some c € C}
9: T =TUuC

10: end if

11: end while

Algorithm 5 gentree

Input: Sets TS of target subtrees, 7F of target forks, and a tree ¢
Output: A set of trees C
1: Cp:={t' | t' is derived from t by replacing one bottommost label # * by x}
2: C:=Cy— {c€ Cy|ccovers one of TF, or one of children(c) covers one of TS

4 EXPERIMENTAL RESULTS 22

o F ={a(b(x),c), ba(b,z))}
e Q ={a(b,c), bla), b(x), a(b,x), b, z, c}

e transitions:

a(b,z) € S: (a,b,z) — a(b,)

beS:(b)—b

zeS:(x) >z

ceS:(c)—c
e a(b(x),c) € F:(a,b(x),c) — a(b,c)

o b(a(b,z)) € F:(b,a(b,x)) — b(a)

Note again that the use of wildcards in the representation of the sets F, () and A in the
example is really just an abbreviation; e.g., when) contains b(x), this really means it

contains the states b(a), b(b), b(c) and b(zx).

4 Experimental Results

4.1 Test on the benchmark datasets

We evaluated our method on some semi-structured data sets commonly used in the IE
research?: a collection of web pages containing people’s contact addresses (the Internet
Address Finder (IAF) database) and a collection of web pages about stock quotes (the
Quote Server (QS) database). There are 10 example documents in each of these datasets.
The number of fields to be extracted is respectively 94 (IAF-organization), 12 (IAF-

alt.name), 24 (QS-date), and 25 (QS-vol). The motivation to choose these datasets is

2 Available from http://www.isi.edu/“muslea/RISE/.

4 EXPERIMENTAL RESULTS 23

as follows. Firstly they are benchmark datasets that are commonly used for research in
information extraction, so we can compare the results of our method directly with the
results of other methods. Secondly, they are the most difficult benchmarks we are aware
of that require the extraction of a whole node of the document tree. In fact, one of the
authors in [40] has tried to build a handcrafted extractor given all available documents
from the QS dataset and achieved only 88% accuracy.

We also test the k-testable, g-testable, and gl-testable algorithms on a small and
simplified Shakespeare® data set, which is a significantly reduced version of Jon Bosak’s
Shakespeare XML dataset.* We use it to test the feasibility of our methods. In this
dataset, the task is to extract the second scene of every act in a particular play. The
motivation to test on this data set is that we believe that the extraction task is very
difficult for string-based methods even on the simplified data. This is because each scene
has a complex structure of varying length. We used the simplified Shakespeare dataset
because our three algorithms above performed very poorly on the full dataset. (The latter
is a consequence of the conversion to ranked trees: an “act” field, for instance, can have
many children, many of which precede the second scene of the act. After the conversion,
this second scene then ends up very deep in the subtree below the “act” tag, making it
very difficult to identify using a k-testable automaton.) Thus, we expect the simplified
data set to be a good example of a task that is difficult for string-based wrappers but
manageable for tree-based ones.

The training and the testing processes follow the procedures outlined in Section 3.3.

For evaluating our method, we use criteria that are commonly used in the information

3 Available from http://www.cs.kuleuven.ac.be/ raymond/ie/.
4 Available from http://www.ibiblio.org/bosak/.

4 EXPERIMENTAL RESULTS 24

retrieval research community. Precision P is the number of correctly extracted objects
divided by the total number of extractions, while recall R is the number of correct ex-
tractions divided by the total number of objects present in the answer template. The F1
score is defined as 2PR/(P + R), the harmonic mean of P and R. The precision, recall
and F1 scores are calculated for each extracted slot, without collecting them in a case
frame beforehand.

Table 1 shows the results we obtained as well as those obtained by some current state-
of-the-art string-based methods: an algorithm based on Hidden Markov Models (HMMs)
[20], the Stalker wrapper induction algorithm [41] and BWI [19]. We also include the
results of the k-testable algorithm (as we reported in [31]) and the g-testable algorithm
(as we reported in [29]). The results of HMM, Stalker and BWI are adopted from [19]. All
tests are performed with 10-fold cross validation following the splits used in [19], except
in the small Shakespeare dataset where 2-fold cross validation was used. Each split has 5
documents for training and 5 for testing. We refer to the related work section for a brief
description of the other methods.

