
Distributed Computation of Web Queries using Automata

Marc Spielmann
Departement WNI

University of Limburg
Universitaire Campus

B-3590 Diepenbeek, Belgium

marc.spielmann@luc.ac.be

Jerzy Tyszkiewicz
∗

Institute of Informatics
Warsaw University

Banacha 2
02-097 Warsaw, Poland

jty@mimuw.edu.pl

Jan Van den Bussche
Departement WNI

University of Limburg
Universitaire Campus

B-3590 Diepenbeek, Belgium

jan.vandenbussche@luc.ac.be

ABSTRACT
We introduce and investigate a distributed computation mod-
el for querying the Web. Web queries are computed by in-
teracting automata running at different nodes in the Web.
The automata which we are concerned with can be viewed
as register automata equipped with an additional commu-
nication component. We identify conditions necessary and
sufficient for systems of automata to compute Web queries,
and investigate the computational power of such systems.

1. INTRODUCTION
Much attention has recently been paid to querying the Web
[5]. A salient feature of queries and computations on the
Web is their browsing nature: unlike a conventional database,
the Web is usually explored navigationally, starting from a
particular node in the Web (e.g., the user’s homepage). This
has led Abiteboul and Vianu [2] to formally define a Web
query as a mapping from pairs (I, s) to sets of nodes in I,
where I is a Web instance and s is the source of the query,
i.e., the node from which we start exploring the Web. Var-
ious kinds of machines specially tailored for computations
on the Web have been introduced and studied by Abiteboul
and Vianu in this context, in particular browser machines,
which can be viewed as Turing machines navigating the Web
by following links.

Another recent development is that of Internet supercom-
puting [6, 7], where many individual computers linked to
the Internet collaborate in a distributed computation. An
appealing and popular example is the SETI@home project,
which scans radio signals from space for signs of extrater-
restrial intelligence [12].

In this paper, we combine these two lines of research. More
precisely, we investigate the possibilities and limitations of
Web automata, a computation model for querying the Web,

∗Supported by Polish KBN grant 7 T11C 007 21

which is—like the browser machine model—purely naviga-
tional, but which is also distributed. Starting at a given
source node, a finite portion of the Web, reachable from
the source by following links, is populated with lightweight
processes. Typically, this portion is determined by specify-
ing a maximum number of links that can be followed (as
commonly done in tools for off-line browsing and Web mir-
roring). The processes run concurrently and follow a pro-
gram specified essentially as a finite register automaton [11].
They report back to the source process by sending messages
upwards along the edges of a spanning tree, a standard net-
work topology used in computer networks and distributed
computation [3, 18].

Our investigation offers the following contributions:

(i) We define a fair, efficient, and easy to enforce communi-
cation protocol by which distributed computations proceed
in rounds. Each round of a distributed computation has a
layered structure according to the levels of a spanning tree.
The Web automata (or, processes) at each level of the span-
ning tree run concurrently, and each level takes only con-
stant parallel time. After each round, the source automa-
ton, i.e., the Web automaton running at the source node,
is guaranteed to have received enough data in order to de-
cide whether to continue for another round, or to terminate
the computation. In addition, the source automaton may
produce output. We identify a decidable property of Web
automata, called productivity, which enables this protocol.
Testing productivity is Pspace-complete.

(ii) Since the order of upward communications within a layer
is not fixed, there may exist many different distributed runs
for a given spanning tree. On top of that, the spanning tree
itself arises out of the computation and is thus not a pri-
ori fixed. We call a Web automaton sound if it produces
the same output for every possible distributed run on every
possible spanning tree. Every sound Web automaton com-
putes a well-defined Web query. We show that soundness is
undecidable. (This is not entirely evident, given the finite
nature of Web automata and the rather rigid communication
protocol which they must follow.)

(iii) Although a sound Web automaton computes a Web
query, one may have to wait many rounds before seeing
any new output. This can be quite undesirable in prac-
tice. We call a Web automaton continuous if it produces

new output in every round. Note the analogy with Abite-
boul and Vianu’s distinction between finitely and eventually
computable Web queries: in the case of a query which is only
eventually computable, one can never be sure that the entire
output has actually been output. Note also that a continu-
ous Web automaton which computes a boolean query (i.e.,
a query with yes/no answers) already knows the correct an-
swer after the first round. We show that continuity is also
undecidable.

(iv) Assuming that at every node there is an ordering of the
outgoing links available (a very natural assumption in the
context of the Web), we can show that every logarithmic-
space computable Web query is computable by a Web au-
tomaton.

(v) We furthermore introduce decide-and-forward automata,
which constitute a natural, syntactic subclass of Web au-
tomata. A decide-and-forward (DF) automaton makes all
the crucial decisions already after the first round; the subse-
quent rounds are pure forwarding rounds which merely flush
the remaining contents of the communication queues to the
output. We show that soundness and continuity of DF au-
tomata becomes decidable in the monadic case, i.e., when
the tests performed by automata are based on unary predi-
cates of Web nodes only. We also give a characterization of
the Web queries continuously computable by monadic DF
automata in terms of a fragment of first-order logic.

(vi) Finally, we study browser stack machines, a restricted
variant of Abiteboul and Vianu’s browser machines. Our
restricted browser machines have only a finite work memory
and use their Turing tape in a stack-like manner, similar
to the three familiar surf actions of common Web browsers:
‘follow this link’, ‘go back’, and ‘go forward’. We show that,
if the depth of the stack is bounded (so that the machine
cannot get ‘lost in hyperspace’), then every Web query com-
putable by a browser stack machine is computable by a Web
automaton.

Related Work. Distributed Web querying systems (simi-
lar to our theoretical model) have already been implemented,
e.g., the DIASPORA system [8, 15]. As for theoretical work,
we are aware of only few publications on navigational Web
querying, most notably the original papers by Abiteboul
and Vianu [2], and Mendelzon and Milo [13]. Both papers
focus on computational completeness, while we work with
a limited computation model and focus on distribution and
efficiency. Abiteboul and Vianu also proposed a distributed
evaluation algorithm for regular path queries [1]. A very
recent proposal of a formal model for Web querying using
concurrent agents was made by Sazonov [16]. His model is
based not on finite automata but on a set-theoretic term
language. Of course, finite automata working over abstract
domains (in our case, Web nodes) rather than over finite
alphabets have been considered before, e.g., in the study of
regular languages over infinite alphabets [11, 14]. Finally,
we mention that our definition of distributed runs of Web
automata is inspired by Gurevich’s definition of partially
ordered runs of distributed abstract state machines [9].

Outline. In the next section, we recall the definition of Web
queries, slightly adapted for our purposes. In Sections 3 and

4, we introduce our automaton model and define distributed
runs of systems of automata. In Sections 5 and 6, we con-
sider automata suitable for computing Web queries and in-
troduce DF automata. We conclude in Section 7 by draw-
ing a connection between Abiteboul and Vianu’s browser
machines and our computation model.

2. WEB QUERIES
We consider Web queries in the spirit of Abiteboul and
Vianu [2]. Since in this paper we are mainly concerned with
computations on finite portions of the Web, we focus on Web
queries on finite instances of the Web.

