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Abstract

In recent years, the problem of association rule mining in transactional

data has been well studied. We propose to extend the discovery of clas-

sical association rules to the discovery of association rules of conjunctive

queries in arbitrary relational data, inspired by the Warmr algorithm,

developed by Dehaspe and Toivonen, that discovers association rules over

a limited set of conjunctive queries. Conjunctive query evaluation in rela-

tional databases is well understood, but still poses some great challenges

when approached from a discovery viewpoint in which patterns are gen-

erated and evaluated with respect to some well defined search space and

pruning operators.

1 Introduction

In recent years, the problem of mining association rules over frequent itemsets in
transactional data [9] has been well studied and resulted in several algorithms
that can find association rules within a limited amount of time. Also more
complex patterns have been considered such as trees [17], graphs [11, 10], or
arbitrary relational structures [5, 6]. However, the presented algorithms only
work on databases consisting of a set of transactions. For example, in the tree
case [17], every transaction in the database is a separate tree, and the presented
algorithm tries to find all frequent subtrees occurring within all such transac-
tions. Nevertheless, many relational databases are not suited to be converted
into a transactional format and even if this were possible, a lot of informa-
tion implicitly encoded in the relational model would be lost after conversion.
Towards the discovery of association rules in arbitrary relational databases,
Deshaspe and Toivonen developed an inductive logic programming algorithm,
Warmr [5, 6], that discovers association rules over a limited set of conjunctive
queries on transactional relational databases in which every transaction con-
sists of a small relational database itself. In this paper, we propose to extend
their framework to a broader range of conjunctive queries on arbitrary relational
databases.

Conjunctive query evaluation in relational databases is well understood, but
still poses some great challenges when approached from a discovery viewpoint in
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which patterns are generated and evaluated with respect to some well defined
search space and pruning operators. We describe the problems occurring in
this mining problem and present an algorithm that uses a similar two-phase
architecture as the standard association rule mining algorithm over frequent
itemsets (Apriori) [1], which is also used in the Warmr algorithm. In the first
phase, all frequent patterns are generated, but now, a pattern is a conjunctive
query and its support equals the number of distinct tuples in the answer of
the query. The second phase generates all association rules over these patterns.
Both phases are based on the general levelwise pattern mining algorithm as
described by Mannila and Toivonen [12].

In Section 2, we formally state the problem we try to solve. In Section 3,
we describe the general approach that is used for a large family of data min-
ing problems. In Section 4, we describe the Warmr algorithm which is also
based on this general approach. In Section 5, we describe our approach as an
generalization of the Warmr algorithm and identify the algorithmic challenges
that need to be conquered. In Section 6, we show a sample run of the presented
approach. We conclude the paper in Section 7 with a brief discussion and future
work.

2 Problem statement

The relational data model is based on the idea of representing data in tabular
form. The schema of a relational database describes the names of the tables
and their respective sets of column names, also called attributes. The actual
content of a database, is called an instance for that schema. In order to retrieve
data from the database, several query languages have been developed, of which
SQL is the standard adopted by most database management system vendors.
Nevertheless, an important and well-studied subset of SQL, is the family of
conjunctive queries.

As already mentioned in the Introduction, current algorithms for the discov-
ery of patterns and rules mainly focused on transactional databases. In practice,
these algorithms use several specialized data structures and indexing schemes
to efficiently find their specific type of patterns, i.e., itemsets, trees, graphs, and
many others. As an appropriate generalization of these kinds of patterns, we
propose a framework for arbitrary relational databases in which a pattern is a

conjunctive query.
Assume we are given a relational database consisting of a schema R and an

instance I of R. An atomic formula over R is an expression of the form R(x̄),
where R is a relation name in R and x̄ is a k-tuple of variables and constants,
with k the arity of R.

Definition 1. A conjunctive query Q over R consists of a head and a body. The
body is a finite set of atomic formulas over R. The head is a tuple of variables
occurring in the body.

A valuation on Q is a function f that assigns a constant to every variable
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in the query. A valuation is a matching of Q in I, if for every R(x̄) in the body
of Q, the tuple f(x̄) is in I(R). The answer of Q on I is the set

Q(I) := {f(ȳ) | ȳ is the head of Q and f is a matching of Q on I}.