Table 1 shows the results of the k-testable, g-testable and gl-testable algorithms for
the optimal k£ value (more specifically, £ was optimised during the first fold of the cross-
validation, this optimal value was then used for all the other folds). As can be seen,
our methods perform better in most of the test cases than the existing state-of-the-art
string-based methods. The only exception is the field date in the QS dataset where BWI
performs better. Compared to the results of k-testable, the gl-testable algorithm performs
better in the IAF-alt.name, IAF-organization and small Shakespeare data. Compared to
the results of g-testable, the gl-testable performs better in the IAF-alt.name and IAF-

organization data but worse in the small Shakespeare data. We shall discuss these results

4 EXPERIMENTAL RESULTS 25

Table 1: Comparison of the results
IAF - alt.name | IAF - organization QS - date QS - volume
Prec | Rec | F1 | Prec | Rec F1 Prec | Rec | F1 | Prec | Rec | F1
HMM 1.7 90 | 3.4 | 16.8 | 89.7 | 28.4 | 36.3 | 100 | 53.3 | 18.4 | 96.2 | 30.9
Stalker 100 - - 48.0 - - 0 - - 0 - -
BWI 90.9 | 43.5 | 58.8 | 77.5 | 45.9 | 57.7 | 100 | 100 | 100 | 100 | 61.9 | 76.5
k-testable | 100 | 73.9 | 85 100 | 57.9 | 73.3 | 100 | 60.5 | 75.4 | 100 | 73.6 | 84.8
g-testable | 100 | 73.9 | 85 100 | 82.6 | 90.5 | 100 | 60.5 | 75.4 | 100 | 73.6 | 84.8
gl-testable | 100 | 84.8 | 91.8 | 100 | 84.6 | 91.7 | 100 | 60.5 | 75.4 | 100 | 73.6 | 84.8
Small Shakespeare
Prec | Rec | F1
k-testable | 56.2 | 90 | 69.2
g-testable | 66.7 | 80 | 72.7
gl-testable | 66.7 | 80 | 72.7

Table 2: Parameters used for the experiments

IAF - alt.name | IAF - org. | QS - date | QS - volume | Shakespeare
k-testable (k) 4 4 2 5 3
g-testable (k,1) (5,2) (5,2) (3,2) (6,5) (4,2)
gl-testable (k) 4 4 2 6 4
below.

Table 2 shows the parameters k, (k,) and k that were used by the k-testable, g-
testable, and gl-testable algorithms respectively to produce the results in Table 1. A
distinguishing context was used in the datasets IAF-alt.name and IAF-organization.

In these datasets some of the best results with the gl-testable algorithm (i.e. in QS-
volume and small Shakespeare data) are obtained with a & value bigger than the value used
in the k-testable algorithm. This means that our goal, performing more generalisation
while using bigger contexts, is achieved. Some other best results (i.e., in IAF-alt.name,
IAF-organization and QS-date data) are obtained with using the same k value. These
results indicate that: (1) The wildcards are useful for our IE tasks as they can improve the
results of the k-testable algorithm. (2) The two step generalisation, done by the procedure
pgen that generalises all forks in each partition and by the procedure genl that searches

the generalisation of the bottommost labels more thoroughly, is useful for our IE tasks.

4 EXPERIMENTAL RESULTS 26

This is shown by the better results of the gl-testable algorithm compared to the results of
the g-testable algorithm in the two IAF datasets that are obtained with a smaller value
of k.

Despite the improvements of both gl-testable and g-testable algorithms in IAF-alt.name,
[AF-organization and small Shakespeare datasets, they were not able to improve the res-
ults of the k-testable algorithm in the two QS datasets. For the QS-volume data, the
reason is not clear to us. One explanation is that the result might be optimal for these
learners given a certain set of training examples. For the QS-date data, the reason is
that the inferred automaton is not general enough, as can be seen in Figure 3. In that
figure, the recall of the most general automaton inferred (k = 2) is not very high and the
maximum precision is already reached with £ = 2. Thus we cannot improve the F1 score
by increasing the k.

The gl-testable algorithm performs worse than the g-testable algorithm in the small
Shakespeare data, although better in IAF-alt.name and IAF-organization datasets. The
reason is that, besides optimising the k£ parameter, we also optimise the generalisation
level of the g-testable algorithm by cross validation to suit a specific dataset. In other
words, the g-testable algorithm has an extra parameter to optimise and is more heuristic
in nature than the gl-testable algorithm.

Figure 3 shows how the F'1 score of the gl-testable algorithm changes with k. The solid
line is the F1 score, the dotted line precision and the dashed line recall. In this figure,
we can clearly see the trade off between precision and recall. Actually, the behavior of
the three tree-based algorithms that we test is quite similar. With small value of &, the
precision of these tree-based methods tend to be low because the automaton inferred is

relatively general. As the value of k£ increases, the precision rises until a certain value of &

4 EXPERIMENTAL RESULTS 27

where the maximum precision is reached. The recall of these tree-based methods behaves
the other way around. At the low value of &, the recall of these tree-based methods tends
to be high. However, as the value of k£ becomes higher, the recall decreases gradually. As
the harmonic mean of the precision and recall, typically the F1 score curve starts with a
low value at k£ = 2, increases, reaching a maximum and then starts to decrease.

