
Tiling Databases

Floris Geerts1, Bart Goethals2, and Taneli Mielikäinen2

1 Laboratory for Foundations of Computer Science
School of Informatics, University of Edinburgh

fgeerts@inf.ed.ac.uk
2 HIIT Basic Research Unit

Department of Computer Science
University of Helsinki, Finland

{goethals,tmielika}@cs.Helsinki.FI

Abstract. In this paper, we consider 0/1 databases and provide an al-
ternative way of extracting knowledge from such databases using tiles.
A tile is a region in the database consisting solely of ones. The interest-
ingness of a tile is measured by the number of ones it consists of, i.e., its
area. We present an efficient method for extracting all tiles with area at
least a given threshold.
A collection of tiles constitutes a tiling. We regard tilings that have
a large area and consist of a small number of tiles as appealing sum-
maries of the large database. We analyze the computational complexity
of several algorithmic tasks related to finding such tilings. We develop
an approximation algorithm for finding tilings which approximates the
optimal solution within reasonable factors. We present a preliminary ex-
perimental evaluation on real data sets.

1 Introduction

Frequent itemset mining has become a fundamental problem in data mining
research and it has been studied extensively. Many efficient algorithms such
as Apriori [1], Eclat [19] and FP-growth [7] have been developed to solve this
problem.

More recently, a new setting, to find the top-k (closed) most frequent itemsets
of a given minimum length, has been proposed [8]. For small k this provides a
small and comprehensive representation of the data, but at the same time it raises
the question whether frequency is the right interestingness measure. The use of
frequency has been criticized in the context of association rules as well and many
alternatives have been offered [17]. Unfortunately, finding good and objective
interestingness measures for itemsets seems to be a hard problem. Additionally,
allowing such measures to prune the huge search space of all itemsets might
be even harder. Currently, most techniques rely on the monotonicity property
of the frequency of itemsets. Indeed, supersets of infrequent itemsets cannot be
frequent, and can therefore be pruned away from the huge space of all itemsets.

In this paper we introduce a new and objective interestingness measure for
itemsets. It is based on the concept of a tile and its area. Informally, a tile

1 0 1 1 0 0 1 1 1 0 1 1 0 1 0 0 0 1 0 1 1 0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 0 1 0 1
0 0 1 1 0 1 1 1 0 1 1 1 0 0 0 0 1 1 0 1 1 0 1 0 0 1 0 1 0 0 1 0 1 1 0 0 0 1 0 0
1 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0
0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 0 1 0 1 1 1 0 0 1 1 0 1 1 0 1 0 1 1 0 0 0 1 0 1
0 1 1 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0
1 1 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 1 0 1 0 0 0 0 1 1 0 1 0
0 1 1 1 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 1 1 1 0 1 0 1 0 1 1 0 0 1 1 1 0 0 0 1 1 1
0 0 1 0 0 1 1 0 0 1 0 1 0 0 1 0 1 0 0 0 1 1 0 0 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0
0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 1 1 0 0 1 0 0
0 0 1 1 1 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 1 1 1 0 0 1 0 1 1 1 1 0 1 1 0 1 0 1 1 0

Fig. 1. Example of a 0/1 database a tiling consisting of two overlapping tiles (darkest
shaded area correspond to intersection of the two tiles).

consists of a block of ones in a 0/1 database as shown in Figure 1. We call
the number of ones in a tile the area of the tile in the database. A collection
of (possibly overlapping) tiles constitutes a tiling (see Figure 1). The area of a
tiling in the database is the total number of ones which are part of the tiles in the
tiling. Obviously, the larger the tile or tiling, the more knowledge they represent
about the database. Moreover, a large tiling consisting of only a small number
of tiles can be extremely informative when one is curious about the content of a
0/1 database. Indeed, the tiling implicitely determines an upper bound on the
number of different databases that are consistent with a database, and hence, it
presents a small characterization of the database at hand.