We will write conjunctive queries using the commonly used Prolog notation.
For example, consider the following query on a beer drinkers database:

Q(x) :- likes(x, ‘Duvel’), likes(x, ‘Trappist’).

The answer of this query consists of all drinkers that like Duvel and also like
Trappist.

For two conjunctive queries Q1 and Q2 over R, we write Q1 ⊆ Q2 if for every
possible instance I of R, Q1(I) ⊆ Q2(I) and say that Q1 is contained in Q2. Q1

and Q2 are called equivalent if and only if Q1 ⊆ Q2 and Q2 ⊆ Q1. Note that
the question whether a conjunctive query is contained in another conjunctive
query is decidable [16].

Definition 2. The support of a conjunctive query Q in an instance I is the
number of distinct tuples in the answer of Q on I. A query is called frequent in
I if its support exceeds a given minimal support threshold.

Definition 3. An association rule is of the form Q1 ⇒ Q2, such that Q1 and
Q2 are both conjunctive queries and Q2 ⊆ Q1. An association rule is called
frequent in I if Q2 is frequent in I and it is called confident if the support of Q2

divided by the support of Q1 exceeds a given minimal confidence threshold.

Example 1. Consider the following two queries:

Q1(x, y) :- likes(x, ‘Duvel’), visits(x, y).

Q2(x, y) :- likes(x, ‘Duvel’), visits(x, y), serves(y, ‘Duvel’).

The rule Q1 ⇒ Q2 should then be read as follows: if a person x that likes Duvel
visits bar y, then bar y serves Duvel.

A natural question to ask is why we should only consider rules over queries
that are contained for any possible instance. For example, assume we have the
following two queries:

Q1(y) :- likes(x, ‘Duvel’), visits(x, y).

Q2(y) :- serves(y, ‘Duvel’).

Obviously, Q2 is not contained in Q1 and vice versa. Nevertheless, it is still
possible that for a given instance I, we have Q2(I) ⊆ Q1(I), and hence this
could make an interesting association rule Q1 ⇒ Q2, which should be read as
follows: if bar y has a visitor that likes Duvel, then bar y also serves Duvel.
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Proposition 1. Every association rule Q1 ⇒ Q2, such that Q2(I) ⊆ Q1(I),
can be expressed by an association rule Q1 ⇒ Q′

2, with Q′
2 = Q2 ∩ Q1, and

essentially has the same meaning.

In this case the correct rule would be Q1 ⇒ Q2, with

Q1(y) :- likes(x, ‘Duvel’), visits(x, y).

Q2(y) :- likes(x, ‘Duvel’), visits(x, y), serves(y, ‘Duvel’).

Note the resemblance with the queries used in Example 1. The bodies of the
queries are the same, but now we have another head. Evidently, different heads
result in a different meaning of the corresponding association rule which can
still be interesting. As another example, note the difference with the following
two queries:

Q1(x) :- likes(x, ‘Duvel’), visits(x, y).

Q2(x) :- likes(x, ‘Duvel’), visits(x, y), serves(y, ‘Duvel’).

The rule Q1 ⇒ Q2 should then be read as follows: if a person x that likes Duvel
visits a bar, then x also visits a bar that serves Duvel.

The goal is now to find all frequent and confident association rules in the
given database.

3 General approach

As already mentioned in the introduction, most association rule mining algo-
rithms use the common two-phase architecture. Phase 1 generates all frequent
patterns, and phase 2 generates all frequent and confident association rules.

