Simulation of the nested relational algebra by
the flat relational algebra, with an application
to the complexity of evaluating powerset
algebra expressions

Jan Van den Bussche
Limburgs Universitair Centrum*

April 28, 1999

Abstract

Paredaens and Van Gucht proved that the flat relational algebra
has the same expressive power as the nested relational algebra, as
far as queries over flat relations and with flat results are concerned.
We provide a new, very direct proof of this fact using a simulation
technique. Our technique is also applied to partially answer a question
posed by Suciu and Paredaens regarding the complexity of evaluating
powerset algebra expressions. Specifically, we show that when only
unary flat relations are into play, any powerset algebra expression is
either equivalent to a nested algebra expression, or its evaluation will
produce intermediate results of exponential size.

Keywords: Nested relational databases, query languages, expressive
power

1 Introduction

The formal basis for relational database systems is provided by the relational
data model [5, 4]. A database is modeled as a collection of relations among

*Address: LUC, Departement WNI, Universitaire Campus, B-3590 Diepenbeek, Bel-
gium. Email: vdbuss@luc.ac.be. WWW: www.luc.ac.be/~vdbuss/.

basic data values. These relations can be manipulated using five basic op-
erators which together form the relational algebra. The nested relational
model, designed in order to be able to represent complex data structures in
a more natural and direct way [10, 3], is a typed higher-order extension of
the classical “flat” relational model. In a nested relation, a tuple may consist
not only of basic values but also of relations in turn. By canonically general-
izing the operators of the relational algebra to work on nested relations, and
adding the two operators of nesting and unnesting [9], one obtains the nested
relational algebra [15]. These days, nested relations are known as complex
objects [4].

The expressive power of the nested relational algebra as a query language
is well understood, as well as its extensions with iteration, recursion, or the
powerset operator, and extensions in the context of more general complex
object data models involving not only sets but also bags, lists, arrays, and the
like [4]. Two particular results we will be interested in in the present paper
are those by Paredaens and Van Gucht [12], and by Suciu and Paredaens
[14].

Paredaens and Van Gucht proved the Flat-Flat Theorem: the flat rela-
tional algebra has the same expressive power as the nested relational algebra,
as far as queries over flat relations and with a flat result are concerned. Their
proof was rather circuitous however, and they posed the problem of finding a
direct proof. In this paper we will provide such a proof, based on a very direct
simulation of the nested algebra by the flat algebra. Under this simulation,
a nested relation is represented by a number of flat relations, the number
depending on the scheme of the nested relation. Related simulations have
been known in several variants since the '80s [2, 13, 7]. Moreover, several
researchers in the field ([17, 1], see also [4, Theorem 20.7.2]) have suggested
the possibility of a proof along the lines we will present. Consequently, we
have written this paper not to lay any claim, but because we believe it is
worthwhile to make the complete argument, generally known (and actually,
the detailed write-up turned out to be a rather intricate task).

Another goal of the present paper, however, is to demonstrate that the
simulation technique by which we prove the flat-flat theorem can also find
other applications. Specifically, we partially answer a question raised by Su-
ciu and Paredaens concerning the complexity of evaluating powerset algebra
expressions. (The powerset algebra is the extension of the nested algebra
with the powerset operator.) Suciu and Paredaens conjectured that for any
expression in the powerset algebra that is not equivalent to a nested algebra

expression, its evaluation will produce intermediate results of exponential
size. They confirmed their conjecture for expressions defining the transi-
tive closure of a binary relation, and more generally, for expressions defining
queries on single binary relations having the form of a chain. We will con-
firm the conjecture for the case of multiple unary relations. The general case
remains open; actually, we would not be surprised if it turned out to be false,
because it is not inconceivable that there are classes of structures that are
recognizable without using the powerset operator, and that have very weird
combinatorial properties, such as having identifiable subparts of logarithmic
size, to which we could apply the powerset operator without “blowing up,”
and use the result to express a query that is not expressible without the
powerset.

To conclude this introduction we should mention that an analogue of the
flat-flat theorem in a complex object formalism different from, but equivalent
to, the nested relational model was proved by Wong using a remarkably
elegant argument [18].