In this paper we consider the following problems: the maximum k-tiling prob-
lem which asks for a tiling consisting of at most k tiles having the largest possible
area; the minimum tiling problem which asks for a tiling of which the area equals
to the total number of ones in the database and consists of the minimum num-
ber of tiles; the large tile mining problem which asks for all tiles in the database
each having at least some minimum area; and the top-k tiles problem which
asks for the k tiles that have the largest area. Furthermore, we present hardness
results on the complexity of the problems listed above; we propose algorithms
that solve these problems or give good approximations when optimal solutions
are intractable; and we present promising experimental results on several large
real world sparse and dense databases.

As we will show, the itemset constraints considered here belong to the class of
length decreasing support constraints. The algorithms we propose use an adap-
tation and improvement of the known pruning strategies for length decreasing
support constraints [16, 18].

The concept of a tile is not entirely new, but the problems we consider have
not yet been investigated. The notion of tiles is similar to combinatorial rectan-
gles (communication complexity [11]), co-clusters (clustering [5]), bi-sets (formal
concepts [3]), or conjunctive clusters (learning [15]). The difference with our set-
ting is that we look for exact tiles, while most research instantly relaxes the
condition of exactness and studies approximations of the tiles.

This paper is organized as follows. We formally state the problems in Sec-
tion 2 and give some complexity results. An algorithm for each problem is pre-
sented in Section 3. Experimental results are reported in Section 4. We conclude
the paper in Section 5.

2 Problem Statement

Let I be a set of n items. We can assume that I is a finite set {1, . . . , n}. An
itemset I is a non-empty subset of I. A transaction is a tuple 〈tid, T 〉 where tid
is a transaction identifier and T is an itemset. A (transactional) database D is
a set of m transactions. The size of a transaction is the number of items in it;
the size of a database is the sum of the sizes of the transactions in the database.
A transaction database D can also be regarded as a binary matrix of size m×n
where m is the number of transactions in D and n is the number of items in I.
The (i, j)th element in the binary matrix corresponding to D is equal to 1 if the
ith transaction contains item j, and it is equal to 0 otherwise. Hence, the size
of D is equal to the number of ones in this matrix. We will often mix these two
interpretations of a transaction database in the remainder of the paper.

Given an itemset I, a transaction 〈tid, T 〉 covers I if I ⊆ T . The cover
of an itemset I, denoted by cover(I,D), consists of the transaction identifiers
of transactions in D which cover I. The support of an itemset I with respect
to a database D is the cardinality of cover(I, D). We denote this number by
supp(I,D), or simply supp(I) when D is clear from the context.

Definition 1 (tiles, tilings and their area). Let I be an itemset and D be a
database. The tile corresponding to I is defined as

τ(I, D) = {(tid, i) | tid ∈ cover(I,D), i ∈ I}.

When D is clear from the context, we write τ(I) instead. The area of τ(I) is
equal to its cardinality. Moreover,

area(τ(I), D) = |τ(I)| = |I| · |cover(I,D)| .

A tiling T = {τ(I1), . . . , τ(Ik)} consists of a finite number of tiles; its area is
area(T , D) = |τ(I1) ∪ · · · ∪ τ(Ik)|.

We call a tile maximal if the corresponding itemset is closed. Recall that an
itemset is closed if it is not contained in a larger itemset having the same support.
All tiles considered in this paper will be maximal.

The area of a tiling T reflects how many possible databases there exist which
are consistent with the tiling. We actually can compute an upper bound on the
number of such databases easily based on the area of the tiling. Let m be the
number of rows and n the number of single items. Then there are maximum 2nm

possible databases. Since a tiling fixes 2area(T ,D) entries in a database, there are
only 2nm−area(T ,D) possible databases left which are consistent with the tiling
T . Based on this relationship between the number of databases consistent with

T and the area of D which the tiling T covers, the most interesting tilings are
the ones with the maximum area. Indeed, these tilings reduce the number of
databases consistent with the tiling the most.

The main goal of this paper is to find an algorithm which computes the
maximum k-tiling.