Figure 4 shows the average training time of the k-testable and the gl-testable al-
gorithms for different values of k. Overall, both algorithms show somewhat similar train-
ing time on our datasets. By using a suitable data structure for looking up forks and
subtrees, the k-testable algorithm can be made to run in O(kn) time, where n is the total
size of the examples. A similar upper bound holds for the time complexity of the g-testable
algorithm. The theoretical running time of the gl-testable algorithm is in the worst case
exponential in the size of the subtrees, in the worst case, due to the finer search in the
generalisation lattice. In our experiments, the gl-testable algorithm is still feasible to run
if the k£ value used is less than 8. The preprocessing consists of parsing, conversion to the
binary tree representation (both processes take time linear in the size of the document)
and the manual insertion of the label x. Our prototype implementation was implemented
in Prolog and tested on a Pentium 1.7 Ghz PC. The figure shows that the actual training
time (after preprocessing) needed to infer the automaton is more or less linear in k. One
exception is the training time of the gl-testable algorithm for IAF-alt.name which looks
non-linear. The reason is that with £ < 6 most candidate generalizations (the result of
pgen function) do not suffer from overgeneralisation. Thus only one candidate generaliza-
tion is input to the genl. This is also the reason why in this task the gl-testable algorithm
is slightly faster than the k-testable algorithm for £ < 6. At & = 6 several candidate

generalizations suffer from overgeneralisation.

4 EXPERIMENTAL RESULTS 28

Actually the theoretical training time of the k-testable and the g-testable algorithms
is better than that of BWI [19], one of the string-based methods that are used for compar-
ison. The training time of BWI increases exponentially with the increase of the look-ahead
parameter. As reported in [19] the IAF-alt.name, [AF-organization and QS-volume data-
sets need a long lookahead. They used lookaheads of 8 because these tasks need very long
boundary detectors. We cannot compare the actual training time of BWI to ours in these
datasets, as it was not reported.

Figure 5 shows the average extraction time per document of the gl-testable algorithms
for different values of k. The theoretical time complexity of the extraction procedure is
O(n?) where n is the number of nodes in the document. Indeed, the time of a single run
is linear in the number of nodes (using suitable data structures), while the automaton has
to run for each replacement of a node by the target symbol z. Just for comparison, the
extraction time of the tree automaton inferred by the k-testable algorithm (not shown
here) is about two times faster than the extraction time of the generalised automaton
inferred by the gl-testable algorithm. The reason is that the latter automaton needs
additional time to match the wildcards.

Figure 6 shows the number of states inferred by the k-testable and gl-testable al-
gorithms for different values of k. As we can see from the figure, the number of states
inferred by the gl-testable algorithm is always smaller than the number of states inferred
by the k-testable algorithm for £ > 2. For k£ = 2, the number of states inferred is equal

as the gl-testable algorithm performs no generalisation in this case.

I
@

I
1S

Time (second)

Time (second)

4 EXPERIMENTAL RESULTS

Figure 3: The graphs of F1 score versus k

IAF - alt.name

+ == - Precision

IAF - org.

F1 score

F1 score

P

Figure 4: The graphs of training time versus k.

IAF - alt.name

— gl-testable
o ——- k-testable

X

IAF - org.

o
N

4
o

Time (second)

P

0.62

Time (second)

0.52

P

29

4 EXPERIMENTAL RESULTS

Figure 5: The graph of extraction time versus k, for the gl-testable algorithm.

Extraction time

14
o —— QSval)
o —— QS-date -
I - 1AF-org
? o - IAF—aItname_ LB -
10 e
Q . Tesll
§ 8- N _°
\q-; 8 ///
7~
: T
° /V/// /’D’///
///:aa////
4 $:::::8:”
1 2 3 li 5 6 7
Figure 6: The graphs of the number of states versus k.
IAF - at.name IAF - org.
130 130
— gl-testable »
G| o~ kesable . g
§].10 gno
i) ks
100 100
g g
g 90 % 90
z P4
80 80
70 7 70
180 220
170 200
g £..
w w
46140 46160
glao guo
E120 [S
=) S120
Zno zZ
100 100
920 80

N

P S

4 EXPERIMENTAL RESULTS 31
4.2 Test on larger datasets

To evaluate the quality of our approach, we test the gl-testable algorithm also on larger
datasets. For the experiments below we use the Bigbook and the Okra datasets that are
also available online. In the Bigbook dataset we train the automaton to extract the 'name’
and ’address’ fields, and in the Okra dataset we train the automaton to extract the 'name’
and ’email’ fields. The Bigbook and Okra datasets contains 235 and 252 files respectively.
The number of the name and address fields to be extracted from the Bigbook dataset is
4299 while the number of the name and email fields in the Okra datasets is 3334.