2 Preliminaries on nested relations

Basically we assume the existence of a countably infinite supply of atomic
attributes. The set of atomic attributes is denoted by U. The set HF(U) of
hereditarily finite sets with atoms in U is the smallest set containing U, such
that if Xy,...,X,, € HF(U) then also {X1,...,X,} € HF(U). An element
Q of HF(U) — U is called a scheme if no atomic attribute occurs more than
once in it.! Schemes are also called complez attributes.

Assume further given a domain V' of data values. Let 2 be a scheme.
A relation over € is a finite set of tuples over). Here, a tuple over) is a
mapping ¢ on 2, such that for A € QNU, t(A) € V, and for X € Q — U,
t(X) is a relation over X. We will also refer to ¢(X) as a complex value of
type X.

A database scheme is a finite set S of schemes. A database over S is a
mapping on S that assigns to each scheme) € S a relation over (2.

Fix a database scheme S. The set N A of nested relational algebra ex-
pressions over S is inductively defined as follows. For each expression e we
also define its result scheme, denoted by €2,.

'We say that X occurs in Q if X € Q, or X occurs in some Y € Q.

Each scheme is in N A; its result scheme equals itself.

If e; and e5 are in N A, with Q,, = Q., =, then (e;Ues) and (e; —e3)
are in N A, also with result scheme €.

If e; and ey are in N'A, such that no atomic attribute occurs both in
Q., and Q,,, then (e; X e3) is in N A, with result scheme Q,, U €,,.

Let e be in N A.

— Projection: if Z C Q,, then 7z(e) is in N'A, with result scheme
4.

— Selection: if X,Y € Q, and ¢ is a permutation of U such that
o(X) =Y, then ox—_y(e) is in N'A, with result scheme Q..

— Renaming: if ¢ is a permutation of U, then p,(e) is in N A, with
result scheme ¢(£2,).

— Nesting: if Z C Q,, then vz(e) is in N' A, with scheme (2, — Z)U
{Z}.

— Unnesting: if X € Q, — U, then px(e) is in N A, with scheme
Q. —{X}UX.

Let A be a database over S, and let e be a nested relational algebra
expression over S. The result of evaluating e on A, denoted by e(A), is
inductively defined as follows:

o If ¢ is a scheme ©, then e(A) := A(Q).
o (€1 Uea)(A) = er(A) Ues(A); (€1 — e2)(A) := e1(A) — en(A).
o (1 % e)(A)i= {t; Uty | £ € e1(A) and t; € es(A)}.

o mz(e)(A) = {t|z |t € e(A)}.

o ox=,v(e)(A) = {t € e(A) | p(t(X)) =t(Y)}.?

e py(e)(A) == {p(t) | t € e(A)}.

2Permutations of U are applied to tuples and relations in the obvious way. If ¢ is a
tuple over 2, then ¢(t) is the tuple over () defined by ¢(t)(p(X)) = t(X).

e vz(e)(A) :={t tuple over (Q — Z)U{Z} |3t €e(A):tlgz="1|a 2z
and t(Z) ={t"|z | t" € e(A) and t"|q 7 =t|q 2} }.

o ux(e)(A) := {t tuple over (2 — {X})UX | It € e(A) : tlo_(x3 =
t'lo—{x} and t|x € t'(X)}.

So, a nested relational algebra expression with result scheme () defines a map-
ping from databases to relations over €). Such mappings are called queries.

The ¢ in a selection operation ox—_y is important when X and Y are
complex, because it specifies how the two complex values #(X) and ¢(Y),
for some tuple ¢, are to be compared. For example, if X = {A, B} and
Y ={C, D}, then ox—, y, where ¢,(A) = C and ¢,(B) = D, has a different
semantics than ox—_ y, where py(A) = D and py(B) = C. When X and YV’
are atomic, the @ is irrelevant (there is only one way to compare two atomic
values) and we will omit it.

3 Representing nested relations by flat data-
bases

A scheme is called flat if all its elements are atomic attributes. A database
scheme is called flat if all its schemes are flat.