Web Instances. In the following, Υ denotes a finite, re-
lational vocabulary containing (at least) the binary relation
symbol Link. A Web instance I a finite structure over Υ. We
view the elements of I as abstractions of Web pages, Web
sites, or other objects on the Web, and call them nodes. The
ordered pairs in the binary relation LinkI represent links in
the Web. The other relations of I are abstractions of seman-
tic predicates which a Web query may apply to nodes. For
example, a unary relation R1(x) could stand for “Web page
x contains the keyword Madison”, a binary relation R2(x, y)
could stand for “the link from x to y is labeled Madison”,
and a ternary relation R3(x, y, z) could stand for “on page
x, all links to y precede all links to z”. The vocabulary will
thus vary from query to query.

Although a Web instance is nothing but a standard rela-
tional database with at least one binary relation, there is
a crucial difference between querying a relational database
and querying the Web: to answer a Web query, one can
examine the ‘database’ only by following links, starting at
some source node. This leads us to the next basic definition.

Web Queries. A Web query Q over Υ is a mapping that
assigns to every pair (I, s), where I is a Web instance over
Υ and s is a node in I, a set of nodes in I. The node s is
also called the source (of the query). Following the standard
genericity criterion for database queries, we require that Q
preserves isomorphisms: if (I′, s′) is isomorphic to (I, s)
via an isomorphism ι, then Q(I′, s′) = ι(Q(I, s)). Further-
more, since we will consider purely navigational computa-
tion models only, it is only fair to accordingly require that
Q(I, s) = Q(Reach(I, s), s), where Reach(I, s) denotes the
substructure of I generated by the nodes reachable from the
source s by following links.

Notice that every first-order formula ϕ(s, x) over Υ with
free(ϕ) = {s, x} defines a Web query Qϕ over Υ:

Qϕ(I, s) := {n : Reach(I, s) |= ϕ[s, n]}.

3. WEB AUTOMATA
We begin the introduction of our computation model by
defining

• Web automata, a variant of register automata equip-
ped with an additional communication component, and

• runs of Web automata at individual Web nodes, which
we refer to as local runs.

Distributed runs of systems of Web automata are subject of
the next section.

Web Automata. Our automata are specified by simple,
rule-based programs defined as follows. Expand Υ to a vo-
cabulary Υ+ by adding three constant symbols 0, 1, and
⊥, and a unary relation symbol Source. Intuitively, 0 and
1 represent the boolean values false and true, respectively,
⊥ denotes the empty queue (of an automaton), and Source
indicates the source node. Fix some tuple r̄ = (r1, . . . , r`)
of variables (representing the registers of an automaton).

A guard (of a rule) is a quantifier-free first-order formula
ϕ(x, y, r̄) over Υ+ with free(ϕ) ⊆ {x, y, r̄}. As will become
clear soon, x will be interpreted as the node at which an
automaton is running locally, and y will be interpreted as
the head of the automaton’s queue. The queue will contain
incoming messages sent by automata running at other nodes.

A rule is an expression of the form

if ϕ then action

where ϕ is a guard, and action is an update action given
by an expression of the form (ri := t), or a send action
given by an expression of the form send(t̄). Here, t is a term
in {x, y, r1, . . . , r`, 0, 1}, and t̄ is a finite (possibly empty)
sequence of such terms.

A program is now simply a finite set of rules.

Example 1. Suppose that Υ contains a unary relation sym-
bol Interesting. Below, we display a program which employs
a register r to distinguish between the first computation
step and all subsequent steps. In the first step, the program
checks whether it is running at an ‘interesting’ node. If so,
it sends a message containing this node. In all subsequent
steps, it basically forwards the contents of its queue: in each
step, the first item in the queue is sent in a message of length
1, after which the item is removed from the queue. In the
program, “this node” and “head q” stand for the variables x
and y, respectively.

if (r = 0) ∧ Interesting(this node) then send(this node)
if (r = 0) then r := 1
if (r = 1) ∧ (head q 6= ⊥) then send(head q)
if (r = 1) ∧ (head q = ⊥) then send()

Definition 1. A Web automaton A is a triple (Υ, r̄,Π)
consisting of a vocabulary Υ, a tuple r̄ of (register) vari-
ables, and a program Π over Υ+ and r̄.

Next, we define a notion of run which reflects the behavior
of a Web automaton when observed at a particular node.

Local Runs. Let A = (Υ, r̄,Π) be an automaton, let I an
instance over Υ, and let s be a (source) node in I. Expand
I to a structure I+ over Υ+ by adding three new elements
0, 1, and ⊥, and by interpreting the unary relation symbol
Source as the singleton set {s}. In the following, the words
queue and message both refer to a finite sequence of bits
and nodes (in I). If q is a queue, then head(q) denotes the

first element of q; the sequence of the remaining elements is
denoted by tail(q). The head of the empty queue is defined
to be ⊥.

Consider a node n in I. A configuration of A at n is a triple
(n, q, ā) where q is a queue and ā is a tuple (a1, . . . , a`) of
bits and nodes (where we assume that ` is the number of
registers of A). Intuitively, ai is the content of register ri in
this particular configuration.

Consider a configuration (n, q, ā). A program rule in Π with
guard ϕ(x, y, r̄) is said to be enabled in (n, q, ā) if I+ |=
ϕ[n,head(q), ā].

The successor configuration of (n, q, ā) is the configuration
(n, q′, ā′) where q′ = tail(q) and for each i ∈ {1, . . . , `} the
following condition is satisfied: if there is precisely one ri-
update rule in Π which is enabled in (n, q, ā), and (ri := t) is
the right-hand side of this rule, then a′i = t[x/n, y/head∗(q),
r̄/ā]; otherwise, a′i = ai. Here, head∗ maps the empty queue
to 0, but is otherwise defined as head.

We say that A sends a message m in (n, q, ā) if there is
precisely one send rule in Π which is enabled in (n, q, ā)
and, if send(t̄) is the right-hand side of this rule, m = t̄[x/n,
y/head∗(q), r̄/ā].

A local run of A at node n (in I with source s) is a finite
or infinite sequence (Ci)i∈κ of configurations of A at n such
that for every i+ 1 ∈ κ

• Ci+1 is a successor configuration of Ci, and

• if A sends the empty message in Ci, then Ci+1 is the
last configuration of (Ci)i∈κ.

Remark 1. The reader may wonder why our automata
need to be able to send messages of length longer than 1.
After all, an automaton could send a message component-
wise, i.e., bit by bit, node by node, as messages of length
1? However, in the next section, we will consider systems
of communicating automata where a receiving automaton
may obtain messages from many different automata, and
these messages can be intermingled during communication.
In particular, the order in which messages occur in the queue
of the receiving automaton can be arbitrary. If an automa-
ton sends a message component-wise, the receiving automa-
ton may not be able to reconstruct the original message from
its components. In this context, note that messages longer
than 1 can always be flanked by separators (e.g., special bit
sequences), enabling a receiving automaton to distinguish
between different messages.

Notice that a local run can start in any configuration. This is
because in a distributed scenario an automaton may receive
some messages even before it starts its own, local computa-
tion.