All experiments in this section are done with 10-fold cross-validation and the exper-
imental setting is as follows. We divide both datasets in two parts. The first part, con-
sisting of ten files (documents), is used to test the generalization ability of the gl-testable
algorithm. From these ten documents we obtain 184 and 120 examples from the Bigbook
and Okra datasets respectively. First we determine for each extraction task the optimal k
by cross-validation in one random fold of training and test set. The best £ found is 5 for
the tasks in the Bigbook dataset and 4 for the tasks in the Okra dataset. Then, from the
same set of 184 (120) examples, we take randomly ten examples, then twenty examples,
then thirty, and so on, and give them as training examples while the rest is for testing.
This process is performed ten times for every extraction task. We stop when the induced
automaton has an average F1 score of 98% or better on the test examples. Table 3 shows
the number of examples needed for good generalization. We can see that the number of
examples needed to learn a good wrapper for these datasets is quite small.

In the ten documents of the Bigbook dataset in Table 3, the training time for each

document ranges from 0.11 to 0.12 seconds and the average testing time for each document

4 EXPERIMENTAL RESULTS 32

Table 3: The number of examples needed for good generalization

k | #documents | #fields | #examples | Prec | Recall | F1
Bigbook-name | 5 10 184 40 100 98.7 | 99.3
Bigbook-address | 5 10 184 40 100 99.1 | 99.5
Okra-name 4 10 120 10 100 100 100
Okra-email 4 10 120 10 100 100 100

is 11.24 seconds (the average number of nodes in a document ~ 513). In the ten documents
of the Okra dataset in Table 3, the training time for each document ranges from 0.26 to
0.54 seconds and the testing time for each document varies from 0.08 to 38.67 seconds
(the average number of nodes in a document ranges from 66 to 1299 respectively).

The second part of the experiment is to test the quality of the obtained automata. The
data in the second part consists of 225 and 242 documents from the Bigbook and Okra
datasets respectively. Using the learned tree automata wrappers, we perform extraction
on the remaining documents in the data set. Note that none of these documents was
used during the learning. Table 4 shows the results. The results for the Okra-name and
Okra-email datasets are very good, considering that it used only 10 examples for learning.
However, the results for the Bighook-name and Bigbook-address datasets are not as good.
The reason is that the tree automaton is sensitive to the small variability in the document
tree, even after generalization. In the bigbook data, there is an index in every page that
enable the user to ’jump to’ the first company name beginning with a certain alphabet.
This index sometimes contains full links but sometimes only partial links. The variability
in this bottom part of the document is creating new states that were not seen before by
the tree automaton, causing failure of the extraction task.

Hsu and Chang [26] list the performance of other systems on these datasets. In the
Bigbook dataset, Stalker [41] achieves 97% recall (or accuracy in their definition) with 8

examples, WIEN [32] achieves 100% recall using an average of 15 documents containing

5 RELATED WORK 33

Table 4: The test on the rest of the larger datasets

k | #documents | #fields | Prec | Recall | F1
Bigbook-name | 5 225 4115 100 | 70.5 | 82.7
Bigbook-address | 5 225 4115 100 71.7 | 83.5
Okra-name 4 242 3214 100 97 98.5
Okra-email 4 242 3214 100 97 98.5

approximately 274 examples, and SoftMealy [26] achieves 100% recall given 6 examples.
In the Okra dataset, Stalker achieves 97% recall (or accuracy in their definition) with
only 1 example, WIEN achieves 100% recall using an average of 3.5 documents containing
approximately 46 examples, and SoftMealy achieves 100% recall given 1 example. These
results cannot be compared rigorously with ours because the above wrapper systems
extract 6 fields from the Okra and 4 fields from the Bigbook dataset, while our system
was only tested on 2 fields from each dataset. Still, the comparison makes clear that the
gl-testable algorithm needs more examples to learn from than the string-based methods we
compare with. This is not unexpected: our tree-based methods search a larger hypothesis
space, looking also for patterns further away from the field to be extracted, whereas the
other methods look for patterns that narrowly enclose this field. As our methods consider

more possible hypotheses, they need more examples to eliminate the incorrect ones.

5 Related work

A lot of methods have been used for IE problems. Many are described in [39, 51, 33]. As
mentioned above, the work on IE can be classified into three main categories: IE from
unstructured texts, IE from semi-structured texts and IE from structured texts. Within
each of these categories, the work can be further divided into manually built systems and

(semi-)automatic systems. Within the domain of extraction from structured documents,

5 RELATED WORK 34

the work on IE can be divided into:

e Manual systems. Examples of manually built systems can be found in [3, 24]. They
apply knowledge engineering techniques for building wrappers. Manually building
a wrapper for each data source becomes infeasible when confronted with the variety
of Web sources. A separate area aims at the development of query languages for
HTML/XML, e.g. [5, 57]. While these query languages are suitable for expressing
complex extraction problem, their use remains time consuming and requires non-
trivial skill. The advantage over other manual approaches is that they provide the
user with a sophisticated user interface that simplifies the wrapper specification
process as the user neither need the ability to program nor to know the HTML
syntax. Most of the work in this area originated from the database community, other
work originated from the document and logic programming communities. Some
recent systems developed in this area are WAF [47], XWrap [36], and Lixto [4].
Related to this work is the large body of work on Web information integration.
This addresses the problem of integrating heterogeneous data on the Web with
the purpose of allowing users to pose queries to these integrated data. A typical
information integration system consist of: wrappers that transform data from the
original sources into a form that can be further processed by the system, a mediator
consisting of a query planner and an execution engine, and a user interface for
entering queries. Some examples of information integration systems are: Tsimmis