In order to formally define a representation of nested relations by flat
databases, we must first make some technical assumptions about the set
U of atomic attributes. We partition the atomic attributes in “ordinary”
attributes and “identifier” attributes. Unless explicitly specified otherwise,
an atomic attribute is always assumed to be ordinary, and a scheme is always
assumed to be built up from ordinary atomic attributes only. For each scheme
X, we assume we have the infinitely many identifier attributes

id(X), id(X)s, id(X)s, ...

such that if X # Y or i # j then id(X); #id(Y),.

Our representation of a nested relation by a flat databases uses identifiers
for complex values. These identifiers are tuples of atomic values occurring
in the nested relation. The width of these tuples can vary depending on the
type of complex value represented. Apart from the flat relation representing
the nested relation itself, the flat database will have auxiliary relations, one
for each complex attribute X, holding the identifiers representing a complex

5

value of type X, and specifying which complex values are represented by
these identifiers.

Why do we need identifiers that are tuples? Why can’t we just use iden-
tifiers that are atomic values? The point is that later we want to simulate
the nested relational algebra by the flat relational algebra. Operations that
introduce new complex values, notably nesting, will have to be simulated by
introducing identifiers for these new complex values. The relational algebra
cannot “invent” new atomic values. Hence, it has to construct the identifiers
as tuples of the atomic values existing in the database. If we could only use
identifiers of length 1, and there are n distinct atomic values in the database,
we would only have n different identifiers at our disposition, which is much
too little. For example, the following nested relational algebra expression,
starting from a flat relation over {A}, introduces n? new complex values of
type {C, D}: one for each pair of atomic values.?

via,By0B=p0 a=c({A} X pa 5y ({A}) X pa) ({A}) X pia p)({A}))

The lengths of the identifiers, depending on the type of complex value
they represent, are given by an identifier-width assignment, defined next:

Definition 1 Let 2 be a scheme. An identifier-width assignment (i.w.a.)
over) is a mapping « from the set of complex attributes occurring in €2 to
the natural numbers.

For a complex attribute X occurring in €2, we will denote the set
{id(X)y, ..., id(X)ax) }

by ID,(X). This set contains the atomic attributes of the identifier tuples
for complex values of type X.

Given a scheme () and an i.w.a. a over), we can now define the flat
database scheme listing the flat schemes of the flat relations that together
make up a flat database representation of a nested relation over 2. This flat
database scheme is denoted by flat, ().

Definition 2 The flat database scheme flat, (£2) consists the scheme

rep, () :== (QNU) U J{ID.(X) | X € Q - U},

3We use the standard notation (A B) for the permutation that exchanges A and B.

together with, for all complex attributes X occurring in €2, the schemes
rep(X) := (X NU) U J{ID(Y) | Y € X — U} UID,(X).

Flat databases over flat,(£2) represent nested relations over Q. To define
this representation formally in Definition 4, we need the following auxiliary
technical definition:

Definition 3 Let 2 be a scheme, let X be a complex attribute occurring
in 2, and let o be an i.w.a. over Q. Let A be a database over flat,({2) and
let ¢ be a tuple over ID,(X). Let ax be the restriction of @ to the complex
attributes occurring in X. Then A, is the database over flat,, (X) defined
by

Ar(repay (X)) := {tlrep,, (x) | 1 € Alrepa (X)) and i, x) = 1},

and, for each complex attribute Y occurring in X,
Ay(rep,, (1)) = Afrep, (1).

To clarify the notation used in the above definition, it should be pointed
out that rep, (X) is not the same as rep, (X); the latter includes ID,(X) as
a subset, while the former doesn’t, because for ax, X is the top-level scheme.
We see clearly in Definition 2 that rep,(Z) only contains ID,(Z) as a subset
if Z is a lower-level scheme (a complex attribute occurring in the top-level
scheme).

Of course, for the Y's in the above definition, which are lower-level even
when viewing X as the top-level, rep,, (Y) is the same as rep,(Y’), which is
why at these Y the definition of A, is simpler.