The algorithms used in both phases are based on the general levelwise pat-
tern mining algorithm as described by Mannila and Toivonen [12]. Given a
database D, a class of patterns L, and a selection predicate q, the algorithm
finds the “theory” of D with respect to L and q, i.e., the set Th(L,D, q) := {φ ∈
L | q(D, φ) is true}. The selection predicate q is used for evaluating whether a
pattern Q ∈ L defines a (potentially) interesting pattern in D. The main prob-
lem this algorithm tries to tackle is to minimize the number of patterns that
need to be evaluated by q, since it is assumed this evaluation is the most costly
operation of such mining algorithms. The algorithm is based on a breadth-first
search in the search space spanned by a specialization relation which is a partial
order � on the patterns in L. We say that φ is more specific than ψ, or ψ is more

general than φ, if φ � ψ. The relation � is a monotone specialization relation

with respect to q, if the selection predicate q is monotone with respect to �, i.e.,
for all D and φ, we have the following: if q(D, φ) and φ � γ, then q(D, γ). In
what follows, we assume that � is a monotone specialization relation. We write
φ ≺ ψ if φ � ψ and not ψ � φ. The algorithm works iteratively, alternating
between candidate generation and candidate evaluation, as follows.
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C1 := {φ ∈ L | there is no γ in L such that φ ≺ γ};
i := 1;
while Ci 6= ∅ do

// Candidate evaluation
Fi := {φ ∈ Ci | q(D, φ)};
// Candidate generation
Ci+1 := {φ ∈ L | for all γ, such that φ ≺ γ, we have γ ∈

⋃
j≤i Fj}\

⋃
j≤i Cj ;

i := i+ 1
end while

return
⋃

j<i Fj ;

In the generation step of iteration i, a collection Ci+1 of new candidate patterns

is generated, using the information available from the more general patterns in⋃
j≤i Fj , which have already been evaluated. Then, the selection predicate is

evaluated on these candidate patterns. The collection Fi+1 will consist of those
patterns in Ci+1 that satisfy the selection predicate q. The algorithm starts
by constructing C1 to contain all most general patterns. The iteration stops
when no more potentially interesting patterns can be found with respect to the
selection predicate.

In general, given a language L from which patterns are chosen, a selection
predicate q and a monotone specialization relation � with respect to q, this
algorithm poses several challenges.

1. An initial set C1 of most general candidate patterns needs to be identified,
which is not always possible for infinite languages, and hence other, maybe
less optimal solutions could be required.

2. Given all patterns
⋃

j≤i Fj that satisfy the selection predicate up to a
certain level i, the set Ci+1 of all candidate patterns must be generated
efficiently. It might be impossible to generate all but only those elements
in Ci+1, but instead, it might be necessary to generate a superset of Ci+1

after which the non candidate patterns must be identified and removed.
Even if this identification is efficient, naively generating all possible pat-
terns could still become infeasible if this number of patterns becomes too
large. Hence, this poses two additional challenges:

(a) efficiently generate the smallest possible superset of Ci+1, and

(b) identify and remove each generated pattern that is no candidate pat-
tern by efficiently checking whether all of its generalizations are in⋃

j≤i Fj .

3. Extract all patterns from Ci+1 that satisfy the selection predicate q, by
efficiently evaluating q on all elements in Ci+1.

In the next section, we identify these challenges for both phases of the as-
sociation rule mining problem within the framework proposed by Dehaspe and
Toivonen, and describe their solutions as implemented within the Warmr al-
gorithm.
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4 The Warmr algorithm

As already mentioned in the introduction, a first approach towards the goal of
discovering all frequent and confident association rules in arbitrary relational
databases, has been presented by Dehaspe and Toivonen, in the form of an in-
ductive logic programming algorithm, Warmr [5, 6], that discovers association
rules over a limited set of conjunctive queries.

4.1 Phase 1

The procedure to generate all frequent conjunctive queries is primarily based
on a declarative language bias to constrain the search space to a subset of all
conjunctive queries, which is an extensively studied subfield in ILP [13].

The declarative language bias used in Warmr drastically simplifies the
search space of all queries by using the Warmode formalism. This formal-
ism requires two major constraints. The most important constraint is the key

constraint. This constraint requires the specification of a single key atomic for-
mula which is obligatory in all queries. This key atomic formula also determines
what is counted, i.e., it determines the head of the query, that is, all variables
occuring in the key atom. Second, it requires a list Atoms of all atomic formu-
las that are allowed in the queries that will be generated. In the most general
case, this list consists of the relation names in the database schema R. If one
also wants to allow certain constants within the atomic formulas, then these
atomic formulas must be specified for every such constant. In the most gen-
eral case, the complete database instance must also be added to the Atoms list.
The Warmode formalism also allows other constraints, but since these are not
obligatory, we will not discuss them any further.