[9], and Jedi [28].

e Semi-automatic systems. Our work is situated in the domain of semi-automatically

built systems for IE from structured documents. Such systems make use of machine

5 RELATED WORK 35

learning and data mining techniques, as well as other algorithms. The process is
known as wrapper induction. With the recent attention for the Web, this line of
work has been more popular than the work on manually-built IE system. It can
be noted, that some wrapper induction systems (not ours) are also able to work on

semi-structured data and even on unstructured texts.

e Automatic systems. We classify an IE system as an automatically-built system if
the wrapper is built only once and can be used for new extraction tasks directly,
or if wrappers can be built for each new task using unsupervised training only.
Some examples of the IE systems in this category are as follows. WHIRL [11] is
a ‘soft’ logic system that incorporates a notion of textual similarity developed in
the information retrieval community. WHIRL has been used to implement some
heuristics that are useful for IE in [13]. Hemnani and Bressan [25] proposed a tree
alignment algorithm that are based on two heuristics for extracting multiple record
Web documents. IEPAD [8] is a system that automatically discovers extraction

rules for identifying record boundaries from web pages.

Other work, e.g. [54, 42], on Web structure mining aims at finding structural similarity
between web pages. It is known as schema discovery and DTD inference and is different
in nature from ours. They aim at mining the frequent or common structure of web
pages. The problem that we are facing goes beyond finding the common structure of web
documents. We also try to find the pattern of the field to be extracted inside the common
document structure.

In what follows, we restrict our attention to work on wrapper induction techniques

that, similar to our work, use machine learning or data mining techniques for IE from

5 RELATED WORK 36

structured texts. For classical IE and the issues of IE from unstructured text we refer
to e.g. [6, 15]. For IE work on semi-structured texts, we refer to recent reviews such as
(39, 51, 33].

The term wrapper induction was first introduced in [34]. As mentioned in the intro-
duction, much work on wrapper induction learns wrappers based on regular expressions.
BWI [19] is basically a boosting approach in which the weak learner learns a simple regu-
lar expression with high precision but low recall. The HMM approach reported in Table 1
was proposed by Freitag and McCallum [20]. They learn a hidden Markov model, solv-
ing the problem of estimating probabilities from sparse data using a statistical technique
called shrinkage. This model has been shown to achieve state-of-the-art performance on a
range of IE tasks. The Stalker algorithm [41] induces extraction rules that are expressed
as simple landmark grammars. The latter are a class of finite automata. Stalker per-
forms hierarchical extraction guided by a manually built embedded catalog tree. This tree
describes the structure of the fields to be extracted from the documents.

Freitag [16] describes several techniques based on naive-Bayes, two regular language
inference algorithms, and their combinations for IE from unstructured texts. His results
demonstrate that the combination of grammatical inference techniques with naive-Bayes
improves the precision and accuracy of the extraction. WHISK [51] is a system that
learns extraction rules with a top-down rule induction technique. The extraction rules
of WHISK are based on a kind of regular expression patterns. To make the rules more
powerful, WHISK has some built-in semantic classes and in addition allows for user-
defined semantic classes. A semantic class is basically a set of terms that are considered
to be equivalent. Chidlovskii et al. [10] describe an incremental grammar induction

approach; their language is based on a subclass of deterministic finite automata that do

5 RELATED WORK 37

not contain cyclic patterns. Hsu and Dung’s SoftMealy system [27] learns separators that
identify the boundaries of the fields of interest. These separators are described by strings
of fixed height in which each symbol is an element of a taxonomy of tokens (with fixed
strings on the lowest level and concepts such as punctuation or word at higher levels).
Hsu and Chang [26] propose two classes of SoftMealy extractors: single-pass, which is
biased for tabular documents such as the QS dataset, and multi-pass, which is biased for
tagged-list document such as the IAF dataset. Although their systems were tested on the
same datasets as ours, their results cannot be compared directly because the experimental
setting is different. Their evaluation gives only numbers for recall and uses a different set
of examples.

The above mentioned methods learn string languages while our method learns a more
expressive tree language. Compared to HMMs and BWI our method does not require the
manual specification of the windows height for the prefix, suffix and the target fragments.
Compared to Stalker and BWI our method does not require the manual specification of
the special tokens or landmarks such as “>” or “;”. Compared to Stalker our method
works directly on document trees without the need for manually building the embedded
catalog tree. Compared to SoftMealy extractors in [26] our method is generally applicable
to any type of document formatting without requiring different classes of wrappers for
different categories of documents.