We can now define:

Definition 4 Let 2 be a scheme, let o be an i.w.a. over €2, and let A be
a database over flat,(€2). The nested relation represented by A, denoted by
nested(A), equals

{t tuple over Q | 3t € A(rep,(Q)) : tlonr = t'|anv
and VX € Q — U : ¢(X) = nested (Ayp,_) }-

Note how the tuple ¢’ |IDQ(X) serves as an identifier for the complex value
nested Ay, i)

As a (perhaps too trivial) example, let Q = {{A}} with A € U, and
let a({A}) = 1. Then flat,(Q2) consists of rep,(©2) = {id({A}):} and
rep, ({A}) = {id({A})1, A}. Let A be the following database over flat,(2):

{id({A}): } {id({A}), A}

a a a
b a b
c a c
d b c
b d
c b
d b

Then nested(A) equals

—~—
—~—

o
——
——

[z o[~ = =]

As a final remark we note that occurrences of the empty complex value
of some type X would also be represented by an identifier, but this identifier
would not show up in the corresponding rep, (X) relation since it represents
the empty set.

4 Simulation of nested algebra by flat algebra

A nested relational algebra expression is called flat if it is defined over a
flat database scheme and does not use the nesting (v) and the unnesting ()
operators.

In this section we will prove:

Theorem 1 Let e be a nested relational algebra expression over a flat da-
tabase scheme S. Then there exists an i.w.a. « over), and flat relational

8

algebra expressions ex over S for X = Q. or X a complex attribute occurring
in Q., such that for each database A over S,

nested(A,) = e(A),

where A, is the database over flat, (Q) defined by A.(rep, (X)) = ex(A) for
each X.

As a corollary, we get:

Theorem 2 (Paredaens-Van Gucht) Let e be a nested relational algebra
expression over a flat database scheme S, such that). is flat. Then there

exists a flat relational algebra expression €' over S such that for each database
A over S,
e'(A) =e(A).

Proof. Since), is flat, flat,(2.) consists simply of Q. itself and for any
database A’ over flat,(€2.), nested(A’) = A’(Q,). Theorem 1 thus tells us
there exists a flat relational algebra expresion e’ = eq_ such that for each A,
e'(A) = e(A), as desired. |

Before we prove Theorem 1, we illustrate the most intricate part of the
proof, the simulation of nesting, with a simple example.

Let S consist of the single relation scheme Q = {A, B}. Consider the
database A over S defined by

[A

A(Q) =

o St o9
&.QC‘:@@UU

First, consider the expression v4y(€2). Evaluating it on A yields the
following relation:
{{4} B}

A
A

d

We can represent this relation by the following flat database:

{id{A}, B} {id({A}), A}
b b b

d d

o TR o R

QLo o o

Next, consider the expression v;pyv(a;(€2). Its evaluation on A yields the
following relation:
{ {4} {B Hh

This relation can be represented by the following flat database:

{id(fA}), d({B}.p {id{Ap, A} {id{B}): B}

b b b a b b
c c b b b c
d d c a c b
c b c c
d c d d

We now present:

Proof of Theorem 1. In the proof, we will rely on the well-known fact that
the flat relational algebra is as powerful as the tuple relational calculus [16,
11], a variant of first-order logic.* So instead of writing algebra expressions
we will often write calculus formulas whenever this is more convenient.

We begin by stating the following:

Lemma 1 Let Q be a scheme, let X be a complex attribute occurring in €2,
and let a be an i.w.a. over). Then there exists a tuple relational calculus
formula equal ,(t1,ty) such that for each database A over flat,(Q) and tuples
t1, to over ID,(X), equal,(t1,t2) is true in A iff nested(A,,) = nested(Ay,).

4This is with the understanding that we use the active-domain semantics of the calculus

[4].

10

In the formulation of the above lemma, note that A; and A,, are flat da-
tabases over flat,, (X), and thus nested(4A;) and nested(A;,) are complex
values of type X.

