Converting untyped formulas to typed ones

Jan Van den Bussche Luca Cabibbo

Abstract

We observe that every first-order logic formula over the untyped ver-
sion of some many-sorted vocabulary is equivalent to a union of many-
sorted formulas over that vocabulary. This result has as direct corollary a
theorem by Hull and Su on the expressive power of active-domain quan-
tification in the relational calculus.

Keywords: Many-sorted logic, relational database, relational calculus

1 Introduction

Many-sorted logic is widely used in the formal aspects of computer science as a
“typed” version of classical (first-order) logic which is in principle “untyped”,
or, as one also calls it, one-sorted. In this short paper, we compare many-sorted
and one-sorted first-order logic with respect to their expressive power. It is
well-known that many-sorted logic can be simulated using one-sorted logic. We
prove a converse to this simulation.

Specifically, suppose we work in some fixed many-sorted vocabulary . There
are two basic ways to express first-order logic properties of o-structures. One
can use standard many-sorted o-formulas, which are well-typed in the sense
that each variable occurring in them is restricted to range only over elements
of a specified sort. Or one can use untyped formulas, where variables can range
over elements of all sorts, and in which predicates are available to test whether
an element belongs to a particular sort. It is well known that every well-typed
formula is equivalent to an untyped formula. We show that conversely, every
untyped formula is equivalent to a union of well-typed formulas. (The union
appears simply because a single untyped formula can be true for differently-
sorted valuations of its free variables, which is impossible for well-typed formulas
by their very nature.)

As an application, we show how this observation yields as a direct corollary
an important theorem by Hull and Su on the expressive power of active-domain
quantification in the relational calculus as a query language for relational da-
tabases. We thus obtain a simple proof of this theorem, which was originally
proven in a rather complicated way.

The reader is supposed to be familiar with elementary mathematical logic.

2 Definitions

We start by defining vocabularies and structures over a vocabulary.

Definition 1 A (relational) vocabulary is a triple o = (01,09, 03), where
1. o1 is a finite set of symbols called sort symbols;
2. o9 is a set of symbols called relation symbols; and

3. o3 is a mapping on the set of relation symbols, assigning to each relation
symbol R a tuple o3(R) of sort symbols.

The tuple o3(R) is called the type of R in o. Generally, a tuple of sort symbols
is called a type.

Without ambiguity we will drop the subscript 3 and henceforth write o(R)
instead of o3(R).

Definition 2 A structure over a vocabulary o is a pair A = (44, A2), where

1. A, is a function mapping each sort symbol s of o to a set A;(s), such that
different sort names get disjoint sets; and

2. A, is a function mapping each relation symbol R of o to a subset A3(R)
of Ay(s1) X - % Ay(sy), if 0(R) = (51,...,5n).

Generally, any subset of Aj(s1) X -+ X Ai(sp) is called a relation of type
(s1,.-.,8n) on A and its elements are called tuples of type (s1,...,sn) on A.
The elements of the set A;(s), for a sort symbol s, are called the elements of
sort s in A.

Without ambiguity we will drop the subscripts 1 and 2 and henceforth write
A(s) instead of A;(s) and A(R) instead of A3(R).

If a vocabulary contains only one sort symbol then we call it one-sorted. We
can associate a one-sorted vocabulary to each vocabulary as follows:

Definition 3 Let o be a vocabulary. The untyped vocabulary associated with
o, denoted by @, is the vocabulary defined as follows:

1. There is only one sort symbol, 1;

2. The relation symbols of & are the relation symbols of o plus the sort
symbols of o;

3. For each sort symbol s of o, 5(s) := (1), and for each relation symbol R
of o, 7(R) :=(1,...,1), n times, where n is the length of the tuple o(R).

A structure over a one-sorted vocabulary is also called one-sorted. We can
view every structure as a one-sorted structure in the following way:

Definition 4 Let A be a structure over o. The untyped structure associated
with A, denoted by A, is the structure over & defined as follows. We have A(1) :=
U, A(s), where the union ranges over all sort symbols s of 0. Furthermore, we
have A(s) := A(s) for each sort symbol s of o and A(R) := A(R) for each
relation symbol R of o.

Now fix a vocabulary o. For each sort symbol s of o, we assume given an
unbounded supply of variables of sort s. A formula over o is a standard first-
order logic formula ¢ in the language of equality and the relation symbols of o,
such that all variables occuring in ¢ are of a sort of o.

Let A be a structure over o and let ¢ be a formula over o with free variables
Z1,...,Z,. Let the sort of z; be s;, and let a; € A(s;) foreachi=1,...,n. By
A E plas,...,a,], we denote that ¢ is true in A under the substitution of a; for
z; fori =1,...,n. The notion of truth is the standard one, with the important
provision that for each quantified variable = in ¢, if the sort of z is s then =
ranges only over the elements of sort s in A. The relation defined by p on A,
denoted by A(yp), is then defined as

{(a1,...,an) | a; € A(s;) fori=1,...,nand A |= play,...,as]}

Note that this is a relation of type (s1,...,s,) on A.