Problem 1 (Maximum k-Tiling). Given a database D and a positive integer
k, find a tiling T consisting of at most k tiles with maximum area area(T , D).

Related to Problem 1 is the problem of finding the minimum number of
tiles covering the database. This number is a measure for the complexity of the
database. When the complexity of the database is small, then the maximum
k-tiling for small values of k can be regarded as an excellent representation of
the database.

Problem 2 (Minimum Tiling). Given a database D, find a tiling of D with area
equal to the size of the database and consisting of the least possible number of
tiles.

In order to solve Problem 1 and Problem 2, the main algorithmic task is to
find all maximal tiles with area at least a given minimum area threshold.

Problem 3 (Large Tile Mining). Given a database D and a minimum area
threshold σ, find all tiles in D with an area at least σ.

Since the collection of large tiles can be very large, it is only natural to look
at a few largest tiles only:

Problem 4 (Top-k Tiles). Given a database D and a positive integer k, find k
tiles with largest areas.

To analyze the computational complexity of finding tiles and tilings, let us
first consider the simple subproblem of finding the largest tile in a given database
D:

Problem 5 (Maximum Tile). Given a database D, find the tile with the largest
area in D.

A solution for this problem is important for the approximations of good tilings.

Theorem 1. Maximum k-tiling, Minimum Tiling, Large Tile Mining,
Top-k Tiles and Maximum Tile are NP -hard.

Proof. The Maximum Tile problem can be seen also by viewing the database
as an adjacency matrix of a bipartite graph G = (V1, V2, E) and looking for the
largest complete bipartite subgraph of G, i.e., the largest subset E′ of edges such
that E′ = V ′

1 ×V ′
2 for some V ′

1 ⊆ V1 and V ′
2 ⊆ V2. This problem is known as the

Maximum Edge Biclique problem which is shown to be NP -hard [14].
The other complexity results now follow directly since Maximum Tile is a

special case of the Top-k Tiles problem, with k = 1. It is also a special case
of the Large Tile Mining problem when σ is assigned to be the maximum
area of a tile in D. Finally, the Maximum Tile problem is a special case of the
Maximum k-Tiling problem with k = 1. ut

Minimum Tiling is known to be NP-hard [13].

3 Algorithms

In this section, we first present the LTM algorithm for finding large tiles. LTM
uses a branch and bound search strategy combined with several pruning tech-
niques. Based on the LTM algorithm, we give an algorithm, k-LTM which finds
the top-k tiles. Finally, we use k-LTM to find an approximation of a maximum
k-tiling of a database. The approximation algorithm k-Tiling is a greedy algo-
rithm and ensures an approximation within a constant factor from the optimal
solution.

3.1 Large Tile Mining

Given a database D and a minimum area threshold σ, we want to find all max-
imal tiles which have an area at least σ. We denote by � the natural ordering
I = {1, . . . , |I|}.

In our algorithm, we will refine pruning techniques used in the context of
length-decreasing support constraints on itemsets [16, 18]. Let f(x) be a mono-
tone decreasing function, i.e., f(x) ≥ f(x + 1) ≥ 1; f is called a length-
decreasing support constraint and an itemset I is called frequent w.r.t. f if
supp(I,D) ≥ f(|I|). An itemset I which correspond to a tile τ(I) of area at
least σ can be seen as an itemset frequent w.r.t the length- decreasing sup-
port constraint f(|I|) = σ/|I|. Indeed, area(I,D) = |I| · supp(I,D) ≥ σ iff
supp(I,D) ≥ σ/|I|.

First, our algorithms will follow a similar depth-first search strategy and
counting mechanism as used in the Eclat algorithm and its variants [19, 20].
The same search strategy was later also successfully used in the FP-growth
algorithm [7], and is based on a divide and conquer mechanism.

Denote the set of all tiles in D with area at least σ, corresponding to itemsets
with the same prefix I ⊆ I by T [I](D,σ).