Proof of Lemma 1. We inductively construct a formula
subsetq(ty,t2)

and define equal,, (t1,ts) as subsety(t1,ta) A subset,(ta, t1).
The formula subset,(t1, 1) is defined as:

YVt € repa(X) : t|IDa(X) =t =
' € rep, (X) : t'Jip,(x) = L2
AN xv =txro A N equal,(t |ip, o), tho.). ™
Yex-U

For any scheme 7, we will use the abbreviation equiv,,(Z)(t1,ts) for the
formula

tilzao = tolzro A | equal (ti]ip. (x)s t2|iD. (x))-
XeZ-U

This formula clearly expresses that the flat tuples ¢; and ¢, represent the
same nested tuple of type Z.

The actual proof of Theorem 1 now proceeds by induction on the structure
of the expression e.

e cis a (flat) scheme Q. In this basic case we define
eq = Q.

(There is no need to define «v as there are no complex attributes occur-
ring in €.)

e ¢ = vz(e'). By induction, we have an i.w.a. o' over Q. satisfying the
theorem. Let us denote

W= ((Q — Z)NU) U J{IDw (X) | X € (Qu — Z) — U}.

Define a(Z) := |W| and a(Y) := o/(Y) for all other complex attributes
occurring in .. Let ¢ be a bijection from W to ID,(Z). Then we define

e, == {tUp(t) |t € mw(eg,)},

11

and

ez := {t tuple over rep,(Z) | ', t" € mw(ey,) :
t' =" (thpa(2)
A equivy, (Qe — Z)(t, 1)
A (t|vep,, (2)-1Da(z) U L") € elne,}a
with the understanding that in the formula equiv,, (e — Z), every
occurrence of a scheme rep,, (V) (for some Y) is replaced by the cor-

responding expression e}-. Finally, for any other complex attribute
X # Z occurring in eq,, define ey := €s.

e = ux(€'). Define a as the restriction of o' to the complex attributes
occurring in .. Let ¢ be a permutation of U such that ¢(ID, (X)) is
disjoint from rep,, () Urep,, (X). Define

€ += Trep, (26)T1d(X)1=¢(id(X)1) -+ - Tid(X) o (x)=P(id(X) o1 (x)

(e, X pel€x))
and define ey := ¢}, for complex attributes Y occurring in (2.

e = (e; X ey). By induction we have i.w.a.’s ay for e; and ay for
ey satisfying the theorem. For a complex attribute X occurring in
Q, define a(X) := o;(X) and ey := (e1)x if X occurs in €, , and
a(X) = ay(X) and ex = (ey)x if X occurs in €, (by the syntax of
the nested relational algebra exactly one of the two cases holds). Define
eq. = (e1)a., X (e2)a.,-

e = (e; Ueg). Define
a(X) == max{a(X),a(X)} + 2

and
ex = (e1)x U (e2)x,
where (e1)’y and (ey)y are defined as follows.

(e1)’ is obtained by taking the Cartesian product (x) of (e;)x with
the following factors for all Y € (X — U), as well as, if X # Q,, for

12

Y = X itself:

{t tuple over {id(Y)a,(v)+1,id(Y)a,(v)+2s - - - 1d(Y)ar) } |
t(id(Y)a, (v)+1) € adom

AAA(Y)ay v)41) = HAA(Y)ay (v)42) = -+ = H{d(Y)ar)) }-

(e2)’y is obtained by taking the Cartesian product (x) of (ey)x with
the following factors for all Y € (X — U), as well as, if X # Q,, for
Y = X itself:

{t tuple over {id(Y)as(v)+1,1d(Y)as(ryt2s - - - 1d(Y)ar) } |
t1d(Y)as(v)11) # t(1d(Y)a2) € adom
A tAA(Y)ay(v)r2) = tEA(Y)ay(v)4s) = -+ = H(id(Y)a)) }-

These Cartesian products make sure that identifier tuples appearing
in the result of evaluating (e;)’y will be different from identifier tuples
appearing in the result of evaluating (e3)y, so that no mix-up occurs
when taking the union.’

e = (e; — ey). This case is exactly the same as the case e = (e; U ey),
except that we define eq_ as

{t € (e1)g, | 73" € (e2)q, : equiv, () (t, 1)},

with the understanding that in the formula equiv,(2.), every occur-
rence of a scheme rep,,(Y) (for some Y') is replaced by the correspond-
ing expression ey .

e = mz(€e'). Then « equals the restriction of o/ to the complex attributes
occurring in Z,
€Q, = 7Tlfepa(Z)(elQe,)a

and ey := €'y for each complex attribute X occurring in Z.