Despite the above advantages, our method also has some limitations. A first one is
that our method only outputs a whole node. This seems to limit its applicability. For
data-centric documents such as XML documents, this is not really the case since the
data to be extracted is typically a whole node. However, it is true for HTML formatted

documents. One way to broaden the applicability of our method is to perform a two step

5 RELATED WORK 38

extraction. A whole node of the tree can be extracted in a first step while a second step
(using other techniques) can post-process the selected information to extract a part of it.
A second limitation is that our method works only on structured documents. Indeed our
method cannot be used for text-based IE, and is not intended for it. A third limitation is
that our method is possibly slower (when extracting) than string-based methods because
it has to parse the document tree and has to substitute each node with x when extracting
information from the document. Despite these limitations, our results suggest that our
method works better in the four structured domains than the more generally applicable
string-based IE methods.

Some other approaches that exploit the structure of the documents have been pro-
posed. WL? [12], a logic-based wrapper learner that uses multiple (string, tree, visual,
and geometric) representations of the HTML documents, consists of one master builder
and several specific builders that are created for specific page formats. The learning
method is an inductive logic programming algorithm based on [45]. In fact, WL? is able
to extract all four tasks in the IAF and QS datasets with 100% recall. The work of WL?
suggests that indeed using task-specific document representation can yield a much better
performance. Sakamoto et al. [50] propose a certain class of wrappers that use the tree
structure of HTML documents and propose an algorithm for inducing such wrappers.
They identify a field with a path from root to leaf, imposing conditions on each node in
the path that relate to its label and its relative position among siblings with the same la-
bel (e.g., “2nd child with label ”). Their hypothesis language corresponds to a subset
of tree automata.

Besides the k-testable algorithm proposed in this paper, we have also experimented

with Sakakibara’s reversible tree algorithm [48]. Preliminary results with this algorithm

6 CONCLUSION 39

suggested that it generalises insufficiently on our data sets. Hence, we did not further

pursue its use.

6 Conclusion

The main contributions of this paper can be summarised as follows:

e We have motivated and presented a novel method that uses tree automata induc-
tion for information extraction from structured documents. Besides using the tree
structure, this approach also has other advantages compared to string-based and
other methods. Firstly, some IE systems preprocess documents to split them up in
small fragments and use only a part of the document as training example. This is
not needed here as the tree structure that we get for free takes care of this. Thus
the entire document tree can be used as training example. Secondly, our method
does not require the manual specification of a window length for the prefix, suffix
and target fragments, and of the special tokens or landmarks such as “>” or “;”,

that are usually required by the string-based methods. Thus our method requires

very little user intervention.

e We proposed several generalisations of the original k-testable algorithm. We have
shown that these generalisations perform as good as or better than the original

k-testable algorithm for structured IE from our datasets.

e We have demonstrated on two benchmark datasets that our method can perform
better than string-based methods. These results suggest that it is worthwhile to

consider our approach when confronted with difficult IE tasks with structured doc-

6 CONCLUSION 40

uments. On two other data sets, where the tree structure of the document is un-
important, our results are less good than those of some string-based methods. This
confirms that it remains important to select a method with an appropriate bias,

when inducing wrappers.

The use of automata learned from ranked trees requires the conversion of unranked
trees to binary trees. A drawback is that the distance between target node and distin-
guishing context is increasing. This suggests that it is worthwhile to consider algorithms
that can infer an automaton directly from unranked trees. We plan to explore this possib-
ility in the near future; a start has been made in [30]. Such an algorithm may also allow
us to address more general IE tasks on XML documents. Indeed, until now we have only
performed experiments on standard benchmark IE tasks that can also be performed by
the previous string-based approaches. However, there are tasks that seem clearly beyond
the reach of string-based approaches (and our algorithms based on ranked trees). An
example is the extraction of the second item from a list of items, where every item itself
may have a complex substructure as in the full Shakespeare XML dataset.

Another direction to explore is to incorporate probabilistic information in the inference
process to compensate for the lack of negative examples and to combine unstructured text

extraction with structured document extraction.

Acknowledgements

We thank Nicholas Kushmerick for providing us with the datasets used for the BWI
experiments. This work is supported by the FWO project query languages for data

mining. Hendrik Blockeel is a post-doctoral fellow of the Fund for Scientific Research of

REFERENCES 41

Flanders.

References

1]

2]

3]

[4]

[5]

[6]

[7]

D. Angluin. Queries and concept learning. Machine Learning, 2(4):319-342, 1988.

D. Angluin and C. H. Smith. Inductive inference: Theory and methods. ACM

Computing Surveys, 15(3):237-269, 1983.

P. Atzeni and G. Mecca. Cut & paste. In Proceedings of the Sixteenth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, pages 144-153.

ACM Press, 1997.

R. Baumgartner, S. Flesca, and G. Gottlob. Visual web information extraction with
lixto. In Proceedings of 27th International Conference on Very Large Data Bases

(VLDB 2001), pages 119-128, 2001.