We are particularly interested in automata where the time
between two send actions is bounded by a constant.

Definition 2. Let k > 1 be a natural number. A Web
automaton A is k-productive if in every local run (Ci)i<k
of A, there is at least one configuration in which A sends a
message. A is productive if it is k-productive for some k.

As an example, recall the program in Example 1, and verify
that the automaton defined by this program is 2-productive.

Theorem 1. Deciding productivity is Pspace-complete.

Proof Sketch. For containment in Pspace, consider an
arbitrary Web automaton A, and suppose that A has (at
most) ` registers. It is easily verified that A is productive iff
A is 3`-productive. Furthermore, there is a straightforward,
non-deterministic algorithm which accepts a givenA iff there
exists a run of A of length 3` − 1 during which A does not
send a message. This algorithm runs in space polynomial in
the size of A. Since NPspace = Pspace, we conclude that
deciding non-productivity is in Pspace. This immediately
implies that deciding productivity is in Pspace as well.

Hardness for Pspace is proved via a reduction from a re-
striction of fin-sat(E+TC), the finite satisfiability problem
for existential transitive-closure logic (see, e.g., [4, 17]). A
formula of the form [TCx̄,x̄′ϕ](t̄, t̄′) is called simple if t̄ = 0̄,
t̄′ = 1̄, and ϕ is a quantifier-free formula over the vocabu-
lary {0, 1,=} of the form ϕ′ ∧ x̄′ ∈ {0, 1}. The problem of
deciding whether a given simple TC formula has a (finite)
model is Pspace-complete [17]. We reduce this problem to
the problem of deciding non-productivity.

Consider a simple TC sentence ψ = [TCx̄,x̄′ϕ](0̄, 1̄), and
suppose that x̄ (and thus x̄′) consists of k variables. One
can define a Web automaton Aψ which is not productive iff
ψ is satisfiable. The idea is to let Aψ interpret its queue
as an encoding of a ϕ-path from 0̄ to 1̄. In k consecutive
steps, Aψ reads k bits from its queue, stores the bits in
registers x̄′, and then checks whether ϕ(x̄, x̄′) holds. If the
test is successful, it sets x̄ = x̄′; otherwise, it discards x̄′.
After 2k repetitions, it knows whether an initial segment of
its queue encodes a path model of ψ, or not. If it finds a
model, it does not send any messages; otherwise, it sends
some dummy message.

4. DISTRIBUTED COMPUTATIONS
Before we define distributed runs of systems of Web au-
tomata formally, we provide some intuition. A productive
automaton A, when started at some source node s in an in-
stance I, begins by distributing copies of itself to all other
nodes, using a straightforward recursive procedure: upon
creation at a node n, A equips every node which n links to
with a copy of itself, except if the node is already equipped
with a copy. This procedure traces out some spanning tree
of the link graph of I. Of course, in the ‘real’ Web, it is
virtually impossible to equip all nodes with copies of A. In-
stead, we propose to visit nodes only up to a certain level
in the spanning tree. An upper bound on the levels could,
e.g., be specified by the user. Also, all automata running
at nodes which are located on the same server may still be
implemented by a single process running at that server.

Once the spanning tree is set up, all automata start running
concurrently. Each automaton sends its messages to the au-
tomaton which created it, following a simple protocol based
on two principles:

1. Start computing the next message only if you have
‘enough’ input (see below).

2. Stop once you have sent a message.

This naturally organizes a distributed computation in rounds,
where in each round, every automaton (which is still active)
sends precisely one message. For instance, automata at leaf
nodes (of the spanning tree) never receive any messages and
can thus start a round by computing their own messages
(in parallel). Each leaf automaton, when finished, sends its
message to its parent automaton, and then waits for the
next round. Automata at inner nodes, on the other hand,
consume messages from their queues each time they move.
Hence, an inner automaton must wait until it has received
enough messages (or knows that no new message will arrive
in this round), such that it can run long enough in order
to compute its own message. When finished, it also sends
its message to its parent automaton, and then waits for the
next round.

Since our automaton program is productive, every round
can be performed in parallel time linear in the depth of the
spanning tree. In every new round, an automaton contin-
ues its local run where it has stopped during the previous
round. If an automaton sends the empty message, it exits
the computation and will not participate in later rounds. If
the source automaton exits, the whole computation termi-
nates. The output produced during a computation is the set
of nodes sent by the source automaton.

We proceed to the formal definition of distributed runs. Let
I be an instance with node set N and link set L, and let s
be a (source) node in I. We assume that Reach(I, s) = I;
if this is not the case, replace I with Reach(I, s) in what
follows. Let T be a spanning tree of the link graph (N,L)
such that s is the root of T .

A global configuration of A is a mapping γ that assigns to
each node n a configuration of A at n. The initial global
configuration maps each n to (n,∅, 0̄).

Consider two global configurations γ and γ′, and let n be a
node. γ′ is called a successor configuration of γ via a move
at n if the following three conditions hold:

1. There exists a finite local run (C0, . . . , Cr) of A at n
such that (i) C0 = γ(n), (ii) r > 1, (iii) no message
is sent during this local run before Cr−1, (vi) A does
send some message m in Cr−1, and (v) Cr = γ′(n).

2. If n 6= s, let p be the parent of n in T and suppose that
γ(p) = (p, q, ā). Then, γ′(p) = (p, qm, ā). (That is, m
is appended to the queue of the parent automaton.)

3. For every node o different from n and p (if p exists),
γ′(o) = γ(o).

Let d be the depth of T . For every i ∈ {0, . . . , d}, let level(i)
denote the set of nodes whose distance from s in T is i. Let

M be a subset of N containing s. An M-round (along T)
is a finite sequence (γi)i6k of global configurations such that

• for every i+ 1 6 k, γi+1 is a successor configuration of
γi via a move at some node ni+1

• the sequence n1 . . . nk is an enumeration of M , and

• for each i ∈ {0, . . . , d} there exists an enumeration ēi
of level(i) ∩M such that ēd . . . ē0 = n1 . . . nk.

The output produced during this round is the set of nodes
occurring in the message sent by A at s.

A one-round run ρ (on I with source s) is an N -round
which starts with the initial global configuration. Finally,
a multiple-round run ρ∗ (on I with source s) is a finite or
infinite sequence (ρi)i∈κ of rounds along the same spanning
tree such that ρ0 is a one-round run and for every i+ 1 ∈ κ

• ρi+1 starts with the last configuration of ρi, and

• if ρi is an M -round and M0 ⊆M is the set of nodes at
which A has sent the empty message during ρi, then
ρi+1 is an (M −M0)-round.

Since M -rounds are only defined when s ∈M , ρ∗ is finite iff
the root automaton sends the empty message during some
round ρi, in which case ρi is the last round of ρ∗. The output
produced during ρ∗ is the union of the outputs produced
during the rounds of ρ∗.

Notice that, since A was assumed to be productive, condi-
tion (1) in the above definition of a successor configuration
is always satisfied. As a consequence, for every choice of I,
s, and T , there exists a multiple-round run of A on (I, s)
along T .