3 From untyped to well-typed

We are now ready to prove the following basic lemma. The reason why it holds
is the condition on structures imposed in Definition 2 that sets of elements of
different sorts must be disjoint.

Lemma 1 Let o be a vocabulary. For every formula 1 over the associated
untyped vocabulary T there exist a finite number of formulas p1,...,pr over o
such that for each structure A over o,

A) = A1) U---U A(pr).
The above equation will also be written in short as ¢ = p; U -+ U ¢y.
Proof. By induction on .

e ¢y is x = y. Then k is the number of sort symbols of o, and ; is x; = y;,
where z; and y; are variables of the ith sort of o, fori =1,...,k.

e ¢ is s(z), with s a sort symbol. Then k¥ = 1 and ¢, is y = y with y a
variable of sort s.

e ¢ is R(zy,...,x,), with R a relation symbol. Then k = 1 and ¢; is
R(y1,...,Yn), where y; is a variable of sort s;, for i = 1,...,k, if o(R) =
(51,- - 5m).

e ¢ is (x V). By induction, we have xy = o1 U---Uyp; and 8 = 91 U--- Uy,
Let the number of variables occurring free in x but not in 6 be k, and let
the number of variables occurring free in € but not in x be n. Then

1/} U‘P1A¢t UUSOZA¢t UUﬂl/\(i)t/ UUﬂ /\¢tr

& &

where # ranges over all sorts of length n, i ranges over all sorts of length
k, and ¢y, for a sort t, is the trivial formula defining the full relation of
sort £.! The variables used in the formulas ¢p and ¢; must not occur in
the formulas ¢; and 9;.

e ¢ is (3z)x. By induction, we have x = ¢ U--- U pg. We distinguish two
possibilities:

— z does not occur free in x. Then v is equivalent to x and thus
Y=p1U---Upg.

— x occurs free in y. If ¢ has n free variables, then x has n + 1, and
we may assume that x is the n + 1th. Now let y; be the n + 1th free
variable of ¢;, for i = 1,... k. Then ¢ = (y1)¢1 U+ - U (Fyr)@rk-

e ¢ is (—x). This is the only case that is not entirely trivial. By induction,
we have x = ¢ U---U¢y. For every structure 4, A(z)) is the complement
of A(x). Assume 1 has n free variables. Let 1,..., s be an enumeration
of all sorts of length n over 0. We may assume that ¢; defines a relation
of sort §;, for i = 1,...,1 (note that | < k). Since the n-tuples on A can
be partitioned according to their sort, the complement of A(y) consists
of the union over ¢ = 1,...,k of the complements of A(p;) taken within
the class of tuples of sort sj, together with all tuples of some sort §; with
j > 1. Hence, we have ¢ = (1) U---U (=) U@ip1 U - - U g, where
for j > [the formula ¢; is the trivial formula defining the full relation of
sort sj.

This completes the proof of the lemma.

As an immediate corollary, we obtain:

Proposition 1 Let o be a vocabulary, and let ¢ be a formula over the associated
untyped vocabulary . Assume 1p has n free variables, and let (s1,...,s,) be a
type over o. Then there exists a formula ¢ over o such that for each structure
A over o, the relation

{(ar,.-.,an) | a; € A(s;) fori=1,...,n and A E ¢Y[a1,-..,a,]} (%)
equals A(p).

IThe trivial formula defining the full relation of sort (s1,...,s,) is (z1 = T1) A+ A (2, =
Zn), where x; is a variable of sort s; fori =1,...,n.

Proof. Let zi,...,z, be the free variables of ¢, and consider the formula
X:=UAsi(x1) A Asp(Tn)-

Then A() is precisely the relation (x). Applying the lemma to x yields formulas
©1, .-,k over o such that A(x) = A(p1)U---UA(px). Since A(y) is a relation
of type (s1,...,Sn), the same is true for each A(p;) and hence we can put
@ =1 V-V, where we identify the free variables of the different ¢;. Thus
the proposition holds.

Note that by specializing the proposition to sentences (formulas without free
variables), we get that for each one-sorted sentence ¢ there exists a many-sorted
sentence ¢ such that A | ¢ iff A = ¢ for each A.

Example 1 As an illustration, assume o has as sort symbols 1, 2 and 3, and
as relation symbols R and S with o¢(R) = (1,2) and o(S) = (1,3). Consider
the untyped formula ¢(z) = (3y)(R(z,y) V S(z,y)). This formula defines a
relation of sort (1). To find a well-typed formula equivalent to 1 we first proceed
according to the lemma. We have R(z,y) = R(x1,x2), where x1 is of sort 1 and
x of sort 2. Similarly, S(z,y) = S(z1, 23), where z; is of sort 1 and z3 of sort 3.
We thus have ¢ = (Jx2)R(z1, 22) U (323)S (21, 23). We can now identify the free
variables £; and z; as in the proof of the proposition and obtain the well-typed
formula ¢(x) = (3x2)R(x, z2) V (323)S(x, 23) equivalent to 1.