The main idea of the search strategy is that all large tiles containing item
i ∈ I, but not containing any item smaller than i, can be found in the so
called i-conditional database [7], denoted by Di. That is, Di consists of those
transactions from D that contain i, and from which all items before i, and i
itself are removed. In general, for an itemset I, we can create the I-conditional
database, DI , consisting of all transactions that contain I, but from which all
items before the last item in I and that item itself have been removed. Whenever
we compute the area of a tile in DI , we simply need to add |I| to the width of
the tile and multiply this with the support of the corresponding itemset. Then,
after adding I to the itemset, we found exactly all large tiles containing I, but
not any item before the last item in I which is not in I, in the original database,
D.

The large tile mining algorithm LTM as shown in Figure 2, recursively gen-
erates for every item i ∈ I the set T [{i}](Di, σ). (Note that T [{}](D,σ) =⋃

i∈I T [{i}](Di, σ) contains all large tiles.)
In order to compute the area of a tile, we need to know the support of

the itemset representing that tile. This value is computed exactly as in the

Input: D, σ, I (initially called with I = {})
Output: T [I](D, σ)
1: T [I] := {};
2: Prune(D, σ, I).
3: for all i occurring in D do
4: if |cover({i})|(|I|+ 1) ≥ σ then
5: Add τ(I ∪ {i}) to T [I];
6: end if
7: Di := {};
8: for all j occurring in D such that

j > i do
9: C := cover({i}) ∩ cover({j});

10: Add (j, C) to Di;
11: end for
12: Compute T [I ∪ {i}](Di, σ) recur-

sively;
13: Add T [I ∪ {i}] to T [I];
14: end for

Fig. 2. The LTM algorithm.

Input: D, σ, I
1: repeat
2: for all i occurring in D do
3: if UBI∪{i} < σ then
4: Remove i from D.
5: end if
6: for all tid ∈ cover({i}) do
7: if size(tid) < MLI∪{i} then
8: Remove tid from cover({i}).
9: end if

10: end for
11: end for
12: until nothing changed

Fig. 3. The Prune procedure.

Eclat algorithm. That is, the algorithm stores the database in its vertical layout
which means that each item is stored together with its cover instead of listing
explicitly all transactions. In this way, the support of an itemset I can be easily
computed by simply intersecting the covers of any two subsets J,K ⊆ I, such
that J ∪ K = I. This counting mechanism is perfectly suited for our purposes
since it immediately gives us the list of transaction identifiers that, apart from
the itemset itself, constitutes a tile.

We now describe the LTM algorithm in more detail. First, the algorithm is
initialized (line 1). Then, on line 2, the main pruning mechanism is executed,
as will be explained later. This mechanism will remove certain items from the
candidate set that can no longer occur in a large tile and remove transactions
that can no longer contribute to the area of a large tile. On line 3, the main loop
of the algorithm starts by considering each item separately. On lines 4–6, each
large tile is added in the output set. After that, on lines 7–11, for every item
i, the i-projected database Di is created. This is done by combining every item
j with i, such that j > i and computing its cover by intersecting the covers of
both items (line 10). On line 12, the algorithm is called recursively to find all
large tiles in the new database Di. However, in every such conditional database,
each item must be treated as the tile represented by the itemset I ∪ {i}.

For reasons of presentation, we did not add the details of restricting the
search space to closed itemsets such that only maximal tiles are considered.
Nevertheless, the algorithm can be easily extended with the techniques used in
the CHARM algorithm [20] such that only closed itemsets are generated.

Unfortunately, if the area of a tile does not meet the minimum area thresh-
old, we cannot simply prune away all tiles in its branch, because its supersets

considered in that branch might still represent tiles with large areas. Neverthe-
less, it is possible to compute an upper bound on the area of any tile that can
still be generated in the current branch. Based on this upper bound, the Prune
procedure, as shown in Figure 3, is able to prune some items from the search
space and at the same time it reduces the size of the database.