Remark 2. It is worth noticing that productivity of A is
only a sufficient criterion for the existence of a multiple-
round run of A on any (I, s). In fact, there are many au-
tomata which are not productive in the sense of Definition
2 but which nevertheless always satisfy condition (1), and
thus always have a multiple-round run. Unfortunately, it
is undecidable whether a given automaton satisfies condi-
tion (1) in every possible distributed scenario. However, we
only mention here that Definition 2 can be relaxed so that
the obtained notion of productivity becomes strictly weaker,
still enables multiple-round runs, and is also decidable in
Pspace.

In the remainder of the paper, we focus on productive Web
automata.

Example 2. Recall the Web automaton defined in Exam-
ple 1. When run on a pair (I, s), this automaton outputs all
‘interesting’ nodes in I reachable from s. In each round, the
source automaton outputs precisely one node. Notice that
the source automaton does not output any node twice and
that the output order depends on the choice of the span-
ning tree and on the order in which the various automata
communicate during each round.

Remark 3. Distributed runs as defined in this section are
in fact linearizations of partially-ordered runs in the spirit
of Gurevich [9]. This explains why the intuitive description
of distributed computations at the beginning of this section
may not entirely conform to the formal definition of dis-
tributed runs: the intuitive description refers to (genuine)
partially-ordered runs. It is possible to give an alternative
definition of distributed runs which does not make use of
linearizations and which can easily be implemented.

5. AUTOMATA COMPUTING QUERIES
In general, a Web automaton can exercise many different
distributed runs on one and the same Web instance (and
source node). This is because both the choice of the span-
ning tree and the order of communications during rounds
can be arbitrary. As a result, different runs may produce
different output sets.

Example 3. Consider the following program. For the sake
of readability, we display the program in a slightly relaxed
syntax, using nested if-then-else rules (with the obvious
meaning).

if (r = 0) then

r := 1
if (head q 6= ⊥) then

send(head q)
else

send(this node)
else

send()

On the 3-node instance n1 ← s → n2, the output can be
either {n1} or {n2}, depending which of the two children of
s gets its message first in the queue of s. By adding the two
links n1 → n2 and n2 → n1, we obtain also dependence on
the choice of the spanning tree. If the tree s → n1 → n2 is
selected, the output is {n2}, while if the tree s → n2 → n1

is selected, the output is {n1}.

On the other hand, there are automata whose output is
independent of the choice of the spanning tree and the order
of communications. To see an example, consider again the
automaton in Example 1. Here, the output set is always the
same, although the output order can differ from run to run.
This motivates the following definition.

Definition 3. A Web automaton A is sound if for every
pair (I, s), every multiple-round run of A on (I, s) produces
the same output. In that case, we can speak of the Web
query computed by A, which maps a pair (I, s) to the output
(produced during any run) of A on (I, s).

Unfortunately, we cannot decide whether a given Web au-
tomaton is sound. (Nevertheless, there exists an interesting
class of Web automata for which soundness is decidable, as
we will see in the next section.)

Theorem 2. Soundness is undecidable.

Proof Sketch. The proof is by reduction from the emp-
tiness problem for deterministic one-way two-head automata
(2-DFAs). It suffices to consider simple 2-DFAs, i.e., 2-
DFAs whose input alphabet is {0, 1} and whose program
ensures that every computation progresses in two distin-
guished phases. During the first phase, a simple 2-DFA M
uses its first input head to scan an initial segment of the
input tape. The second input head remains idle. After each
computation step, M may or may not switch to the sec-
ond phase, depending on its current configuration. If and
when M switches to the second phase, the first input head is
placed somewhere on the tape, while the second input head
is still on the first tape cell. During the second phase, M
can do whatever 2-DFAs are entitled to do, with the restric-
tion that, in every computation step, M must move both
input heads, each one to the next tape cell. A computa-
tion of M stops if the input is accepted or if the first input
head reaches the end of the input tape. One can show that
for simple 2-DFAs the emptiness problem is undecidable (by
reduction from the word problem for Turing machines).

Let M be a simple 2-DFA. Recall that by Qtrue we denote
the Web query which maps a pair (I, s) to the set of those
nodes in I which are reachable from s. One can construct a
Web automaton AM over {Link} such that

• if L(M) = ∅, then AM computes Qtrue , and

• if AM is sound, then L(M) = ∅.

This reduces the emptiness problem for simple 2-DFAs to
the problem of deciding soundness. Some details of the con-
struction follow. In the first round, AM performs the fol-
lowing two tasks in parallel. First, it checks whether it is
executed along a spanning tree which has the form of a path.
Second, it pretends that the first test was successful, views
the spanning tree (which is now assumed to be a path) as an
input tape (where link self loops represent set input bits),
and simulates the first phase of M on that input tape. If
the first test fails, the source instance of AM switches to a
‘forwarding’ mode, which means that in every subsequent
round it just outputs all nodes (reachable from the source
node). The same happens if during the simulation of M the
first input head reaches the end of the (virtual) input tape.

If the source automaton survives the first round without
switching to forwarding mode, then, in all subsequent rounds,
AM simulates the second phase of M and, in parallel, out-
puts all nodes. Except if the source automaton discov-
ers during the simulation that M accepts. In that case,
the source automaton switches to a ‘spoiling’ mode, which
means that it stops outputting nodes and instead sends some
dummy messages.

An indication of the querying power of Web automata is
provided by the next result. We call a Web instance I lo-
cally ordered if it contains a distinguished ternary relation
≺, typically written x ≺z y, such that for every node n in I,
the binary relation x ≺n y is a total order on the children
of n in I.

Theorem 3. Any logarithmic-space computable Web que-
ry on locally ordered instances is computable by a Web au-
tomaton.

Proof Sketch. Let ϕ(x1, . . . , xk) be a formula of de-
terministic transitive-closure logic (see, e.g., [4]). One can
construct a Web automaton Aϕ which, on every pair (I, s)
with a locally ordered I, enumerates {ā : Reach(I, s) |=
ϕ[ā]} in the following sense. In every round, Aϕ at s sends
either a ‘wait’ message or a message (a1, . . . , ak) satisfying
ϕ. Eventually, all messages satisfying ϕ are sent by Aϕ at
s. The theorem is then implied by a well-known result due
to Immerman [10], namely that a query on finite ordered
structures is logarithmic-space computable iff it is express-
ible in deterministic transitive-closure logic (see also [4]).
The construction of Aϕ is based on the following observa-
tion. There exists a Web automaton Aenum such that every
multiple-round run (ρi)i of A on (I, s) satisfies the following
three conditions:

1. (ρi)i is infinite.

2. During each ρi, there is at most one node output.

3. Let (nj)j be the node sequence produced during (ρi)i
where rounds with empty output are omitted. There
exists an enumeration ē of the reachable nodes such
that (nj)j can be seen as an infinite repetition of ē.

Aϕ can now be defined by induction on ϕ. For instance,
if ϕ(x̄) = R(x̄), then Aϕ simulates Aenum, turns the repet-
itive enumeration of all nodes into an enumeration of all
k-tuples of nodes, and checks whether R(x̄) holds for each
k-tuple.