5This trick does not work if adom would contain only one element. But this is harmless,
because we can treat this case (as well as the case where adom is completely empty)
entirely separately, because in this case there are, up to isomorphism, only a finite number
of possible databases: we can test for these possibilities and return, for each possibility,
directly the right result, bypassing the simulation.

13

e ¢ = ox__y(¢). Take o := o and define ey := €, for each complex
attribute Z occurring in Q.. If X and Y are atomic, eq,_ is simply
ox=y(eq,). If X and Y are complex, we need the following lemma
similar to Lemma 1: (the proof is analogous)

Lemma 2 Let Q be a scheme, let X, Y € Q — U, let ¢ be a permutation of
U such that o(X) =Y, and let o be an i.w.a. over Q. Then there exists a
tuple relational calculus formula equal,(t1,t2) such that for each database A
over flat,(2), tuple t; over ID4(X), and tuple ty over ID,(Y'), equal, (t1,t2)
is true in A iff p(nested(Ay,)) = nested(Ay,).

We then define
eq, == {t € e'Qé | equal , (tip_, (x): tlo_, (v)) }-

e ¢ =p,(€). Extend ¢ to identifier attributes in the following canonical
manner: ¢(id(X);) := id(¢(X));. Then a(p(X)) := o/(X) and ey :=
py(€e'y) for X = Q. or X a complex attribute occurring in €2,. |

5 Complexity of evaluating powerset algebra
expressions over unary relations

The powerset algebra is the extension of the nested relational algebra with
the powerset operator (IT). Syntactically, if e is an expression, then II(e) is
also an expression, with output scheme {Q.}. Semantically, on any database
A, TI(e)(A) equals {t tuple over {Q.} | £(2) C e(A)}.

Hull and Su [8] showed that in the powerset algebra precisely all queries
computable in elementary time are expressible. So the powerset algebra is
a very powerful query language. It does not seem to be a very practical
language, however, in the sense that no example is known of a query not
expressible in the nested relational algebra, that is expressible in the power-
set algebra by an expression whose evaluation never generates intermediate
results of exponential size (in spite of applications of the powerset operator).

In this section, we prove that no such query exists if it is over a unary
database scheme. A database scheme is called unary if all its schemes are
singletons of the form {A}, with A atomic.

The proof will be easy once we have established the following:

14

Lemma 3 Let S be a unary database scheme and let e be a nested relational
algebra expression over S. Let |e| : N — N be the mapping on the natural
numbers defined as follows: |e|(n) is the mazimal cardinality of e(A), where
A is a database over S with active domain of cardinality n. Then either

le| = O(1) or |le| = Q(n).

The active domain of a database A, denoted by adom(A), is the set of all
data values appearing in the relations of the database.

Proof of Lemma 3. Apply Theorem 1 to obtain an i.w.a. a over €2, and
flat relational algebra expressions ex which simulate e in the sense described
by the theorem.

Let A be a database over S. Let A, be the database over flat,(€2.)
described by Theorem 1. Consider the following equivalence relation =
on tuples in A.(rep,(Qe)): t1 =a 2 if equiv,(Qe)(t1,t2) holds in A..5 So,
t1 =a to iff t; and ¢y represent the same nested tuple in e(A). Hence, the
cardinality of e(A) equals |=a/[, the index (number of different equivalence
classes) of =A.7

Since the relations of A, can be computed by the same expressions ey for
any given A, and since equiv, (€2) is a tuple relational calculus formula, there
is one tuple relational calculus formula ¢(¢;,t5) such that for every database
A, t; =4ty iff @(tq,t2) holds in A.