The Prune procedure consist of a repeated application of the node pruning
methods used in LPMiner [16] and BAMBOO [18]. More specifically, for each
item i in the database D (line 2) we compute an upper bound UBI∪{i} of the
largest possible tile containing I∪{i}. To obtain this upper bound for a given i, we
count how many transactions in the current I-conditional database, containing
i, have size at least `, for all occurring `. Denote this number by supp≥`(i,DI).
Then, the upper bound on the size of the largest possible area of a tile contain-
ing I ∪ {i} is given by UBI∪{i} = max{(|I|+ `) · supp≥`(i,DI) | ` ∈ {1, 2, . . .}}.
Obviously, to compute this number, we need the size of each transaction in the
current conditional database. This size is perfectly derivable from the vertical
representation of the conditional database. In practice, however, it is more ef-
ficient to store a separate array in which the size of each transaction is stored
for each conditional database. Also, note that the size for a given transaction
in the current conditional database can be much smaller than the size of that
transaction in the original database.

If the upper bound for a given item i in the database is smaller than the
minimum area threshold (line 3), then this means that i will never be part of
an itemset corresponding to a tile of area larger than σ, and therefore, it can be
removed from D (line 4).

This also implicitly means that the size of all transactions is decreased, which
may affect the upper bounds of the other items, and hence, they can be recom-
puted. This process can be repeated until no more items can be removed.

Even if an item cannot be completely removed from the database, it is some-
times possible to remove it from several transactions. More specifically, consider
the following number MLI∪{i} = min

{
` | ` · supp≥`(i,DI) ≥ σ

}
. This number

gives the minimum size of a transaction containing i, that can still generate
a tile with area at least σ. Hence, from each transaction containing i that is
shorter, i can be removed (lines 7–8). In the Prune procedure in Figure 3, we
find the size of a transaction tid using size(tid). Again, this removal can have
an effect on the upper bound of the other items, such that their upper bounds
can be recomputed and maybe some of them can still be removed.

3.2 Top-k Tiles

In order to find the top-k largest tiles, we adapt the LTM algorithm as follows.
Initially the minimum area threshold is zero. Then, after the algorithm has
generated the first k large tiles, it increases the minimum area threshold to the
size of the smallest of these k tiles. From here on, the minimum area threshold
can be increased every time a large tile is generated w.r.t. the current threshold.
All generated tiles that do not have an area larger than the increased minimum
area threshold can of course be removed.

3.3 Finding the Tiling

Even if finding tilings close to the best ones with reasonable guarantees is not
feasible in theory, we would like to find good tilings anyway.

For the Minimum Tiling problem it is clear what the best tiling is: it is
a complete tiling of the database with the smallest number of tiles. The best
k-tiling can be similarly considered to be the k-tiling with the largest area.

However, in data mining this might not be enough: due to the exploratory
nature of data mining the data mining tool should support interactive use. For
example, determining the value k in advance might be an unreasonable require-
ment for the data analyst. Instead, the tool should make it as convenient as
possible to explore different values of k. This is not the case if the suggested
k-tiling and k + 1-tiling differ a lot from each other. In the best case (for the
data analyst) the suggested k-tiling and k+1-tiling would differ only by one tile.

Such k-tilings for all values of k can be determined simply by fixing an
ordering for the tiles and considering the k first tiles in the ordering as the best k-
tiling [12]. Clearly, this kind of ordering does not provide k-tilings with maximum
area for all values of k but some approximation ratio might be guaranteed for all
values of k simultaneously if the ordering of the tiles would be determined in a
good way. For example, if the ordering of tiles is constructed greedily by adding
the tile that covers the largest area of the uncovered parts of the database, we
get decent upper bounds for the approximation ratios of the Minimum Tiling
and the Maximum k-Tiling problems.

Theorem 2. The Minimum Tiling problem can be approximated within the
factor O(log nm) and Maximum k-Tiling can be approximated within the fac-
tor e/(e − 1) for all values of k simultaneously, given an oracle that finds for
any database D and tiling T the tile τ(I) such that area(T ∪ {τ(I)} , D) =
maxI′⊆I area(T ∪ {τ(I ′)} , D).