An undesirable behavior of Web automata, even of sound
ones, is that one may have to wait many rounds before seeing
any new output (e.g., a node which has not been output yet).
In the worst case, one may even wait only to learn later that
there is no new output at all. Since each round takes only
linear parallel time in the depth of the portion of the Web
which we are exploring, it would be particularly interesting
to have the following behavior.

Definition 4. A Web automaton A is called continuous if
every multiple-round run (ρi)i of A satisfies the following
condition: during each round ρi, except of the last round,
there is at least one node output which has not been output
during any round preceding ρi.

Theorem 4. Continuity is undecidable.

Proof Sketch. The proof is similar to the proof of The-
orem 2. In fact, AM can be constructed so that (i) if L(M) =
∅, then AM continuously computes Qtrue , and (ii) if AM is
continuous, then L(M) = ∅. This reduces the emptiness
problem for simple 2-DFAs to the problem of deciding con-
tinuity.

Remark 4. Theorems 2 and 4 hold already for automata
which test only one unary relation (in particular, which do
not test the link relation). Both theorems remain true if
we focus on automata which test only the link relation (and
no other relation). Moreover, undecidability is encountered

even if we restrict our attention to tree-like Web instances
(which have a unique spanning tree). Finally, both theorems
remain true for finite Web automata, i.e., Web automata
which cannot store nodes in their registers and therefore
have only a finite number of different internal states. Note
that the automaton in Example 1 is finite in that sense.

The next result provides a class of Web queries computable
by continuous Web automata, in terms of a fragment of
first-order logic, which we call at-most-at-least logic. The
fragment may seem artificial at first, but later we will see
that it is associated to a natural subclass of the class of Web
automata (see Theorem 8).

Let α(x) be quantifier-free formula with free(α) = {x}, and
let k be a natural number. Subsequently, we write (∃x ∈ α)
instead of ∃xα(x). An α-at-most formula is a formula of the
form (|α| 6 k) ∧ γα(s, x) where

• (|α| 6 k) abbreviates the first-order formula ¬(∃>kx ∈
α), and

• γα(s, x) is a boolean combination of formulas of the
form (∃y1 ∈ α) . . . (∃yr ∈ α)β(s, x, ȳ) with β quantifier-
free and r ≥ 0.

An at-most-at-least formula is a formula of the form α(x) ∧
δα(s, x) where δα(s, x) is a boolean combination of α-at-most
formulas and atomic formulas β(s).

Example 4. Suppose that the vocabulary Υ contains two
unary relation symbols Red and Green. Verify that the fol-
lowing formula is a Red-at-most formula over Υ:

|Red| 6 42 ∧ ¬
(
Green(x) ∧ (∃y ∈ Red)Link(x, y)

)
.

The negation of this formula is equivalent to |Red| 6 42 →
¬ γRed(x) where γRed(x) stands for the second conjunct of the
above formula. The following formula is now an example of
an at-most-at-least formula. Intuitively, the formula says
that, if there are more than 42 red nodes, then output all
red nodes; otherwise, output all red nodes which are also
green and which link to another red node.

Red(x) ∧
(
|Red| 6 42→ ¬ γRed(x)

)
.

Theorem 5. Any Web query definable in at-most-at-least
logic is computable by a continuous Web automaton.

The proof of this theorem is presented in a more general
context in the appendix (see also Remark 8). The converse
direction of the theorem does not hold, however. For in-
stance, the query defined by the following formula is contin-
uously computable, but the formula is not equivalent to any
at-most-at-least formula:(

Red(x) ∧ |Red| > 42
)
∨
(
Green(x) ∧ |Green| > 10

)
.

Remark 5. There is an interesting variant of Theorem 5,
which reads as follows. A generalized at-most-at-least for-
mula is simply a boolean combination of at-most formulas

and quantifier-free formulas β(s, x). In particular, the at-
most subformulas of a generalized at-most-at-least formula
do not need to be defined w.r.t. the same α. One can show
that any Web query definable by a generalized at-most-at-
least formula is computable by a Web automaton with dis-
card action, i.e., a Web automaton which can discard its
queue, in addition to performing update and send actions.

The next observation gives an example of a query which is
computable by a Web automaton, but not by a continuous
one.

Proposition 1. Let R be a binary relation symbol. The
Web query QR : (I, s) 7→ {n : Reach(I, s) |= R(s, n)} is not
computable by a continuous Web automaton.

Indeed, to be continuous, the source automaton must start
outputting already in the first round. However, by produc-
tivity, it can see only a constant number of nodes in each
round. If the communication order is unfortunate, none of
the nodes seen in the first round qualify for output.

Remark 6. A similar argument shows that the Web query
defined by the at-most-at-least formula Red(x) ∧ |Red| 6 2,
while computable by a continuous Web automaton, is not
computable by a continuous Web automaton that can send
messages of length at most 1 (recall Remark 1).

6. DECIDE AND FORWARD AUTOMATA
In this section, we introduce a natural, syntactic subclass of
the class of Web automata, for which it is decidable whether
a given automaton is sound and continuous. The subclass
is closely tied to the at-most-at-least logic defined in the
previous section.

A Web automaton is called link-free if the link relation does
not occur in its program. Link-freeness of sound automata
simplifies things considerably, as exemplified by the follow-
ing ‘flat-tree’ property. For every pair (I, s), let flat(I, s)
denote the Web instance obtained from I by changing the
link graph of I into a flat tree with root s, i.e., a tree where
all nodes, except of s, are children of s.

Proposition 2. Let A be a sound, link-free Web automa-
ton, and let Q be the Web query computed by A. For every
pair (I, s), Q(I, s) = Q(flat(I, s), s).

Proof. Consider a pair (I, s). Let I′ be obtained from
I by adding links from s to all other nodes. Every run of
A on (I, s) is also a run of A on (I′, s), and by soundness,
Q(I, s) = Q(I′, s). Likewise, every run of A on (flat(I, s), s)
is also a run of A on (I′, s), hence Q(flat(I, s), s) = Q(I′,
s) = Q(I, s).

One can easily show that, on flat trees, every sound Web au-
tomaton computes a logarithmic-space computable query.
The above proposition then implies that any Web query

computable by a link-free Web automaton is logarithmic-
space computable. Whether this also holds in general is an
open problem; the proposition certainly does not hold in
general.

Remark 7. Referring back to the introduction, we point
out (only half seriously though) that Proposition 2 provides
some kind of a-posteriori justification of the way Internet
supercomputing works, where in fact the standard mode of
operation is so that all computers which participate in a
distributed computation report directly to a central source
computer.

A decide-and-forward automaton (or DF automaton for short)
is a Web automaton whose program has the form

if first round then

Π
else

Πforward

where first round is a boolean register initialized with true,
Π is a program in which every send rule has the form

if ϕ then send(t̄); first round := false

where ϕ is a guard of the form ϕ′ ∧ t̄ 6∈ {0, 1}, and Πforward

is the program

if (head q 6= ⊥) then

send(head q)
else

send()

In other words, a DF automaton makes all the crucial deci-
sions in the first round, sends only nodes (no bits), and acts
in all subsequent rounds (if any) merely as a forwarder that
flushes the remaining contents of the communication queues
to the output.