Example 2. Consider

Atoms := {likes( , ‘Duvel’),

likes( , ‘Trappist’),

serves( , ‘Duvel’),

serves( , ‘Trappist’)},

where stands for an arbitrary variable, and

key := visits( , ).
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Then,

L = {Q(x1, x2) :- visits(x1, x2), likes(x3, ‘Duvel’).

Q(x1, x2) :- visits(x1, x2), likes(x1, ‘Duvel’).

. . .

Q(x1, x2) :- visits(x1, x2), serves(x3, ‘Duvel’).

Q(x1, x2) :- visits(x1, x2), serves(x2, ‘Duvel’).

. . .

Q(x1, x2) :- visits(x1, x2), likes(x1, ‘Duvel’), serves(x2, ‘Duvel’).

Q(x1, x2) :- visits(x1, x2), likes(x1, ‘Duvel’), serves(x2, ‘Trappist’).

. . . }.

As can be seen, these constraints already dismiss a lot of interesting patterns.
However, it is still possible to discover all frequent conjunctive queries, but then,
we need to run the algorithm for every possible key atomic formula with the
least restrictive declarative language bias. Of course, using this strategy, a lot
of possible optimizations are left out, as will be shown in the next section.

The specialization relation used in Warmr is defined Q1 � Q2 if Q1 ⊆ Q2.
The selection predicate q is the minimal support threshold, which is indeed
monotone with respect to �, i.e., for every instance I and conjunctive queries
Q1 and Q2, we have the following: if Q1 is frequent and Q1 ⊆ Q2, then Q2 is
frequent.

Candidate generation In essence, the Warmr algorithm generates all con-
junctive queries contained in the query Q(x̄) :- R(x̄), where R(x̄) is the key
atomic formula. Denote this query by the key conjunctive query. Hence, the
key conjunctive query is the (single) most general pattern in C1. Assume we are
given all frequent patterns up to a certain level i,

⋃
j≤i Fj . Then, Warmr gener-

ates a superset of all candidate patterns, by adding a single atomic formula, from
Atoms, to every query in Fi, as allowed by the Warmode declarations. From
this set, every candidate pattern needs to be identified by checking whether all of
its generalizations are frequent. However, this is no longer possible, since some
of these generalizations might not be in the language of admissible patterns.
Therefore, only those generalizations that satisfy the declarative language bias
need to be known frequent. In order to do this, for each generated query Q,
Warmr scans all infrequent conjunctive queries for one that is more general
than Q. However, this does not imply that all queries that are more general
than Q are known to be frequent! Indeed, consider the following example which
is based on the declarative language bias from the previous example.

Example 3.

Q1(x1, x2) :- visits(x1, x2), likes(x1, ‘Duvel’).

Q2(x1, x2) :- visits(x1, x2), likes(x3, ‘Duvel’).

7



Both queries are single extensions of the key conjunctive query, and hence, they
are generated within the same iteration. Obviously, Q2 is more general than
Q1, but still, both queries remain in the set of candidate queries. Moreover, it
is necessary that both queries remain admissible, in order to guarantee that all
frequent conjunctive queries are generated.

This example shows that the candidate generation step of Warmr does
not comply with the general levelwise framework given in the previous section.
Indeed, at a certain iteration, it generates patterns of different levels in the
search space spanned by the containment relation.

The generation strategy also generates several queries that are equivalent
with other candidate queries, or with queries already generated in previous iter-
ations, which also need to be identified and removed from the set of candidate
patterns. Again, for each candidate query, all other candidate queries and all
frequent queries are scanned for an equivalent query. Unfortunately, the ques-
tion whether two conjunctive queries are equivalent is an NP-complete problem.
Note that isomorphic queries are definitely equivalent (but not vice versa in
general), and also the problem of efficiently generating finite structures up to
isomorphism, or testing isomorphism of two given finite structures efficiently, is
still an open problem [7].

Candidate evaluation Since Warmr is an inductive logic programming al-
gorithm written within a logic programming environment, the evaluation of all
candidate queries is performed inefficiently. Still, Warmr uses several optimiza-
tions to increase the performance of this evaluation step, but these optimizations
can hardly be compared to the optimized query processing capabilities of rela-
tional database systems.