Now consider the untyped sentence x = (Vz)(1(z) V 2(z)). Then for any
structure A over o, A = y iff 34 =) (i.e., there are no elements of sort 3 in
A). To find a many-sorted sentence equivalent to y we again proceed first as
in the lemma. We have 1(z) = (z1 = z;) and 2(z) = (2 = z2), with x; of
sort 1 and z» of sort 2. Rewriting x as —(3z)—(1(z) V 2(z)), we further have
=(1(z) V 2(x)) = =(x1 = z1) U (22 = 22) U (x3 = x3), with x5 of sort 3, and
thus (3z)—=(1(x) V2(z)) = (Fz1)— (21 = x2) U (Fz2) (22 = 22) U (F3) (23 = 23).
Since there are no longer free variables, we can replace each U by V and apply
the final negation to the disjunction thus obtained:

X = 2((Fz1)= (w1 = 21) V (Fw2) (22 = 32) V (Tws) (w3 = 23)),
or equivalently
X = (Vzq)(z1 = 21) A (Vo) (22 = 22) A =(Fz3) (25 = 3).

The first two factors in the above conjunction are trivial and the third one
indeed expresses that there are no elements of sort 3.

4 Active-domain quantification

Let L be a finite relational first-order language, i.e., a finite set of relation
symbols where each relation symbol has an associated arity. Let U be some
fixed infinite universe of data elements. A (relational) database over L is an
L-structure, in the standard sense of mathematical logic, the domain of which
equals U and all of whose relations are finite. The active domain of a database D
is the (finite) set of domain elements that actually appear in one of the relations
of D.

Let ¢(x1, ..., x,) be afirst-order formula (with equality) over L. If dy, ..., d,
are elements of U we denote the truth of ¢ on D with d; substituted for z;,
fori =1,...,n, by D E ¢[dy,...,d,] as usual. With the notation D Faqom
Yldy,...,dy], we mean that t[d,...,d,] evaluates to true on D when we let
the quantifiers in ¢ range over the active domain of D only, rather than over
the whole of U.

Hull and Su? showed that active-domain quantification is equally powerful
as normal quantification:

Theorem 1 For each ¢(z1,...,x,) there exists ¢ such that for each database
D and elements dy,...,d, of the active domain of D,

D =4ldy,...,d,] <= D FEadom ¢[d1,...,dn].

We now show that this theorem has a simple proof assuming Proposition 1.
Let o be the vocabulary having as sort symbols 1 and 2, and as relation symbols
those of L, with o(R) = (1,...,1), n times, where n is the arity of R in L. We
can view each database D as a structure over ¢, where 17 equals the active
domain of D and 2P equals its complement (taken in U). Given ¢, we construct
a one-sorted formula v over & inductively as follows:

e If 1) is atomic then 1) := ¢;
o If 9 is (=) or (x V 6) then) is (—=X) or (X V 6) respectively;
o If ¢ is (32)x then ¥ is (F2)(1(z) A x) vV (F2)(2(2) A X).

Clearly, D |= ¢[di,...,d,] iff D }=[di,...,d,]. By Proposition 1, there exists
a formula ¢ over o such that D |= ¢[di,...,d,] iff D = ¢[di,...,d,]. By
Lemma 2 (stated and proven below), we can write ¢ as a Boolean combination
of formulas involving either only sort 1 or only sort 2. Since ¢ has only free
variables of sort 1, every subformula involving sort 2 only can be evaluated
independently of D: it is a sentence in the language of pure equality saying
something about the complement of the active domain, which is isomorphic to
U. We can therefore replace each subformula of ¢ involving only sort 2 by its

2R. Hull and J. Su. Domain independence and the relational calculus. Acta Informatica
31, 513-524 (1994).

absolute truth value on U, and obtain an equivalent formula ¢ mentioning only
variables of sort 1. These variables range over the active domain only, so the
theorem is proven.

Lemma 2 Let o be a vocabulary with the property that the sort symbols in o can
be partitioned into two parts, X andY , such that the sort of every relation name
of o contains either only symbols from X, or from Y. Then every formula ¢
over o is equivalent to a Boolean combination of formulas over o which mention
either only variables of sorts in X or of sorts in Y.

Proof. By induction on ¢.

e If p is atomic and all variables occurring in it are either all of sorts in X
or of sorts in Y, ¢ is already in the right form; otherwise, ¢ is equivalent
to false by the assumption on o.

e The cases p is (-x) or (x V) are trivial.

e If p is (3z)x, we know by induction that x can be written as a Boolean
combination of the right form. Rewrite x in disjunctive normal form and
distribute the quantifier over the terms of the disjunction. We are left
with a disjunction of terms of the form (Fz)(¢Y1 A-- AP AOL A+ AOy),
where each 1; mentions only variables of sorts in X and each 6; mentions
only variables of sorts in Y. If z has sort in X, we rewrite the term
as (Fz)(y A - Ah) ABL A -+~ A By if x has sort in YV, we rewrite as
YA AP A ()01 A+ Aby). Now ¢ is back in the right form.