Note that the program displayed in Example 1 can easily be
rewritten into an equivalent DF form (see also the explana-
tion in Example 2).

A Web automaton is called monadic if in its program no
relation of arity > 2 occurs. In particular, a monadic au-
tomaton is link-free. For monadic DF automata, we obtain
the following two decidability results plus a characterization
in terms of monadic at-most-at-least logic. The correspond-
ing proofs are rather technical and sketched in the appendix.

Theorem 6. For monadic DF automata, emptiness is
decidable. (In general, emptiness is undecidable.)

Theorem 7. The problem of deciding whether a monadic
DF automaton is sound and continuous is decidable.

Theorem 8. A Web query is computable by a continuous
monadic DF automaton iff it is definable in monadic at-
most-at-least logic.

Recall the query which shows that the converse direction of
Theorem 5 does not hold in general (see after Theorem 5).
Since this query is monadic, we obtain the following corol-
lary of Theorem 8.

Corollary 1. Continuous DF automata are strictly weak-
er than (general) continuous Web automata.

7. BROWSER STACK MACHINES
For the work by Abiteboul and Vianu [2] was one of the main
inspiration for the present paper, we conclude our investi-
gation by drawing a connection between Web automata and
Abiteboul and Vianu’s browser machines. More precisely,
we introduce browser stack machines, a restricted variant of
browser machines, and show that browser stack machines
can be simulated by Web automata in depth-bounded re-
gions of the Web.

Browser Stack Machines. There are two main restric-
tions which we impose on browser machines:

• the work tape is replaced with a finite number of reg-
isters, and

• the browsing tape is organized like a stack, forcing a
machine to explore the Web only by means of the three
familiar surf actions of common Web browsers: ‘follow
this link’, ‘go back’, and ‘go forward’.

Formally, browser stack machines (BSMs for short) are de-
fined as follows. Let Υ and r̄ be as in the definition of Web
automata. A guard (of a rule) is a quantifier-free formula
ϕ(x, r̄) over Υ ∪ {0, 1} with free(ϕ) ⊆ {x, r̄}. (This time, x
will denote the stack element which the cursor of a BSM is
currently pointing to.) A BSM program Π is a finite set of
rules of the form (if ϕ then action) where ϕ is a guard,
and action is an expression of the form up, down, expand,
(ri := t) or output(t). Here, t is a term in {x, r̄, 0, 1}.

Definition 5. A browser stack machine M is a triple (Υ,
r̄, Π) consisting of a vocabulary Υ, a tuple r̄ of (register)
variables, and a BSM program Π over Υ ∪ {0, 1} and r̄.

Runs. Let M = (Υ, r̄,Π) be a BSM, let I be a locally
ordered instance over Υ (recall our convention prior to The-
orem 3), and let s be a (source) node in I. Subsequently, the
word stack refers to a finite sequence of nodes and 0’s. An
occurrence of 0 on a stack will serve as a separator between
different segments of the stack. If st is a stack of length k,
then by a cursor on st we mean a natural number between
1 and k.

A configuration of M is a quadruple (st, c, ā, O) where st is a
stack, c is a cursor on st, ā is a register assignment (as in the
case of Web automata), and O is a set of nodes. Intuitively,
O is the output produced so far.

Consider a configuration (st, c, ā, O). The successor config-
uration (st′, c′, ā′, O′) of this configuration is defined in the
obvious way. Here, we only give some details concerning the
actions up, down, and expand. Suppose that there is pre-
cisely one stack rule in Π which is enabled in (st, c, ā, O). If

the right-hand side of the rule is up or down, then st′ = st
and c′ is obtained from c as usual. If the right-hand side of
the rule is expand, partition st into stlow and sthigh such that
st = stlow sthigh and the length of stlow is c. If c points to a
node, say, n, and ē denotes the enumeration of all children
of n in the order x ≺n y, then st′ = stlow 0 ē and c′ = c.
Otherwise, st′ = st and c′ = c.

A run ρ of M (in I with source s) is a finite or infinite
sequence (Ci)i∈κ of configurations of M such that C0 =
(s, 1, 0̄,∅) and for every i+ 1 ∈ κ

• Ci+1 is a successor configuration of Ci, and

• Ci+1 is the last configuration of ρ if M attempts to
move the cursor below the stack bottom in Ci.

Note that ρ is uniquely determined by (I, s). We say that
M halts on (I, s) if ρ is finite. In that case, the output
component of the final configuration of ρ is called the output
of M on (I, s). If M halts on every pair (I, s), we can speak
of the Web query computed by M , which maps a pair (I, s)
to the output of M on (I, s).

The next theorem gives an indication of the querying power
of BSMs.

Theorem 9. Any logarithmic-space computable Web que-
ry on locally ordered instances is computable by a BSM.

The proof of this theorem is similar to the proof of Theorem
3. The only difficult part is to find a BSM which repeti-
tively enumerates all nodes (similar to Aenum in the proof of
Theorem 3). We omit the details.

Depth-Bounded BSMs. Let d be a natural number. A
BSM M is called d-bounded if it maintains a counter of the
number of separators between the stack bottom and the cur-
rent cursor position. Whenever this counter equals d, M
ignores all expand actions.

We can now draw a connection between Web automata and
browser machines.

Theorem 10. Any Web query computable by a depth-
bounded BSM is computable by a Web automaton.

Proof Sketch. Due to Theorem 3, it suffices to show
that any depth-bounded BSM can be simulated by a loga-
rithmic-space bounded Turing machine (with separate input
and output tapes). Consider a d-bounded BSM M . We
describe a logarithmic-space bounded Turing machine TM
such that for every input (I, s), TM on an encoding of (I, s)
simulates M on (I, s).

First observe that, because TM has a separate output tape,
it does not need to store the output of M . If (st, c, ā, O)
is a configuration of M (on some fixed input (I, s)), then
the triple (st, c, ā) is called a reduced configuration of M .
We show that TM can store a representation of any reduced
configuration in logarithmic space (in the size of I). This

clearly holds for the contents ā of the registers of M . Con-
sider the stack st. By the i-th segment of st we mean the
segment which

• starts with the node following the (i−1)-th separator,
and

• ends with the i-th separator.

For example, the first segment of any stack consists of the
source node and the first separator. To represent st, TM em-
ploys d registers, called stack registers. Each stack register
either holds a node or is undefined, and thus requires only
logarithmic space. During a computation, the i-th stack reg-
ister holds the last node of the i-th segment of st (i.e., the
node before the i-th separator). This node was expanded
when the (i+ 1)-th segment was placed on the node stack.

To represent the cursor c, TM employs another register,
called cursor register, and a counter ranging in {1, . . . , d+1}.
During a computation, the cursor register holds the node
currently read by the cursor; it is undefined iff the cursor
is currently placed on a separator. The counter specifies
in which segment the cursor is currently roaming. Both,
the counter and the cursor register require only logarithmic
space. (Verify that, because no node occurs twice in the
same segment, the counter and the cursor register together
uniquely determine the position of the cursor.)

Using this representation of reduced configurations, TM can
simulate transitions of M from reduced configurations to
reduced configurations in logarithmic space.