4.2 Phase 2

The procedure to generate all association rules in Warmr, simply consists of
finding all couples (Q1, Q2) in the list of frequent queries, such that Q2 is con-
tained in Q1. We were unable to find how this procedure exactly works, that
is, how is each query Q2 found, given query Q1. Anyhow, in general, this phase
is less of an efficiency issue, since the supports of all queries that need to be
considered are already known.

5 Getting Warmer

Inspired by the framework of Warmr, we present in this section a more general
framework and investigate the efficiency challenges described in Section 3. More
specifically, we want to discover association rules over all conjunctive queries
instead of only those queries contained in a given key conjunctive query since
it might not always be clear what exactly needs to be counted. For example, in
the beer drinkers database, the examples given in section 2 show that different
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heads could lead to several interesting association rules about the drinkers,
the bars or the beers separately. We also want to exploit the containment
relationship of conjunctive queries as much as possible, and avoid situations such
as described in example 3. Indeed, the Warmr algorithm does not fully exploit
the different levels induced by the containment relationship, since it generates
several candidate patterns of different levels within the same iteration.

5.1 Phase 1

The goal of this first phase is to find all frequent conjunctive queries. Hence, L
is the family of all conjunctive queries.

Since only the number of different tuples in the answer of a query is impor-
tant and not the content of the answer itself, we will extend the notion of query
containment, such that it can be better exploited in the levelwise algorithm.

Definition 4. A conjunctive query Q1 is diagonally contained in Q2 if Q1 is
contained in a projection of Q2. We write Q1 ⊆∆ Q2.

Example 4.

Q1(x) :- likes(x, y), visits(x, z), serves(z, y)

Q2(x, z) :- likes(x, y), visits(x, z), serves(z, y)

The answer of Q1 consists of all drinkers that visit at least one bar that serve at
least one beer they like. The answer of Q2 consists of all visits of a drinker to
a bar if that bar serves at least one beer the drinker likes. Obviously, a drinker
could visit multiple bars that serve a beer they like, and hence all these bars
will be in the answer of Q2 together with that drinker, while Q1 only gives the
name of that drinker, and hence, the number of tuples in the answer of Q1 will
always be smaller or equal than the number of tuples in the answer of Q2.

We now define Q1 � Q2 if Q1 ⊆∆ Q2. The selection predicate q is the
minimal support threshold, which is indeed monotone with respect to �, i.e.,
for every instance I and conjunctive queries Q1 and Q2, we have the following:
if Q1 is frequent and Q1 ⊆∆ Q2, then Q2 is frequent. Notice that the notion of
diagonal containment now allows the incorporation of conjunctive queries with
different heads within the search space spanned by this specialization relation.

Two issues remain to be solved: how are the candidate queries efficiently
generated without generating two equivalent queries? and how is the frequency
of each candidate query efficiently computed?

Candidate generation As a first optimization towards the generation of all
conjunctive queries, we will already prune several queries in advance.

1. The head of a query must contain at least one variable, since the support
of a query with an empty head can be at most 1. Hence, we already know
its support after we evaluate a query with the same body but a nonempty
head.
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2. We allow only a single permutation of the head, since the supports of
queries with an equal body but different permutations of the head are
equal.

Generating candidate conjunctive queries using the levelwise algorithm re-
quires an initial set of all most general queries with respect to ⊆∆. However,
such queries do not exist. Indeed, for every conjunctive query Q, we can con-
struct another conjunctive query Q′, such that Q ⊆∆ Q′ by simply adding a
new atomic formula with new variables into the body of Q, and adding these
variables to the head. A rather drastic but still reasonable solution to this prob-
lem is to apriori limit the search space to conjunctive queries with at most a
fixed number of atomic formulas in the body. Then, within this space, we can
look at the set of most general queries, and this set now is well-defined.

At every iteration in the levelwise algorithm we need to generate all candi-
date conjunctive queries up to equivalence, such that all of their generalizations
are known to be frequent. Since an algorithm to generate exactly this set is
not known, we will generate a small superset of all candidates and afterwards
remove each query of which a generalization is not known to be frequent (or
known to be infrequent).

