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Abstract

Paredaens and Van Gucht proved that the �at relational algebra

has the same expressive power as the nested relational algebra� as

far as queries over �at relations and with �at results are concerned�

We provide a new� very direct proof of this fact using a simulation

technique� Our technique is also applied to partially answer a question

posed by Suciu and Paredaens regarding the complexity of evaluating

powerset algebra expressions� Speci�cally� we show that when only

unary �at relations are into play� any powerset algebra expression is

either equivalent to a nested algebra expression� or its evaluation will

produce intermediate results of exponential size�

Keywords� Nested relational databases� query languages� expressive

power

� Introduction

The formal basis for relational database systems is provided by the relational
data model ��� ��� A database is modeled as a collection of relations among
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basic data values� These relations can be manipulated using �ve basic op�
erators which together form the relational algebra� The nested relational
model� designed in order to be able to represent complex data structures in
a more natural and direct way ��	� 
�� is a typed higher�order extension of
the classical ��at
 relational model� In a nested relation� a tuple may consist
not only of basic values but also of relations in turn� By canonically general�
izing the operators of the relational algebra to work on nested relations� and
adding the two operators of nesting and unnesting ���� one obtains the nested
relational algebra ����� These days� nested relations are known as complex
objects ����

The expressive power of the nested relational algebra as a query language
is well understood� as well as its extensions with iteration� recursion� or the
powerset operator� and extensions in the context of more general complex
object data models involving not only sets but also bags� lists� arrays� and the
like ���� Two particular results we will be interested in in the present paper
are those by Paredaens and Van Gucht ����� and by Suciu and Paredaens
�����

Paredaens and Van Gucht proved the Flat�Flat Theorem� the �at rela�
tional algebra has the same expressive power as the nested relational algebra�
as far as queries over �at relations and with a �at result are concerned� Their
proof was rather circuitous however� and they posed the problem of �nding a
direct proof� In this paper we will provide such a proof� based on a very direct
simulation of the nested algebra by the �at algebra� Under this simulation�
a nested relation is represented by a number of �at relations� the number
depending on the scheme of the nested relation� Related simulations have
been known in several variants since the ��	s ��� �
� ��� Moreover� several
researchers in the �eld ����� ��� see also ��� Theorem �	������ have suggested
the possibility of a proof along the lines we will present� Consequently� we
have written this paper not to lay any claim� but because we believe it is
worthwhile to make the complete argument generally known �and actually�
the detailed write�up turned out to be a rather intricate task��

Another goal of the present paper� however� is to demonstrate that the
simulation technique by which we prove the �at��at theorem can also �nd
other applications� Speci�cally� we partially answer a question raised by Su�
ciu and Paredaens concerning the complexity of evaluating powerset algebra
expressions� �The powerset algebra is the extension of the nested algebra
with the powerset operator�� Suciu and Paredaens conjectured that for any
expression in the powerset algebra that is not equivalent to a nested algebra
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expression� its evaluation will produce intermediate results of exponential
size� They con�rmed their conjecture for expressions de�ning the transi�
tive closure of a binary relation� and more generally� for expressions de�ning
queries on single binary relations having the form of a chain� We will con�
�rm the conjecture for the case of multiple unary relations� The general case
remains open� actually� we would not be surprised if it turned out to be false�
because it is not inconceivable that there are classes of structures that are
recognizable without using the powerset operator� and that have very weird
combinatorial properties� such as having identi�able subparts of logarithmic
size� to which we could apply the powerset operator without �blowing up�

and use the result to express a query that is not expressible without the
powerset�

To conclude this introduction we should mention that an analogue of the
�at��at theorem in a complex object formalism di�erent from� but equivalent
to� the nested relational model was proved by Wong using a remarkably
elegant argument �����

� Preliminaries on nested relations

Basically we assume the existence of a countably in�nite supply of atomic
attributes� The set of atomic attributes is denoted by U � The set HF�U� of
hereditarily �nite sets with atoms in U is the smallest set containing U � such
that if X�� � � � � Xn � HF�U� then also fX�� � � � � Xng � HF�U�� An element
� of HF�U�� U is called a scheme if no atomic attribute occurs more than
once in it�� Schemes are also called complex attributes�

Assume further given a domain V of data values� Let � be a scheme�
A relation over � is a �nite set of tuples over �� Here� a tuple over � is a
mapping t on �� such that for A � � � U � t�A� � V � and for X � � � U �
t�X� is a relation over X� We will also refer to t�X� as a complex value of
type X�

A database scheme is a �nite set S of schemes� A database over S is a
mapping on S that assigns to each scheme � � S a relation over ��

Fix a database scheme S� The set NA of nested relational algebra ex�
pressions over S is inductively de�ned as follows� For each expression e we
also de�ne its result scheme� denoted by �e�

�We say that X occurs in � if X � �� or X occurs in some Y � ��






� Each scheme is in NA� its result scheme equals itself�

� If e� and e� are in NA� with �e� � �e� � �� then �e��e�� and �e��e��
are in NA� also with result scheme ��

� If e� and e� are in NA� such that no atomic attribute occurs both in
�e� and �e� � then �e� � e�� is in NA� with result scheme �e� � �e� �

� Let e be in NA�

� Projection� if Z � �e� then �Z�e� is in NA� with result scheme
Z�

� Selection� if X� Y � �e and � is a permutation of U such that
��X� � Y � then �X��Y �e� is in NA� with result scheme �e�

� Renaming� if � is a permutation of U � then ���e� is in NA� with
result scheme ���e��

� Nesting� if Z � �e� then �Z�e� is in NA� with scheme ��e�Z��
fZg�

� Unnesting� if X � �e � U � then �X�e� is in NA� with scheme
��e � fXg� �X�

Let � be a database over S� and let e be a nested relational algebra
expression over S� The result of evaluating e on �� denoted by e���� is
inductively de�ned as follows�

� If e is a scheme �� then e��� �� �����

� �e� � e����� �� e���� � e����� �e� � e����� �� e����� e�����

� �e� � e����� �� ft� � t� j t� � e���� and t� � e����g�

� �Z�e���� �� ftjZ j t � e���g�

� �X��Y �e���� �� ft � e��� j ��t�X�� � t�Y �g��

� ���e���� �� f��t� j t � e���g�

�Permutations of U are applied to tuples and relations in the obvious way� If t is a
tuple over �� then �	t
 is the tuple over �	�
 de�ned by �	t
	�	X

 � t	X
�
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� �Z�e���� �� ft tuple over �� � Z� � fZg j �t� � e��� � tj��Z � t�j��Z
and t�Z� � ft��jZ j t�� � e��� and t��j��Z � t�j��Zgg�

� �X�e���� �� ft tuple over �� � fXg� � X j �t� � e��� � tj��fXg �
t�j��fXg and tjX � t��X�g�

So� a nested relational algebra expression with result scheme � de�nes a map�
ping from databases to relations over �� Such mappings are called queries�

The � in a selection operation �X��Y is important when X and Y are
complex� because it speci�es how the two complex values t�X� and t�Y ��
for some tuple t� are to be compared� For example� if X � fA�Bg and
Y � fC�Dg� then �X���Y

� where ���A� � C and ���B� � D� has a di�erent
semantics than �X���Y

� where ���A� � D and ���B� � C� When X and Y

are atomic� the � is irrelevant �there is only one way to compare two atomic
values� and we will omit it�

� Representing nested relations by �at data�

bases

A scheme is called �at if all its elements are atomic attributes� A database
scheme is called �at if all its schemes are �at�

In order to formally de�ne a representation of nested relations by �at
databases� we must �rst make some technical assumptions about the set
U of atomic attributes� We partition the atomic attributes in �ordinary

attributes and �identi�er
 attributes� Unless explicitly speci�ed otherwise�
an atomic attribute is always assumed to be ordinary� and a scheme is always
assumed to be built up from ordinary atomic attributes only� For each scheme
X� we assume we have the in�nitely many identi�er attributes

id�X��� id�X��� id�X��� � � �

such that if X �� Y or i �� j then id�X�i �� id�Y �j�
Our representation of a nested relation by a �at databases uses identi�ers

for complex values� These identi�ers are tuples of atomic values occurring
in the nested relation� The width of these tuples can vary depending on the
type of complex value represented� Apart from the �at relation representing
the nested relation itself� the �at database will have auxiliary relations� one
for each complex attribute X� holding the identi�ers representing a complex
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value of type X� and specifying which complex values are represented by
these identi�ers�

Why do we need identi�ers that are tuples� Why can�t we just use iden�
ti�ers that are atomic values� The point is that later we want to simulate
the nested relational algebra by the �at relational algebra� Operations that
introduce new complex values� notably nesting� will have to be simulated by
introducing identi�ers for these new complex values� The relational algebra
cannot �invent
 new atomic values� Hence� it has to construct the identi�ers
as tuples of the atomic values existing in the database� If we could only use
identi�ers of length �� and there are n distinct atomic values in the database�
we would only have n di�erent identi�ers at our disposition� which is much
too little� For example� the following nested relational algebra expression�
starting from a �at relation over fAg� introduces n� new complex values of
type fC�Dg� one for each pair of atomic values��

�fA�Bg�B�D�A�C�fAg � ��A B��fAg�� ��A C��fAg�� ��A D��fAg��

The lengths of the identi�ers� depending on the type of complex value
they represent� are given by an identi�er�width assignment� de�ned next�

De�nition � Let � be a scheme� An identi�er�width assignment �i�w�a��
over � is a mapping � from the set of complex attributes occurring in � to
the natural numbers�

For a complex attribute X occurring in �� we will denote the set

fid�X��� � � � � id�X���X�g

by ID��X�� This set contains the atomic attributes of the identi�er tuples
for complex values of type X�

Given a scheme � and an i�w�a� � over �� we can now de�ne the �at
database scheme listing the �at schemes of the �at relations that together
make up a �at database representation of a nested relation over �� This �at
database scheme is denoted by �at�����

De�nition � The �at database scheme �at���� consists the scheme

rep���� �� �� � U� �
�
fID��X� j X � �� Ug�

�We use the standard notation 	A B
 for the permutation that exchanges A and B�
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together with� for all complex attributes X occurring in �� the schemes

rep��X� �� �X � U� �
�
fID��Y � j Y � X � Ug � ID��X��

Flat databases over �at���� represent nested relations over �� To de�ne
this representation formally in De�nition �� we need the following auxiliary
technical de�nition�

De�nition � Let � be a scheme� let X be a complex attribute occurring
in �� and let � be an i�w�a� over �� Let � be a database over �at���� and
let t be a tuple over ID��X�� Let �X be the restriction of � to the complex
attributes occurring in X� Then �t is the database over �at�X �X� de�ned
by

�t�rep�X �X�� �� ft�jrep�X �X� j t
� � ��rep��X�� and t�jID��X� � tg�

and� for each complex attribute Y occurring in X�

�t�rep�X �Y �� �� ��rep��Y ���

To clarify the notation used in the above de�nition� it should be pointed
out that rep�X �X� is not the same as rep��X�� the latter includes ID��X� as
a subset� while the former doesn�t� because for �X � X is the top�level scheme�
We see clearly in De�nition � that rep��Z� only contains ID��Z� as a subset
if Z is a lower�level scheme �a complex attribute occurring in the top�level
scheme��

Of course� for the Y s in the above de�nition� which are lower�level even
when viewing X as the top�level� rep�X �Y � is the same as rep��Y �� which is
why at these Y the de�nition of �t is simpler�

We can now de�ne�

De�nition � Let � be a scheme� let � be an i�w�a� over �� and let � be
a database over �at����� The nested relation represented by �� denoted by
nested���� equals

ft tuple over � j �t� � ��rep����� � tj��U � t�j��U

and 	X � �� U � t�X� � nested��t�jID��X�
�g�
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Note how the tuple t�jID��X� serves as an identi�er for the complex value
nested��t�jID��X�

��
As a �perhaps too trivial� example� let � � ffAgg with A � U � and

let ��fAg� � �� Then �at���� consists of rep���� � fid�fAg��g and
rep��fAg� � fid�fAg��� Ag� Let � be the following database over �at�����

f id�fAg�� g
a

b

c

d

f id�fAg�� A g
a a

a b

a c

b c

b d

c b

d b

Then nested��� equals
f fAg g

a

b

c

c

d

b

As a �nal remark we note that occurrences of the empty complex value
of some type X would also be represented by an identi�er� but this identi�er
would not show up in the corresponding rep��X� relation since it represents
the empty set�

� Simulation of nested algebra by �at algebra

A nested relational algebra expression is called �at if it is de�ned over a
�at database scheme and does not use the nesting ��� and the unnesting ���
operators�

In this section we will prove�

Theorem � Let e be a nested relational algebra expression over a �at da�
tabase scheme S� Then there exists an i�w�a� � over �e and �at relational
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algebra expressions eX over S for X � �e or X a complex attribute occurring
in �e� such that for each database � over S�

nested��e� � e����

where �e is the database over �at���e� de�ned by �e�rep��X�� � eX��� for
each X�

As a corollary� we get�

Theorem � �Paredaens�Van Gucht� Let e be a nested relational algebra
expression over a �at database scheme S� such that �e is �at� Then there
exists a �at relational algebra expression e� over S such that for each database
� over S�

e���� � e����

Proof	 Since �e is �at� �at���e� consists simply of �e itself and for any
database �� over �at���e�� nested��

�� � ����e�� Theorem � thus tells us
there exists a �at relational algebra expresion e� � e�e such that for each ��
e���� � e���� as desired�

Before we prove Theorem �� we illustrate the most intricate part of the
proof� the simulation of nesting� with a simple example�

Let S consist of the single relation scheme � � fA�Bg� Consider the
database � over S de�ned by

���� �

f A B g
a b

b b

a c

b c

c d

�

First� consider the expression �fAg���� Evaluating it on � yields the
following relation�

f fAg B g

a

b
b

a

b
c

c d
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We can represent this relation by the following �at database�

f id�fAg�� B g
b b

c c

d d

f id�fAg�� A g
b a

b b

c a

c b

d c

Next� consider the expression �fBg�fAg���� Its evaluation on � yields the
following relation�

f fAg fBg g

a

b

b

c

c d

This relation can be represented by the following �at database�

f id�fAg�� id�fBg�� g
b b

c c

d d

f id�fAg�� A g
b a

b b

c a

c b

d c

f id�fBg�� B g
b b

b c

c b

c c

d d

We now present�

Proof of Theorem �	 In the proof� we will rely on the well�known fact that
the �at relational algebra is as powerful as the tuple relational calculus ����
���� a variant of �rst�order logic�� So instead of writing algebra expressions
we will often write calculus formulas whenever this is more convenient�

We begin by stating the following�

Lemma � Let � be a scheme� let X be a complex attribute occurring in ��
and let � be an i�w�a� over �� Then there exists a tuple relational calculus
formula equal��t�� t�� such that for each database � over �at���� and tuples
t�� t� over ID��X�� equal��t�� t�� is true in � i� nested��t�� � nested��t���

�This is with the understanding that we use the active�domain semantics of the calculus

���
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In the formulation of the above lemma� note that �t� and �t� are �at da�
tabases over �at�X �X�� and thus nested��t�� and nested��t�� are complex
values of type X�

Proof of Lemma �	 We inductively construct a formula

subset��t�� t��

and de�ne equal��t�� t�� as subset��t�� t�� 
 subset��t�� t���
The formula subset��t�� t�� is de�ned as�

	t � rep��X� � tjID��X� � t� �

�t� � rep��X� � t�jID��X� � t�


 t�jX�U � tjX�U 

�

Y �X�U

equal��t
�jID��Y �� tjID��Y ���

For any scheme Z� we will use the abbreviation equiv��Z��t�� t�� for the
formula

t�jZ�U � t�jZ�U 

�

X�Z�U

equal��t�jID��X�� t�jID��X���

This formula clearly expresses that the �at tuples t� and t� represent the
same nested tuple of type Z�

The actual proof of Theorem � now proceeds by induction on the structure
of the expression e�

� e is a ��at� scheme �� In this basic case we de�ne

e� �� ��

�There is no need to de�ne � as there are no complex attributes occur�
ring in ���

� e � �Z�e
��� By induction� we have an i�w�a� �� over �e� satisfying the

theorem� Let us denote

W �� ���e� � Z� � U� �
�
fID���X� j X � ��e� � Z�� Ug�

De�ne ��Z� �� jW j and ��Y � �� ���Y � for all other complex attributes
occurring in �e� Let � be a bijection fromW to ID��Z�� Then we de�ne

e�e �� ft � ��t� j t � �W �e��e� �g�
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and

eZ �� ft tuple over rep��Z� j �t
�� t�� � �W �e��e� � �

t� � ����tjID��Z��


 equiv����e� � Z��t�� t���


 �tjrep��Z��ID��Z� � t��� � e��e�g�

with the understanding that in the formula equiv����e� � Z�� every
occurrence of a scheme rep���Y � �for some Y � is replaced by the cor�
responding expression e�Y � Finally� for any other complex attribute
X �� Z occurring in e�e � de�ne eX �� e�X �

� e � �X�e
��� De�ne � as the restriction of �� to the complex attributes

occurring in �e� Let � be a permutation of U such that ��ID���X�� is
disjoint from rep����e�� � rep���X�� De�ne

e�e �� �rep���e��id�X�����id�X��� � � � �id�X����X����id�X����X�

�e��e� � ���e
�
X��

and de�ne eY �� e�Y for complex attributes Y occurring in �e�

� e � �e� � e��� By induction we have i�w�a��s �� for e� and �� for
e� satisfying the theorem� For a complex attribute X occurring in
�e� de�ne ��X� �� ���X� and eX �� �e��X if X occurs in �e� � and
��X� �� ���X� and eX �� �e��X if X occurs in �e� �by the syntax of
the nested relational algebra exactly one of the two cases holds�� De�ne
e�e �� �e���e� � �e���e� �

� e � �e� � e��� De�ne

��X� �� maxf���X�� ���X�g� �

and
eX �� �e��

�
X � �e��

�
X �

where �e��
�
X and �e��

�
X are de�ned as follows�

�e��
�
X is obtained by taking the Cartesian product ��� of �e��X with

the following factors for all Y � �X � U�� as well as� if X �� �e� for
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Y � X itself�

ft tuple over fid�Y ����Y ���� id�Y ����Y ���� � � � � id�Y ���Y �g j

t�id�Y ����Y ���� � adom


 t�id�Y ����Y ���� � t�id�Y ����Y ���� � � � � � t�id�Y ���Y ��g�

�e��
�
X is obtained by taking the Cartesian product ��� of �e��X with

the following factors for all Y � �X � U�� as well as� if X �� �e� for
Y � X itself�

ft tuple over fid�Y ����Y ���� id�Y ����Y ���� � � � � id�Y ���Y �g j

t�id�Y ����Y ���� �� t�id�Y ����Y ���� � adom


 t�id�Y ����Y ���� � t�id�Y ����Y ���� � � � � � t�id�Y ���Y ��g�

These Cartesian products make sure that identi�er tuples appearing
in the result of evaluating �e��

�
X will be di�erent from identi�er tuples

appearing in the result of evaluating �e��
�
X � so that no mix�up occurs

when taking the union�	

� e � �e� � e��� This case is exactly the same as the case e � �e� � e���
except that we de�ne e�e as

ft � �e��
�
�e j 
�t

� � �e��
�
�e � equiv���e��t� t

��g�

with the understanding that in the formula equiv���e�� every occur�
rence of a scheme rep��Y � �for some Y � is replaced by the correspond�
ing expression eY �

� e � �Z�e
��� Then � equals the restriction of �� to the complex attributes

occurring in Z�
e�e �� �rep��Z��e

�
�e�

��

and eX �� e�X for each complex attribute X occurring in Z�

�This trick does not work if adom would contain only one element� But this is harmless�
because we can treat this case 	as well as the case where adom is completely empty

entirely separately� because in this case there are� up to isomorphism� only a �nite number
of possible databases� we can test for these possibilities and return� for each possibility�
directly the right result� bypassing the simulation�
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� e � �X��Y �e
��� Take � �� �� and de�ne eZ �� e�Z for each complex

attribute Z occurring in �e� If X and Y are atomic� e�e is simply
�X�Y �e

�
�e�

�� If X and Y are complex� we need the following lemma
similar to Lemma �� �the proof is analogous�

Lemma � Let � be a scheme� let X� Y � �� U � let � be a permutation of
U such that ��X� � Y � and let � be an i�w�a� over �� Then there exists a
tuple relational calculus formula equal��t�� t�� such that for each database �
over �at����� tuple t� over ID��X�� and tuple t� over ID��Y �� equal��t�� t��
is true in � i� ��nested��t��� � nested��t���

We then de�ne

e�e �� ft � e���

e
j equal���tjID���X�� tjID�� �Y ��g�

� e � ���e
��� Extend � to identi�er attributes in the following canonical

manner� ��id�X�i� �� id���X��i� Then ����X�� �� ���X� and eX ��
���e

�
X� for X � �e or X a complex attribute occurring in �e�

� Complexity of evaluating powerset algebra

expressions over unary relations

The powerset algebra is the extension of the nested relational algebra with
the powerset operator ���� Syntactically� if e is an expression� then ��e� is
also an expression� with output scheme f�eg� Semantically� on any database
�� ��e���� equals ft tuple over f�eg j t��e� � e���g�

Hull and Su ��� showed that in the powerset algebra precisely all queries
computable in elementary time are expressible� So the powerset algebra is
a very powerful query language� It does not seem to be a very practical
language� however� in the sense that no example is known of a query not
expressible in the nested relational algebra� that is expressible in the power�
set algebra by an expression whose evaluation never generates intermediate
results of exponential size �in spite of applications of the powerset operator��

In this section� we prove that no such query exists if it is over a unary
database scheme� A database scheme is called unary if all its schemes are
singletons of the form fAg� with A atomic�

The proof will be easy once we have established the following�
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Lemma � Let S be a unary database scheme and let e be a nested relational
algebra expression over S� Let jej � N � N be the mapping on the natural
numbers de�ned as follows� jej�n� is the maximal cardinality of e���� where
� is a database over S with active domain of cardinality n� Then either
jej � O��� or jej � ��n��

The active domain of a database �� denoted by adom���� is the set of all
data values appearing in the relations of the database�

Proof of Lemma �	 Apply Theorem � to obtain an i�w�a� � over �e and
�at relational algebra expressions eX which simulate e in the sense described
by the theorem�

Let � be a database over S� Let �e be the database over �at���e�
described by Theorem �� Consider the following equivalence relation �


on tuples in �e�rep���e��� t� �
 t� if equiv���e��t�� t�� holds in �e�
� So�

t� �
 t� i� t� and t� represent the same nested tuple in e���� Hence� the
cardinality of e��� equals j�
j� the index �number of di�erent equivalence
classes� of �
�

�

Since the relations of �e can be computed by the same expressions eX for
any given �� and since equiv���e� is a tuple relational calculus formula� there
is one tuple relational calculus formula ��t�� t�� such that for every database
�� t� �
 t� i� ��t�� t�� holds in ��

Since the tuple relational calculus is equivalent to the domain relational
calculus �essentially �rst�order logic� ����� we can equivalently express � as
a domain� rather than a tuple� relational calculus formula �which we also
denoted by � by abuse of notation�� Variables now range over the active
domain of the input database�

A database � over S consists of a set of relations over unary schemes�
We naturally view a relation over a unary scheme fAg as a set of data values
�formally it is a set of mappings from fAg to V �� The unary relations of �
induce a partition on adom���� Each partition class is determined by some
non�empty subset X � S and equals

��X� ��
�
Y �X

��Y ��
�

Y �S�X

��Y ��

The automorphisms of � are precisely the permutations of adom��� that
leave every ��X� invariant�

�The de�nition of equiv
�
	Z
 was given after Lemma ��

�We denote the index of an equivalence relation R by jRj�
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Let k be the number of di�erent variables used in the formula �� Let us
call any function 	 from the non�empty subsets of S to f	� � � � � kg a classi�er�
We classify the databases over S using these classi�ers as follows� for a
classi�er 	� S� denotes the family of all databases � over S for which

cardinality of ��X�
�
� 	�X� if 	�X� 
 k� and
� k if 	�X� � k

for each X�

The families S� with a 	 such that 	�X� 
 k for every X are �nite �up to
isomorphism� and can be discarded� If we can show for all other 	 that j�j
restricted to S� is either O��� or ��n�� we are ready� Indeed� if all of them
are O���� then also globally j�j is O���� if at least one of them is ��n�� then
also globally j�j is ��n� since the families are in�nite �we just discarded the
�nite ones��

So �x a family S�� we only consider databases in this family� It is a
routine exercise in logic �compare Exercise ��
��� in ���� to show that any
formula over S that uses at most k di�erent variables is equivalent� on S��
to a quanti�er�free formula� This holds in particular for formula �� We
may assume without loss of generality that � is in disjunctive normal form�
and that each conjunction in this disjunction is maximally consistent� Note
that a maximally consistent conjunction of literals over S� with m variables�
serves as an automorphism type �also called m�type�� it describes an m�tuple
of data values entirely up to application of an automorphism� specifying the
partition class of every component� as well as all equalities and non�equalites
that hold among the components� In the case of �� m equals ��� where �

is the cardinality of rep���e�� Note also that a ���type is nothing but the
conjunction of two ��types and the speci�cation of the equalities and non�
equalities holding across these two types�

We distinguish between the following possibilities�

� � is the empty disjunction� i�e�� equivalent to false� Then �
 is the
empty equivalence relation on each �� But since �
 is de�ned on
rep�e��e�� i�e�� on e�e � this means that e�e���� and thus also e���� is
empty on each �� In this case jej is everywhere zero and thus trivially
O����

� � is not false� and there is an ��type � such that the ���type describing
those pairs of tuples �t�� t�� such that

� t� and t� both satisfy � �
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� t� and t� are equal outside Z� � and

� t� and t� are disjoint on Z� �

is not in �� Here� Z� is the set of those attributes for which the corre�
sponding variable in � is speci�ed by � to take a value in the partition
class determined by an X � S with 	�X� � k�

So for any database � and any pair �t�� t�� of tuples in � as above�
t� ��
 t�� By augmenting � with a �xed number of new data values�
placed in the appropriate partition classes� we get a third tuple t� not
equivalent to t� or t�� We can keep on doing this� so that j�j is ��n��

� � is not false� and there is no such ��type � as in the previous item�
But then� for large enough �� any two tuples t�� t� of the same ��type
� that are equal outside Z� are equivalent� Indeed� we can always �nd
a third tuple t� of the same type disjoint from both t� and t� on Z�
but equal outside� by assumption we then have t� �
 t� �
 t� and
thus t� �
 t�� Hence� in this case j�j is O���� being bounded by the
number of di�erent ��types� which is a �xed number� and the number
of di�erent values a tuple of some type � can have outside Z� � which
is also �xed by de�nition of Z� �components outside Z� belong to a
partition class determined by an X � S with 	�X� 
 k and thus of
�xed size��

As a corollary� we get�

Theorem � Let e be a powerset algebra expression over a unary database
scheme S� Then either e is equivalent to a nested relational algebra expres�
sion� or for some subexpression e� of e� je�j is ���n��

Proof	 Let e� be a minimal subexpression of e of the form ��e���� By
Lemma 
� je��j is either O��� or ��n�� If je��j is ��n�� then clearly je�j is
���n��

If je��j is O���� we can simulate the application of the powerset operator
in the nested relational algebra� Indeed� let K be the maximal cardinality of
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e������ Then e� is equivalent to the following expression� �let � �� �e���

�f�g��
�

�����������e
�� � ����e

���� � � � � ��K �e
����

�
���
�

�����K�����e
�� � ����e

���� � � � � ��K �e
����

�
�

where ��� � � � � �K are permutations of U such that every atomic attribute
occurs in at most one of �� ������ � � � � �K���� and ��������� is an abbreviation
for the sequence of all �X����X� with X � ��
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