8. REFERENCES
[1] S. Abiteboul and V. Vianu. Regular path queries with

constraints. Journal of Computer and System
Sciences, 58(3):482–452, 1999.

[2] S. Abiteboul and V. Vianu. Queries and computation
on the web. Theoretical Computer Science,
239(2):231–255, 2000.

[3] H. Attiya and J. Welch. Distributed Computing:
Fundamentals, Simulations and Advanced Topics.
McGraw-Hill, 1998.

[4] H. Ebbinghaus and J. Flum. Finite Model Theory.
Springer-Verlag, 1995.

[5] D. Florescu, A. Levy, and A. Mendelzon. Database
techniques for the World-Wide Web: A survey.
SIGMOD Record, 27(3):59–74, 1998.

[6] I. Foster. Internet computing and the emerging grid.
Nature, Dec. 2000.

[7] I. Foster and C. Kesselman. The Grid: Blueprint for a
New Computing Infrastructure. Morgan-Kaufmann,
1998.

[8] N. Gupta, J. Haritsa, and M. Ramanath. Distributed
query processing on the Web. In Proceedings of 16th
International Conference on Data Engineering,
page 84. IEEE Computer Society, 2000.

[9] Y. Gurevich. Evolving algebras 1993: Lipari guide. In
E. Börger, editor, Specification and Validation
Methods, pages 9–36. Oxford University Press, 1995.

[10] N. Immerman. Languages that capture complexity
classes. SIAM Journal of Computing, 16(4):760–778,
1987.

[11] M. Kaminski and N. Francez. Finite-memory
automata. Theoretical Computer Science,
134(2):329–363, 1994.

[12] E. Korpela, D. Werthimer, D. Anderson, J. Cobb, and
M. Lebofsky. SETI@HOME—massively distributed
computing for SETI. Computing in Science and
Engineering, 3(1):78–83, 2001.

[13] A. Mendelzon and T. Milo. Formal models of web
queries. Information Systems, 23(8):615–637, 1998.

[14] F. Neven, T. Schwentick, and V. Vianu. Towards
regular languages over infinite alphabets. In
Proceedings of 26th International Symposium on
Mathematical Foundations of Computer Science
(MFCS 2001), volume 2136 of Lecture Notes in
Computer Science, pages 560–572. Springer-Verlag,
2001.

[15] M. Ramanath and J. Haritsa. DIASPORA: A highly
distributed web-query processing system. World Wide
Web, 3(2):111–124, 2000.

[16] V. Sazonov. Using agents for concurrent querying of
web-like databases via a hyper-set-theoretic approach.
In Proceedings of 4th International Conference on
Perspectives of System Informatics (PSI 2001),
volume 2244 of Lecture Notes in Computer Science,
pages 378–394. Springer-Verlag, 2001.

[17] M. Spielmann. Abstract State Machines: Verification
Problems and Complexity. PhD thesis, RWTH
Aachen, 2000.

[18] A. Tanenbaum. Computer Networks. Prentice-Hall,
3rd edition, 1996.

APPENDIX
Below, we sketch the proofs of Theorems 6 and 7. The proofs
of Theorems 5 and 8 are subject of the second part of this
section.

Decidability Results
Fix a DF automaton A. We assume that A is k-productive.
A Web instance I is called tree-like if the link graph of I is
a tree (where each leaf is reachable from the root). By a run
of A on a tree-like I we mean a run of A on (I, r) where r
is the root of I.

Lemma 1. Suppose that A is monadic. There exists a
(computable) constant cA,k such that for every one-round
run ρ of A there exists a one-round run ρ′ of A on a tree-
like Web instance of size at most cA,k such that the message
sent by the source automaton during ρ′ is identical with the
message sent by the source automaton during ρ.

Using this observation, one can prove the following theorem.

Theorem 11. For monadic Web automata the first-round
emptiness problem is decidable.

Proof of Theorem 6. Verify that the identity is a re-
duction from the emptiness problem for DF automata to the
first-round emptiness problem for Web automata. Theorem
6 then follows from the above theorem.

The main idea in the proof of Theorem 7 is to reduce the
problem of deciding soundness to the problem of deciding
soundness on ‘flat’ trees. We call a tree-like I flat if the link
depth of I, measured from the root, is at most 1. Note that,
for every tree-like I with root r, flat(I, r) is by definition flat
(recall the definition of flat(I, r) prior to Proposition 2).

Definition 6. A is flat-tree sound if for every flat I, every
multiple-round run of A on I produces the same output. A
is flat-invariant if it is flat-tree sound and for every tree-like
I, every multiple-round run of A on I produces the same
output as A on flat(I, r) where r denotes the root of I.

Lemma 2. Flat-tree soundness is a decidable property of
DF automata.

Lemma 3. Suppose that A is monadic. A is sound iff A
is flat-invariant.

The remainder of the construction concerns a procedure for
deciding flat-invariance.

Alpha Nodes. Let α(x) be a quantifier-free formula with
free(α) = {x} such that for every tree-like I and for every
leaf node n in I, I |= α[n] iff A at n sends a non-empty
message during a one-round run of A on I. We call a node
n in I α-node if I |= α[n].

Alpha-Sending Automata. A is called α-sending if dur-
ing every one-round run of A, every non-empty message sent
by A at a non-source node contains pairwise distinct α-nodes
only.

Lemma 4. If A is α-sending, then A is continuous.

Lemma 5. It is decidable whether a given Web automaton
is α-sending.

Alpha-Outputting Automata. A is called α-outputting
if for every (I, s), every multiple-round run of A on (I, s)
produces a subset of {s} ∪ Nα as output, where Nα is the
set of α-nodes in I.

Lemma 6. If A is monadic and sound, then A is α-out-
putting.

Lemma 7. It is decidable whether a given α-sending DF
automaton is α-outputting.

We call a tree-like I sparse if there are at most k non-root
α-nodes in I.

Definition 7. A is sparse-tree sound if for every sparse I,
every multiple-round run of A on I produces the same out-
put.

Lemma 8. Sparse-tree soundness is a decidable property
of α-sending DF automata.

The next lemma is central to the construction. Its proof is
based on Lemma 1.

Lemma 9. Flat-invariance is a decidable property of flat-
and sparse-tree sound, α-sending and -outputting, monadic
DF automata.

We are now in the position to sketch the proof of our main
decidability result.

Proof of Theorem 7. Consider a monadic DF automa-
ton A. We call A bounded if for every flat I with precisely k
non-root α-nodes, and for every one-round run ρ of A on I,
ρ is terminating (i.e., the source automaton sends the empty
message during ρ). Otherwise, we call A unbounded.

First determine whether A is bounded or unbounded (sim-
ply by testing all non-isomorphic small flat trees). Suppose
that A is unbounded. One can show that, if A is sound and
continuous, then A must be α-sending. Check whether A
is α-sending (see Corollary 5). If the test fails, reject A.
Otherwise, check whether A is α-outputting (see Lemma 7).
If this test fails, reject A (because A is not sound accord-
ing to Lemma 6). Otherwise, check whether A is flat- and
sparse-tree sound (see Lemmata 2 and 8). If one of the two
tests fails, reject A (clearly, A cannot be sound in that case).
Otherwise, check whether A is flat-invariant (see Lemma 9).
If this test fails, reject A (because A is not sound accord-
ing to Lemma 3). Otherwise, accept A, for it is sound and
continuous due to Lemmata 3 and 4.