F. Bry and S. Schaffert. Towards a declarative query and transformation language
for XML and semistructured data: Simulation unification. In Proceedings of the

International Conference on Logic Programming, 2002.

C. Cardie. Empirical methods in information extraction. AI Magazine, 18(4):65-79,

1997.

R. C. Carrasco, J. Oncina, and J. Calera-Rubio. Stochastic inference of regular
tree languages. In Proceedings of the 3rd International Colloguium on Grammatical

Inference, Lecture Notes on Articial Intelligence 1433, pages 187-198, 1998.

REFERENCES 42

8]

[9]

[10]

[11]

[12]

[13]

[14]

C.-H. Chang and S.-C. Lui. IEPAD: Information extraction based on pattern dis-
covery. In Proceedings of the tenth International Conference on World Wide Web,

pages 681-688, 2001.

S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou, J. Ull-
man, and J. Widom. The TSIMMIS project: Integration of heterogeneous informa-

tion sources. In Proceedings of the 10th Meeting of the Information Processing Society

of Japan, pages 7-18, 1994.

B. Chidlovskii, J. Ragetli, and M. de Rijke. Wrapper generation via grammar induc-
tion. In 11th European Conference on Machine Learning, ECML’00, pages 96-108,

2000.

W. Cohen. Whirl: A word-based information representation language. Artificial

Intelligence, 118:163-196, 2000.

W. Cohen, M. Hurst, and L. S. Jensen. A flexible learning system for wrapping
tables and lists in HTML documents. In The FEleventh International World Wide

Web Conference (WWW2002), 2002.

W. W. Cohen. Recognizing structure in web pages using similarity queries. In
Proceedings of the Sizteenth National Conference on Artificial Intelligence and Elev-
enth Conference on on Innovative Applications of Artificial Intelligence, pages 5966,

1999.

H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison,
and M. Tommasi. Tree Automata Techniques and Applications. Available on:

http://www.grappa.univ-lille3.fr/tata, 1999.

REFERENCES 43

[15]

[16]

[17]

18]

[19]

[20]

[21]

[22]

J. Cowie and W. Lehnert. Information extraction. Communications of the ACM,

39(1):80-91, 1996,

D. Freitag. Using grammatical inference to improve precision in information extrac-
tion. In ICML-97 Workshop on Automata Induction, Grammatical Inference, and

Language Acquisition, 1997.

D. Freitag. Information extraction from HTML: Application of a general learning
approach. In Proceedings of the Fifteenth Conference on Artificial Intelligence AAAI-

98, pages 517-523, 1998.

D. Freitag. Machine learning for information extraction in informal domains. Machine

Learning, 39(2/3):169-202, 2000.

D. Freitag and N. Kushmerick. Boosted wrapper induction. In Proceedings of the
Seventeenth National Conference on Artificial Intelligence and Twelfth Innovative

Applications of AI Conference, pages 577-583. AAAI Press, 2000.

D. Freitag and A. McCallum. Information extraction with HMMs and shrinkage. In

AAAI-99 Workshop on Machine Learning for Information Extraction, 1999.

P. Garcia. Learning k-testable tree sets from positive data. Technical report, Tech-

nical Report DSIC-ii-1993-46, DSIC, Universidad Politecnica de Valencia, 1993.

E. M. Gold. Language identification in the limit. Information and Control, 10(5):447—

474, 1967.

REFERENCES 44

[23]

[24]

[25]

[26]

[27]

28]

[29]

G. Gottlob and K. Koch. Monadic datalog over trees and the expressive power of
languages for web information extraction. In 21st ACM Symposium on Principles of

Database Systems, pages 17-28, 2002.

J. Hammer, H. Garcia-Molina, J. Cho, A. Crespo, and R. Aranha. Extracting semis-
tructured information from the Web. In Proceedings of the Workshop on Management

of Semistructured Data, pages 18-25, 1997.

A. Hemnani and S. Bressan. Information extraction - tree alignment approach to
pattern discovery in web documents. In Database and Ezpert Systems Applications,

13th International Conference, DEXA 2002, pages 789-798, 2002.

C.-N. Hsu and C.-C. Chang. Finite-state transducers for semi-structured text mining.
In Proceedings of IJCAI-99 Workshop on Text Mining: Foundations, Techniques and

Applications, 1999.

C.-N. Hsu and M.-T. Dung. Generating finite-state transducers for semi-structured

data extraction from the Web. Information Systems, 23(8):521-538, 1998.

G. Huck, P. Fankhauser, K. Aberer, and E. J. Neuhold. Jedi: Extracting and synthes-
izing information from the web. In Conference on Cooperative Information Systems,

pages 32-43, 1998.

R. Kosala, M. Bruynooghe, H. Blockeel, and J. Van den Bussche. Information ex-
traction by means of a generalized k-testable tree automata inference algorithm. In
Proceedings of the Fourth International Conference on Information Integration and

Web-based Applications & Services (IIWAS), pages 105-109, 2002.