Nevertheless, any candidate conjunctive query is always more specific than
at least one query in Fi. Hence, we can generate a superset of all possible
candidate queries using the following four operations on each query in Fi.

Extension: We add a new atomic formula with new variables to the body.

Join: We replace all occurrences of a variable with another variable already
occurring in the query.

Selection: We replace all occurrences of a variable x with some constant.

Projection: We remove a variable from the head if this does not result in an
empty head.

Example 5. This example shows a single application of each operation on the
query

Q(x, y) :- likes(x, y), visits(x, z), serves(z, u).

Extension:

Q(x, y) :- likes(x, y), visits(x, z), serves(z, u), likes(v, w).

Join:

Q(x, y) :- likes(x, y), visits(x, z), serves(z, y).

Selection:

Q(x, y) :- likes(x, y), visits(x, z), serves(z, ‘Duvel’).

Projection:

Q(x) :- likes(x, y), visits(x, z), serves(z, u).
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The following proposition implies that if we apply a sequence of these four
operations on the current set of frequent conjunctive queries, we indeed get at
least all candidate queries.

Proposition 2. Q1 ⊆∆ Q2 if and only if a query equivalent to Q1 can be
obtained from Q2 by applying some finite sequence of extension, join, selection
and projection operations.

Nevertheless, using these operations, several equivalent or redundant queries
can be generated. An efficient algorithm avoiding the generation of equivalent
queries is still unknown. Hence, whenever we generate a candidate query, we
need to test whether it is equivalent with another query we already generated.
In order to keep the generated superset of all candidate conjunctive queries
as small as possible, we apply an operator once on each query. If the query
is redundant or equivalent with a previously generated query, we repeatedly
apply any of the operators until a query is found that is not equivalent with
a previously generated query. As already mentioned in the previous section,
testing equivalence cannot be done efficiently.

After generating this superset of all candidate conjunctive queries, we need
to check for each of them whether all more general conjunctive queries are
known to be frequent. This can be done by performing the inverses of the
four operations extension, join, selection and projection, as described above.
Even if we now assume that in the set of all frequent conjunctive queries there
exist no two equivalent queries, we still need to find the query equivalent to
the one generated using the inverse operations. Hence, the challenge of testing
equivalence of two conjunctive queries reappears.

Candidate evaluation After generating all candidate conjunctive queries,
we need to test which of them are frequent. This can be done by simply evalu-
ating every candidate query on the database, one at a time, by translating each
query to SQL. Although conjunctive query evaluation in relational databases is
well understood and several efficient algorithms have been developed (i.e., join
query optimisation and processing) [8], this remains a costly operation. Within
database research, a lot of research has been done on multi-query optimiza-
tion [15]. Here, one tries to efficiently evaluate multiple queries at once. Unfor-
tunately, these techniques are not yet implemented in most common database
systems.

As a first optimization towards query evaluation, we can already derive the
support of a significant part of all candidate conjunctive queries. Therefore, we
only consider those candidate queries that satisfy the following restrictions.

1. We only consider queries that have no constants in the head, because the
support of such queries is equal to the support of those queries in which
the constant is not in the head.

2. We only consider queries that contain no duplicate variables in the head,
since the support of such a query is equal to the support of the query
without duplicates in the head.
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As another optimization, given a query involving constants, we will not treat
every variation of that query that uses different constants as a separate query,
but rather we can evaluate all those variations in a single global query. For
example, suppose the query

Q(x1) :- R(x1, x2)

is frequent. From this query, a lot of candidate queries are generated using the
selection operation on x2. Assume the active domain of x2 is 1, 2, . . . , n, then
the set of candidate queries contains at least

{Q(x1) :- R(x1, 1), Q(x1) :- R(x1, 2), . . . , Q(x1) :- R(x1, n)},

resulting in a possibly huge amount of queries that need to be evaluated. How-
ever, the support of all these queries can be computed by evaluating only the
single SQL query

select x2, count(∗)
from R

group by x2

having count(∗) ≥ minsup

of which the answer consists of every possible constant c for x2 together with
the support of the corresponding query Q(x1) :- R(x1, c). From now on, we
will therefore use only a symbolic constant to denote all possible selections of a
given variable. For example, Q(x1) :- R(x1, c1) denotes the set of all possible
selections for x2 in the previous example. A query with such a symbolic constant
is then considered frequent if it is frequent for at least one constant.