Now suppose that A is bounded. Note that A may not
be α-sending in this case. An analysis similar to the one
outlined above leads to a decision procedure for bounded
automata.

Expressibility Results
This second part of the appendix concerns the proofs of
Theorems 5 and 8. In the following, λα(s, x) denotes an α-
at-most literal, i.e., a formula of the form |α| ≤ k ∧ γα(s, x)
or the form |α| ≤ k → γα(s, x).

Proposition 3. Any conjunction of α-at-most literals (in
the variables s and x) is equivalent to an α-at-most literal.
The same holds true for disjunctions of α-at-most literals.

Lemma 10. Let ϕ(s, x) be a formula of the form α(x) ∧
λα(s, x). The Web query defined by ϕ, Qϕ, is computable
by a continuous Web automaton.

Proof Sketch. Suppose that λα is a positive literal, say,
λα = |α| ≤ k ∧ γα(s, x). We describe briefly a continuous
automaton Aϕ which computes Qϕ. Aϕ is (k+1)-productive
and sends messages of length ≤ k + 1. If Aϕ is running at
a node different from the source node, it forwards in each
round as many as possible (but at most k + 1) nodes sat-
isfying α to its parent automaton. If Aϕ is running at the
source node, it attempts to see (k+1) nodes satisfying α. If
it succeeds, it sends the empty message, thereby terminating
the computation. Otherwise, it knows all (reachable) nodes
satisfying α. In particular, there are at most k such nodes.
For each such node n, the source automaton checks whether
γα(s, n) holds and, if successful, outputs n.

Now suppose that λα is a negative literal, say, λα = |α| ≤
k → γα(s, x). Modify Aϕ as described above so that, if
the source automaton discovers that there are at least (k +
1) nodes satisfying α, then, instead of sending the empty
message, it outputs all nodes in its queue, plus the source
node if the source node satisfies α.

Color Types. Let x be a variable. A color type in x is a
maximal consistent set of atomic and negated atomic for-
mulas in x. Observe that every quantifier-free formula α(x)
with free(α) = {x} is equivalent to a disjunction of color
types in x.

Proof of Theorem 5. Let ϕ(s, x) be an at-most-at-least
formula. We construct a continuous automaton Aϕ which
computes Qϕ. Suppose that ϕ(s, x) = α(x) ∧ δα(s, x). Us-
ing Proposition 3, one can show that δα is equivalent to a
formula of the form∨

i

(
ci(s) ∧ λα,i(s, x)

)
(1)

where each ci(s) is a color type in s such that ci ≡ cj iff i = j.
According to Lemma 10, for each index i in formula (1),
there exists a continuous automaton computing Qα∧λα,i . It
is now an easy exercise to combine these automata to a
continuous automaton Aϕ computing Qϕ.

Remark 8. The proofs of both Lemma 10 and Theorem 5
can be arranged so that the constructed automata are link-
free and DF.

Proof of Theorem 8. Let Q be a Web query. Suppose
that Q is definable by a monadic at-most-at-least formula.
According to Theorem 5, Q is computable by a continuous
Web automaton. By Remark 8, this automaton is monadic
and DF.

Now suppose that Q is computable by a continuous monadic
DF automaton A. Furthermore, suppose that A is (k + 1)-
productive. Let s and x be two variables, and let c1(s),
. . . , c`(s) be an enumeration of all color types in s (over
the vocabulary of A, and up to isomorphism). Clearly,

∨
i ci(s) ≡ (s = s). We are going to construct a quantifier-

free formula α(x), and for each i ∈ {1, . . . , `}, an α-at-most
literal λα,i(s, x) such that the formula

α(x) ∧
∨
i

(
ci(s) ∧ λα,i(s, x)

)
defines Q.

Let α(x) be define as in the previous subsection (see below
Lemma 3). Intuitively, α specifies those (colorings of) leaf
nodes which the source automaton can possibly see during
any computation (recall Lemma 3).

The definition of λα,i(s, x) is based on various tests revealing
the behavior of A when executed at ci-colored source nodes.
Choose pairwise distinct color types c′1(x), . . . , c′m(x) from
the set {c1(x), . . . , c`(x)} so that α(x) ≡

∨
j c
′
j(x). Let I be

a flat instance such that

• the root node r of I satisfies ci(s), and

• for each j ∈ {1, . . . ,m}, there are at least (k + 1) leaf
nodes satisfying c′j(x).

We are going to execute A at r (in I) on various queues
consisting of α-nodes.

By a coordinate k̄ we mean a tuple (k1, . . . , km) such that
k1, . . . , km ≤ (k + 1). Let k̄ be a coordinate. A k̄-queue is a
sequence of leaf nodes in I such that

• the length of the sequence is
∑m
j=1 kj , and

• for each j ∈ {1, . . . ,m}, the sequence contains precisely
kj pairwise distinct nodes satisfying c′j(x).

Let q be a k̄-queue. We say that A at r accepts q if the first
message sent by A at r on q is not empty (i.e., contains a
node).

Verify that for any two k̄-queues q and q′, A at r accepts q
iff A at r accepts q′. Hence, we can define an m-dimensional
table Ti as follows: at coordinate k̄, Ti contains “accept” if A
at r accepts any k̄-queue; otherwise it contains “reject”. By
Di we denote the diagonal plane of T given by all coordinates
satisfying

∑m
j=1 kj = (k + 1). One can show that Di has

either only accept entries or only reject entries.

Next, observe that the definition of Ti does not depend on
the choice of I. We obtain the same table for any flat I
whose root node satisfies ci(s), and which contains enough
leaf nodes satisfying c′j(x) (for each j). This shows that the
decision of whether A at a ci-colored source node is going to
output or not is entirely determined by the entries on and
below the diagonal plane Di, i.e., all entries at coordinates
satisfying

∑
j kj ≤ (k + 1).

Suppose that Di has only reject entries. Let S be the set of
those coordinates which satisfy

∑
j kj ≤ k and where Ti has

an accept entry. Define λα,i(s, x) to be

(|α| ≤ k) ∧
∨
k̄∈S

(
γ′k̄ ∧ γ

′′
k̄ (s, x)

)
(2)

where γ′k̄ and γ′′k̄ are as follows. If ci(x) does not occur
among c′1(x), . . . , c′m(x), set γ′k̄ =

∧
j(|c
′
j | = kj). Otherwise,

suppose that ci(x) = c′p(x), and set γ′k̄ = (|c′p| = k1 + 1) ∧∧
j 6=p(|c

′
j | = kj). By testing A, one can define γ′′k̄ so that

it specifies (i) those (colorings of) nodes in a k̄-queue which
are output, and (ii) whether or not s is output.

Now suppose that Di has only accept entries. In that case,
replace the first conjunction symbol in formula (2) with an
implication symbol.