REFERENCES 45

[30]

[31]

32]

[33]

[34]

[35]

[36]

37]

R. Kosala, M. Bruynooghe, J. Van den Bussche, and H. Blockeel. Information ex-
traction from web documents based on local unranked tree automaton inference.
In Proceedings of the 18th International Joint Conference on Artificial Intelligence,

2003. To appear.

R. Kosala, J. Van den Bussche, M. Bruynooghe, and H. Blockeel. Information ex-
traction in structured documents using tree automata induction. In Proceedings of

the 6th European Conference on Principles and Practice of Knowledge Discovery in

Databases (PKDD), pages 299-310, 2002.

N. Kushmerick. Wrapper Induction for Information Extraction. PhD thesis, Univer-

sity of Washington, 1997.

N. Kushmerick. Wrapper induction: Efficiency and expressiveness. Artificial Intelli-

gence, 118:15-68, 2000.

N. Kushmerick, D. Weld, and R. Doorenbos. Wrapper induction for information
extraction. In Proceedings of the International Joint Conference on Artificial Intel-

ligence IJCAI-97, pages 729-737, 1997.

A. Levy, C. Knoblock, S. Minton, and W. Cohen. Trends and controversies: Inform-

ation integration. IEEFE Intelligent Systems, 13(5), 1998.

L. Liu, C. Pu, and W. Han. Xwrap: An XML-enabled wrapper construction system
for web information sources. In Proceedings of the 16th International Conference on

Data Engineering, pages 611-621. IEEE Computer Society, 2000.

MUC-6. Proceedings of the Sixth Message Understanding Conference. San Francisco,

CA: Morgan Kaufmann, 1995.

REFERENCES 46

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

K. Murphy. Learning finite automata. Technical Report 96-04-017, Santa Fe Institute,

1996.

I. Muslea. Extraction patterns for information extraction tasks: A survey. In AAAI-

99 Workshop on Machine Learning for Information Extraction, 1999.

I. Muslea, S. Minton, and C. Knoblock. A hierarchical approach to wrapper induction.

In Proceedings of the 3rd International Conference on Autonomous Agents, 1999.

I. Muslea, S. Minton, and C. Knoblock. Hierarchical wrapper induction for semistruc-

tured information sources. Journal of Autonomous Agents and Multi-Agent Systems,

4:93-114, 2001.

S. Nestorov, S. Abiteboul, and R. Motwani. Infering structure in semistructured

data. SIGMOD Record, 26(4), 1997.

C. Pair and A. Quere. Définition et etude des bilangages réguliers. Information and

Control, 13(6):565-593, 1968.

R. Parekh and V. Honavar. Automata Induction, Grammar Inference, and Language
Acquisition. Handbook of Natural Language Processing. New York: Marcel Dekker,

1998.

J. R. Quinlan. Learning logical definitions from relations. Machine Learning, 5:239—

266, 1990.

J. Rico-Juan, J. Calera-Rubio, and R. Carrasco. Probabilistic k-testable tree lan-

guages. In A. Oliveira, editor, Proceedings of 5th International Colloquium, ICGI

REFERENCES 47

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

2000, Lisbon (Portugal), volume 1891 of Lecture Notes in Computer Science, pages

221-228. Springer, 2000.

A. Sahuguet and F. Azavant. Looking at the web through XML glasses. In Pro-
ceedings of the Fourth IFCIS International Conference on Cooperative Information

Systems, pages 148-159, 1999.

Y. Sakakibara. Efficient learning of context-free grammars from positive structural

examples. Information and Computation, 97(1):23-60, 1992.

Y. Sakakibara. Recent advances of grammatical inference. Theoretical Computer

Science, 185(1):15-45, 1997.

H. Sakamoto, H. Arimura, and S. Arikawa. Knowledge discovery from semistructured
texts. In S. Arikawa and A. Shinohara, editors, Progress in Discovery Science - Final
Report of the Japanese Discovery Science Project, volume 2281 of LNAI, pages 586—

599. Springer, 2002.

S. Soderland. Learning information extraction rules for semi-structured and free text.

Machine Learning, 34(1-3):233-272, 1999.

M. Takahashi. Generalizations of regular sets and their application to a study of

context-free languages. Information and Control, 27:1-36, 1975.

L. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134—

1142, 1984.

K. Wang and H. Liu. Discovering association of structure from semistructured ob-

jects. To appear in IEEE Transactions on Knowledge and Data Engineering, 1999.

REFERENCES 48
[55] G. Wiederhold. Intelligent Information Integration. Kluwer, 1996.

[56] XML. Extensible markup language (XML) 1.0 (second edition). W3C Recommend-

ation 6 October 2000, 2000. www.w3.org.

[57] XQL. XQuery 1.0: An XML query language. W3C Working Draft 16 August 2002,

2002. www.w3.org/TR/xquery.