Proof. These problems can be interpreted as instances of the Minimum Set
Cover problem and the Maximum k-Coverage problem, respectively: the set
that is to be covered corresponds to the ones in the database and the sets that
can be used in the cover are the maximal tiles in D. The only problem in the
straightforward reduction to set cover is that the number of maximal tiles can
be exponential in the size of the database. Fortunately, the greedy algorithm for
set cover that gives the desired approximation bounds for both variants of the
problem depends only on the ability of finding the tile τ(I,D) that maximizes
the area area(T ∪ {τ(I)}, D) for a given collection T of tiles [6].

If we have such an algorithm, then the approximation bounds follow from the
bounds on the Minimum Set Cover problem and the Maximum k-Coverage
problem [2]. ut

The oracle that gives the tile covering the most extra area outside a given
tiling, can be implemented reasonably efficiently by adapting the LTM algo-
rithm. Whenever we compute the area of a tile (line 4) in the LTM algorithm
in Figure 2, we subtract the part of the area that was already covered earlier.

Additionally, we can also improve the Prune procedure by computing a second
upper bound which takes the already covered area into account. Indeed, the
current upper bound needs to take the size of the original transactions into ac-
count and we can not simply remove what is already covered from them, since
the remaining part might not even be a tile anymore. We can, however, store
a second array containing only the uncovered size of each transaction. Using
this array, the uncovered area of any candidate tile in the current conditional
database, which contains item i, is at most the sum of of these sizes of the
transactions that contain i. Finally, we take the minimum of these two bounds:
UB∗

I∪{i} = min{UBI∪{i},
∑

tid∈cover({i}) size∗(tid)}, which can replace the old
upper bound (line 4) in the Prune procedure in Figure 3. Note that size∗ now
stores the sizes of the uncovered parts of the transactions, containing item i.

Thus, in practice we can solve the problems Minimum Tiling and Maximum
k-Tiling with very good approximation bounds.

4 Experimental evaluation

We implemented our algorithms in C++ and experimented on a 2GHz Pentium-4
PC with 1GB of memory, running CS-Linux.

We present the evaluation of the algorithms on two substantially different
datasets. The mushroom data set is a dense dataset, containing characteris-
tics of various species of mushrooms and was originally obtained from the UCI
repository of machine learning databases [4]. It consists of 119 single items, 8 124
transactions, resulting in 186 852 ones. The BMS-Webview-1 dataset is a sparse
dataset, containing several months of click-stream data from an e-commerce web-
site, and is made publicly available by Blue Martini Software [10]. It consists of
497 items, 59 602 transactions, resulting in 149 639 ones.

In the first series of experiments we ran the LTM algorithm for various mini-
mum area thresholds, which is shown in Figure 4. As can be seen, the execution
times show the feasibility of our approach, taking into account the extremely
low minimum area thresholds. Indeed, a minimum area of 250 for the BMS-
Webview-1 dataset, corresponds to 250/149 639 = 0.3% of the ones in the data-
base. Similarly, for the mushroom dataset, a minimum area of 250 corresponds
to 250/186 852 = 0.1% of the ones in the database.

The number of tiles found and the number of generated candidate tiles by the
LTM algorithm for various minimum area thresholds is shown in Figure 5. Here,
it shows that the dense mushroom dataset indeed contains a huge number of
large tiles, while the sparse BMS-Webview-1 dataset contains a modest number
of large tiles, but a lot smaller ones. For the same reason, the number of candidate
tiles is much closer to the actual number of large tiles in the mushroom dataset
as compared to the BMS-Webview-dataset. Note, since the mushroom database
contains only 8 124 transactions, the minimum area threshold of 9 000 forces
that no discovered tile consists of only a single item. Similarly, a minimum area
threshold which is larger than the size of all transactions, guarantees that no
single transaction can be a large tile.