Since the tuple relational calculus is equivalent to the domain relational
calculus (essentially first-order logic) [16], we can equivalently express ¢ as
a domain, rather than a tuple, relational calculus formula (which we also
denoted by ¢ by abuse of notation). Variables now range over the active
domain of the input database.

A database A over S consists of a set of relations over unary schemes.
We naturally view a relation over a unary scheme {A} as a set of data values
(formally it is a set of mappings from {A} to V). The unary relations of A
induce a partition on adom(A). Each partition class is determined by some
non-empty subset X C § and equals

AlXT:= (N AY)- | A®Y).
vex YesS—X
The automorphisms of A are precisely the permutations of adom(A) that
leave every A[X] invariant.

6The definition of equiv,(Z) was given after Lemma 1.
"We denote the index of an equivalence relation R by |R).

15

Let k£ be the number of different variables used in the formula ¢. Let us
call any function 0 from the non-empty subsets of S to {0,...,k} a classifier.
We classify the databases over § using these classifiers as follows: for a
classifier §, Sy denotes the family of all databases A over S for which

= 5(X) if 6(X) <k, and

>k if 5(X) = k for each X.

cardinality of A[X] {

The families S5 with a J§ such that §(X) < k for every X are finite (up to
isomorphism) and can be discarded. If we can show for all other ¢ that |=|
restricted to Sy is either O(1) or (n), we are ready. Indeed, if all of them
are O(1), then also globally |=| is O(1); if at least one of them is Q(n), then
also globally |=| is ©(n) since the families are infinite (we just discarded the
finite ones).

So fix a family S5; we only consider databases in this family. It is a
routine exercise in logic (compare Exercise 1.3.11 in [6]) to show that any
formula over S that uses at most k different variables is equivalent, on Sy,
to a quantifier-free formula. This holds in particular for formula ¢. We
may assume without loss of generality that ¢ is in disjunctive normal form,
and that each conjunction in this disjunction is maximally consistent. Note
that a maximally consistent conjunction of literals over §, with m variables,
serves as an automorphism type (also called m-type): it describes an m-tuple
of data values entirely up to application of an automorphism, specifying the
partition class of every component, as well as all equalities and non-equalites
that hold among the components. In the case of ¢, m equals 2/, where ¢
is the cardinality of rep,(€2.). Note also that a 2¢-type is nothing but the
conjunction of two /-types and the specification of the equalities and non-
equalities holding across these two types.

We distinguish between the following possibilities:

e ¢ is the empty disjunction, i.e., equivalent to false. Then =, is the
empty equivalence relation on each A. But since =, is defined on
repg, (A¢), i.e., on eq_, this means that eq (A), and thus also e(A), is
empty on each A. In this case |e| is everywhere zero and thus trivially

0(1).

e ¢ is not false, and there is an /-type 7 such that the 2/-type describing
those pairs of tuples (¢,t3) such that

— t; and ty both satisfy 7;

16

— t; and %9 are equal outside Z,; and

— t, and %5 are disjoint on 2,

is not in . Here, Z, is the set of those attributes for which the corre-
sponding variable in 7 is specified by 7 to take a value in the partition
class determined by an X C S with §(X) = k.

So for any database A and any pair (¢;,%2) of tuples in A as above,
t1 #Za to. By augmenting A with a fixed number of new data values,
placed in the appropriate partition classes, we get a third tuple ¢3 not
equivalent to ¢, or t,. We can keep on doing this, so that |=| is Q(n).

e ¢ is not false, and there is no such /-type 7 as in the previous item.
But then, for large enough A, any two tuples t1, 5 of the same /-type
T that are equal outside Z, are equivalent. Indeed, we can always find
a third tuple t3 of the same type disjoint from both ¢; and ¢, on Z;
but equal outside; by assumption we then have t; =A t3 =a f9 and
thus t; =a to. Hence, in this case |=| is O(1), being bounded by the
number of different /-types, which is a fixed number, and the number
of different values a tuple of some type 7 can have outside Z,, which
is also fixed by definition of Z. (components outside Z, belong to a
partition class determined by an X C S with 6(X) < k and thus of
fixed size).]