As can be seen, several optimizations can be used to improve the performance
of the evaluation step in our algorithm. Also, we might be able to use some of
the techniques that have been developed for frequent itemset mining, such as
closed frequent itemsets [14], free sets [2] and non derivable itemsets [3]. These
techniques could then be used to minimize the number of candidate queries that
need to be executed on the database, but instead we might be able to compute
their supports based on the support of previously evaluated queries. Another
interesting optimization could be to avoid using SQL queries completely, but in-
stead use a more intelligent counting mechanism that needs to scan the database
or the materialized tables only once, and count the supports of all queries at
the same time.

5.2 Phase 2

The goal of the second phase is to find for every frequent conjunctive query
Q, all confident association rules Q′ ⇒ Q. Hence, we need to run the general
levelwise algorithm separately for every frequent query. That is, for any given
Q, L consists of all conjunctive queries Q′, such that Q ⊆ Q′. Assume we are
given two association rules AR1 : Q1 ⇒ Q2 and AR2 : Q3 ⇒ Q4, we define
AR1 � AR2 if Q3 ⊆ Q1 and Q2 ⊆ Q4.
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Likes

Drinker Beer

Allen Duvel
Allen Trappist
Carol Duvel
Bill Duvel
Bill Trappist
Bill Jupiler

Visits

Drinker Bar

Allen Cheers
Allen California
Carol Cheers
Carol California
Carol Old Dutch
Bill Cheers

Serves

Bar Beer

Cheers Duvel
Cheers Trappist
Cheers Jupiler

California Duvel
California Jupiler
Old Dutch Trappist

Figure 1: Instance of the beer drinkers database.

The selection predicate q is the minimal confidence threshold which is again
monotone with respect to �, i.e., for every instance I and association rules
AR1 : Q1 ⇒ Q2 and AR2 : Q3 ⇒ Q4, we have the following: if AR1 is frequent
and confident and AR1 � AR2, then AR2 is frequent and confident.

Here, only a single issue remains to be solved: how are the candidate queries
efficiently generated without generating two equivalent queries?

We have to generate, for every frequent conjunctive query Q, all conjunctive
queries Q′, such that Q ⊆ Q′ and minimize the generation of equivalent queries.
In order to do this, we can use three of the four inverse operations described for
the previous phase, i.e., the inverse extension, inverse join and inverse selection
operations. We do not need to use the inverse projection operation since we do
not want those queries that are diagonally contained in Q, but only those queries
that are regularly contained in Q as defined in Section 2. Still, several queries
will be generated which are equivalent with previously generated queries, and
hence this should again be tested.

6 Sample run

Suppose we are given an instance of the beer drinkers database used throughout
this paper, as shown in Figure 1.

We now show a small part of an example run of the algorithm presented in
the previous section. In the first phase, all frequent conjunctive queries need to
be found, starting from the most general conjunctive queries. Let the maximum
number of atoms in de body of the query be limited to 2, and let the minimal
support threshold be 2,i.e., at least 2 tuples are needed in the output of a query
to be considered frequent. Then, the initial set of candidate queries C1, consists
of the 6 queries as shown in Figure 2. Obviously, the support of each of these
queries is 36, and hence, F1 = C1. To generate all candidate conjunctive queries
for level 2, we need to apply the four specialization operations to each of these 6
queries. Obviously, the extension operation is not yet allowed, since this would
result in a conjunctive queries with 3 atoms in their bodies. We can apply the
Join operation onQ1, resulting in queriesQ7 and Q8, as shown in Figure 3. Sim-
ilarly, the join operation can be applied to Q4 and Q6, resulting in Q9, Q10 and
Q11, Q12 respectively. However, the Join operation is not allowed on Q2, Q3 and
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Q1(x1, x2, x3, x4) :- likes(x1, x2), likes(x3, x4)
Q2(x1, x2, x3, x4) :- likes(x1, x2), visits(x3, x4)
Q3(x1, x2, x3, x4) :- likes(x1, x2), serves(x3, x4)
Q4(x1, x2, x3, x4) :- visits(x1, x2), visits(x3, x4)
Q5(x1, x2, x3, x4) :- visits(x1, x2), serves(x3, x4)
Q6(x1, x2, x3, x4) :- serves(x1, x2), serves(x3, x4)

Figure 2: Level 1.