1

10

100

1000

10000

0 500 1000 1500 2000 2500 3000

se
co

nd
s

minimum area threshold

BMS-Webview-1 time consumption

LTM
k-LTM

10

100

1000

10000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

se
co

nd
s

minimum area threshold

Mushroom time consumption

LTM
k-LTM

Fig. 4. Large tile mining on the BMS-Webview-1 (left) and Mushroom (right) data
set. The plots show the execution times of the LTM and k-LTM algorithms for various
minimum area thresholds.

1

10

100

1000

10000

100000

1e+06

1e+07

0 500 1000 1500 2000 2500 3000

nu
m

be
r o

f t
ile

s

minimum area threshold

BMS-Webview-1 number of tiles

large tiles
number of canidates

1000

10000

100000

1e+06

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

nu
m

be
r o

f t
ile

s

minimum area threshold

Mushroom number of tiles

large tiles
number of canidates

Fig. 5. Large tile mining on the BMS-Webview-1 (left) and Mushroom (right) data
set. The plots show the number of tiles found and the number of tiles checked by LTM
algorithm for various minimum area thresholds.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

pe
rc

en
ta

ge
 c

ov
er

ed

number of tiles

BMS-Webview-1 tiling

LTM k-tiling
top-k tiling

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

pe
rc

en
ta

ge
 c

ov
er

ed

number of tiles

Mushroom tiling

LTM k-Tiling
top-k tiles

Fig. 6. Comparison of the covered area of tilings for the BMS-Webview-1 dataset (left)
and Mushroom dataset (right) obtained by running the k-LTM algorithm and the k-
Tiling algorithm on these data sets for different values of k.

In the second series of experiments we ran the k-LTM algorithm for various
minimum area thresholds, which is shown in Figure 4. As can be seen, the exe-
cution times are larger than the execution times of the standard LTM algorithm,
but it still shows the feasibility of our approach.

Finally, to show the effectiveness of the k-Tiling algorithm, we tested the
algorithm for a varying number k of tiles. To compare, we plot the percentage of
the number of ones covered by the k-Tiling algorithm, together with the number
of ones covered by taking the top-k tiles generated by the k-LTM algorithm.
The results, shown in Figure 6, are striking for the mushroom dataset. Indeed,
already 60% of the ones in the database are covered by only 10 tiles! To obtain
a tiling that covers 90% of the database, only 45 tiles are needed. For the BMS-
Webview-dataset, slightly more tiles are needed to obtain a similar tiling, which
is of course expected, given the sparsity of this database.

5 Conclusions and Future Work

We introduced the concepts of tiles and tilings in the context of transaction or 0/1
databases and argued that the area of a tile and tilings is a good interestingness
measure. Indeed, a tiling implicitely determines an upper bound on the number
of different databases that are consistent with a database, and hence, it presents
a small characterization of the database at hand.

We presented some computational challenges to computing different types of
tilings. A theoretical analysis of these challenges shows that they are all NP-hard.
In practice, however, computing these tilings might be still feasible.

Therefore, based on a powerful iterative upper bounding mechanism, we de-
veloped an elegant branch and bound algorithm that discovers all large tiles
with respect to a minimum area threshold. This algorithm prunes away a lot of
tiles from the huge search space of all possible tiles. Based on this algorithm, we
derive two other algorithms using small adaptations for the problem of finding
the k largest tiles and finding the largest tiling consisting of k tiles only.

Our experiments verify the efficacy and efficiency of the algorithms. From a
knowledge discovery point of view, we show that using only a marginal number
of tiles, we are already able to present a very good picture of the databases at
hand.

This work is preliminary in the sense that the the knowledge extraction
aspect is barely investigated. The main goal of this paper was to introduce
the problem and show the feasibility of our approach. In future work, we will
investigate the quality of tilings as knowledge representations. A more thorough
experimental evaluation and comparison with existing approaches (frequent sets,
top-k frequent sets) is postponed to a follow-up paper as well. Finally, we want
to improve upon the upper bound of databases consistent with a given tiling,
since that would result in more accurate interestingness measures.