As a corollary, we get:

Theorem 3 Let e be a powerset algebra expression over a unary database
scheme 8. Then either e is equivalent to a nested relational algebra expres-
sion, or for some subexpression €' of e, |e'| is (2").

Proof. Let ¢ be a minimal subexpression of e of the form TI(¢”). By
Lemma 3, |¢”| is either O(1) or Q(n). If |¢"| is Q2(n), then clearly |€¢/| is
Q(2m).

If |€"| is O(1), we can simulate the application of the powerset operator
in the nested relational algebra. Indeed, let K be the maximal cardinality of

17

e"(A). Then €' is equivalent to the following expression: (let Q := Q)

T{1Va (Uﬁ:wl(ﬁ)(e" X o (€") X - X py(€7))
U
U
Uﬁ:w;((ﬁ)(e” X Py (6”) Xoeer X p‘PK(eﬂ))))

where ¢1,...,px are permutations of U such that every atomic attribute
occurs in at most one of 2, 1(), ..., vk (), and 05_ g, is an abbreviation
for the sequence of all ox—_,(x) with X € (). []

References

[1] S. Abiteboul. Personal communication, 1993.

(2] S. Abiteboul and N. Bidoit. Non first normal form relations: An algebra
allowing data restructuring. Journal of Computer and System Sciences,
33(3):361-393, 1986.

[3] S. Abiteboul, P.C. Fischer, and H.-J. Schek, editors. Nested Relations
and Complex Objects in Databases, volume 361 of Lecture Notes in Com-
puter Science. Springer-Verlag, 1989.

[4] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases.
Addison-Wesley, 1995.

[5] E. Codd. A relational model for large shared databanks. Communica-
tions of the ACM, 13(6):377-387, 1970.

(6] H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer, 1995.

[7] M. Gyssens, D. Suciu, and D. Van Gucht. The restricted and the
bounded fixpoint closures of the nested relational algebra are equivalent.
In P. Atzeni and V. Tannen, editors, Database Programming Languages
(DBPL-5), Electronic Workshops in Computing. Springer-Verlag, 1995.
http://www.springer.co.uk/ewic/workshops/DBPL5/.

18

8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

R. Hull and J. Su. On the expressive power of database queries with in-
termediate types. Journal of Computer and System Sciences, 43(1):219-
237, 1991.

G. Jaeshke and H.-J. Schek. Remarks on the algebra of non-first nor-
mal form relations. In Proceedings of the First ACM Symposium on
Principles of Database Systems, pages 124-138. ACM Press, 1982.

A. Makinouchi. A consideration of normal form of not-necessarily-
normalized relations in the relation data model. In Proceedings 5th Inter-
national Conference on Very Large Data Bases, volume 9:4 of SIGMOD
Record, pages 447-453, 1977.

J. Paredaens, P. De Bra, M. Gyssens, and D. Van Gucht. The Structure
of the Relational Database Model, volume 17 of EATCS Monographs on
Theoretical Computer Science. Springer-Verlag, 1989.

J. Paredaens and D. Van Gucht. Converting nested algebra expressions

into flat algebra expressions. ACM Transactions on Database Systems,
17(1):65-93, 1992.

D. Suciu. Bounded fixpoints for complex objects. Theoretical Computer
Science, 176(1-2):283-328, 1997.

D. Suciu and J. Paredaens. The complexity of the evaluation of com-

plex algebra expressions. Journal of Computer and System Sciences,
55(2):322-343, 1997.

S. Thomas and P. Fischer. Nested relational structures. In P. Kanellakis,
editor, The Theory of Databases, pages 269-307. JAI Press, 1986.

J. Ullman. Principles of Database and Knowledge-Base Systems, vol-
ume [. Computer Science Press, 1988.

D. Van Gucht. Personal communication, 1990.

L. Wong. Normal forms and conservative extension properties for query
languages over collection types. Journal of Computer and System Sci-
ences, 52(3):495-505, 1996.

19