Q7(x1, x2, x3) :- likes(x1, x2), likes(x1, x3)
Q8(x1, x2, x3) :- likes(x1, x2), likes(x2, x3)
Q9(x1, x2, x3) :- visits(x1, x2), visits(x1, x3)
Q10(x1, x2, x3) :- visits(x1, x2), visits(x2, x3)
Q11(x1, x2, x3) :- serves(x1, x2), serves(x1, x3)
Q12(x1, x2, x3) :- serves(x1, x2), serves(x2, x3)
Q13(x2, x3, x4) :- likes(x1, x2), likes(x3, x4)
...
Q37(x1, x2, x3) :- serves(x1, x2), serves(x3, x4)

Figure 3: Level 2.

Q5, since for each of them, there always exists a query in which it is contained
and which is not yet known to be frequent. For example, if we join x1 and x3

in query Q2, resulting in Q(x1, x2, x3) :- likes(x1, x2), visits(x1, x3), then this
query is contained in Q′(x1, x2, x4) :- likes(x1, x2), visits(x3, x4), of which the
frequency is not yet known. Similar situations occur for the other possible joins
on Q2, Q3 and Q5. The selection operation can also not be applied to any of the
queries, since for each variable we would select, there always exists a more gen-
eral query in which that variable is projected, but not selected, and hence, the
frequency of such queries is yet unknown. We can apply the projection operator
on any variable of queries Q1 through Q6, resulting in queries Q13 to Q37. In
stead of showing the next levels for all possible queries, we will show only single
path, starting from query Q7. On this query, we can now also apply the projec-
tion operation on x3. This results in a redundant atom which can be removed,
resulting in the query Q′

7(x1, x2) :- likes(x1, x2). Again, for the next level, we
can use the projection operation on x2, now resulting in Q′′

7(x1) :- likes(x1, x2).
Then, for the following level, we can use the selection operation on x2, resulting
in the query Q′′′

7 (x1) :- likes(x1, ‘Duvel’). Note that if we had selected x2, using
the constant ‘Trappist’, then the resulting query would not have been frequent
and would have been removed for further consideration. If we repeatedly apply
the four specialization operations until the levelwise algorithm stops, because
no more candidate conjunctive queries could be generated anymore, the second
phase can start generating confident association rules from all generated fre-
quent conjunctive queries. For example, starting from query Q′′′

7 , we can apply
the inverse selection operation, resulting in Q′′

7 . Since both these queries have
support 3, the rule Q′′

7 ⇒ Q′′′
7 holds with 100% confidence, meaning that every

drinker that likes a beer, also likes Duvel, according to the given database.
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7 Conclusions and future research

In the future, we plan to study subclasses of conjunctive queries for which
there exist efficient candidate generation algorithms up to equivalence. Possibly
interesting classes are conjunctive queries on relational databases that consist of
only binary relations. Indeed, every relational database can be decomposed into
a database consisting of only binary relations. If necessary, this can be further
simplified by only considering those conjunctive queries that can be represented
by a tree. Note that one of the underlying challenges that always reappears is the
equivalence test, which can be computed efficiently on tree structures. Other
interesting subclasses are the class of acyclic conjunctive queries and queries
with bounded query-width, since also for these structures, equivalence testing
can be done efficiently [4].

However, by limiting the search space to one of these subclasses, Proposi-
tion 1 is no longer valid, since the intersection of two queries within such a
subclass does not necesserally result in a conjunctive query which is also in that
subclass.

Another important topic is the improvement of performance issues for eval-
uating all candidate queries. Also the problem of allowing flexible constraints
to efficiently limit the search space to an interesting subset of all conjunctive
queries, is an important research topic.
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