Acknowledgments. We wish to thank Blue Martini Software for contributing the
KDD Cup 2000 data [9].

References

1. R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A.I. Verkamo. Fast discov-
ery of association rules. In Advances in Knowledge Discovery and Data Mining,
chapter 12, pages 307–328. AAAI/MIT Press, 1996.

2. G. Ausiello, P. Crescenzi, V. Kann, A. Marchetti-Spaccamela, and M. Protasi.
Complexity and Approximation: Combinatorial Optimization Problems and Their
Approximability Properties. Springer-Verlag, 1999.

3. J. Besson, C. Robardet, and J.-F. Boulicaut. Constraint-based mining of formal
concepts in transactional data. Proceedings of PAKDD’04, pages 615–624, 2004.

4. C.L. Blake and C.J. Merz. Uci repository of machine learning databases.
http://www.ics.uci.edu/ mlearn/MLRepository.html, 1998.

5. I.S. Dhillon, S. Mallela, and D.S. Modha. Information-theoretic co-clustering. Pro-
ceedings of KDD’03, pages 89–98, 2003.

6. U. Feige. A threshold of ln n for approximating set cover. Journal of the Association
for Computing Machinery, 45(4):634 – 652, 1998.

7. J. Han, J. Pei, Y. Yin, and R. Mao. Mining frequent patterns without candi-
date generation: A frequent-pattern tree approach. Data Mining and Knowledge
Discovery, 8(1):53–87, 2004.

8. J. Han, J. Wang, Y. Lu, and P. Tzvetkov. Mining top-k frequent closed patterns
without minimum support. In Proceedings of ICDM’02, pages 211–218, 2002.

9. R. Kohavi, C. Brodley, B. Frasca, L. Mason, and Z. Zheng. KDD-Cup 2000
organizers’ report: Peeling the onion. SIGKDD Explorations, 2(2):86–98, 2000.
http://www.ecn.purdue.edu/KDDCUP.

10. R. Kohavi, C. Brodley, B. Frasca, and L. Masonand Z. Zheng. Kddcup 2000
organizers report: Peeling the onion. SIGKDD Explorations, 2(2):86–98, 2000.
http://www.ecn.purdue.edu/KDDCUP.

11. E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge, 1996.
12. T. Mielikäinen and H. Mannila. The pattern ordering problem. In Proceedings of

PKDD’03, volume 2838 of Lecture Notes in Artificial Intelligence, pages 327–338.
Springer-Verlag, 2003.

13. J. Orlin. Containment in graph theory: covering graphs with cliques. Indigationes
Mathematicae, 39:211–128, 1977.

14. R. Peeters. The maximum edge biclique is NP-complete. Discrete Applied Mathe-
matics, 131:651–654, 2003.

15. D. Ron, N. Mishra, and R. Swaminathan. On conjunctive clustering. Proceedings
of COLT’03, pages 448–462, 2003.

16. M. Seno and G. Karypis. LPMiner: An algorithm for finding frequent itemsets
using length-decreasing support constraint. Proceedings of ICDM’01, pages 505–
512, 2001.

17. P.-N. Tan, V. Kumar, and J. Srivastava. Selecting the right interestingness measure
for association patterns. In Proceedings of KDD’02, pages 32–41, 2002.

18. J. Wang and G. Karypis. BAMBOO: Itemset mining by deeply pushing the length-
decreasing support constraint. Proceedings of SIAM DM’04, 2004.

19. M.J. Zaki. Scalable algorithms for association mining. IEEE TKDE, 12(3):372–
390, 2000.

20. M.J. Zaki and C.-J. Hsiao. CHARM: An efficient algorithms for closed itemset
mining. In R. Grossman, J. Han, V. Kumar, H. Mannila, and R. Motwani, editors,
Proceedings of SIAM DM’02, 2002.

